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1. Introduction and summary. In the study of the structure of regular semigroups, it is
customary to impose several conditions restricting the behaviour of ideals, idempotents or
elements. In a few instances, one may represent them as subdirect products of some much
more restricted types of regular semigroups, e.g., completely (0-) simple semigroups, bands,
semilattices, etc. In particular, studying the structure of completely regular semigroups, one
quickly distinguishes certain special cases of interest when these semigroups are represented
as semilattices of completely simple semigroups. In fact, this semilattice of semigroups may
be built in a particular way, idempotents may form a subsemigroup, Jf may be a congruence,
and soon.

Instead of making some arbitrary choice of these conditions, we consider, in a certain
sense, the converse problem, by starting with regular semigroups which are subdirect products
of a band and a semilattice of groups. This choice, in turn, may seem arbitrary, but it is a
natural one in view of the following abstract characterization of such semigroups: they are
bands of groups and their idempotents form a subsemigroup. It is then quite natural to
consider various special cases such as regular semigroups which are subdirect products of: a
band and a group, a rectangular band and a semilattice of groups, etc. For each of these
special cases, we establish (a) an abstract characterization in terms of completely regular
semigroups satisfying some additional restrictions, (b) a construction from the component
semigroups in the subdirect product, (c) an isomorphism theorem in terms of the represen-
tation in (b), (d) a relationship among the congruences on an arbitrary regular semigroup which
yield a quotient semigroup of the type under study.

Using the following abbreviations: B—bands; SG—semilattices of groups; L—left
zero semigroups; R—right zero semigroups; S—semilattices; G—groups; 1—one element
semigroups, we consider regular semigroup subdirect products of these according to the
diagram below.

This leads us to classes of semigroups for which we introduce the following abbreviations:
V—a variety of bands; UVG—semigroups 5 for which $e is a congruence, S/Jfe V, and the
idempotents form a unitary subset of S; M—rectangular bands; CRISN—completely regular
semigroups whose idempotents form a strongly normal subband (defined in §2); CRILSN—
are CRISN with left added in front of" strongly "; CRUSN—are CRISN whose idempotents
form a unitary subset; CRTJLSN—conjunction of the last two. In addition we adopt from
[5]: ISBG—bands of groups whose idempotents form a subsemigroup. Thus, we call a
congruence p on a semigroup S an A'-congruence if Sjp is in class X, e.g., for X = G, a group
congruence, for X = S, a semilattice congruence (should not be confused with the letter S
which usually denotes a semigroup).

By sections, this work is divided as follows. §2 is devoted to results which are needed
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either for an understanding of the general system of study or are needed in the proofs of the
main sections. This also takes care of the following parts of the diagram: L x G, R x G,
L x R, L x R x G. §3 takes care of B x SG; §4 of B x G, S x G (more generally of V x G);
§5 of L x R x SG, L x SG, R x SG, L x R x S; §6 of L x R x S x G, L x S x G, R x S x G, L x S,
RxS .

Some of our results overlap with those proved by Yamada in [12] in a somewhat different
guise; on the other hand, there is some overlapping with the results of Howie and Lallement
[5], proved there by different methods. We make frequent use of several results established
in the last mentioned paper, and add to the list of interesting connections among special
congruences on a regular semigroup.

2. Preliminary results. We discuss in this section several known results and establish
some new ones which will serve as a basis for the main body of the paper comprising all the
remaining sections. First we briefly mention bands of groups, then introduce strong and
sturdy semilattices of semigroups, then discuss several results concerning normal bands and
rectangular groups, and finally establish some lemmas to be used throughout the paper. All
undefined terminology and notation can be found in [3].

Bands of groups. Recall that a semigroup S is a band of groups if S has a congruence a
such that each a-class is a group. In such a case, Sja is a band, which justifies the terminology,
and a = #?. Since every semigroup we shall study in this paper is a band of groups, the
following theorem, due to Clifford [2, Theorem 7] in a slightly different form, is of particular
interest.

THEOREM 2.1. The following conditions on a semigroup S are equivalent.

(i) S is a band of groups.
(ii) 5 is regular and abS = a2bS, Sab = Sab2 for all a,beS.

(iii) S is completely regular and 3ff is a congruence.

Recall that " completely regular " is a synonym for " union of groups " or " Clifford semi-
group ". We shall not use part (ii), but shall use the equivalence of (i) and (iii) without express
mention. Further recall that a semigroup S is a semilattice of groups if S is completely regular,
Jf is a congruence and 5/Jf is a semilattice. A construction of these semigroups, due to
Clifford (see [3, Theorem 4.11]) can be generalized in an obvious manner as follows (it plays
an implicit but basic role in most of our investigations).

Strong semilattices of semigroups. Let {Sa}a e Y be a family of pairwise disjoint semigroups
indexed by a semilattice Y, and, for any pair a ^ /} of elements of Y, let there be given a homo-
morphism (p3iP: Stt -* Sfi satisfying the conditions (a) (pt<a is the identity mapping, (b) if
a > jS > y, then (paj(pPty = (px<y, where the functions are written on the right. On S = \J Sx

define a multiplication * by aeY

a*b = (aq>a^)(bq)pttfi) if aeSa,beS0.

Then S is a semigroup, to be called a strong semilattice of semigroups Sa and to be denoted

https://doi.org/10.1017/S0017089500001701 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001701


30 MARIO PETRICH

Recall that a semigroup S is a subdirect product of a family of semigroups {Sa}aeA if
there exists an isomorphism x of 5 into the direct product Yl Sa of semigroups Sa such that,

xeA

for every aeA, the projection homomorphism maps Sx onto Sa.

PROPOSITION 2.2. Every strong semilattice of semigroups Sa is a subdirect product of
semigroups Sx with a zero possibly adjoined.

Proof. Let S = [Y; Sa, <paj] and, for every a e Y, define a function i/ra on S by

ij/x:b-*b(ppA if beSp and /? ̂  a, and 0a otherwise.

It is easy to verify that \j/a is a homomorphism of S onto Ta = Sa if a is the zero of Y and onto
Ttt = 5au0a otherwise, where 0a acts as the zero of Sau0a and 0a£Sa. Furthermore, the
function

is easily seen to be an isomorphism of 5 onto a subsemigroup of FT Ta, all of whose projections
aeY

into components Ta are onto, making S a subdirect product of the family {Ta}aeY.

COROLLARY 2.3. A semigroup S is regular and a subdirect product of groups with a zero
possibly adjoined, if and only ifS is a semilattice of groups.

Proof. Necessity. It is immediate that S is a regular semigroup with all idempotents in
the centre, making it a semilattice of groups.

Sufficiency. This is a direct consequence of Proposition 2.2.

Sturdy semilattices of semigroups. Asemigroup5= [Y; Sa, cpa^] with all homomorphisms
(pa f one-to-one will be called a sturdy semilattice of semigroups Sa and will be denoted by
S = <y;5a,(Pa,/,>.

This special case is of particular interest in view of the following basic result.

THEOREM 2.4. On S = < Y; Sa, (pXifi} define a relation co by

acob o a<pXAf = b(p0>afi if aeSa, beSp.

Then a> is a congruence, S is a subdirect product of Y and Sjco, and, if all Sa are {left, right)
simple, so is Sjco.

Proof. It is clear that <u is reflexive and symmetric. Let aeSa,beSp,ceSy, 8 = apy. If
acob and bcoc, then

= C<Py,f)y<Pl>v,d = C<Py,5 = W y ,«y<P ty ,&,

which by the hypothesis implies that aq>XiXy = cq>yAV so that acoc, proving that co is transitive.
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Ifacab, then

proving that a*c co b*c. A dual proof shows that c*aa> c*b also and thus co is a congruence.
It is then immediate that the function \ji defined on 5 by

,a) if aeSa,

where a is the co-class containing a, is an isomorphism of S into y x 5/co, making 5 a subdirect
product of Y and S/co.

Suppose next that every Sx is simple. Let aeSa, beSp; then a<pXtXfi, b<pfi^eSa^ and the
hypothesis implies the existence of x, yeSap such that a<j»a>a/, = x(b(pfA^y. But then aq»ai(,/j =
(x*b *y)(pxp,ltp, which implies that a a> x*b*y, proving that S/a> is simple. Left and right
simplicity are treated similarly.

Throughout, if S is a semigroup, Es denotes its (partially ordered) set of idempotents.
Recall the following definition: A nonempty subset A of a semigroup S is left unitary if

seS, a,aseA implies seA; right unitary is defined dually, unitary is the conjunction of the
two. Since we shall frequently encounter the condition that Es is unitary for a regular semi-
group S, the next proposition is of particular interest.

PROPOSITION 2.5. The following conditions on a regular semigroup S are equivalent.

(i) Es is right (resp. left) unitary.
(ii) Es is unitary.

(iii) e, eseeEs implies seEs.
(iv) e, aebeEs implies abeEs.

If S is a regular semigroup satisfying these conditions, then Es is a subsemigroup of S.

Proof. That Es left unitary implies that Es is right unitary and a subsemigroup of S is
the content of [5, Lemma 2.1]. That (ii) implies both (i) and (iii) is trivial in any semigroup.
Suppose that (iii) holds and let e,seeEs. Then se, (se)(ese)(se)eEs, which implies that
eseeEs, and this together with eeEs implies that seEs; so (i) holds. Again the hypothesis
of regularity is not needed.

Suppose next that (ii) holds and let e, aeb e Es. It follows easily that (ebae)2 e Es and hence
e,e(baeba)eeEs, which implies that baebaeEs. Thus baeba,(baeba)(ebae) = (baeba)eeEs,
since Es is a subsemigroup of S, which implies that ebaeeEs. But then e, ebaeeEs, so that
baeEs and [5, Lemma 2.2] yields abeEs, proving (iv).

Finally, suppose that (iv) holds. For e,feEs, let x be an inverse of fe. Then exf,
e{exf)feEs, so that efeEs, i.e., Es is a subsemigroup of 5". Now let e, seeEs, and let s' be
any inverse of s. Then (se)(s's)eEs, since Es is a subsemigroup of S. By (iv), s = ss'seEs,
proving (i).
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We shall use the preceding proposition without express mention. The next result will be
quite useful.

PROPOSITION 2.6. The following conditions on a semigroup S are equivalent.

(i) S is a sturdy semilattice of groups.
(ii) S is a regular semigroup subdirect product of a semilattice and a group.

(iii) S is a semilattice of groups and Es is a unitary subset of S.

Proof, (i) implies (ii) by Theorem 2.4. If S is as in (ii), we may suppose that S is a
subsemigroup of YxG, where Y is a semilattice and G is a group. For every ueY, let
Ga = {g e G | (a, g) e S }. It is quite easy to verify that S is a semilattice of groups Ga and that
Es is unitary. Finally the implication " (iii) implies (i) " follows directly from f5, Corollary 2.4].

Normal bands. Recall [14] that a band B is normal if it satisfies the identity axya = ayxa;
B is left (resp. right) normal if it satisfies the identity axy = ayx (resp. xya = yxa).

The smallest semilattice congruence on any semigroup S will be denoted throughout by
JV, the ./F-class containing an element aby Na; S\J/~ is a semilattice with NaNh = Nab (see
[8] for an extensive discussion).

Let A and B be semigroups, let n be an isomorphism of A\Jf onto B\Jf, and let

S={(a,b)eAxB\Nat1 = Nb}

with the multiplication induced by the direct product AxB. Then S is the spined product of
A and B relative to n, or simply a spined product of ^ and B (see [6]). One may define a
spined product of any family of semigroups; for a finite family one may do it by induction,
since SlJf ^ A\Jf ^ B\Jf.

THEOREM 2.7. The following conditions on a band B are equivalent.

(i) B is normal.
(ii) B is a strong semilattice of rectangular bands.

(iii) B is a spined product of a left normal and a right normal band.
(iv) In B, e>fe> gJJfg imply f=g.

Proof. The equivalence of (i), (ii), and (iii) was announced by Yamada and Kimura [14];
the entire theorem follows easily from [11, Theorems 4.3 and 4.4].

COROLLARY 2.8. A band B is left normal if and only if B is a strong semilattice of left zero
semigroups.

A further case of interest for our purposes is represented by

PROPOSITION 2.9. The following conditions on a band B are equivalent.

(i) B is normal and e <f, e < g,fJfg imply f— g.
(ii) B is a sturdy semilattice of rectangular bands.

(iii) B is a subdirect product of a semilattice and a rectangular band.
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Proof, (i) implies (ii). By Theorem 2.7 we may take B = [Y; Ba, <pa,fi], where each Bx is
a rectangular band. If/, geBa,u> ft, andfy>x,p = g<px,p, then it follows quickly that e =f(pa,p
has the property e <f,e < g and, since//F<7, we infer tha t /= g, proving that <pafi is one-to-one.

(ii) implies (iii). By Theorem 2.4 we have that B is a subdirect product of the semilattice
B\Jf and the band B/co, which is simple and thus must be a rectangular band.

(iii) implies (i). Let B £ 7 x M b e a subdirect product, where Y is a semilattice and M is
a rectangular band. Since both Y and M are normal bands, so is B. One verifies without
difficulty that, in B, (a, e)Jf($l,f) if and only if a = J5; further (a, e) < (j9,/), (a, e) < (/?, 5)
implies e = / = #. Combining these two yields the validity of (i).

We call a band B satisfying the conditions of Proposition 2.9 strongly normal; if, in
addition, B is left (right) normal, we call it a left {right) strongly normal band. We immediately
have

COROLLARY 2.10. The following conditions on a band'B are equivalent.

(i) B is a left strongly normal band.
(ii) B is a sturdy semilattice of left zero semigroups.

(iii) B is a subdirect product of a semilattice and a left zero semigroup.

Rectangular groups. Recall that a semigroup S is a rectangular group if S is isomorphic
to the direct product of a rectangular band and a group. The next statement appears in
[3, exercise 2(b), p. 97]; a proof is given in [7, Lemma 1].

PROPOSITION 2.11. A completely simple semigroup S in which Es is a semigroup is a
rectangular group and conversely.

PROPOSITION 2.12. Let L, R and G be a left zero semigroup, a right zero semigroup and a
group, respectively. Then LxRxG is the only subdirect product of L, R and G contained
in LxRxG.

Proof. Let S^LxRxG be a subdirect product, and let (l,r,g)eLxRxG. Then
(/, r', h)eS for some r'eR, heG; further, (u,v, h'1)eS for some ueL,veR. Letting 1 denote
the identity of G, we obtain

(/, r', 1) = (/, r', h)(u, v, h-'fil, /•', h) e S.

Analogously (/', r, ])eS for some I'eL, and (/", r", g)eS for some l"eL, r"eR, which yields

as desired.

COROLLARY 2.13. Let L, R, G be as in Proposition 2.12, and let A be any semigroup.
Then the subdirect products of the following combinations of semigroups coincide: (i) L, R, G, A,
(ii) LxR,G, A, (iii) LxG,R, A, (iv) RxG, L, A,(y) LxRxG, A.

Proof. For example, if S^LxRxGx A is a subdirect product, then its projection in
LxR is a subdirect product of L and R and hence, by Proposition 2.12, must coincide with
LxR. Hence (i) implies (ii). The converse is trivial.
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PROPOSITION 2.14. Let L and L' be left zero semigroups, R and R' right zero semigroups,
G and G'groups, S = LxRxG, S' = L'xR'xG'. Further, let q>:L-+L', \}i:R-*R',
co.G^G'be onto isomorphisms. Then a function % defined by

(I, r, g)x = V<P,nl/, gco) ((/, r, g) e S)

is an isomorphism of S onto S". Conversely, every isomorphism of S onto S' can be expressed
in this way.

Proof. The direct part is obvious; the converse follows without difficulty from [3,
Theorem 3.11] and its proof is omitted.

We prove now a few auxiliary statements which will be useful later. The first one will be
used quite frequently and without express reference.

LEMMA 2.15. Let Bbea band, Tbea semilattice of groups, and Sbea regular subsemigroup
of BxT. If (e, g)eS and 1 is the identity of the maximal subgroup of T containing g, then
(e, l)eS and (e, g~x) is an inverse of(e, g) in S.

Proof. Let (/, h) be an inverse of (e, g) e S. Then h is the inverse of g in T and we may
write h = g~l, and/ is an inverse of e. Further, (<?/, 1) = (e, g)(f g~l)e Sand dually (fe, l)eS,
so that (e, 1) = (ef \){fe, l ) eS . But then

-')(<?, \)eS
as required.

We shall mainly be studying semigroups S which fit the description in Lemma 2.15. If T
is periodic, S is automatically regular since, for (e, g)eS, some power of (e, g) is an inverse of
(e, g) and hence every element of S has an inverse. It follows that our results for regular
semigroup subdirect products of a band and a semilattice of groups are automatically
applicable to all subdirect products of a band and a semilattice of periodic groups. Conversely,
if S is a subdirect product of B and T and 5 is periodic, then T is also periodic, being a
homomorphic image of 5.

LEMMA 2.16. Let S be a regular subsemigroup of a semigroup T. Then Green's relations
<£, 3t, 3>P onS are the restrictions of those on T.

Proof. It suffices to consider JS?; let ifs and S?T denote the corresponding if-relations.
Let a,beS and aSt?Tb. Then a — ub and b = va for some u, veT; letting a' and V be
inverses in S of a and b, respectively, we obtain a = (ub)b'b =ab'b and b =(va)a'a =ba'a,
which shows that a&sb. Consequently J2?r | s £ &s. The opposite inclusion is trivial.

COROLLARY 2.17. If S is a regular semigroup subdirect product of a band B and a semi-
lattice of groups T, then S is a band of groups and Es is a subsemigroup of S.

Proof. It follows from Lemma 2.15 that S is completely regular, and from Lemma 2.16
that ^f is a congruence, since this holds both in B and in Tandhence in BxT. Since the
idempotents of both B and T form a subsemigroup of each of these semigroups, this property
carries over to S.
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Notation. If a is an isomorphism of a semigroup S onto a semigroup T, then & denotes
the isomorphism of 5/^T onto T/JV induced by a (i.e., Nsd =NSO for all seS). If ee£s,
then Ge denotes the maximal subgroup of S having e as its identity. The equality relation on S
is denoted by i, the universal relation by °U.

3. Subdirect products of a band and a semilattice of groups. After a preliminary result,
we establish several characterizations of the semigroups under study. For their representation
as a spined product, we prove an isomorphism theorem. Finally we apply certain of these
results to congruences on a regular semigroup.

THEOREM 3.1. Let S be a band of groups for which Es is a subsemigroup ofS. On S define
a relation ^ by

a^b o a = ebe, b=faf, where aeGe, beGf.

Then £, is the minimum SG-congruence on S. Moreover, 2/fc\^ = i,
and, on denoting by x the £-class containing x,aJfb if and only if a Jf b~.

Proof. First note that £ £ J/~. Next let aeGe, beGf, ceG,. Suppose that a^b and
b^c. Then a, b, c, e,f t are all contained in the same ,/f-class of S, which is a rectangular
group by Proposition 2.11, and thus

a = ebe = e(fcf)e = (efc)fe = e(cfe) = ece

and analogously c — tat, proving that a £ c. Hence ^ is transitive and thus an equivalence
relation. Now assume only that a t, b. Taking into account that

(1) beceGfc since Jif is a congruence,
(2) eJff, since aeGc, beGf,aJ^b,
(3) aceGcl, since Jif is a congruence,
(4) tb, et, ce are in the same ^T-class, which by Proposition 2.11 is a rectangular group,

we obtain the following string of equalities:

ac = ebec = e(fet)(bec) = {efe)tbec = etbec = etbec[et) = e{tb){et){ce)t

analogously be = (ft)(ac)(ft), which proves that ac t, be. By a similar argument, we may show
that ca I; cb, and hence ^ is a congruence.

Next let F = M x G, where M is a rectangular band and G is a group. A simple calculation
shows that in F we have (e, g) 3^{f, h) if and only if e —f, and (e, g)^(f, h) if and only if
g = h. Consequently Wn^ = i, JP!; - ^ =tfvf,=aU. It follows that E, is the minimum
G-congruence on F.

Now returning to S, we conclude that the restriction of £ to each ./F-class N of S is the
minimum G-congruence on N, since N is a rectangular group by Proposition 2.11. But then
^ must be the minimum SG-congruence on S. It is now clear that the remaining assertions
of the theorem are valid.
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We are now in a position to prove the principal result of this section.

THEOREM 3.2. The following statements concerning a semigroup S are equivalent.

(i) S is a regular semigroup subdirect product of a band and a semilatdce of groups.
(ii) S is a regular semigroup subdirect product of bands, groups, and groups with zero (some

possibly missing).
(iii) S is a band of groups and Es is a subsemigroup of S.
(iv) S is a spined product of a band and a semilattice of groups.

Proof. The equivalence of (i) and (ii) follows directly from Corollary 2.3 and the
transitivity of subdirect products. Further (i) implies (iii) by Corollary 2.17, and (iv) implies
(i) trivially.

(iii) implies (iv). The hypotheses imply that S\#C ^ £ s , and so we infer from Theorem 3.1
that the mapping x defined by

x:a-*(a*,a) (aeS),

where a* is the identity of the maximal subgroup of S containing a and a is the £-class
containing a, makes S a subdirect product of £ s and Stf. To see that Sx is a spined product
of Es and Sl£, we define n by

t,:N.-*Nt iesEs).

One verifies without difficulty that t\ is an isomorphism ofEsl*V onto (S/«*)/^T. For (e, g) e Sx,
we have (e, g) = (a*, a) for some aeS. Thus e = a*,g = a and a* Jfa, so that

Conversely, suppose that Ne r\ = Ng. Then eJf g which, by the last statement of Theorem 3.1,
implies that in S we must have g s Ne. But then, again by Theorem 3.1, the set Geng contains
exactly one element, say a. Consequently a* = e and a = g, so that (e, g) = ax e Sx- We have
proved that

Sx={(e,g)eEsxSI£\Ntt, = Nt}

as required.
The equivalence of (iii) and (iv) was proved by Yamada [12, Theorem 4] and, in a slightly

different form, by the author [9]. An extensive use of spined products for various subclasses
of these semigroups can be found in [13]. The implication " (iii) implies (iv) " can also be
obtained by specializing the main theorem in [4]; however, the above proof makes the use of
the hypotheses much more transparent and represents a basis for several proofs in the
succeeding sections. According to Theorem 3.2, every semigroup S which is a band of groups
and for which Es is a subsemigroup is isomorphic to a spined product of a band B and a
semilattice of groups T determined by an isomorphism q of B\Jf onto T\Jf\ we use the
notation (B, r\, T) for the subsemigroup of B x T which is a spined product of B and T
determined by n. For two such semigroups, the following result gives an isomorphism
criterion. Recall the notation at the end of §2.
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THEOREM 3.3. Let S = (B, rj, T) and S' = (B1, r\', T'). Further, let a be an isomorphism
of B onto B' and x be an isomorphism of T onto T' such that the diagram

BjJT

is commutative. Then the function x defined by

(e, g)x = (eo~, Q*) ((?> 9)eS) (1)

is an isomorphism of S onto S'. Conversely, every isomorphism of S onto S' can be expressed
in this way.

Proof. Let / be as defined above. Then, for any (e, g)eBx T, we obtain

(e, g)eSoNetj — NgoNeni = NgxoNeon' = NgioNe<,t]' = Ngx

proving that x maps 5 onto S"; that / is one-to-one and a homomorphism is obvious.
Conversely, let x be an isomorphism of S onto S'. Define the functions a and T by the

formula
(e, g)x = «e, g)a, (e, g)r) ((e, g)eS), (2)

so that a: S-* B', T : S-*T' are homomorphisms. If (e, g), (e, h)eS, then Net\ = Ng = Nh;
so g and h are contained in the same maximal subgroup of T and thus [e, g) 3V (e, h) in S.
But then (e, g)a 3% (e, h)a, which in a band implies that (e, g)a = (e, h)a. Consequently we
may write (e, g)a = ea and consider a as a homomorphism of B into B'. If (e, g), (/, g)eS,
then

(e, g) = (e, 1)(/, g)(e, 1), (/, g) = (/, l)(e, g)(f 1),

where 1 is the identity of the maximal subgroup of T containing g. Hence, applying T, we
obtain by Theorem 3.1 that (e, g)i £ (/, g)x, which in a semilattice of groups implies that
(e, g)x = (/, #)T. Hence we may write (e, g)x = gx and consider x as a homomorphism of T
into T'. It follows that (2) takes on the form of (1).

Let e'eB'; then, for any g'eT' for which Ne.t\' = Ng., we have (e',g')eS'; so there
exists (e, g)eS such that (e, g)x = (e', g') and ea = e'. Hence cr maps B onto £'; analogously
T maps T onto J ' . Suppose next that ea =fa and let la be the identity of A^^, lp be the
identity of Nfrf. Then (e, la), (/, l^e^1 and

and, on the other hand, (/, \p)x = (/ff, l^T)eS'. Hence Nfat]' = JV]>t = A^, and, since lar
and lpt are idempotents, we must have \ax = I^T. Consequently

(e, la)X = («r, 1.x) = (fa, \,x) = (/, l,)X,
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which implies that e = / , proving that a is one-to-one. Suppose that gx = AT and let la =gg~1,
\p = hh~l. Then (e, g), (/, h)eS for some e , /e5 , and (e, 1J, (/, lfi)eS. Hence

(e, l«)x = (e,g)x(e,g~1)x = (ea, gx)(ea, g'1*) = (ea,hx)(ea,hTlx) = (ea, (hfr^x) = (<?, \fi)z,

so that la = \p and thus (/, la)e5. It then follows that

(e, 9)X = iea, gx) = (ea, hx) = (<?, A)*

which implies that g = h, proving that T is one-to-one.
Commutativity of the diagram follows from the following sequence of equivalences: for

(e, g)eBxT,wehave

N.tfi = NgioNer\ = Ngo(e, g)eSo(e, g)xeS'<^(ea, gx)eS'

We apply some of the above results to certain special congruences on a regular semigroup.

THEOREM 3.4. The following statements concern any regular semigroup. The intersection
of a ^-congruence and an SG-congruence is an ISBG-congruence. Conversely, every ISBG-
congruence is the intersection of a ^-congruence and an SG-congruence, but these need not be
unique. Furthermore

{min B-congruence)n(min SG-congruence) = min ISBG-congruence,
(min B-congruence) v (min SG-congruence) = min S-congruence,

and the congruences on the left hand side commute.

Proof. If /? is a B-congruence and £, is an SG-congruence on a regular semigroup S, then
S/f}n£ is a subdirect product of S/f} and Sj^ and hence P<~\t, is an ISBG-congruence on 5", by
Theorem 3.2. Conversely, let f be an ISBG-congruence on S. Then, by Theorem 3.2, S/(
is a regular semigroup subdirect product of a band B and a semilattice of groups T. This
subdirect product induces, in the usual way, a B-congruence fi and an SG-congruence £, on
S/C whose intersection is the equality relation. Denoting the (-class containing an element a
by a, and defining /?' and £' on S by aft boa ft 5 and a^'boa^h, we obtain S/p cz (S/QIP,
S/Z' ^ (S/OIZ and /?'n£' = (. Hence C is the intersection of the B-congruence /?' and the
SG-congruence £'. Very simple examples show that ft' and f' need not be uniquely determined
by C- The statement concerning the intersection of minimum congruences is a consequence of
the preceding statements.

As for the remaining assertions, we first note that in the expression for the sup, the left
hand side is obviously contained in the right hand side. Suppose finally that aJf b for a, b e S,
let C be the minimum ISBG-congruence on S, and let a -> a be the canonical homomorphism
of S onto 5 = S/C. Then aJ^S and thus a fill, by Theorem 3.1, where $ and | denote the
minimum B- and SG-congruences, respectively, on S. Hence, for some ceS, we have a$c,
ilh. Denote by /? and £ the minimum B- and SG-congruences, respectively, on S. It follows
easily that then also a0c, c£,b and thus afi^b. Hence Jf S /?<!; and thus Jf £ /?vf. One
shows similarly that ,/K £ £/?, which finally implies that p/; = t;P = pv?; = Jr.
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COROLLARY 3.5. Let S be a regular semigroup. Then, for any ^-congruence /? and any
SG-congruence £ on S such that ft, £ £ JT, we have /?£ = <!;/? = j8 v <!;= ./f. •

4. Subdirect products of a band and a group. For this case, we first give an abstract
characterization, then a construction and the corresponding isomorphism theorem. In
addition, we derive some consequences concerning congruences on a regular semigroup.

THEOREM 4.1. A semigroup S is regular and a subdirect product of a band and a group if
and only if S is a band of groups and Es is a unitary subset.

Proof. Necessity. Let B be a band and G a group, and suppose that S is a regular
subsemigroup of Bx G and their subdirect product. By Theorem 3.2 we know that S is a
band of groups and that Es is a subsemigroup of S. Let (e, 1), {e, \)(f a)sEs, where (/, a)eS
and 1 is the identity of G. Then {ef a)eEs, which implies that a = 1; so (/, l)eEs and Es is
unitary.

Sufficiency. Using the notation of the proof of Theorem 3.2, we know that S is a subdirect
product of Es and T= S/f. Let la, laaeET, where aeT. Then, for some e,feEs, (e, \x),
If a)eSx and thus (ef ]aa)eESx, since \xasET. Thus (e, la), (e, 1 „)(/, a)eES]C, which, by the
hypothesis on Es, yields (/, a)eESx, so that aeET. Consequently ET is a unitary subset of T
and hence Proposition 2.6 is applicable to make T a subdirect product of Y = T\Jf and a
group G. Let 0 : t -* (ty, td) be the isomorphism of Tinto YxG making Ta subdirect product.
Combining the two isomorphisms and using the notation of the proof of Theorem 3.2, we
obtain

a-»(a*,fl)-*(fl*,(5y,55)) (aeS),

which makes S a subdirect product of Es, Y, and G. Now define a function ip by

\jt:a-*(a*,a5) (aeS).
Then \p is a homomorphism of S1 onto a subdirect product of Es and G. Suppose that
(a*, 55) = (b*, b~5). Then a* = b*, which implies that aJfb and thus ayJVb~y, which in turn
yields ay = By, since y is a semilattice. Consequently axO = 6/0, which implies that a = b,
proving that \p is one-to-one.

Note that, if S is a regular semigroup subdirect product of a band B and a group G, the
projections into B and G respectively induce the minimum B-congruence and the minimum
G-congruence on S. In view of this, the above theorem is equivalent to [5, Theorem 2.5],
which is formulated in terms of congruences. The proofs in [5] are different from ours.
Several characterizations of the semigroups in Theorem 4.1 in terms of spined products were
established by Yamada [12]. We give next a construction of all regular semigroup subdirect
products of a given band B and a given group G which are subsemigroups of B x G. To this
end, it is convenient to introduce the following concept.

DEFINITION 4.2. Let Y be a semilattice and S? be a family of nonempty subsets of a set
X ordered by set inclusion. A function q> mapping Y into Sf is a dual homomorphism if
a ^ /? always implies /?<p £ acp, and is full if (J u(p = X.

aeY
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For any group G, we denote by if (G) the lattice of all subgroups of G (where the order
is set inclusion).

THEOREM 4.3. Let B be a band and G be a group. Let n: B/^V -* JSf(G) be a full dual
homomorphism and let

S={(e,g)eBxG\geNer,}. (3)

Then S is a regular semigroup subdirectproduct ofB and G. Conversely, every regular semigroup
subdirect product of B and G is essentially of this type.

Proof. Let S be as defined above. For (e, g), (/, h)eS, we have geNetj and
Since Nef ̂  Ne, we obtain geNerj £ Nef t] and analogously heNef t\. But Nef r\ is a subgroup
of G; so gheNeft], proving that [ef gh)eS. Consequently S is closed under multiplication.
For (e, g)eSv/e have geNet\; so also g~leNet\, which then shows that (e, g~l)eS, supplying
an inverse of (e, g) in S. Since n is full, S is a subdirect product of B and G.

Conversely, let S £ B x G be a subdirect product. For every eeB, let

er,={geG\(e,g)eS}. . (4)

It follows easily that er\ is a subgroup of G. Further, if e = efe and g efy, then

and hence geer). In particular, for eJff we obtain e>/ =/>/, and we may consider ^ as a
function from 2?/./f into if (G). It also follows that Y\ is a dual homomorphism, and its fullness
is a consequence of the fact that the projection of S into G is onto. A comparison of (3) and
(4) shows that S has the desired form.

We denote the semigroup 5 constructed above by [B, n, G], and turn to the problem of
isomorphism of two such semigroups. For a one-to-one correspondence q> of a set A onto a
set B, we denote by (j> the function defined for all subsets X of A by X(p = {xq> | xeX}, and
we also denote by the same symbol the restriction of cp to any family of subsets of A.

THEOREM 4.4. Let S = [B, tj, G] and S' = [B1, r\', G']. Further, let a be an isomorphism
of B onto B' and x be an isomorphism ofG onto G' such that the diagram

is commutative. Then the function x defined by

ie,g)x = {ea,gz) ((e'g)eS)

is an isomorphism of S onto S'. Conversely, every isomorphism of S onto S' can be expressed
in this way.
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Proof. The proof is only slightly different from the proof of Theorem 3.3 and is omitted.
It follows from Theorem 4.3 that the projection (e, 1) -»e furnishes an isomorphism of

Es onto B. We can use this in conjunction with Theorem 4.1 as follows. Let Kbe a variety
of bands, call its elements V-bands, call a congruence a on a semigroup S a V-congruence if
Sja e V, and a band of groups a V-band of groups ifS/J^e V. From the above results, we easily
deduce

COROLLARY 4.5. The following statements concerning a regular semigroup S are equivalent.

(i) S is a subdirect product of a V-band and a group.
(ii) S is a subdirect product of V-bands and groups.

(iii) S is a V-band of groups and Es is a unitary subset.

In terms of congruences on a regular semigroup, we can draw the following conclusion,
where UVG denotes a F-band of groups S for which Es is a unitary subset of S.

COROLLARY 4.6. The following statements concern any regular semigroup. The intersection
of a \'-congruence and a G-congruence is a WG-congruence. Conversely, every UVG-
congruence can be uniquely written as the intersection of a V-congruence and a G-congruence.
In particular,

(min W-congruence)r\(min G-congruence) = min U\'G-congruence.

Proof. This follows from [5, Theorem 4.1 ] and the remarks above. It can also be proved,
except for uniqueness, by modifying suitably the first part of the proof of Theorem 3.4.

Note that, for V = the variety of all bands, Corollary 4.6 coincides with [5, Theorem 4.1]
and, for V = the variety of all semilattices, with [5, Theorem 4.2]. Simple examples show that
a band congruence need not commute with a group congruence (but their sup is always the
universal relation).

5. Subdirect products of a rectangular band and a semilattice of groups. We now perform
a similar analysis for this case. An outstanding feature here is the profusion of special cases
of semigroups and thus of types of congruences. For the next two theorems, Corollary 2.13
is of special interest.

THEOREM 5.1. A semigroup S is regular and a subdirect product of a rectangular band and
a semilattice of groups if and only if S is completely regular and Es is a strongly normal band.

Proof. Necessity. Let S be a regular semigroup subdirect product of a rectangular
band M and a semilattice of groups T and assume that S is a subsemigroup of M x T. It
follows from Theorem 3.2 that 5 is completely regular, and, since both M and ET are normal
bands, the same holds for Es. Suppose that (e, la) < (/, 1̂ ), (e, la) < {t, 1 y), and (/, lfi)jV(t, 1 r),
where (e, la), (/, le), (t, lY)eEs. It follows easily that 1, = 1? and that (<?, 1J = (/, \f){e, la) =
(e, la)(f lp) implies e =fe = ef, so that e = / ; analogously e — t. Hence (/, 1̂ ) = (/, ly),
showing that £ s is a strongly normal band.
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Sufficiency. By [11, Theorem 4.3], we have that S is a band of groups. It follows from
the proof of Theorem 3.2 that S is a subdirect product of Es and S/£. Since Es is strongly
normal, Proposition 2.9 implies that Es is a subdirect product of Es\Jf and a rectangular
band M. Thus 5 is a subdirect product of £>

i-/</f', M, and S/f. An argument quite similar to
that in the sufficiency part of Theorem 4.1 shows that Es\Jf can be omitted, which then proves
that S is a subdirect product of M and S/£ as required.

COROLLARY 5.2. Semigroups in Theorem 5.1 can also be characterized as regular semi-
group subdirect products of left zero semigroups, right zero semigroups, groups and groups with
zero.

Proof. This follows from Theorem 5.1 and an argument similar to that of a part of the
proof of Theorem 3.2.

As in the preceding section, we can give an explicit construction of the semigroups under
study. A different construction of all subdirect products of a rectangular band and an
arbitrary semigroup is given in [1]. For any set X, let 2P(X) denote the set of all nonempty
subsets of X ordered under set inclusion.

A construction of these semigroups can be effected as follows.

THEOREM 5.3. Let L be a left zero semigroup, R be a right zero semigroup, and T be a
semilattice of groups. Let cp : T\Jf ->0>{L) and \ji: T\Jf ->0>{R) be full dual homomorphisms,
and let

S={(l,r,g)eLxRxT\leNgq>,reNJ}.

Then S is a regular semigroup subdirect product of L, R and T. Conversely, every regular
semigroup subdirect product of L, R and T is essentially of this type.

Proof. Let S be as defined above. If (/, r, g), (/', r', g')eS, then leNgcp £ Ngg.cp and
r'eNg. \l/ £ Ngg. \j/, so that (/, r, g){l', r', g') = (/, r', gg')eS. Regularity of 5 follows from the
fact that Ng is a group for any g e T. The fullness of both cp and ^ guarantees that 5 is a
subdirect product of L, R and T.

Conversely, let S £ L x R x T be a regular semigroup subdirect product of L, R and T.
For every g e T, let

gcp = {IeL\(l, r, g)eS for some reR},

gij/ = {reR\(l,r,g)eS for some leL}.

The projection of S into L x R is a subdirect product of L and R, and hence must coincide
with M = L x R by Proposition 2.12. Now let g e T and let la be the identity of the maximal
subgroup of T containing g. If legcp, then (/, r,g)eS for some reR and hence (/, r, la)eS,
so that lelaq>. Conversely, let /ela<p. Then (/, r, la), (/', r', g)eS for some I'eL, r, r'eR.
Consequently

showing that legcp. Thus gcp = ]x<p and we may consider q> as a function mapping T\Jf into
&{L). Let g, he T and assume that Ng ^ Nh. If leNg<p, then (/, r, g), (/', /•', h)eS for some
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I'eL, r,r'eR and hence

(/, r, ghg) = (/, r, g)(l', r', /,)(/, r, g) e S,

so that IeNhq>, since Nghg = Nh. ThusJV9<p ^ NA<p, which says that q> is a dual homomorphism;
its fullness follows from the fact that the projection of S into L is onto.

A similar argument is applicable to ip. If (/, r, g)eS, then leNgq> and reNg ij/. Conversely,
tfleNg(p andreNg\l/, then there exist I'eL and r'eR such that (/, r', la), (/', r,g)eS, where la

has the same meaning as above; thus (/, r, g) = (/, r', la)(/', r, fif)e5' as required.
For the semigroup S constructed above we use the notation {L,<p;T;\j/, R) and now turn

to isomorphisms of such semigroups.

THEOREM 5.4. Let S = (L,cp;T;il/,R)andS' = (L',<p';T';il/',R'). Further, let X: L-> L'
and p : R->R' be bijections and 9 be an isomorphism of T onto 7" such that the diagram

T\Jf >&(R)

0 9

is commutative. Then the function x defined by

(/, r, g)x = (IX, rp, g6) ((/, r, g) e S)

is an isomorphism ofS onto S'. Conversely, every isomorphism of S onto S' can be expressed
in this way.

Proof. For x given as above, one shows, analogously as in the proof of Theorem 3.3,
that x is an isomorphism of S onto S'.

Conversely, let x be an isomorphism of S onto S'. Then M = LxR is a rectangular
band and Tis a semilattice Y = T\Jf of groups Ga with identity la; the corresponding meanings
are attached to M', Y', G'a-, \'a-. We define the functions S and 0 by

(e, g)x = He, g)5, (e, g)9) (eeM, geT); (5)

hence 8 : S -»M' and 9 : S -* 7" are homomorphisms. Noting that

Es = {(e, l j e i l / x T\ e = (/, r), leNla<p, reNla #},

we infer that (e, \x)9 = l[e,i.)n f° r some function n : Es-+ Y'. If (e, \x), (/, \x)eEs, then
(e, \a)JT(f, \x), so that lie,ia)»^"l(/,i.)l t and thus l(e,i.)R = l(/,i.)». Abusing the notation
slightly, we may write (e, \x)n = an, where now n : Y-+ Y' and (e, \x)9 = \'an. It then follows
from (5) that

(e, 1 ,)X = ((e, 1 a)5, 1;,) ((e, 1 x) e Es). (6)

For geGa and (e, l J e S , we have (e, ^ ) e 5 and (e, g)Jr(e, \x), which implies that
(e, 3)0^"(e, la)0. In view of (5) and (6) we must have (e, g)9eG'xn. If also (/, la)eS, then
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for the same reason (/, g)9eG'm and (/, 1J0 = lan, SO that

{e, g)9 = (e, g)8l'an = (e, g)6(f, la)0 = (ef, g)9 = (e, \a)9(J, g)9 = I'M, g)9 = (/, g)9,

and we may write (e, #)0 = gO and consider 0 as a homomorphism of T into T'. With the
same notation, (e, g)(e, la) = (e, la)(e, g) and, applying <5 to this, we have

(e, g)8(e, 1J5 = (e, la)«5(*, 0)5,

which in a rectangular band yields (e, g)5 = (e, la)(5. Since geGa is arbitrary, it follows that
we may write (e, g)5 = e8 and consider 8 as a homomorphism of M into Af'. Consequently
(5) becomes

(e,g)X = (e5,g9) (eeM,geT). (7)

For every e'eM' there exists g'e T' such that (e', g')eS' and conversely. On the other
hand, if (e', g ' )eS\ there exists (e, g)eS such that (e, #)* = (e', g'), which shows that both S
and 0 are onto functions.

Let e5=f5; then (e, 1J, (/, I^)e5 for some a J e F . Hence

(e, la)(/, l^g, la) = (c/e, la/)a) = (e, l

and analogously (/, lxfi)eS. But then (e, l^)x = (/, laP)x, by (7), and thus e = / .
Suppose next that gO = A0. Then geGa, heGfi for some a, jSe y, and (e, g), (/, h)eS for

some e,feM, and thus (c, la), (/, lp)eS. Since l^g and \fJfh, we have \x9Jfg9 and
0, which then implies that la0 = 1̂ 0. It follows that

(e, Ox = (eS, 1.0) =

hence la = lap and thus a = a/J. A similar argument shows that /? = a)! and hence a = /?.
But then (e/, #), (e/, /i)e5 and

(ef, g)x = «e/)5, 00) = def)5, hff) = (c/, h)X;

therefore g = h.

According to Proposition 2.14, we can write

(/, r)5 = (/A, rp) ((l,r)eM)

for some bijections A: L-*L' and p: R-+ R'. For any (/, r)eM and geT,we obtain

/eJV>, reNjo((l, r), g)eSo((l, r)5, gff)eS'o{{lX, rp), g9)eS'

otteNge<p', rpeNgg<l/'olAeNg8<p', rpeNg9^',
which proves the commutativity of the diagram.

We may now consider the congruences on a regular semigroup essentially encountered
in Theorem 5.1. Note that CRISN relates to "completely regular, idempotents strongly
normal", and M-congruence stands for a " matrix congruence " (or " rectangular band
congruence ").
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THEOREM 5.5. The following statements concern any regular semigroup. The intersection
of an M-congruence and an SG-congruence is a CRISH-congruence. Conversely, every CRISN-
congruence can be written uniquely as the intersection of an M-congruence and an SG-congruence.
In particular,

(min M-congruence)n(min SG-congruence) = min CRISN-congruence.

Proof. The proof of the first two statements, except for uniqueness, follows the same
pattern as the first part of the proof of Theorem 3.4 by referring to Theorem 5.1 instead of
Theorem 3.2 and may safely be omitted. The last statement follows easily from the preceding
two. It thus remains to establish uniqueness. We let n and n' be M-congruences and £ and
<!;' be SG-congruences on a regular semigroup S and suppose that /z n ^ = y! n £,'.

Letapb and let a' be an inverse of a. Then aa' \i ba' and thus (aa')(ba') n (ba')(aa'). Further,
aa'eEs and hence (aa')(ba') £ (ba')(aa'), since the idempotents of S/£ are in the centre of S/£.
Consequently (aa')(ba') n n £ (ba')(aa'), which by the hypothesis yields (aa')(ba') n' n % (ba')(aa').
It follows that (aa')(ba') fi'(ba')(aa') and hence aa'ba'a n' ba'a. Since fi is an M-congruence,
it follows that an'ba. A similar argument can be used to show that also bfiba, which then
implies that an'b, proving fi £ JI'. By symmetry, we conclude that /i = \i'.

Finally let a £ b and let a' be an inverse of a. Then a n aa'ba'a, since n is an M-congruence
and a £ aa'ba'a, since a^b. Thus an n ^ aa'ba'a and the hypothesis implies that an' n £,' aa'ba'a,
so that a^'aa'ba'a. For any xeS, let x be the £'-class containing x. Then aa' Jf a implies
aa1J/"a and thus aS is the identity of the maximal subgroup G of S/%' containing a; similarly
a1 a has the same property. Letting e =~a~3 = UTa, we have a = eBe. Analogously b —faf,
where / i s the identity of the maximal subgroup of S/£' containing B. Hence

a = eBe = efafe =feaef=faf= B

and thus a£'b, proving that £, £ £,'. By symmetry, we also have % £ £, and therefore ^ = £,'.
For the sake of completeness, we state the following result. Note that L refers to a

left zero semigroup, R to a right zero semigroup.

THEOREM 5.6 [10, Theorem 1]. The following statements are valid in any semigroup. The
intersection of an ^.-congruence and an R-congruence is an M-congruence. Conversely, every
M-congruence can be written uniquely as the intersection of an ^-congruence and an R-congruence.
In particular

(min L-congruence)r\(min R-congruence) = min M-congruence.

COROLLARY 5.7. The following statements concern any regular semigroup. The intersection
of an L-congruence, an R-congruence, and an SG-congruence is a CRISN-congruence.
Conversely, every CRISN-congruence can be written uniquely as the intersection of an L-
congruence, an R-congruence and an SG-congruence.

Proof. Combine Theorems 5.5 and 5.6.
Note that the sup of any M-congruence and any SG-congruence is the universal relation.

We can now deduce easily the results corresponding to the ones above for regular semigroup
subdirect products of (i) a left (resp. right) zero semigroup and a semilattice of groups (ii) a
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rectangular band and a semilattice. For (i), we make the following substitutions in the above
statements:

In Theorem 5.1: rectangular band -> left zero semigroup,

Es strongly normal -*• Es left strongly normal;

in Theorem 5.6: M, CRISN-+L, CRILSN;

and in Corollary 5.2, Theorem 5.3 and Theorem 5.4 omit all references to right zero semigroups.
A similar modification can be carried through for (ii) and need not be stated explicitly.

6. Subdirect products of a rectangular group and a semilattice. This case, and its subcases,
finally round up our study of subdirect products. The similarity with the preceding cases
allows us to abbreviate or omit several proofs. In connection with the next two theorems, it is
useful to recall Corollary 2.13.

THEOREM 6.1. A semigroup S is regular and a subdirect product of a rectangular group and
a semilattice if and only ifS is completely regular andEs is a unitary strongly normal subband ofS.

Proof. Necessity. Let S £ M x yxGbea subdirect product with M a rectangular band,
Y a semilattice, and G a group, and let T be the projection of S in YxG. Hence T is a regular
semigroup subdirect product of a semilattice and a group, which by Proposition 2.6 implies
that T is a semilattice of groups and that ET is a unitary subset of T. Consequently S is a
subdirect product of the rectangular band M and the semilattice of groups T and thus, by
Theorem 5.1, we have that S is completely regular and Es is a strongly normal band. Let Q
be an isomorphic copy of S in Mx T, and let (e, la), (e, la)(/, g)eEQ. Then la, \ageET,
which implies that g eET, so that (/, g)eEQ. It then follows that Es is a unitary subset of S.

Sufficiency. First Theorem 5.1 implies that S is a subdirect product of a rectangular
band M and a semilattice of groups T. Assume that Sz MxT and let la, \ageET. Then,
for some e,feM, we have (e, 1J, (/, g)eS and thus (e, la), (e, la)(/, g)e Es> which by the
hypothesis yields (/, g) e Es and thus g e ET. This shows that ET is unitary and hence, applying
Proposition 2.6, we conclude that T is a subdirect product of a semilattice Y and a group G.
By transitivity of subdirect products, we have that S is a subdirect product of M, Y and G as
required.

A construction of these semigroups is given in

THEOREM 6.2. Let Lbea left zero semigroup, R be a right zero semigroup, Ybea semilattice
and Gbea group. Let k : Y-*0>(L), p : Y->&>(R), tj:Y-> j£?(<7) be full dual homomorphisms
and let

S = {(/, r, <x,g)eLxRxYxG\leaX, reap, gear]}.

Then S is a regular semigroup subdirect product of L, R, Y and G. Conversely, every regular
semigroup subdirect product of L, R, Y and G is essentially of this type.

Proof. One may use Theorems 4.3 and 5.3 to deduce this theorem, or prove it directly
by modifying slightly the proofs of these theorems. Hence the proof may be omitted.
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We denote the semigroup S constructed above by (Y; L, X; R, p; G, n) and establish next
when two such semigroups are isomorphic.

THEOREM 6.3. Let S = (Y; L, X; R, p; G, n) andS' = (Yr; L', X'; R', p'; G', n'). Further,
let <p :L-*L\ ip : R-* R', a : Y-* Y', x : G -> G' be onto isomorphisms such that the diagrams

are commutative. Then the function x defined by

(/.r, «, g)x = Uv, rip, oca, gx) ((/, r, a, g) e S)

is an isomorphism of S onto S"'. Conversely, every isomorphism of S onto S' can be expressed
in this way.

Proof. The proof of the direct part follows the same pattern as the corresponding part
of the proof of Theorem 3.3. For the converse, we let B be the projection of S in L x R x Y
and B' be the projection of S" in L' x R' x Y'. Then S is a subdirect product of B and G, and
S' is a subdirect product of B' and G', and we are able to apply Theorems 4.3 and 4.4. This
yields isomorphisms a' of B onto B' and x of G onto G' as in Theorem 4.4. Furthermore, B
is a subdirect product of L, R and Y, and B' is a subdirect product of Z/, R' and Y'\ so we
may apply Theorems 5.3 and 5.4. This yields the remaining isomorphisms cp, \p, a. Note that
the mapping A^(lra)->a ((/, r, <x)eB) is an isomorphism of 5/^T onto Y. Combining all
these statements gives the desired result; we omit the details.

We are now in a position to consider the congruences on a regular semigroup that are
induced by the subdirect product figuring in Theorem 6.1. The abbreviation CRUSN stands
for " completely regular, idempotents form a unitary strongly normal subband ".

THEOREM 6.4. The following statements concern any regular semigroup. The intersection
of an L-congruence, an ^-congruence, an ^-congruence and a G-congruence is a CRUSN-
congruence. Conversely, every CRUSN-congruence can be written uniquely as the intersection
of an ^-congruence, an R-congruence, an S-congruence and a G-congruence. In particular

(min L-congruence)n(min R-congruence)r\{min S-congruence)n(min G~congruence)
= min CRJJSN-congruence.

Proof. The proofs of all the statements except for the uniqueness part follow the pattern
of parts of the proof of Theorem 3.4 by referring to Theorem 6.1 instead of Theorem 3.2 and
need not be carried out here. To prove the uniqueness part, we let X and X' be L-congruences,
p and p' be R-congruences, t] and n' be S-congruences, a and a' be G-congruences on a regular
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semigroup S, such that Xnpnnna = X' r\p' nt]' r\a'. Writing (Xnpnn)na = (X'np'nn')na',
we infer from Corollary 4.6 that Xnpc\n = X'np'nn' and a —a'. Next, writing (Xnp)nt] =
(X'np')rin', we deduce from Theorem 5.5 that Xnp = A'np' and r\ = rj'. Finally, Xnp =
X'np', by Theorem 5.6, yields X = X', p = p' as required.

In the same way as in the preceding section, we are now able to derive the statements
corresponding to those in this section and concerning regular semigroup subdirect products
of (i) a left (resp. right) group and a semilattice, (ii) a left (resp. right) zero semigroup and a
semilattice. For (i) we make the following changes:

In Theorem 6.1, omit R and take Es a unitary left strongly normal band;
in Theorem 6.4, omit R and write CRULSN instead of CRUSN;

and in Theorems 6.2 and 6.3 omit all reference to right zero semigroups. The changes to be
made for case (ii) need not be stated explicitly.

Also note that S in Theorem 6.1 is a subdirect product of subdirectly irreducible left
zero semigroups, right zero semigroups, semilattices and groups. Recall that the semigroups
of each of the first three classes contain exactly two elements.

From some of the considerations so far and a brief look at the direct product of the form
L x i? x G, we easily deduce

PROPOSITION 6.5. Let X, p, fi, a and r\ be, respectively, an L-, R-, M-, G-, and S-congruence
on an arbitrary semigroup. Then

Xp = pX — Xa = aX = pa = op = \ia = o~n = Xvn = pvn = /IVJ/ = <XVJJ = °U,

but r] need not commute with any of X, p, fi or a.

ACKNOWLEDGEMENT. The author is indebted to Professor A. H. Clifford and the referee
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Added in proof. The first displayed statement in Theorem 3.4 has been established by
B. M. Schein in the paper entitled " A note on radicals in regular semigroups ", Semigroup
Forum, 3 (1971), 84-85.

REFERENCES

1. J. L. Chrislock and T. Tamura, Notes on subdirect products of semigroups and rectangular
bands, Proc. Amer. Math. Soc. 20 (1969), 511-514.

2. A. H. Clifford, Bands of semigroups, Proc. Amer. Math. Soc. 5 (1954), 499-504.
3. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc,

Math. Surveys No. 7, Vol. I (Providence, R.I., 1961).
4. P. H. H. Fantham, On the classification of a certain type of semigroup, Proc. London Math.

Soc. 10 (I960), 409^27.
5. J. M. Howie and G. Lallement, Certain fundamental congruences on a regular semigroup,

Proc. Glasgow Math. Assoc. 7 (1966), 145-156.
6. N. Kimura, The structure of idempotent semigroups (I), Pacific J. Math. 8 (1958), 257-275.
7. M. Petrich, Sur certaines classes de demi-groupes I, Acad. Roy. Belg. Bull. Cl. Sci. 49 (1963),

785-798.

https://doi.org/10.1017/S0017089500001701 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001701


REGULAR SEMIGROUPS 49

8. M. Petrich, The maximal semilattice decomposition of a semigroup, Math. Zeit. 85 (1964),
68-82.

9. M; Petrich, The structure of a class of semigroups which are unions of groups, Notices Amer.
Math. Soc. 12 (1965), Abstr. No. 619-151.

10. M. Petrich, The maximal matrix decomposition of a semigroup, Portugal. Math. 25 (1966),
15-33.

11. M. Petrich, Regular semigroups satisfying certain conditions on idempotents and ideals, Trans.
Amer. Math. Soc. 170 (1972), 245-267.

12. M. Yamada, Strictly inverse semigroups, Bull. Shimane Univ. 13 (1964), 128-138.
13. M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific

J. Math. 21 (1967), 371-392.
14. M. Yamada and N. Kimura, Note on idempotent semigroups II, Proc. Japan Acad. 34 (1958),

110-112.

PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK

PENNSYLVANIA

https://doi.org/10.1017/S0017089500001701 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001701

