On Local L-Functions and Normalized Intertwining Operators

Henry H. Kim

Abstract

In this paper we make explicit all L-functions in the Langlands-Shahidi method which appear as normalizing factors of global intertwining operators in the constant term of the Eisenstein series. We prove, in many cases, the conjecture of Shahidi regarding the holomorphy of the local L-functions. We also prove that the normalized local intertwining operators are holomorphic and non-vaninishing for $\operatorname{Re}(s) \geq 1 / 2$ in many cases. These local results are essential in global applications such as Langlands functoriality, residual spectrum and determining poles of automorphic L-functions.

Introduction

The purpose of this paper is threefold; first, to make explicit all L-functions which appear in the constant term of the Eisenstein series by combining the list in [La] and [Sh3]; second, to prove Conjecture 7.1 in [Sh1], regarding the holomorphy of the local L-functions in many cases; third, to prove Assumption (A) in [Ki3], regarding the holomorphy of the normalized local intertwining operators.

More precisely, let \mathbf{G} be a simply connected, split, simple group. Let \mathbf{M} be a maximal parabolic subgroup of \mathbf{G}. We explicitly calculate \mathbf{M}. Since \mathbf{G} is simply connected, the derived group of \mathbf{M} is simply connected, and hence it is well-known. However, determining the exact structure is a delicate matter and is crucial for the study of L-functions. For example, let us take \mathbf{G} to be the exceptional group of type F_{4}. One of the maximal Levi subgroup \mathbf{M} has $S p_{6}$ as a derived group. The L-group of $S p_{6}$ is $S O_{7}(\mathbb{C})$. However, the L-function which appears in the constant term of the Eisenstein series attached to (\mathbf{G}, \mathbf{M}) is the degree 8 spin L-function, which exists for $\operatorname{Spin}(7, \mathbb{C})$, but not for $S_{7}(\mathbb{C})$. We will see that $\mathbf{M}=G S p_{6}$, whose L-group is $G \operatorname{Spin}(7,(\mathbb{C})$. This has been pointed out to us by F. Shahidi. One byproduct of these explicit calculations is that we obtain new L-functions. For example, by considering split spin groups Spin $(2 n)$, $\operatorname{Spin}(2 n+1)$, and a maximal Levi subgroup whose derived group is $S L_{n}$, we obtain the twisted symmetric square and twisted exterior square L functions of cuspidal representations of $G L_{n}$. Note that Shahidi [Sh4] obtained those L-functions as normalizing factors in the Eisenstein series only when n is even.

We prove Conjecture 7.1 in [Sh1] for E-type groups, except possibly for the following four cases: $E_{7}-3, E_{8}-3, E_{8}-4$, (xxviii) $\left(D_{7} \subset E_{8}\right)$. In these four exceptional cases, the Levi subgroups involve either a group of type D_{n} (spin group) or an exceptional group of type E_{6}. Due to the lack of a classification of generic discrete series for

[^0]the groups of type D_{n} and E_{6}, we are unable to prove the conjecture. However, we may only need a partial classification. Indeed, in [Ca-Sh], Casselman and Shahidi proved the conjecture in the case of quasi-split classical groups, using a partial classification of generic discrete series of quasi-split classical groups. In Proposition 3.15, we calculate explicitly the Rankin-Selberg L-function for $G L_{k} \times$ (quasi-split classical group) for generic discrete series. However, the proof does not extend to spin groups, due to the complicated nature of Levi subgroups. Asgari [As] was able to extend the result to spin groups using G-type groups (also the exceptional group of type F_{4}) for the following reason: besides the problem of partial classification of discrete series for the Levi factor, one needs to see how the poles of corresponding γ-factors cancel. In order to see this, we have to use multiplicativity of γ-factors [Sh1, Theorem 3.5]. For that, one has to express the intertwining operator as a product of rank-one operators. For G-type groups, the Levi subgroups are very simple. For example, the Levi subgroups of $G \operatorname{Spin}(2 n)$ are of the form $G L_{n_{1}} \times \cdots \times G L_{n_{k}} \times G \operatorname{Spin}(2 m)$. Hence one can see the cancellation easily. If we use $G E$-type groups, one might be able to prove the conjecture in the above cases which were excluded.

We should remark that if we can prove that Shahidi's L-functions for supercuspidal representations are Artin L-functions, then the conjecture is immediate: Shahidi's L-functions then are Artin L-functions for discrete series by multiplicativity of γ and L-factors and the conjecture is known for Artin L-functions. However, it is not known that Shahidi's L-functions are Artin L-functions, except for certain cases. Shahidi [Sh5] has shown that for Rankin-Selberg L-functions for $G L_{k} \times G L_{l}$, his L-functions are Artin L-functions.

Note that cases $D_{5}-2, E_{6}-1$ and $E_{7}-1$ are essential in studying Rankin triple L-functions which in turn give the functorial product $G L_{2} \times G L_{3} \rightarrow G L_{6}$ [$\mathrm{Ki}-\mathrm{Sh}$], and the symmetric cube $G L_{2} \rightarrow G L_{4}$. Also the $D_{n}-3$ case was used in obtaining the functoriality of the exterior square $G L_{4} \rightarrow G L_{6}$, and the symmetric fourth $G L_{2} \rightarrow G L_{5}$. The case $E_{8}-2$ has an important application to Ramanujan and Selberg's bounds. Let $\pi=\bigotimes_{v} \pi_{v}$ be a cuspidal representation of $G L_{2}(\mathbb{A})$. Let $\operatorname{diag}\left(\alpha_{v}, \beta_{v}\right)$ be the Satake parameter for an unramified π_{v}. Let $\pi_{1}=A^{3}(\pi)=\operatorname{Sym}^{3}(\pi) \otimes \omega_{\pi}^{-1}$, constructed in [Ki-Sh], and $\pi_{2}=\operatorname{Sym}^{4}(\pi)$, constructed in [Ki5]. Then we obtain the L-function $L\left(s, \pi_{1} \otimes \pi_{2}, \rho_{4} \otimes \wedge^{2} \rho_{5}\right)$ in the $E_{8}-2$ case. Let S be a finite set of finite places such that π_{v} is unramified for $v \notin S, v<\infty$. By a standard calculation, we have

$$
\begin{array}{r}
L_{S}\left(s, \pi_{1} \otimes \pi_{2}, \rho_{4} \otimes \wedge^{2} \rho_{5}\right)=L_{S}\left(s, \pi, \operatorname{Sym}^{9}\right) L_{S}\left(s, \pi, \operatorname{Sym}^{7} \otimes \omega_{\pi}\right) L_{S}\left(s, \pi, \operatorname{Sym}^{5} \otimes \omega_{\pi}^{2}\right)^{2} \\
\times L_{S}\left(s, \operatorname{Sym}^{3}(\pi) \otimes \omega_{\pi}^{3}\right)^{2} L_{S}\left(s, \pi \otimes \omega_{\pi}^{4}\right) .
\end{array}
$$

In [Ki-Sh2], we applied the machinery of [Sh3] and showed that

$$
q_{v}^{-\frac{1}{9}}<\left|\alpha_{v}\right|,\left|\beta_{v}\right|<q_{v}^{\frac{1}{9}}
$$

if π_{v} is unramified, using the fact that the local L-function $L\left(s, \pi_{v}, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 1$ for π_{v} unramified [Sh3, Lemma 5.8]. Now our explicit calculations of the L-functions enable us to extend the result to the archimedean places, thanks to Proposition 4.9. Let π_{v} be a local (finite or infinite) spherical component, given
by $\pi_{v}=\operatorname{Ind}\left(\left.|\cdot|{ }_{v}^{s_{1 v}} \otimes|\cdot|\right|_{v} ^{s_{2 v}}\right)$. Then $\left|\operatorname{Re}\left(s_{i v}\right)\right|<\frac{1}{9}$. If $F=(\mathbb{O}, v=\infty$, this means $\lambda_{1}=\frac{1}{4}\left(1-s^{2}\right)>\frac{77}{324} \approx 0.238$, where $s=2 s_{1 v}=-2 s_{2 v}$ and λ_{1} is the first eigenvalue of the Laplace operator on the corresponding hyperbolic space.

We prove Assumption (A), except possibly for the following 12 cases:

- Cases where standard module conjecture is not available.
$B_{n}-1(\operatorname{Spin}(2 n+1)) ; D_{n}-1(\operatorname{Spin}(2 n)) ;(\mathbf{x x x})$ in [La] $\left(E_{6} \subset E_{7}\right) ; E_{8}-4 ;(\mathbf{x x x i i})$ in $[\mathrm{La}]\left(E_{7} \subset E_{8}\right)$.
- Cases where the Levi subgroup contains a group of type B_{3}, C_{3}, D_{n}.
(xviii) in [La] $\left(B_{3} \subset F_{4}\right) ;(\mathbf{x x i i})$ in [La] $\left(C_{3} \subset F_{4}\right) ;(x x i v)$ in [La] $\left(D_{5} \subset E_{6}\right)$;
$E_{7}-3$; ($\mathbf{x x v i}$) in [La] $\left(D_{6} \subset E_{7}\right) ; E_{8}-3$; (xxviii) in [La] $\left(D_{7} \subset E_{8}\right)$.
It seems that for the last 7 cases, we might not be able to prove Assumption (A) purely by local means. We need global information on bounds of Fourier coefficients. (See case (xxiv) in [La] for the details.)

1 Preliminaries

Recall several facts and notations from [Ki3]: let \mathbf{G} be a split group over a local field F and $\mathbf{P}=\mathbf{M N}$ is a maximal parabolic subgroup and let α be the unique simple root in \mathbf{N}. As in [Sh1], let $\tilde{\alpha}=\langle\rho, \alpha\rangle^{-1} \cdot \rho$, where ρ is half the sum of roots in \mathbf{N}. We identify $s \in \mathbb{C}$ with $s \tilde{\alpha} \in \mathfrak{a}_{\mathbb{C}}^{*}$ and denote $I(s, \pi)=I(s \tilde{\alpha}, \pi)=\operatorname{Ind}_{P}^{G} \pi \otimes \exp \left(\left\langle s \tilde{\alpha}, H_{P}(\cdot)\right\rangle\right)$. Let $A\left(s, \pi, w_{0}\right)$ be the standard intertwining operator from $I(s \tilde{\alpha}, \pi)$ into

$$
I\left(w_{0}(s \widetilde{\alpha}), w_{0}(\pi)\right)
$$

Denote by ${ }^{L} M$, the L-group of \mathbf{M} and let ${ }^{L} \mathfrak{n}$ be the Lie algebra of the L-group of \mathbf{N}. Let r be the adjoint action of ${ }^{L} M$ on ${ }^{L} \mathfrak{n}$ and decompose $r=\bigoplus_{i=1}^{m} r_{i}$, with ordering as in [Sh1]. For each $i, 1 \leq i \leq m$, let $L\left(s, \pi, r_{i}\right)$ be the local L-function defined in [Sh1].

To be more precise, the numbers $\langle\tilde{\alpha}, \beta\rangle$, where β^{\vee} ranges over those dual roots for which $X_{\beta^{\vee}} \in{ }^{L} \mathfrak{n}$, take a string of integers from 1 through m, where m is a positive integer. Given $i, 1 \leq i \leq m$, let

$$
V_{i}=\left\{X_{\beta^{\vee}} \in{ }^{L} \mathfrak{n} \mid\langle\tilde{\alpha}, \beta\rangle=i\right\} .
$$

Then for each i, the adjoint action of ${ }^{L} M$ leaves V_{i} stable. Let r_{i} be its restriction to V_{i}. Each r_{i} is irreducible [Sh3] and the weights of r_{i} are the roots β^{\vee} in ${ }^{L} \mathfrak{n}$ which restrict to $i \alpha^{\vee}$ on ${ }^{L} A^{0}$.

Let π be an unramified representation of $\mathbf{M}(F)$ and χ the inducing character of the torus. Namely, $\pi \hookrightarrow \operatorname{Ind}_{B(F)}^{G(F)} \chi$, where $B=T U$ is a Borel subgroup and χ is a character of $T(F)$. Let \hat{t} be the semi-simple conjugacy class in ${ }^{L} M^{0}$ corresponding to π. Then note the relationship

$$
\chi \circ \beta^{\vee}(\varpi)=\beta^{\vee}(\hat{t})
$$

where β^{\vee} on the right is considered as a root of ${ }^{L} M^{0}$. Then we have

$$
L\left(s, \pi, r_{i}\right)=\prod_{\substack{\beta>0 \\\langle\tilde{\alpha}, \beta\rangle=i}} L\left(s, \chi \circ \beta^{\vee}\right)=\prod_{\substack{\beta>0 \\\langle\tilde{\alpha}, \beta\rangle=i}}\left(1-\chi \circ \beta^{\vee}(\varpi) q^{-s}\right)^{-1}
$$

For an arbitrary generic representation π, the local L-function is defined, using local coefficients. We normalize the intertwining operator $A\left(s, \pi, w_{0}\right)$ as follows:

$$
\begin{align*}
A\left(s, \pi, w_{0}\right) & =r\left(s, \pi, w_{0}\right) N\left(s, \pi, w_{0}\right) \\
r\left(s, \pi, w_{0}\right) & =\prod_{i=1}^{m} \frac{L\left(i s, \pi, r_{i}\right)}{L\left(1+i s, \pi, r_{i}\right) \epsilon\left(i s, \pi, r_{i}, \psi\right)} \tag{1.1}
\end{align*}
$$

2 Local L-Functions Made Explicit

In this section, we make explicit the L-functions which appear in the constant term of Eisenstein series. We look at them case by case from [Sh3, La]. Let F be a number field and \mathbb{A} its ring of adeles. We give a simple, simply connected, split group G, a maximal Levi subgroup \mathbf{M}, a cuspidal representation π of $\mathbf{M}(\mathbb{A})$, and $L\left(s, \pi, r_{i}\right)$, $i=1, \ldots, m$.

Let η be a character of \mathbf{M}. We let $\pi_{\eta}=\pi \otimes \eta$ be the representation of $\mathbf{M}(\mathbb{A})$ such that

$$
(\pi \otimes \eta)(m)=\pi(m) \eta(m)
$$

The following is well-known, cf. [Ko, p. 616].
Lemma 2.1 Under the correspondence $\mathbf{M} \rightarrow{ }^{L} M^{0}$, the cocharacters of \mathbf{M} correspond to characters of ${ }^{L} M^{0}$. Hence if $a=a(t), t \in G L_{1}$, is in the connected component of the center of \mathbf{M}, which is a generator of the cocharacters of \mathbf{M}, then it corresponds to the character of ${ }^{L} M^{0}$ which generates the character group of ${ }^{L} M^{0}$. Denote it by â. Let π_{v} be an unramified representation of $\mathbf{M}\left(F_{v}\right)$ with the central character $\omega_{\pi_{v}}$. Let \hat{t} be the semi-simple conjugacy class in ${ }^{L} M^{0}$ corresponding to π_{v}. Then

$$
\pi_{v}(a(\varpi))=\omega_{\pi_{v}}(\varpi)=\hat{a}(\hat{t})
$$

In the following, we will consider the twisted L-function only when it gives rise to a new L-function.

$2.1 \quad B_{n}-1$ Case $\left(A_{n-1} \subset B_{n}\right)$

Let $\mathbf{G}=\operatorname{Spin}(2 n+1)$ be a split spin group. Let $\theta=\Delta-\left\{e_{n}\right\}$ (This is a standard notation for root system. See, for example, [Bou]). Then $\tilde{\alpha}=\frac{1}{2}\left(e_{1}+\cdots+e_{n}\right)$. Let $\mathbf{M}=\mathbf{M}_{\theta}(\supset \mathbf{T})$ be the Levi subgroup of \mathbf{G} generated by θ and let $\mathbf{P}=\mathbf{M N}$ be the corresponding standard parabolic subgroup of \mathbf{G}. Let \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left(\bigcap_{\alpha \in \theta} \operatorname{ker} \alpha\right)^{0}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)= \begin{cases}H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-1}}\left(t^{n-1}\right) H_{\alpha_{n}}\left(t^{\frac{n}{2}}\right) & \text { if } n \text { is even } \\ H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) \cdots H_{\alpha_{n-1}}\left(t^{2(n-1)}\right) H_{\alpha_{n}}\left(t^{n}\right) & \text { if } n \text { is odd }\end{cases}
$$

Notice t^{2} instead of t when n is odd. Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{n}$. We identify A with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{n}$ under which the element

$$
H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-1}}\left(t^{n-1}\right)
$$

goes to the diagonal element $\operatorname{diag}\left(t, t, \ldots, t, t^{-(n-1)}\right)$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow$ $G L_{1} \times G L_{1} \times S L_{n}$ by

$$
\bar{f}:(a(t), x) \mapsto \begin{cases}\left(t^{\frac{n}{2}}, t, x\right) & \text { if } n \text { is even } \\ \left(t^{n}, t^{2}, x\right) & \text { if } n \text { is odd. }\end{cases}
$$

We define a map $G L_{1} \times G L_{1} \times S L_{n} \rightarrow G L_{1} \times G L_{n}$ by $(a, b, x) \mapsto(a, b x)$. The composition of the above maps is trivial on the set S, where

$$
S= \begin{cases}\left\{\left(a(t), t I_{n}\right): t^{\frac{n}{2}}=1\right\} & \text { if } n \text { is even } \\ \left\{\left(a(t), t^{2} I_{n}\right): t^{n}=1\right\} & \text { if } n \text { is odd }\end{cases}
$$

where I_{n} is the identity matrix in $S L_{n}$. Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{n}\right) / S$ via the well-defined map which sends $m=a(t) x$ to $(a(t), x)$ and we obtain a map $f: \mathbf{M} \rightarrow G L_{1} \times G L_{n}$ so that

$$
f\left(H_{\alpha_{n}}(t)\right)=\left(t, \operatorname{diag}\left(1, \ldots, 1, t^{2}\right)\right)
$$

We can easily see it using the equation $a(t)=H_{\alpha_{1}}(t) \cdots H_{\alpha_{n-1}}\left(t^{n-1}\right) H_{\alpha_{n}}\left(t^{\frac{n}{2}}\right)$ if n is even. Under the above identification,

$$
H_{\alpha_{n}}(t)=a\left(t^{\frac{2}{n}}\right) \operatorname{diag}\left(t^{-\frac{2}{n}}, t^{-\frac{2}{n}}, \ldots, t^{-\frac{2}{n}}, t^{\frac{2(n-1)}{n}}\right)
$$

When n is odd, it is similar. We remark that it is independent of the choice of roots of unity which show up.

Let σ be a cuspidal representation of $G L_{n}(\mathbb{A})$ with the central character ω. Let η be a grössencharacter of F. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by the map f and σ, η. (More precisely ${ }^{1}$, we need to proceed in the following way: $\mathbf{M}\left(\mathbb{A}_{F}\right)$ is co-compact in $G L_{n}\left(\mathbb{A}_{F}\right)$. Consequently $\left.\sigma \otimes \eta\right|_{f(M)}, M=\mathbf{M}\left(\mathbb{A}_{F}\right)$, decomposes to a direct sum of irreducible representations of M. Let π be any irreducible cuspidal constituent of this direct sum. As we shall see, its choice is irrelevant. In what follows, we will omit this argument.) The central character of π is

$$
\omega_{\pi}= \begin{cases}\omega \eta^{\frac{n}{2}} & \text { if } n \text { is even } \\ \omega^{2} \eta^{n} & \text { if } n \text { is odd }\end{cases}
$$

Now suppose σ_{v} is an unramified representation, given by $\sigma_{v}=\pi\left(\mu_{1}, \ldots, \mu_{n}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{n-1}}(t)=\mu_{n-1} \mu_{n}^{-1}(t), \chi(a(t))=\omega_{\pi_{v}}(t)
$$

Since $f\left(H_{\alpha_{n}}(t)\right)=\left(t, \operatorname{diag}\left(1, \ldots, 1, t^{2}\right)\right), \chi \circ H_{\alpha_{n}}(t)=\mu_{n}^{2} \eta_{v}$.
Hence, the positive roots $\left\{e_{i}+e_{j}, e_{i}\right.$ for all $\left.i, j\right\}$ contribute to $L\left(s, \pi_{v}, r_{1}\right)$ and

$$
m=1 ; \quad L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \sigma_{v}, \operatorname{Sym}^{2} \otimes \eta_{v}\right)
$$

We obtain the twisted symmetric square L-functions of $G L_{n}$.
Remark In [Sh4], Shahidi obtained these twisted symmetric square L-functions only when n is even.

[^1]
2.2 $C_{n}-1$ Case

Let $\mathbf{G}=S p_{2 n}$ and $\mathbf{M}=G L_{n-1} \times S L_{2}$. This is the case when $\theta=\Delta-\left\{e_{n-1}-e_{n}\right\}$. In this case, $\tilde{\alpha}=e_{1}+\cdots+e_{n-1}$. It is worth remarking this case because the second L-function in the $F_{4}-1$ case appears as the first L-function in the $C_{4}-1$ case. (This is the case which was excluded in [Sh1, p. 298] and [Sh3, Lemma 4.2]. I thank Prof. F. Shahidi who pointed this out.) Let σ_{1} (σ_{2}, resp.) be a cuspidal representation of $G L_{n-1}(\mathbb{A})\left(G L_{2}(\mathbb{A})\right.$, resp.) with a central character $\omega_{1}\left(\omega_{2}\right.$, resp.). Let σ_{20} be any irreducible constituent of $\left.\sigma_{2}\right|_{S L_{2}(\mathbb{A})}$. Then $\pi=\sigma_{1} \otimes \sigma_{20}$ is a cuspidal representation of $\mathbf{M}(\mathbb{A})$. Now suppose $\sigma_{i v}$ is an unramified representation, given by

$$
\sigma_{1 v}=\pi\left(\mu_{1}, \ldots, \mu_{n-1}\right), \quad \sigma_{2 v}=\pi\left(\nu_{1}, \nu_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$, given by $\sigma_{i v}$'s. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{n-2}}(t)=\mu_{n-2} \mu_{n-1}^{-1}(t) \\
\chi \circ H_{\alpha_{n}}(t)=\nu_{1} \nu_{2}^{-1}(t), \chi(a(t))=\omega_{1}(t)
\end{gathered}
$$

From this, we can see $\chi \circ H_{\alpha_{n-1}}=\mu_{n-1} \nu_{1}^{-1} \nu_{2}$. Hence, we can compute that

$$
m=2, \quad L\left(s, \pi, r_{1}\right)=L\left(s, \sigma_{1} \times \operatorname{Ad}\left(\sigma_{2}\right)\right), \quad L\left(s, \pi, r_{2}\right)=L\left(s, \sigma_{1}, \wedge^{2} \rho_{n-1}\right)
$$

where $\operatorname{Ad}\left(\sigma_{2}\right)$ is the Gelbart-Jacquet lift of σ_{2}, which is an automorphic representation of $G L_{3}(\mathbb{A})$.

$2.3 \quad D_{n}$ Cases

2.3.1 $D_{n}-1\left(A_{n-1} \subset D_{n}\right)$

Let $\mathbf{G}=\operatorname{Spin}(2 n)$ be a split spin group. It is a simply connected group of type D_{n}. There is a two-to-one map $\operatorname{Spin}(2 n) \rightarrow S O_{2 n}$. Let $\theta=\Delta-\left\{\alpha_{n}\right\}$, where $\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-3}=e_{n-3}-e_{n-2}, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n-1}+e_{n}$. Then $\tilde{\alpha}=\frac{1}{2}\left(e_{1}+\cdots+e_{n}\right)$. Let $\mathbf{M}=\mathbf{M}_{\theta}(\supset \mathbf{T})$ be the Levi subgroup of \mathbf{G} generated by θ and let $\mathbf{P}=\mathbf{M N}$ be the corresponding standard parabolic subgroup of \mathbf{G}. Let \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left(\bigcap_{\alpha \in \theta} \operatorname{ker} \alpha\right)^{0}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)= \begin{cases}H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-2}}\left(t^{n-2}\right) H_{\alpha_{n-1}}\left(t^{\frac{n}{2}-1}\right) H_{\alpha_{n}}\left(t^{\frac{n}{2}}\right) & \text { if } n \text { is even } \\ H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) \cdots H_{\alpha_{n-2}}\left(t^{2(n-2)}\right) H_{\alpha_{n-1}}\left(t^{n-2}\right) H_{\alpha_{n}}\left(t^{n}\right) & \text { if } n \text { is odd. }\end{cases}
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{n}$. Now we proceed exactly the same way as in the $B_{n}-1$ case; under the identifications, \mathbf{A} with $G L_{1}$ and \mathbf{M}_{D} with $S L_{n}, \mathbf{M} \simeq\left(G L_{1} \times S L_{n}\right) / S$, where

$$
S= \begin{cases}\left\{\left(a(t), t I_{n}\right): t^{\frac{n}{2}}=1\right\} & \text { if } n \text { is even } \\ \left\{\left(a(t), t^{2} I_{n}\right): t^{n}=1\right\} & \text { if } n \text { is odd }\end{cases}
$$

We also construct a map $f: \mathbf{M} \rightarrow G L_{1} \times G L_{n}$ so that

$$
f\left(H_{\alpha_{n}}(t)\right)=(t, \operatorname{diag}(1, \ldots, 1, t, t))
$$

Let σ be a cuspidal representation of $G L_{n}(\mathbb{A})$ with the central character ω. Let η be a grössencharacter of F. Let π be a cuspidal representation of $\mathbf{M}(A)$, induced by the map f and σ, η. The central character of π is

$$
\omega_{\pi}= \begin{cases}\omega \eta^{\frac{n}{2}} & \text { if } n \text { is even } \\ \omega^{2} \eta^{n} & \text { if } n \text { is odd }\end{cases}
$$

Now suppose σ_{v} is an unramified representation, given by $\sigma_{v}=\pi\left(\mu_{1}, \ldots, \mu_{n}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{n-1}}(t)=\mu_{n-1} \mu_{n}^{-1}(t), \chi(a(t))=\omega_{\pi_{v}}(t)
$$

Since $f\left(H_{\alpha_{n}}(t)\right)=(t, \operatorname{diag}(1, \ldots, 1, t, t)), \chi \circ H_{\alpha_{n}}(t)=\mu_{n-1} \mu_{n} \eta_{v}$. Hence, we can compute that

$$
m=1, \quad L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \sigma_{v}, \wedge^{2} \otimes \eta_{v}\right)
$$

We obtain the twisted exterior square L-functions of $G L_{n}$.

Remark In [Sh4], Shahidi obtained these twisted exterior square L-functions only when n is even.

2.3.2 $D_{n}-2$

Let $\mathbf{G}=\operatorname{Spin}(2 n)$ be a split spin group and $\theta=\Delta-\left\{\alpha_{n-2}\right\}$. Then $\tilde{\alpha}=e_{1}+\cdots+e_{n-2}$. Let $\mathbf{M}=\mathbf{M}_{\theta}(\supset \mathbf{T})$ be the Levi subgroup of \mathbf{G} generated by θ and let $\mathbf{P}=\mathbf{M} \mathbf{N}$ be the corresponding standard parabolic subgroup of \mathbf{G}. Let \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)= \begin{cases}H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-2}}\left(t^{n-2}\right) H_{\alpha_{n-1}}\left(t^{\frac{n-2}{2}}\right) H_{\alpha_{n}}\left(t^{\frac{n-2}{2}}\right) & \text { if } n \text { is even } \\ H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) \cdots H_{\alpha_{n-2}}\left(t^{2(n-2)}\right) H_{\alpha_{n-1}}\left(t^{n-2}\right) H_{\alpha_{n}}\left(t^{n-2}\right) & \text { if } n \text { is odd. }\end{cases}
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{n-2} \times S L_{2} \times S L_{2}$. We identify \mathbf{A} with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{n-2} \times S L_{2} \times S L_{2}$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-3}}\left(t^{n-3}\right)$ goes to the diagonal element $\operatorname{diag}\left(t, t, \ldots, t, t^{-(n-3)}\right)$ of $S L_{n-2}$, and $H_{\alpha_{n-1}}(t), H_{\alpha_{n}}(t)$ go to $\operatorname{diag}\left(t, t^{-1}\right)$ of $S L_{2}$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times G L_{1} \times S L_{n-2} \times$ $S L_{2} \times S L_{2}$ by

$$
\bar{f}:(a(t), x, y, z) \mapsto \begin{cases}\left(t, t^{\frac{n-2}{2}}, t^{\frac{n-2}{2}}, x, y, z\right) & \text { if } n \text { is even } \\ \left(t^{2}, t^{n-2}, t^{n-2}, x, y, z\right) & \text { if } n \text { is odd }\end{cases}
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{n-2} \times S L_{2} \times S L_{2}\right) / S$, where

$$
S= \begin{cases}\left\{\left(a(t), t I_{n-2}, t^{\frac{n-2}{2}} I_{2}, t^{\frac{n-2}{2}} I_{2}\right): t^{n-2}=1\right\} & \text { if } n \text { is even } \\ \left\{\left(a(t), t^{2} I_{n-2}, t^{n-2} I_{2}, t^{n-2} I_{2}\right): t^{2(n-2)}=1\right\} & \text { if } n \text { is odd } .\end{cases}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{n-2} \times G L_{2} \times G L_{2}$ so that

$$
f\left(H_{\alpha_{n-2}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), \operatorname{diag}(1, t), \operatorname{diag}(1, t))
$$

Let π_{2}, π_{3} be two cuspidal representations of $G L_{2}$ with central characters ω_{2}, ω_{3}, resp. and π_{1} be a cuspidal representation of $G L_{n-2}$ with the central character ω_{1}. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by the map f and $\pi_{1}, \pi_{2}, \pi_{3}$. The central character of π is

$$
\omega_{\pi}= \begin{cases}\omega_{1} \omega_{2}^{\frac{n-2}{2}} \omega_{3}^{\frac{n-2}{2}} & \text { if } n \text { is even } \\ \omega_{1}^{2} \omega_{2}^{n-2} \omega_{3}^{n-2} & \text { if } n \text { is odd }\end{cases}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \ldots, \mu_{n-2}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}\right), \quad \pi_{3 v}=\pi\left(\eta_{1}, \eta_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{n-3}}(t)=\mu_{n-3} \mu_{n-2}^{-1}(t) \\
\chi \circ H_{\alpha_{n-1}}(t)=\nu_{1} \nu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{n}}(t)=\eta_{1} \eta_{2}^{-1}(t), \quad \chi(a(t))=\omega_{\pi_{v}}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{n-2}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), \operatorname{diag}(1, t), \operatorname{diag}(1, t))$,

$$
\chi \circ H_{\alpha_{n-2}}(t)=\mu_{n-2} \nu_{2} \eta_{2}
$$

Hence, we can compute that

$$
m=2, \quad L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v} \times \pi_{3 v}\right), \quad L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \pi_{1 v}, \wedge^{2} \otimes \omega_{2} \omega_{3}\right)
$$

2.3.3 $D_{n}-3$

Let $\mathbf{G}=\operatorname{Spin}(2 n)$ be a split spin group and $\theta=\Delta-\left\{\alpha_{n-3}\right\}$. Then $\tilde{\alpha}=e_{1}+\cdots+e_{n-3}$. Let $\mathbf{M}=\mathbf{M}_{\theta}(\supset \mathbf{T})$ be the Levi subgroup of \mathbf{G} generated by θ and let $\mathbf{P}=\mathbf{M N}$ be the corresponding standard parabolic subgroup of \mathbf{G}. Let \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=\left\{\begin{array}{r}
H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) \cdots H_{\alpha_{n-3}}\left(t^{2(n-3)}\right) H_{\alpha_{n-2}}\left(t^{2(n-3)}\right) H_{\alpha_{n-1}}\left(t^{n-3}\right) H_{\alpha_{n}}\left(t^{n-3}\right) \\
\text { if } n \text { is even }, \\
H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-3}}\left(t^{n-3}\right) H_{\alpha_{n-2}}\left(t^{n-3}\right) H_{\alpha_{n-1}}\left(t^{\frac{n-3}{2}}\right) H_{\alpha_{n}}\left(t^{\frac{n-3}{2}}\right) \\
\text { if } n \text { is odd. }
\end{array}\right.
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{n-3} \times S L_{4}$. We identify \mathbf{A} with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{n-3} \times S L_{4}$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{n-4}}\left(t^{n-4}\right)$ goes to the diagonal element $\operatorname{diag}\left(t, t, \ldots, t, t^{-(n-4)}\right)$ of $S L_{n-3}$, and $H_{\alpha_{n-1}}(t) H_{\alpha_{n-2}}\left(t^{2}\right) H_{\alpha_{n}}(t)$ goes to $\operatorname{diag}\left(t, t, t^{-1}, t^{-1}\right)$ of $S L_{4}$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{n-3} \times$ $S L_{4}$ by

$$
\bar{f}:(a(t), x, y) \mapsto \begin{cases}\left(t^{2}, t^{n-3}, x, y\right) & \text { if } n \text { is even } \\ \left(t, t^{\frac{n-3}{2}}, x, y\right) & \text { if } n \text { is odd }\end{cases}
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{n-3} \times S L_{4}\right) / S$, where

$$
S= \begin{cases}\left\{\left(a(t), t^{2} I_{n-3}, t^{n-3} I_{4}\right): t^{2(n-3)}=1\right\} & \text { if } n \text { is even } \\ \left\{\left(a(t), t I_{n-3}, t^{\frac{n-3}{2}} I_{4}\right): t^{n-3}=1\right\} & \text { if } n \text { is odd }\end{cases}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{n-3} \times G L_{4}$ so that

$$
f\left(H_{\alpha_{n-3}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), \operatorname{diag}(1,1, t, t))
$$

Let π_{1}, π_{2} be cuspidal representations of $G L_{n-3}(\mathbb{A}), G L_{4}(\mathbb{A})$ with the central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. The central character of π is

$$
\omega_{\pi}= \begin{cases}\omega_{1} \omega_{2}^{\frac{n-3}{2}} & \text { if } n \text { is odd } \\ \omega_{1}^{2} \omega_{2}^{n-3} & \text { if } n \text { is even }\end{cases}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \ldots, \mu_{n-3}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{n-4}}(t)=\mu_{n-4} \mu_{n-3}^{-1}(t), \\
\chi \circ H_{\alpha_{n-1}}(t)=\nu_{1} \nu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{n-2}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{n}}(t)=\nu_{3} \nu_{4}^{-1}(t), \\
\chi(a(t))=\omega_{\pi_{v}}(t) .
\end{gathered}
$$

Since $f\left(H_{\alpha_{n-3}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), \operatorname{diag}(1,1, t, t)), \chi \circ H_{\alpha_{n-3}}(t)=\mu_{n-3} \nu_{3} \nu_{4}$. Hence, we can compute that
$m=2, L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v}, \rho_{n-3} \otimes \wedge^{2} \rho_{4}\right), L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \pi_{1 v}, \wedge^{2} \otimes \omega_{2}\right)$.

2.3.4 $D_{n}-1$ Case

Dealing with $\operatorname{Spin}(2 n)$ in the general case is like dealing with $S L_{n}$. The Levi subgroups of Spin (2n) are very complicated just as in $S L_{n}$. The idea of Asgari [As] is to deal with $G \operatorname{Spin}(2 n)$ and use the restriction technique just as we do for $G L_{n}$ to $S L_{n}$.

We define $G \operatorname{Spin}(2 n)$ to be the maximal Levi subgroup of $\operatorname{Spin}(2(n+1))$ which has $\operatorname{Spin}(2 n)$ as the derived group. More precisely, we add $\alpha_{0}=e_{0}-e_{1}$ in the root system and consider the Levi subgroup attached to $\theta=\Delta-\left\{\alpha_{0}\right\}$. Then

$$
\mathbf{A}=\left\{H_{\alpha_{0}}\left(t^{2}\right) H_{\alpha_{1}}\left(t^{2}\right) \cdots H_{\alpha_{n-2}}\left(t^{2}\right) H_{\alpha_{n-1}}(t) H_{\alpha_{n}}(t): t \in \bar{F}^{*}\right\}
$$

and

$$
\mathbf{M}_{D}=\operatorname{Spin}(2 n), \quad \mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{n-1}}(t) H_{\alpha_{n}}(t): t^{2}=1\right\}
$$

We define

$$
G \operatorname{Spin}(2 n)=\left(G L_{1} \times \operatorname{Spin}(2 n)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Let $\mathbf{G}=\operatorname{Spin}(2 n)$ be a split spin group. Note that the center of \mathbf{G} is

$$
Z(G)= \begin{cases}\left\{\prod_{i=1}^{n-2} H_{\alpha_{i}}\left((-1)^{i}\right) H_{\alpha_{n-1}}(-t) H_{\alpha_{n}}(t), \text { and } H_{\alpha_{n-1}}(t) H_{\alpha_{n}}(t): t^{2}=1\right\} \\ & \text { if } n \text { is even } \\ \left\{H_{\alpha_{1}}\left(t^{2}\right) \cdots H_{\alpha_{n-2}}\left(t^{2(n-2)}\right) H_{\alpha_{n-1}}(t) H_{\alpha_{n}}\left(t^{3}\right): t^{4}=1\right\} & \\ & \text { if } n \text { is odd. }\end{cases}
$$

We set $c=H_{\alpha_{n-1}}(-1) H_{\alpha_{n}}(-1)$, and

$$
z= \begin{cases}\prod_{i=1}^{n-2} H_{\alpha_{i}}\left((-1)^{i}\right) H_{\alpha_{n-1}}(-1) & \text { if } n \text { is even } \\ \prod_{i=1}^{n-2} H_{\alpha_{i}}\left((-1)^{i}\right) H_{\alpha_{n-1}}(\sqrt{-1}) H_{\alpha_{n}}(\sqrt{-1}) & \text { if } n \text { is odd }\end{cases}
$$

Note that $c=z^{2}$ if n is odd. Hence $Z(G) \simeq \mathbb{Z} / 4 \mathbb{Z}$ if n is odd, and $Z(G) \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ if n is even. This fact implies that when n is odd, there is, up to isomorphism, a unique non simply-connected, non-adjoint group of type D_{n}, namely, $\mathrm{SO}_{2 n}$. However, when n is even, there are two non-isomorphic, non simply-connected, non-adjoint group of type D_{n} : one is $S O_{2 n} \simeq \operatorname{Spin}(2 n) /\{1, c\}$; the other is $H S(2 n) \simeq$ $\operatorname{Spin}(2 n) /\{1, z\}$, the so-called half-spin group.

Then ${ }^{L} G \operatorname{Spin}(2 n)=G S O_{2 n}(\mathbb{C})$, where

$$
G O_{2 n}=\left\{\left.g \in G L_{2 n}\right|^{t} g J_{2 n} g=\lambda(g) J_{2 n}, \lambda(g) \in G L_{1}\right\}, J_{2 n}=\left(\begin{array}{llll}
& & & \\
& & & 1 \\
& . & & \\
1 & & & \\
1 & & &
\end{array}\right)
$$

Let $G S O_{2 n}=\left\{g \in G O_{2 n} \mid \operatorname{det}(g) \lambda(g)^{-n}=1\right\}$. This fact agrees with Borel's observation [Bo, p. 30] that the derived group of ${ }^{L} G$ is simply connected if and only if the
center of G is connected. Note that the center of $G \operatorname{Spin}(2 n)$ is not connected. It is $\mathbf{A} \cup \mathbf{A} z$.

Let $\theta=\Delta-\left\{\alpha_{k}\right\}$. Let $n=k+l, k \geq 2$ and $l \geq 4$. Let $\mathbf{M}=\mathbf{M}_{\theta}(\supset \mathbf{T})$ be the Levi subgroup of \mathbf{G} generated by θ and let $\mathbf{P}=\mathbf{M N}$ be the corresponding standard parabolic subgroup of \mathbf{G}. Let \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where
$a(t)= \begin{cases}H_{\alpha_{1}}(t) \cdots H_{\alpha_{k}}\left(t^{k}\right) H_{\alpha_{k+1}}\left(t^{k}\right) \cdots H_{\alpha_{n-2}}\left(t^{k}\right) H_{\alpha_{n-1}}\left(t^{\frac{k}{2}}\right) H_{\alpha_{n}}\left(t^{\frac{k}{2}}\right) & \text { if } k \text { is even }, \\ H_{\alpha_{1}}\left(t^{2}\right) \cdots H_{\alpha_{k}}\left(t^{2 k}\right) H_{\alpha_{k+1}}\left(t^{2 k}\right) \cdots H_{\alpha_{n-2}}\left(t^{2 k}\right) H_{\alpha_{n-1}}\left(t^{k}\right) H_{\alpha_{n}}\left(t^{k}\right) & \text { if } k \text { is odd } .\end{cases}$
Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{k} \times \operatorname{Spin}(2 l)$. We identify \mathbf{A} with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{k} \times \operatorname{Spin}(2 l)$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) \cdots H_{\alpha_{k-1}}\left(t^{k-1}\right)$ goes to the diagonal element $\operatorname{diag}\left(t, t, \ldots, t, t^{-(k-1)}\right)$ of $S L_{k}$, and

$$
b(t)=H_{\alpha_{k+1}}\left(t^{2}\right) \cdots H_{\alpha_{n-2}}\left(t^{2}\right) H_{\alpha_{n-1}}(t) H_{\alpha_{n}}(t)
$$

is the toral element in $\operatorname{Spin}(2 l)$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{k} \times$ Spin(2l) by

$$
\bar{f}:(a(t), x, y) \mapsto \begin{cases}\left(t, t^{\frac{k}{2}}, x, y\right) & \text { if } k \text { is even } \\ \left(t^{2}, t^{k}, x, y\right), & \text { if } k \text { is odd }\end{cases}
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{k} \times \operatorname{Spin}(2 l)\right) / S$, where

$$
S= \begin{cases}\left\{\left(a(t), t I_{k}, b\left(t^{\frac{k}{2}}\right)\right): t^{k}=1\right\} & \text { if } n \text { is even } \\ \left\{\left(a(t), t^{2} I_{k}, b\left(t^{k}\right)\right): t^{2 k}=1\right\} & \text { if } n \text { is odd }\end{cases}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{k} \times G \operatorname{Spin}(2 l)$ so that

$$
f\left(H_{\alpha_{k}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), c(t))
$$

where $c(t)$ is an element in $G \operatorname{Spin}(2 l)$.
Let π_{1} (π_{2}, resp.) be a cuspidal representation of $G L_{k}(G \operatorname{Spin}(2 l)$, resp.) with the central character ω_{1} (ω_{2}, resp.). Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}= \begin{cases}\omega_{1} \omega_{2}^{k / 2} & \text { if } k \text { is even } \\ \omega_{1}^{2} \omega_{2}^{k} & \text { if } k \text { is odd }\end{cases}
$$

$$
\begin{aligned}
& \text { Let } \hat{t}_{1}=\operatorname{diag}\left(a_{1}, \ldots, a_{k}\right) \in G L_{k}(\mathbb{C})={ }^{L} G L_{k} \text { and } \\
& \qquad \hat{t}_{2}=\operatorname{diag}\left(b_{1}, \ldots, b_{l}, b_{l}^{-1} b_{0}, \ldots, b_{1}^{-1} b_{0}\right) \in G S O_{2 l}(\mathbb{C})={ }^{L} G \operatorname{Spin}(2 l)
\end{aligned}
$$

be the Satake parameters attached to $\pi_{1 v}, \pi_{2 v}$, resp. Here we note that

$$
\operatorname{diag}\left(b_{1}, \ldots, b_{l}, b_{l}^{-1} b_{0}, \ldots, b_{1}^{-1} b_{0}\right) \mapsto b_{0}
$$

generates the character group of $G S O_{2 n}$ and hence by Lemma 2.1, $b_{0}=\omega_{2}(\varpi)$. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=a_{1} a_{2}^{-1}, \ldots, \chi \circ H_{\alpha_{k-1}}=a_{k-1} a_{k}^{-1}, \\
\chi \circ H_{\alpha_{k+1}}=b_{1} b_{2}^{-1}, \ldots, \chi \circ H_{\alpha_{n-1}}=b_{l-1} b_{l}^{-1}, \chi \circ H_{\alpha_{n}}=b_{l-1} b_{l} b_{0}^{-1}, \\
\chi(a(t))=\omega_{\pi_{v}}= \begin{cases}\left(a_{1} \cdots a_{k}\right)\left(b_{0}\right)^{k / 2} & \text { if } k \text { is even, } \\
\left(a_{1} \cdots a_{k}\right)^{2}\left(b_{0}\right)^{k} & \text { if } k \text { is odd. } .\end{cases}
\end{gathered}
$$

Since $f\left(H_{\alpha_{k}}(t)\right)=(\operatorname{diag}(1, \ldots, 1, t), c(t))$, we can see $\chi \circ H_{\alpha_{k}}=a_{k} b_{1}^{-1} b_{0}$. Hence, we can compute that $m=2$,

$$
\begin{aligned}
& L\left(s, \pi, r_{1}\right)=L\left(s, \pi_{1} \times \pi_{2}\right) \\
& L\left(s, \pi, r_{2}\right)=L\left(s, \pi_{1}, \wedge^{2} \otimes \omega_{2}\right)
\end{aligned}
$$

2.4 $\quad F_{4}$ Cases

We use a root system as in [G-O-V]. We take simple roots $\alpha_{1}=\frac{1}{2}\left(e_{1}-e_{2}-e_{3}-e_{4}\right)$, $\alpha_{2}=e_{4}, \alpha_{3}=e_{3}-e_{4}$, and $\alpha_{4}=e_{2}-e_{3}$. Here $\left(e_{i}, e_{j}\right)=\delta_{i j}$. The positive roots are $e_{i} \pm e_{j}, 1 \leq i<j \leq 4, e_{i}, i=1,2,3,4$ and $\frac{1}{2}\left(e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right)$. There are 24 of them. The Cartan matrix is

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -2 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

The Dynkin diagram is

$$
\mathrm{o}_{1}-\mathrm{o}_{2} \Longleftarrow \mathrm{o}_{3}=\mathrm{o}_{4} .
$$

2.4.1 $F_{4}-1$

Let \mathbf{G} be a split simply connected group of type F_{4}, and $\theta=\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}\right\}$. Let $\mathbf{M}=\mathbf{M}_{\theta}$ be the Levi subgroup of \mathbf{G} generated by θ and \mathbf{A} be the connected component of the center of $\mathbf{M}: \mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{6}\right) H_{\alpha_{4}}\left(t^{3}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{3} \times S L_{2}$. We identify \mathbf{A} with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{3} \times S L_{2}$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right)$ goes to the diagonal element $\operatorname{diag}\left(t, t, t^{-2}\right)$ of $S L_{3}$, and $H_{\alpha_{4}}(t)$ goes to $\operatorname{diag}\left(t, t^{-1}\right)$ of $S L_{2}$. We define a map $\bar{f}: \mathbf{A} \times$ $\mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{3} \times S L_{2}$ by

$$
\bar{f}:(a(t), x, y) \mapsto\left(t^{2}, t^{3}, x, y\right)
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{3} \times S L_{2}\right) / S$, where

$$
S=\left\{\left(a(t), t^{2} I_{3}, t^{3} I_{2}\right): t^{6}=1\right\}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{3} \times G L_{2}$ so that

$$
f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1, t)) .
$$

We remark that it is independent of the choice of 6th root of unity which shows up.
Let π_{1}, π_{2} be cuspidal representations of $G L_{3}, G L_{2}$ with the central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by the map f and π_{1}, π_{2}. The central character of π is

$$
\omega_{\pi}=\omega_{1}^{2} \omega_{2}^{3}
$$

Let $\pi_{i v}$ be an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ and χ the inducing character of the torus. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t) ; \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t) \\
\chi \circ H_{\alpha_{4}}(t)=\nu_{1} \nu_{2}^{-1}(t) ; \quad \chi(a(t))=\omega_{\pi_{v}}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1, t))$, we have $\chi \circ H_{\alpha_{3}}=\mu_{3} \nu_{2}$. In this case, $\tilde{\alpha}=2 e_{1}+e_{2}+e_{3}$ and the positive roots $\left\{e_{1}-e_{2}, e_{1}-e_{3}, e_{2} \pm e_{4}, e_{3} \pm e_{4}\right\}$ contribute to $L\left(s, \pi_{v}, r_{1}\right)$, and so on. Hence we can compute that $m=4$, and

$$
\begin{gathered}
L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v}\right), \quad L\left(s, \pi_{v}, r_{2}\right)=L\left(s,\left(\tilde{\pi}_{1 v} \otimes \omega_{1}\right) \otimes \pi_{2 v}, \rho_{3} \otimes \operatorname{Sym}^{2} \rho_{2}\right) \\
L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \pi_{2 v} \otimes \omega_{1} \omega_{2}\right), \quad L\left(s, \pi_{v}, r_{4}\right)=L\left(s, \pi_{1 v} \otimes \omega_{1} \omega_{2}^{2}\right)
\end{gathered}
$$

2.4.2 $F_{4}-2$

Let $\theta=\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}\right\}$, and

$$
\mathbf{A}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{8}\right) H_{\alpha_{4}}\left(t^{4}\right): t \in \bar{F}^{*}\right\}
$$

Also $\mathbf{M}_{D}=S L_{2} \times S L_{3}$, and

$$
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{4}}\left(t^{4}\right): t^{6}=1\right\}
$$

By identifying A with $G L_{1}$, we have

$$
\mathbf{M}=\left(G L_{1} \times S L_{2} \times S L_{3}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

We do exactly the same as in the the $F_{4}-1$ case: we construct a map $f: \mathbf{M} \rightarrow$ $G L_{2} \times G L_{3}$ such that $f\left(H_{\alpha_{2}}(t)\right)=\left(\operatorname{diag}(1, t), \operatorname{diag}\left(1,1, t^{2}\right)\right)$. Under the identification, $H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{4}}(t)$ is the diagonal element $\operatorname{diag}\left(t, t, t^{-2}\right)$ of $S L_{3}$.

Let π_{1}, π_{2} be cuspidal representations of $G L_{2}, G L_{3}$ with the central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{3} \omega_{2}^{4}
$$

Let $\pi_{i v}$ be an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ and χ the inducing character of the torus. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{4}}(t)=\nu_{1} \nu_{2}^{-1}(t), \\
\chi \circ H_{\alpha_{3}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi(a(t))=\omega_{\pi_{v}}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{2}}(t)\right)=\left(\operatorname{diag}(1, t), \operatorname{diag}\left(1,1, t^{2}\right)\right)$, we have $\chi \circ H_{\alpha_{2}}=\mu_{2} \nu_{3}^{2}$. In this case, $\tilde{\alpha}=\frac{1}{2}\left(3 e_{1}+e_{2}+e_{3}+e_{4}\right)$. Hence we can compute that $m=3$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{2} \otimes \operatorname{Sym}^{2} \rho_{3}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\pi}_{2 v}, \operatorname{Sym}^{2} \rho_{3} \otimes \omega_{1} \omega_{2}^{2}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \pi_{1 v} \otimes \omega_{1} \omega_{2}^{2}\right)
\end{aligned}
$$

2.4.3 (xviii) in [La]

Let $\theta=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$, and

$$
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{2}\right): t \in \bar{F}^{*}\right\}
$$

Also $\mathbf{M}_{D}=\operatorname{Spin}(7)$, and

$$
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{2}}(t): t^{2}=1\right\}
$$

By identifying A with $G L_{1}$, we have

$$
\mathbf{M}=\left(G L_{1} \times \operatorname{Spin}(7)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right) \simeq G \operatorname{Spin}(7)
$$

Let π be a cuspidal representation of $G \operatorname{Spin}(7, \mathbb{A})$ with the central character ω. Let η be a grössencharacter of F. Then we can think of η as a character of $\mathbf{M}(\mathbb{A})$ by setting $\eta(a(t))=\eta\left(t^{2}\right)$. Since $\left.\eta\right|_{\mathbf{A}^{\cap} \mathbf{M}_{D}}=1$, it is well-defined. We consider $\pi_{\eta}=\pi \otimes \eta$. Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ with the corresponding semisimple conjugacy class \hat{t} in \hat{T}, the torus in ${ }^{L} M=G S p_{6}(\mathbb{C})$. Let

$$
\hat{t}=\operatorname{diag}\left(b_{1}, b_{2}, b_{3}, b_{0} b_{3}^{-1}, b_{0} b_{2}^{-1}, b_{0} b_{1}^{-1}\right)
$$

Note that $\hat{t} \mapsto b_{0}$ generates the character group of GSp p_{6}, and hence by Lemma 2.1, $b_{0}=\omega_{\nu}(\varpi)$.

Let χ be the inducing character of the torus given by $\pi_{\eta, v}$. We have the relationship

$$
\chi \circ \alpha^{\vee}(\varpi)=\alpha^{\vee}(\hat{t})
$$

where α^{\vee} on the right is considered as a root of ${ }^{L} M$. Hence

$$
\begin{gathered}
\chi \circ H_{\alpha_{2}}=b_{3}^{2} b_{0}^{-1}, \quad \chi \circ H_{\alpha_{3}}=b_{2} b_{3}^{-1} \\
\chi \circ H_{\alpha_{4}}=b_{1} b_{2}^{-1}, \quad \chi(a(t))=\eta_{v}^{2} \omega_{v}=\eta_{v}^{2} b_{0}
\end{gathered}
$$

From this, we have $\chi \circ H_{\alpha_{1}}=\eta_{v} b_{1}^{-1} b_{2}^{-1} b_{3}^{-1} b_{0}^{2}$. In this case, $\tilde{\alpha}=e_{1}$. Hence we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{\eta, v}, r_{1}\right)^{-1}=(1\left.-\eta_{v} b_{1} b_{2} b_{3} b_{0}^{-1} q_{v}^{-s}\right)\left(1-\eta_{v}\left(b_{1} b_{2} b_{3}\right)^{-1} b_{0}^{2} q_{v}^{-s}\right) \\
& \times \prod_{i=1}^{3}\left(1-\eta_{v} b_{i}^{-1} b_{0} q_{v}^{-s}\right) \prod_{i=1}^{3}\left(1-\eta_{v}\left(b_{1} b_{2} b_{3}\right)^{-1} b_{i}^{2} b_{0} q_{v}^{-s}\right) \\
& \times \prod_{i=1}^{3}\left(1-\eta_{v} b_{1} b_{2} b_{3} b_{i}^{-2} q_{v}^{-s}\right) \prod_{i=1}^{3}\left(1-\eta_{v} b_{i} q_{v}^{-s}\right) \\
& L\left(s, \pi_{\eta, v}, r_{2}\right)=L\left(s, \eta_{v}^{2} \omega_{v}\right)
\end{aligned}
$$

Here $L\left(s, \pi_{\eta}, r_{1}\right)$ is called the spherical harmonic of $S p_{6}(\mathbb{C})$ and it has degree 14 .

2.4.4 (xxii) in [La]

In this case, it is more convenient to use the dual root system: we take simple roots $\alpha_{1}=e_{1}-e_{2}-e_{3}-e_{4}, \alpha_{2}=2 e_{4}, \alpha_{3}=e_{3}-e_{4}, \alpha_{4}=e_{2}-e_{3}$. Let $\theta=\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$. Then

$$
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{4}}(t): t \in \bar{F}^{*}\right\}
$$

Also $\mathbf{M}_{D}=S p_{6}$, and

$$
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{2}}(t) H_{\alpha_{4}}(t): t^{2}=1\right\}
$$

By identifying A with $G L_{1}$, we have

$$
\mathbf{M}=\left(G L_{1} \times S p_{6}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right) \simeq G S p_{6}
$$

We can easily see that under this identification, $H_{\alpha_{1}}(t)$ becomes $\operatorname{diag}(1,1,1, t, t, t)$ in $G S p_{6}$.

Let π be a cuspidal representation of $G S p_{6}(\mathbb{A})$ with the central character ω. Suppose π_{v} is an unramified representation, given by $\operatorname{Ind}_{B}^{G S p_{6}} \mu_{1} \otimes \mu_{2} \otimes \mu_{3} \otimes \lambda$, where
μ_{i} 's and λ are unramified quasi-characters of F_{v}^{\times}and $\mu_{1} \otimes \mu_{2} \otimes \mu_{3} \otimes \lambda$ is the character of the torus which assigns to $\operatorname{diag}\left(x, y, z, t z^{-1}, t y^{-1}, t x^{-1}\right)$ the value

$$
\mu_{1}(x) \mu_{2}(y) \mu_{3}(z) \lambda(t)
$$

Note that the central character $\omega=\mu_{1} \mu_{2} \mu_{3} \lambda^{2}$.
Let η be a grössencharacter of F. Then we can think of η as a character of $\mathbf{M}(\mathbb{A})$ by setting $\eta(a(t))=\eta\left(t^{2}\right)$. Since $\left.\eta\right|_{A \cap M_{D}}=1$, it is well-defined. We consider $\pi_{\eta}=\pi \otimes \eta$. Let χ be the inducing character of the torus given by $\pi_{\eta, v}$. Then

$$
\begin{aligned}
& \chi \circ H_{\alpha_{2}}(t)=\mu_{3}(t), \quad \chi \circ H_{\alpha_{3}}(t)=\mu_{2} \mu_{3}^{-1}(t) \\
& \chi \circ H_{\alpha_{4}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi(a(t))=\eta_{v}^{2} \omega_{v}(t)
\end{aligned}
$$

From this, we have $\chi \circ H_{\alpha_{1}}=\eta_{v} \lambda$. In this case, $\tilde{\alpha}=2 e_{1}$. Hence we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{\eta, v}, r_{1}\right)^{-1}=(1\left.-\eta_{v} \lambda q_{v}^{-s}\right)\left(1-\eta_{v} \lambda \mu_{1} q_{v}^{-s}\right)\left(1-\eta_{v} \lambda \mu_{2} q_{v}^{-s}\right)\left(1-\eta_{v} \lambda \mu_{3} q_{v}^{-s}\right) \\
& \times\left(1-\eta_{v} \lambda \mu_{1} \mu_{2} q_{v}^{-s}\right)\left(1-\eta_{v} \lambda \mu_{1} \mu_{3} q_{v}^{-s}\right) \\
& \times\left(1-\eta_{v} \lambda \mu_{2} \mu_{3} q_{v}^{-s}\right)\left(1-\eta_{v} \lambda \mu_{1} \mu_{2} \mu_{3} q_{v}^{-s}\right) \\
& L\left(s, \pi_{\eta, v}, r_{2}\right)^{-1}=\left(1-\eta_{v}^{2} \omega_{v} q_{v}^{-s}\right)\left(1-\eta_{v}^{2} \omega_{v} \mu_{1} q_{v}^{-s}\right)\left(1-\eta_{v}^{2} \omega_{v} \mu_{2} q_{v}^{-s}\right)\left(1-\eta_{v}^{2} \omega_{v} \mu_{3} q_{v}^{-s}\right) \\
& \quad \times\left(1-\eta_{v}^{2} \omega_{v} \mu_{1}^{-1} q_{v}^{-s}\right)\left(1-\eta_{v}^{2} \omega_{v} \mu_{2}^{-1} q_{v}^{-s}\right)\left(1-\eta_{v}^{2} \omega_{v} \mu_{3}^{-1} q_{v}^{-s}\right)
\end{aligned}
$$

$L\left(s, \pi_{\eta}, r_{1}\right)$ is called the spin L-function and it has degree 8 ; $L\left(s, \pi_{\eta}, r_{2}\right)$ is called the standard L-function of symplectic groups and it has degree 7. It appears as the only L-function in the constant term of the Eisenstein series attached to $\omega \eta^{2} \otimes \pi^{\prime}$ of $G L_{1} \times$ $S p_{6} \subset S p_{8}$, where π^{\prime} is any irreducible constituent of $\left.\pi\right|_{S p_{6}(\mathbb{A})}$.

$2.5 \quad E_{6}$ Cases

We take the root system as in [G-O-V]. (We decided not to use the root systems for exceptional groups in [Bou] because the root systems in [G-O-V] may be easier for computations.) We take simple roots, $\alpha_{i}=e_{i}-e_{i+1}, i=1,2,3,4,5, \alpha_{6}=$ $e_{4}+e_{5}+e_{6}+\epsilon$. Here $\left(e_{i}, e_{i}\right)=\frac{5}{6},\left(e_{i}, e_{j}\right)=-\frac{1}{6}$ for $i \neq j, \sum e_{i}=0$, and ϵ is orthogonal to e_{i} 's and $(\epsilon, \epsilon)=\frac{1}{2}$. The positive roots are $e_{i}-e_{j}, 1 \leq i<j \leq 6,2 \epsilon$ and $e_{i}+e_{j}+e_{k}+\epsilon$. There are 36 of them. Note that

$$
\begin{aligned}
&\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{6} e_{6}+a_{0} \epsilon, e_{i}-e_{j}\right)=a_{i}-a_{j}, \quad 1 \leq i<j \leq 6 \\
&\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{6} e_{6}+a_{0} \epsilon, e_{i}+e_{j}+e_{k}+\epsilon\right)=\left(a_{i}+a_{j}+a_{k}\right) \\
&-\frac{1}{2}\left(a_{1}+\cdots+a_{6}\right)+\frac{1}{2} a_{0}
\end{aligned}
$$

The Cartan matrix is

$$
\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

The Dynkin diagram is

2.5.1 $E_{6}-1$

Let \mathbf{G} be a simply connected group of type E_{6}. Let $\theta=\Delta-\left\{\alpha_{3}\right\}$. Then $\tilde{\alpha}_{3}=$ $e_{1}+e_{2}+e_{3}+3 \epsilon$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left(\bigcap_{\alpha \in \theta} \text { ker } \alpha\right)^{0}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{6}\right) H_{\alpha_{4}}\left(t^{4}\right) H_{\alpha_{5}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{3}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{3} \times S L_{3} \times S L_{2}$. We identify \mathbf{A} with $G L_{1}$. We fix an identification of \mathbf{M}_{D} and $S L_{3} \times S L_{3} \times S L_{2}$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right)$ goes to the diagonal element $\operatorname{diag}\left(t, t, t^{-2}\right)$ of $S L_{3}, H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{5}}(t)$ to $\operatorname{diag}\left(t, t, t^{-2}\right)$ of $S L_{3}$, and $H_{\alpha_{6}}(t)$ to $\operatorname{diag}\left(t, t^{-1}\right)$ of $S L_{2}$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times G L_{1} \times S L_{3} \times S L_{3} \times S L_{2}$ by

$$
\bar{f}:(a(t), x, y, z) \mapsto\left(t^{2}, t^{2}, t^{3}, x, y, z\right)
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{3} \times S L_{3} \times S L_{2}\right) / S$, where

$$
S=\left\{\left(a(t), t^{2} I_{3}, t^{2} I_{3}, t^{3} I_{2}\right): t^{6}=1\right\}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{3} \times G L_{3} \times G L_{2}$ so that

$$
f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1, t)) .
$$

Let π_{1}, π_{2} be cuspidal representations of $G L_{3}(\mathbb{A})$ with central characters ω_{1}, ω_{2}, resp. Let π_{3} be a cuspidal representation of $G L_{2}(\mathbb{A})$ with the central character ω_{3}. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and $\pi_{1}, \pi_{2}, \pi_{3}$. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{2} \omega_{2}^{2} \omega_{3}^{3}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}\right), \quad \pi_{3 v}=\pi\left(\eta_{1}, \eta_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{4}}(t)=\nu_{2} \nu_{3}^{-1}(t), \\
\chi \circ H_{\alpha_{5}}(t)=\nu_{1} \nu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{6}}(t)=\eta_{1} \eta_{2}^{-1}(t), \quad \chi(a(t))=\omega_{\pi_{v}}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1, t))$, we have $\chi \circ H_{\alpha_{3}}(t)=$ $\mu_{3} \nu_{3} \eta_{2}$. Hence, we can compute that $m=3$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v} \times \pi_{3 v}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s,\left(\tilde{\pi}_{1 v} \otimes \omega\right) \times \tilde{\pi}_{2 v}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \pi_{3 v} \otimes \omega\right)
\end{aligned}
$$

where $\omega=\omega_{1} \omega_{2} \omega_{3}$.

2.5.2 $E_{6}-2$

Let $\theta=\Delta-\left\{\alpha_{2}\right\}$. Then $\tilde{\alpha}_{2}=e_{1}+e_{2}+2 \epsilon$.

$$
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{5}\right) H_{\alpha_{2}}\left(t^{10}\right) H_{\alpha_{3}}\left(t^{12}\right) H_{\alpha_{4}}\left(t^{8}\right) H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{6}\right): t \in \bar{F}^{*}\right\}
$$

and $\mathbf{M}_{D} \simeq S L_{2} \times S L_{5}$. We fix an identification of \mathbf{M}_{D} and $S L_{2} \times S L_{5}$ under which the element $H_{\alpha_{1}}(t)$ goes to $\operatorname{diag}\left(t, t^{-1}\right)$ of $S L_{2}$, and $H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{8}\right) H_{\alpha_{3}}\left(t^{12}\right) H_{\alpha_{6}}\left(t^{6}\right)$ goes to $\operatorname{diag}\left(t^{4}, t^{4}, t^{4}, t^{-6}, t^{-6}\right)$ in $S L_{5}$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{2} \times$ $S L_{5}$ by

$$
\bar{f}:(a(t), x, y) \mapsto\left(t^{5}, t^{4}, x, y\right)
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{2} \times S L_{5}\right) / S$, where

$$
S=\left\{\left(a(t), t I_{2}, t^{4} I_{5}\right): t^{10}=1\right\} .
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{2} \times G L_{5}$ so that

$$
f\left(H_{\alpha_{2}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1,1, t, t))
$$

Let π_{1}, π_{2} be cuspidal representations of $G L_{2}, G L_{5}$ with central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{5} \omega_{2}^{4}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\eta_{1}, \eta_{2}\right), \quad \pi_{2 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=\eta_{1} \eta_{2}^{-1}, \quad \chi \circ H_{\alpha_{5}}=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{4}}=\mu_{2} \mu_{3}^{-1}, \\
\chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1}, \quad \chi \circ H_{\alpha_{6}}(t)=\mu_{4} \mu_{5}^{-1}, \quad \chi(a(t))=\omega_{1}^{5} \omega_{2}^{4}(t) .
\end{gathered}
$$

Since $f\left(H_{\alpha_{2}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1,1, t, t))$, we can see

$$
\chi \circ H_{\alpha_{2}}=\eta_{2} \mu_{4} \mu_{5}
$$

Hence, we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \omega_{1} \omega_{2} \otimes \tilde{\pi}_{2 v}\right)
\end{aligned}
$$

2.5.3 (x) in [La]

Let $\theta=\Delta-\left\{\alpha_{6}\right\}$. Then $\tilde{\alpha}_{6}=2 \epsilon . \mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) H_{\alpha_{3}}\left(t^{3}\right) H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{5}}(t) H_{\alpha_{6}}\left(t^{2}\right)
$$

and $\mathbf{M}_{D} \simeq S L_{6}$. We fix an identification of \mathbf{M}_{D} and $S L_{6}$ under which the element $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) H_{\alpha_{3}}\left(t^{3}\right) H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{5}}(t)$ goes to the diagonal element

$$
\operatorname{diag}\left(t, t, t, t^{-1}, t^{-1}, t^{-1}\right)
$$

of $S L_{6}$. We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{6}$ by

$$
\bar{f}:(a(t), x) \mapsto\left(t^{2}, t, x\right)
$$

Now, $\mathbf{M} \simeq\left(G L_{1} \times S L_{6}\right) / S$, where

$$
S=\left\{\left(a(t), t I_{6}\right): t^{2}=1\right\}
$$

We obtain a map $f: \mathbf{M} \rightarrow G L_{1} \times G L_{6}$ so that

$$
f\left(H_{\alpha_{6}}(t)\right)=(t, \operatorname{diag}(1,1,1, t, t, t))
$$

Let σ be cuspidal representations of $G L_{6}(\mathbb{A})$ with central character ω, and η be a grössencharacter of F. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and σ, η. Then the central character of π is

$$
\omega_{\pi}=\omega \eta^{2}
$$

Now suppose σ_{v} is an unramified representation, given by

$$
\sigma_{v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ and let χ be the inducing character of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=\mu_{1} \mu_{2}^{-1}, \quad \chi \circ H_{\alpha_{2}}=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{3}}=\mu_{3} \mu_{4}^{-1} \\
\chi \circ H_{\alpha_{4}}(t)=\mu_{4} \mu_{5}^{-1}, \quad \chi \circ H_{\alpha_{5}}(t)=\mu_{5} \mu_{6}^{-1}, \quad \chi(a(t))=\omega_{v} \eta_{v}^{2}(t) .
\end{gathered}
$$

Since $f\left(H_{\alpha_{6}}(t)\right)=(t, \operatorname{diag}(1,1,1, t, t, t))$, we have $\chi \circ H_{\alpha_{6}}=\mu_{4} \mu_{5} \mu_{6} \eta_{v}$. Hence, we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \sigma_{v}, \wedge^{3} \rho_{6} \otimes \eta_{v}\right)=\prod_{1 \leq i<j<k \leq 6}\left(1-\mu_{i} \mu_{j} \mu_{k} \eta_{v} q_{v}^{-s}\right)^{-1} \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \omega_{v} \eta_{v}^{2}\right)
\end{aligned}
$$

Here $L\left(s, \pi, r_{1}\right)$ is the exterior cube L-function of $G L_{6}$ and it has degree 20.

2.5.4 (xxiv) in [La]

Let $\theta=\Delta-\left\{\alpha_{1}\right\}$. Then $\tilde{\alpha}_{1}=e_{1}+\epsilon$, and $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{4}\right) H_{\alpha_{2}}\left(t^{5}\right) H_{\alpha_{3}}\left(t^{6}\right) H_{\alpha_{4}}\left(t^{4}\right) H_{\alpha_{5}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{3}\right)
$$

Also $\mathbf{M}_{D} \simeq \operatorname{Spin}(10)$ and

$$
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{2}}(t) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{5}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{3}\right): t^{4}=1\right\}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times \operatorname{Spin}(10)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Since $G \operatorname{Spin}(10)=\left(G L_{1} \times \operatorname{Spin}(10)\right) /\{1, c\}$ (see Section 2.3.4), there is a surjective $\operatorname{map} G \operatorname{Spin}(10) \rightarrow \mathbf{M}$. Hence we have a dual map ${ }^{L} M \rightarrow G S O_{10}(\mathbb{C})={ }^{L} G \operatorname{Spin}(10)$. Since the center of \mathbf{M} is connected, the derived group of ${ }^{L} M$ is simply connected, (see [Bo, p. 30]). Hence it is $\operatorname{Spin}\left(10,(\mathbb{C})\right.$. Therefore ${ }^{L} M=G \operatorname{Spin}(10, \mathbb{C})$.

Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$ with central character ω. Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ with the corresponding semisimple conjugacy class \hat{t} in \hat{T}, the torus in ${ }^{L} M$. We have a 2-to-1 map $\phi:{ }^{L} M \rightarrow G S O_{10}(\mathbb{C})$. Let $\phi(\hat{t})$ be given by

$$
\phi(\hat{t})=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{5}^{2}, b_{0}^{2} b_{5}^{-2}, \ldots, b_{0}^{2} b_{1}^{-2}\right)
$$

Note that it is the Satake parameter for the representation π_{v}^{\prime} of $G \operatorname{Spin}\left(10, F_{v}\right)$, where $\pi^{\prime}=\bigotimes_{v} \pi_{v}^{\prime}$ is the cuspidal representation of $G \operatorname{Spin}(10, \mathbb{A})$, induced by π and the $\operatorname{map} G \operatorname{Spin}(10) \rightarrow \mathbf{M}$. Note also that $\omega_{\pi}=\omega_{\pi^{\prime}}$, and hence $\omega_{\pi_{v}}=b_{0}^{2}$.

Let η be a grössencharacter of F. Then we can think of η as a character of $\mathbf{M}(\mathbb{A})$ by setting $\eta(a(t))=\eta\left(t^{4}\right)$. Since $\left.\eta\right|_{\mathbf{A} \cap \mathbf{M}_{D}}=1$, it is well-defined. We consider $\pi_{\eta}=$ $\pi \otimes \eta$. Let χ be the inducing character of the torus attached to $\pi_{\eta, v}$. Then we have the relationship

$$
\chi \circ \alpha^{\vee}(\varpi)=\alpha^{\vee}(\hat{t})
$$

where α^{\vee} on the right is considered as a root of ${ }^{L} M$. Hence

$$
\begin{gathered}
\chi \circ H_{\alpha_{2}}=b_{4}^{2} b_{5}^{2} b_{0}^{-2}, \quad \chi \circ H_{\alpha_{3}}=b_{3}^{2} b_{4}^{-2}, \quad \chi \circ H_{\alpha_{4}}=b_{2}^{2} b_{3}^{-2} \\
\chi \circ H_{\alpha_{5}}=b_{1}^{2} b_{2}^{-2}, \quad \chi \circ H_{\alpha_{6}}=b_{4}^{2} b_{5}^{-2}, \quad \chi(a(t))=\eta_{v}^{4} \omega_{v}=\eta_{v}^{4} b_{0}^{2} .
\end{gathered}
$$

From this, we have $\chi \circ H_{\alpha_{1}}=\eta_{v}\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)^{-1} b_{0}^{3}$.
Hence, we can compute that $m=1$, and

$$
\begin{array}{r}
L\left(s, \pi_{\eta, v}, r_{1}\right)^{-1}=\left(1-\eta_{v}\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)^{-1} b_{0}^{3} q_{v}^{-s}\right) \prod_{i=1}^{5}\left(1-\eta_{v} b_{1} b_{2} b_{3} b_{4} b_{5} b_{0}^{-1} b_{i}^{-2} q_{v}^{-s}\right) \\
\times \prod_{1 \leq i<j \leq 5}\left(1-\eta_{v}\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)^{-1} b_{0}\left(b_{i} b_{j}\right)^{2} q_{v}^{-s}\right)
\end{array}
$$

Here r_{1} is called the half-spin representation and it has degree 16. We denote it by Spin ${ }^{16}$. For a future reference, we denote $\mathbf{M}=H \operatorname{Spin}(10)$.

2.6 $\quad E_{7}$ Cases

We take the root system as in [G-O-V]. We take simple roots, $\alpha_{i}=e_{i}-e_{i+1}, i=$ $1,2,3,4,5,6, \alpha_{7}=e_{5}+e_{6}+e_{7}+e_{8}$. Here $\left(e_{i}, e_{i}\right)=\frac{7}{8},\left(e_{i}, e_{j}\right)=-\frac{1}{8}$ for $1 \leq i \neq j \leq 8$ and $\sum e_{i}=0$. The positive roots are $e_{i}-e_{j}, 1 \leq i<j \leq 7,-e_{i}+e_{8}, i=1, \ldots, 7$, and $e_{i}+e_{j}+e_{k}+e_{8}$. There are 63 of them. Note that

$$
\begin{gathered}
\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{8} e_{8}, e_{i}-e_{j}\right)=a_{i}-a_{j} \\
\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{8} e_{8}, e_{i}+e_{j}+e_{k}+e_{8}\right)=\left(a_{i}+a_{j}+a_{k}+a_{8}\right)-\frac{1}{2}\left(a_{1}+\cdots+a_{8}\right) .
\end{gathered}
$$

The Cartan matrix is

$$
\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

The Dynkin diagram is

2.6.1 $\quad E_{7}-1$

Let \mathbf{G} be a simply connected group of type E_{7}. Let $\theta=\Delta-\left\{\alpha_{4}\right\}$. Then $\tilde{\alpha}_{4}=$ $e_{1}+e_{2}+e_{3}+e_{4}+4 e_{8}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left(\bigcap_{\alpha \in \theta} \operatorname{ker} \alpha\right)^{0}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{9}\right) H_{\alpha_{4}}\left(t^{12}\right) H_{\alpha_{5}}\left(t^{8}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{6}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D} \simeq S L_{2} \times S L_{3} \times S L_{4}$.

Now we proceed exactly the same way as in the $E_{6}-1$ case; under the identification of \mathbf{M}_{D} with $S L_{2} \times S L_{3} \times S L_{4}, \mathbf{M} \simeq\left(G L_{1} \times S L_{2} \times S L_{3} \times S L_{4}\right) / S$, where

$$
S=\left\{\left(a(t), t^{6} I_{2}, t^{4} I_{3}, t^{3} I_{4}\right): t^{12}=1\right\}
$$

We also construct a map $f: \mathbf{M} \rightarrow G L_{2} \times G L_{3} \times G L_{4}$ so that

$$
f\left(H_{\alpha_{4}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1, t))
$$

Let π_{i} be cuspidal representations of $G L_{1+i}$ with central characters $\omega_{i}, i=1,2,3$, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by the map f and $\pi_{1}, \pi_{2}, \pi_{3}$. The central character of π is

$$
\omega_{\pi}=\omega_{1}^{6} \omega_{2}^{4} \omega_{3}^{3}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\eta_{1}, \eta_{2}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}\right), \quad \pi_{3 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{aligned}
\chi \circ H_{\alpha_{1}}(t)= & \mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1}(t) \\
& \chi \circ H_{\alpha_{5}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{6}}(t)=\nu_{1} \nu_{2}^{-1}(t) \\
& \chi \circ H_{\alpha_{7}}(t)=\eta_{1} \eta_{2}^{-1}(t), \quad \chi(a(t))=\omega_{1}^{6} \omega_{2}^{4} \omega_{3}^{3}(t)
\end{aligned}
$$

Since $f\left(H_{\alpha_{4}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1, t))$, we have $\chi \circ H_{\alpha_{4}}(t)=$ $\mu_{4} \nu_{3} \eta_{2}$. Hence, we can compute that $m=4$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v} \times \pi_{3 v}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\pi}_{2 v} \otimes \pi_{3 v},\left(\rho_{3} \otimes \omega_{1} \omega_{2}\right) \otimes \wedge^{2} \rho_{4}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s,\left(\pi_{1 v} \otimes \omega_{1} \omega_{2} \omega_{3}\right) \times \tilde{\pi}_{3 v}\right) \\
& L\left(s, \pi_{v}, r_{4}\right)=L\left(s, \pi_{2 v} \otimes \omega_{1}^{2} \omega_{2} \omega_{3}\right)
\end{aligned}
$$

2.6.2 $\quad E_{7}-2$

Let $\theta=\Delta-\left\{\alpha_{3}\right\}$. Then $\tilde{\alpha}_{3}=e_{1}+e_{2}+e_{3}+3 e_{8}, \mathbf{M}_{D}=S L_{3} \times S L_{5}$,

$$
\begin{gathered}
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{5}\right) H_{\alpha_{2}}\left(t^{10}\right) H_{\alpha_{3}}\left(t^{15}\right) H_{\alpha_{4}}\left(t^{18}\right) H_{\alpha_{5}}\left(t^{12}\right) H_{\alpha_{6}}\left(t^{6}\right) H_{\alpha_{7}}\left(t^{9}\right): t \in \bar{F}^{*}\right\}, \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{5}\right) H_{\alpha_{2}}\left(t^{10}\right) H_{\alpha_{4}}\left(t^{3}\right) H_{\alpha_{5}}\left(t^{12}\right) H_{\alpha_{6}}\left(t^{6}\right) H_{\alpha_{7}}\left(t^{9}\right): t^{15}=1\right\}
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{3} \times S L_{5}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

We proceed exactly in the same way as in the $E_{6}-2$ case, and construct a map $f: \mathbf{M} \rightarrow$ $G L_{3} \times G L_{5}$ such that

$$
f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1, t, t))
$$

Let π_{1}, π_{2} be cuspidal representations of $G L_{3}(\mathbb{A}), G L_{5}(\mathbb{A})$ with central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. The central character of π is

$$
\omega_{\pi}=\omega_{1}^{5} \omega_{2}^{6}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, \nu_{5}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \\
\chi \circ H_{\alpha_{6}}(t)=\nu_{1} \nu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{5}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{4}}(t)=\nu_{3} \nu_{4}^{-1}(t), \\
\chi \circ H_{\alpha_{7}}(t)=\nu_{4} \nu_{5}^{-1}(t), \quad \chi(a(t))=\omega_{\pi_{v}}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1, t, t))$, we have $\chi \circ H_{\alpha_{3}}(t)=\mu_{3} \nu_{4} \nu_{5}$. Hence, we can compute that $m=3$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{3} \otimes \wedge^{2} \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s,\left(\tilde{\pi}_{1 v} \otimes \omega_{1 v}\right) \times\left(\tilde{\pi}_{2 v} \otimes \omega_{2 v}\right)\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \pi_{2 v} \otimes\left(\omega_{1} \omega_{2}\right)\right)
\end{aligned}
$$

2.6.3 $\quad E_{7}-3$

Let $\theta=\Delta-\left\{\alpha_{2}\right\}, \tilde{\alpha}_{2}=e_{1}+e_{2}+2 e_{8} . \mathbf{M}_{D}=S L_{2} \times \operatorname{Spin}(10)$.

$$
\begin{gathered}
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{5}\right) H_{\alpha_{4}}\left(t^{6}\right) H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{3}\right): t \in \bar{F}^{*}\right\}, \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{3}}(t) H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{3}\right): t^{4}=1\right\}
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{2} \times \operatorname{Spin}(10)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Here we note that $H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{5}\right) H_{\alpha_{4}}\left(t^{6}\right) H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{3}\right)$ is exactly the same as the center of $\mathbf{M}=H \operatorname{Spin}(10)$ in Section 2.5.4.

We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{2} \times \operatorname{Spin}(10)$ by

$$
\bar{f}:(a(t), x, y) \mapsto\left(t^{2}, t, x, y\right)
$$

It induces a map $f: \mathbf{M} \rightarrow G L_{2} \times H \operatorname{Spin}(10)$. Under the identification, $H_{\alpha_{1}}(t)$ is the diagonal element $\operatorname{diag}\left(t, t^{-1}\right)$ in $S L_{2}, H_{\alpha_{3}}\left(t^{5}\right) H_{\alpha_{4}}\left(t^{6}\right) H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{2}\right)$ is in $\operatorname{Spin}(10)$. From this, we see that $f\left(H_{\alpha_{2}}(t)\right)=(\operatorname{diag}(1, t), b(t))$, where $b(t)$ is an element in H Spin(10).

Let π_{1}, π_{2} be cuspidal representations of $G L_{2}, H \operatorname{Spin}(10)$ with central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{2} \omega_{2}
$$

Let $\hat{t}_{1}=\operatorname{diag}\left(a_{1}, a_{2}\right) \in G L_{2}(\mathbb{C})$ be the Satake parameter attached to $\pi_{1 v}$. Let $\hat{t}_{2} \in G \operatorname{Spin}(10, \mathbb{C})$ be the Satake parameter attached to $\pi_{2 v}$. Using the 2-to-1 map $\phi: G \operatorname{Spin}(10, C) \rightarrow G S O(10, C)$, we can write it as

$$
\phi\left(\hat{t}_{2}\right)=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{5}^{2}, b_{5}^{-2} b_{0}^{2}, \ldots, b_{1}^{-2} b_{0}^{2}\right) \in G S O_{10}(\mathbb{C})
$$

Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=a_{1} a_{2}^{-1}, \quad \chi \circ H_{\alpha_{6}}=b_{1}^{2} b_{2}^{-2}, \quad \chi \circ H_{\alpha_{5}}=b_{2}^{2} b_{3}^{-2} \\
\chi \circ H_{\alpha_{4}}=b_{3}^{2} b_{4}^{-2}, \quad \chi \circ H_{\alpha_{3}}=b_{4}^{2} b_{5}^{2} b_{0}^{-2}, \quad \chi \circ H_{\alpha_{7}}=b_{4}^{2} b_{5}^{-2} \\
\chi(a(t))=\omega_{1}^{2} \omega_{2}=\left(a_{1} a_{2}\right)^{2} b_{0}^{2}
\end{gathered}
$$

Since $f\left(H_{\alpha_{2}}(t)\right)=(\operatorname{diag}(1, t), b(t))$, we can see $\chi \circ H_{\alpha_{2}}=a_{2}\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)^{-1} b_{0}^{3}$. Hence, we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{2} \otimes \operatorname{Spin}^{16}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \pi_{2 v}^{\prime} \otimes \omega_{1}\right)=\prod_{i=1}^{5}\left(1-b_{i}^{2} \omega_{1} q_{v}^{-s}\right)^{-1}\left(1-b_{i}^{-2} b_{0}^{2} \omega_{1} q_{v}^{-s}\right)^{-1}
\end{aligned}
$$

where Spin ${ }^{16}$ is the degree 16 half-spin representation (see Section 2.5.4). Here π_{2}^{\prime} is the cuspidal representation of $G \operatorname{Spin}(10)$, induced by π_{2} and the 2-to-1 map $G \operatorname{Spin}(10) \rightarrow H$ Spin(10). Hence the Satake parameter of $\pi_{2 v}^{\prime}$ is

$$
\phi\left(\hat{t}_{2}\right)=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{5}^{2}, b_{5}^{-2} b_{0}^{2}, \ldots, b_{1}^{-2} b_{0}^{2}\right) \in G S O_{10}(\mathbb{C})={ }^{L} G \operatorname{Spin}(10)
$$

Note that the second L-function is the standard L-function for $G \operatorname{Spin}(10)$.

2.6.4 $\quad E_{7}-4$

Let $\theta=\Delta-\left\{\alpha_{5}\right\}, \tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+3 e_{8}, \mathbf{M}_{D}=S L_{6} \times S L_{2}$,

$$
\begin{gathered}
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{6}\right) H_{\alpha_{4}}\left(t^{8}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{6}}\left(t^{3}\right) H_{\alpha_{7}}\left(t^{4}\right): t \in \bar{F}^{*}\right\} \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{3}\right) H_{\alpha_{7}}\left(t^{4}\right): t^{6}=1\right\} .
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{6} \times S L_{2}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

As in the $E_{7}-2$ case, we construct a map $f: M \rightarrow G L_{6} \times G L_{2}$ such that

$$
f\left(H_{\alpha_{5}}(t)\right)=(\operatorname{diag}(1,1,1,1, t, t), \operatorname{diag}(1, t))
$$

Let π_{1}, π_{2} be cuspidal representations of $G L_{6}(\mathbb{A}), G L_{2}(\mathbb{A})$ with central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{2} \omega_{2}^{3}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{array}{cc}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), & \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \\
\chi \circ H_{\alpha_{4}}(t)=\mu_{4} \mu_{5}^{-1}(t), & \chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1}(t)=\mu_{5} \mu_{6}^{-1}(t), \\
\chi \circ H_{\alpha_{6}}(t)=\nu_{1} \nu_{2}^{-1}(t) \\
\chi(a(t))=\omega_{1}^{2} \omega_{2}^{3}(t)
\end{array}
$$

Since $f\left(H_{\alpha_{5}}(t)\right)=(\operatorname{diag}(1,1,1,1, t, t), \operatorname{diag}(1, t)), \chi \circ H_{\alpha_{5}}(t)=\mu_{5} \mu_{6} \nu_{2}$. Hence, we can compute that $m=3$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \wedge^{2} \rho_{6} \otimes \rho_{2}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\pi}_{1 v}, \wedge^{2} \rho_{6} \otimes\left(\omega_{1} \omega_{2}\right)\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \pi_{2 v} \otimes\left(\omega_{1} \omega_{2}\right)\right)
\end{aligned}
$$

2.6.5 (xi) in [La]

Let $\theta=\Delta-\left\{\alpha_{7}\right\}, \tilde{\alpha}_{3}=2 e_{8}, \mathbf{M}_{D}=S L_{7}$,

$$
\begin{aligned}
\mathbf{A}= & \left\{a(t)=H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{9}\right) H_{\alpha_{4}}\left(t^{12}\right) H_{\alpha_{5}}\left(t^{8}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{7}\right): t \in \bar{F}^{*}\right\}, \\
& \mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{4}}\left(t^{5}\right) H_{\alpha_{5}}(t) H_{\alpha_{6}}\left(t^{4}\right): t^{7}=1\right\}
\end{aligned}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{7}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

As in the (\mathbf{x}) case (Section 2.5.3), we construct a map $f: \mathbf{M} \rightarrow G L_{1} \times G L_{7}$ such that

$$
f\left(H_{\alpha_{7}}(t)\right)=(t, \operatorname{diag}(1,1,1,1, t, t, t))
$$

Let σ be a cuspidal representation of $G L_{7}(\mathbb{A})$ with the central character ω. Let η be a grössencharacter of F. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and σ, η. Then the central character of π is

$$
\omega_{\pi}=\omega^{2} \eta^{7}
$$

Now suppose σ_{v} is an unramified representation, given by

$$
\sigma_{v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}\right)
$$

Let χ be the character of the torus, given by π_{v}. We have

$$
\begin{array}{cl}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), & \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1} \\
\chi \circ H_{\alpha_{4}}(t)=\mu_{4} \mu_{5}^{-1}, & \chi \circ H_{\alpha_{5}}(t)=\mu_{5} \mu_{6}^{-1}, \quad \chi \circ H_{\alpha_{6}}(t)=\mu_{6} \mu_{7}^{-1} \\
\chi(a(t))=\omega_{\pi_{v}}(t)
\end{array}
$$

Since $f\left(H_{\alpha_{7}}(t)\right)=(t, \operatorname{diag}(1,1,1,1, t, t, t)), \chi \circ H_{\alpha_{7}}(t)=\mu_{5} \mu_{6} \mu_{7} \eta_{v}$. Hence, we can compute that $m=2$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \sigma_{v}, \wedge^{3} \rho_{7} \otimes \eta_{v}\right)=\prod_{1 \leq i<j<k \leq 7}\left(1-\mu_{i} \mu_{j} \mu_{k} \eta_{v} q_{v}^{-s}\right)^{-1} \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\sigma}_{v} \otimes\left(\omega_{v} \eta_{v}^{2}\right)\right)
\end{aligned}
$$

Here $L\left(s, \pi, r_{1}\right)$ is the exterior cube L-function of $G L_{7}$ and it has degree 35 .

2.6.6 (xxvi) in [La]

$$
\begin{aligned}
& \text { Let } \theta=\Delta-\left\{\alpha_{6}\right\}, \tilde{\alpha}_{6}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+2 e_{8}, \mathbf{M}_{D}=\operatorname{Spin}(12) \\
& \qquad \begin{array}{c}
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right) H_{\alpha_{3}}\left(t^{3}\right) H_{\alpha_{4}}\left(t^{4}\right) H_{\alpha_{5}}\left(t^{3}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{2}\right): t \in \bar{F}^{*}\right\} \\
\left.\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}(t) H_{\alpha_{3}}(t) H_{\alpha_{5}}(t)\right): t^{2}=1\right\}
\end{array}
\end{aligned}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times \operatorname{Spin}(12)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Here note that \mathbf{M} is not isomorphic to $G \operatorname{Spin}(12)$. In the notation of Section 2.3.4, $\mathbf{A} \cap \mathbf{M}_{D}=\{1, z\}$. On the other hand, $G \operatorname{Spin}(12)=G L_{1} \times \operatorname{Spin}(12) /\{1, c\}$. Hence ${ }^{L} M$ is not $G S O_{12}(\mathbb{C})$. The derived group of ${ }^{L} M$ is the half-spin group $H S(12, \mathbb{C})$ (the other non simply-connected, non-adjoint group in the notation of Section 2.3.4).

Let $H \operatorname{Spin}(12)=\left(G L_{1} \times \operatorname{Spin}(12)\right) /\{1, c, z, c z\}$. Then there are 2-to-1 maps $f: \mathbf{M} \rightarrow H \operatorname{Spin}(12)$ and $G \operatorname{Spin}(12) \rightarrow H \operatorname{Spin}(12)$. Since the center of $H \operatorname{Spin}(12)$ is connected, the derived group of ${ }^{L} H \operatorname{Spin}(12)$ is simply connected, namely, $\operatorname{Spin}\left(12\right.$, C) $\left[\right.$ Bo, p. 30]. Therefore, ${ }^{L} H \operatorname{Spin}(12)=G \operatorname{Spin}(12,(\mathbb{C})$. We have 2-to-1 maps ${ }^{L} f:{ }^{L} H \operatorname{Spin}(12) \rightarrow{ }^{L} M$ and $\phi:{ }^{L} H \operatorname{Spin}(12) \rightarrow{ }^{L} G \operatorname{Spin}(12)=G S O_{12}(\mathbb{C}$.

Let π^{\prime} be a generic cuspidal representation of $H \operatorname{Spin}(12, A)$ with central character ω. Let π_{v}^{\prime} be the unramified representation of $H \operatorname{Spin}\left(12, F_{v}\right)$ with the corresponding semi-simple conjugacy class \hat{t} in \hat{T}, the torus in ${ }^{L} H \operatorname{Spin}(12)$. Using the 2-to-1 map $\phi: G \operatorname{Spin}\left(12,(\mathbb{C}) \rightarrow G S O_{12}(\mathbb{C})\right.$, we can write

$$
\phi(\hat{t})=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{6}^{2}, b_{0}^{2} b_{6}^{-2}, \ldots, b_{0}^{2} b_{1}^{-2}\right)
$$

Now let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by π^{\prime} and f. The Satake parameter of π_{v} is ${ }^{L} f(\hat{t})$ in ${ }^{L} M$. Note that the central character of π is $\omega_{\pi}=\omega$. Let η be a grössencharacter of F. Then we can think of η as a character of $\mathbf{M}(\mathbb{A})$ by setting $\eta(a(t))=\eta\left(t^{2}\right)$. Since $\left.\eta\right|_{A \cap M_{D}}=1$, it is well-defined. We consider $\pi_{\eta}=\pi \otimes \eta$. Let χ be the inducing character of the torus attached to $\pi_{\eta, v}$. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=b_{1}^{2} b_{2}^{-2}, \quad \chi \circ H_{\alpha_{2}}=b_{2}^{2} b_{3}^{-2}, \quad \chi \circ H_{\alpha_{3}}=b_{3}^{2} b_{4}^{-2} \\
\chi \circ H_{\alpha_{4}}=b_{4}^{2} b_{5}^{-2}, \quad \chi \circ H_{\alpha_{7}}=b_{5}^{2} b_{6}^{-2}, \quad \chi \circ H_{\alpha_{5}}=b_{5}^{2} b_{6}^{2} b_{0}^{-2} \\
\chi(a(t))=\eta_{v}^{2} \omega_{v}=\eta_{v}^{2} b_{0}^{2}
\end{gathered}
$$

From this, we have $\chi \circ H_{\alpha_{6}}=\eta_{\nu}\left(b_{1} \cdots b_{6}\right)^{-1} b_{0}^{4}$. Hence, we can compute that $m=2$, and

$$
\begin{aligned}
L\left(s, \pi_{\eta, v}, r_{1}\right)^{-1}= & \left(1-\eta_{v} b_{1}^{-1} \cdots b_{6}^{-1} b_{0}^{4} q_{v}^{-s}\right)\left(1-\eta_{v} b_{1} \cdots b_{6} b_{0}^{-2} q_{v}^{-s}\right) \\
& \times \prod_{1 \leq i<j \leq 6}\left(1-\eta_{v} b_{1}^{-1} \cdots b_{6}^{-1} b_{0}^{2}\left(b_{i} b_{j}\right)^{2} q_{v}^{-s}\right) \\
& \times \prod_{1 \leq i<j \leq 6}\left(1-\eta_{v} b_{1} \cdots b_{6}\left(b_{i} b_{j}\right)^{-2} q_{v}^{-s}\right) \\
L\left(s, \pi_{\eta, v}, r_{2}\right)= & L\left(s, \eta_{v}^{2} \omega_{v}^{2}\right)
\end{aligned}
$$

Here r_{1} is called the half-spin representation and it has degree 32 .

Remark Because of the complicated nature of the half-spin group $H S(12$, (C), we were not able to write the explicit formula for the degree 32 half-spin representation of cuspidal representations of $\mathbf{M}(\mathbb{A})$ which do not come from $H \operatorname{Spin}(12, A)$.

2.6.7 (xxx) in [La]

Let $\theta=\Delta-\left\{\alpha_{1}\right\}, \tilde{\alpha}_{1}=e_{1}+e_{8}, \mathbf{M}_{D}=E_{6}$,

$$
\begin{gathered}
\mathbf{A}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{5}\right) H_{\alpha_{4}}\left(t^{6}\right) H_{\alpha_{5}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{3}\right): t \in \bar{F}^{*}\right\}, \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{2}}(t) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{5}}(t) H_{\alpha_{6}}\left(t^{2}\right): t^{3}=1\right\} .
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times E_{6}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)=G E_{6} .
$$

Let π be cuspidal representations of $G E_{6}(\mathbb{A})$ with central character ω. Then ${ }^{L} M=$ $G E_{6}(\mathbb{C})$, and we see that $m=1, L\left(s, \pi_{v}, r_{1}\right)$ is the standard L-function of E_{6}. It has degree 27.

2.7 $\quad E_{8}$ Cases

We take the root system as in [G-O-V]. We take simple roots, $\alpha_{i}=e_{i}-e_{i+1}, i=$ $1, \ldots, 7, \alpha_{8}=e_{6}+e_{7}+e_{8}$. Here $\left(e_{i}, e_{i}\right)=\frac{8}{9},\left(e_{i}, e_{j}\right)=-\frac{1}{9}$ for $1 \leq i \neq j \leq 9$ and $\sum e_{i}=0$. The positive roots are $e_{i}-e_{j}, 1 \leq i<j \leq 9$, and $e_{i}+e_{j}+e_{k}$, $1 \leq i<j<k \leq 8$, and $-\left(e_{i}+e_{j}+e_{9}\right), 1 \leq i<j \leq 8$. There are 120 of them. Note that

$$
\begin{gathered}
\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{9} e_{9}, e_{i}-e_{j}\right)=a_{i}-a_{j} \\
\left(a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{9} e_{9}, e_{i}+e_{j}+e_{k}\right)=\left(a_{i}+a_{j}+a_{k}\right)-\frac{1}{3}\left(a_{1}+\cdots+a_{9}\right)
\end{gathered}
$$

The Cartan matrix is

$$
\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right)
$$

The Dynkin diagram is

2.7.1 $E_{8}-1$

Let \mathbf{G} be a simply-connected exceptional group of type E_{8}. Let $\theta=\Delta-\left\{\alpha_{5}\right\}$. Then $\tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}-5 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{6}\right) H_{\alpha_{2}}\left(t^{12}\right) H_{\alpha_{3}}\left(t^{18}\right) H_{\alpha_{4}}\left(t^{24}\right) H_{\alpha_{5}}\left(t^{30}\right) H_{\alpha_{6}}\left(t^{20}\right) H_{\alpha_{7}}\left(t^{10}\right) H_{\alpha_{8}}\left(t^{15}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D}=S L_{2} \times S L_{3} \times S L_{5}$. As in the $E_{7}-1$ case, we construct a map $f: \mathbf{M} \rightarrow$ $G L_{2} \times G L_{3} \times G L_{5}$ such that

$$
f\left(H_{\alpha_{5}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1,1, t))
$$

Let π_{i} be cuspidal representations of $G L_{2}(\mathbb{A}), G L_{3}(\mathbb{A}), G L_{5}(\mathbb{A})$ with central characters $\omega_{i}, i=1,2,3$, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and $\pi_{1}, \pi_{2}, \pi_{3}$. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{15} \omega_{2}^{10} \omega_{3}^{6}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\eta_{1}, \eta_{2}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}\right), \quad \pi_{3 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1}(t) \\
\chi \circ H_{\alpha_{4}}(t)=\mu_{4} \mu_{5}^{-1}(t), \quad \chi \circ H_{\alpha_{6}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{7}}(t)=\nu_{1} \nu_{2}^{-1}(t) \\
\chi \circ H_{\alpha_{8}}(t)=\eta_{1} \eta_{2}^{-1}(t), \quad \chi(a(t))=\omega_{1}^{15} \omega_{2}^{10} \omega_{3}^{6}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{5}}(t)\right)=(\operatorname{diag}(1, t), \operatorname{diag}(1,1, t), \operatorname{diag}(1,1,1,1, t))$, we have $\chi \circ H_{\alpha_{5}}(t)=$ $\mu_{5} \nu_{3} \eta_{2}$. Hence, we can compute that $m=6$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \times \pi_{2 v} \times \pi_{3 v}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s,\left(\tilde{\pi}_{2 v} \otimes \omega_{1} \omega_{2}\right) \otimes \pi_{3 v}, \rho_{3} \otimes \wedge^{2} \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s,\left(\pi_{1 v} \otimes \omega_{1} \omega_{2} \omega_{3}\right) \otimes \tilde{\pi}_{3 v}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{4}\right)=L\left(s,\left(\pi_{2 v} \otimes \omega_{1}^{2} \omega_{2} \omega_{3}\right) \times \tilde{\pi}_{3 v}\right) \\
& L\left(s, \pi_{v}, r_{5}\right)=L\left(s,\left(\pi_{1 v} \otimes \omega_{1}^{2} \omega_{2}^{2} \omega_{3}\right) \times \tilde{\pi}_{2 v}\right) \\
& L\left(s, \pi_{v}, r_{6}\right)=L\left(s, \pi_{3 v} \otimes \omega_{1}^{3} \omega_{2}^{2} \omega_{3}\right)
\end{aligned}
$$

2.7.2 $E_{8}-2$

Let $\theta=\Delta-\left\{\alpha_{4}\right\}$. Then $\tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}+e_{4}-4 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{5}\right) H_{\alpha_{2}}\left(t^{10}\right) H_{\alpha_{3}}\left(t^{15}\right) H_{\alpha_{4}}\left(t^{20}\right) H_{\alpha_{5}}\left(t^{24}\right) H_{\alpha_{6}}\left(t^{16}\right) H_{\alpha_{7}}\left(t^{8}\right) H_{\alpha_{8}}\left(t^{12}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D}=S L_{4} \times S L_{5}$. As in the $E_{7}-2$ case, we construct a map $f: \mathbf{M} \rightarrow G L_{4} \times G L_{5}$ such that

$$
f\left(H_{\alpha_{4}}(t)\right)=(\operatorname{diag}(1,1,1, t), \operatorname{diag}(1,1,1, t, t))
$$

Let π_{i} be cuspidal representations of $G L_{4}(\mathbb{A}), G L_{5}(\mathbb{A})$ with central characters $\omega_{i}, i=$ 1,2 , resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{5} \omega_{2}^{8}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, \nu_{5}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \quad \chi \circ H_{\alpha_{2}}(t)=\mu_{2} \mu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{3}}(t)=\mu_{3} \mu_{4}^{-1}(t) \\
\chi \circ H_{\alpha_{5}}(t)=\nu_{3} \nu_{4}^{-1}(t), \quad \chi \circ H_{\alpha_{6}}(t)=\nu_{2} \nu_{3}^{-1}(t), \quad \chi \circ H_{\alpha_{7}}(t)=\nu_{1} \nu_{2}^{-1}(t) \\
\chi \circ H_{\alpha_{8}}(t)=\nu_{4} \nu_{5}^{-1}(t), \quad \chi(a(t))=\omega_{1}^{5} \omega_{2}^{8}(t)
\end{gathered}
$$

Since $f\left(H_{\alpha_{4}}(t)\right)=(\operatorname{diag}(1,1,1, t), \operatorname{diag}(1,1,1, t, t))$, we have $\chi \circ H_{\alpha_{4}}(t)=\mu_{4} \nu_{4} \nu_{5}$. Hence, we can compute that $m=5$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{4} \otimes \wedge^{2} \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \pi_{1 v} \otimes\left(\tilde{\pi}_{2 v} \otimes \omega_{2}\right), \wedge^{2} \rho_{4} \otimes \rho_{5}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \tilde{\pi}_{1 v} \times\left(\pi_{2 v} \otimes \omega_{1} \omega_{2}\right)\right) \\
& L\left(s, \pi_{v}, r_{4}\right)=L\left(s, \tilde{\pi}_{2 v}, \wedge^{2} \rho_{5} \otimes \omega_{1} \omega_{2}^{2}\right) \\
& L\left(s, \pi_{v}, r_{5}\right)=L\left(s, \pi_{1 v} \otimes \omega_{1} \omega_{2}^{2}\right)
\end{aligned}
$$

2.7.3 $E_{8}-3$

Let $\theta=\Delta-\left\{\alpha_{3}\right\}$. Then $\tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}-3 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{4}\right) H_{\alpha_{2}}\left(t^{8}\right) H_{\alpha_{3}}\left(t^{12}\right) H_{\alpha_{4}}\left(t^{15}\right) H_{\alpha_{5}}\left(t^{18}\right) H_{\alpha_{6}}\left(t^{12}\right) H_{\alpha_{7}}\left(t^{6}\right) H_{\alpha_{8}}\left(t^{9}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence $\mathbf{M}_{D}=S L_{3} \times \operatorname{Spin}(10)$. Here we note that

$$
H_{\alpha_{3}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{5}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{2}\right) H_{\alpha_{8}}\left(t^{3}\right)
$$

is exactly the same as the center of $\mathbf{M}=H \operatorname{Spin}(10)$ in Section 2.5.4. We define a $\operatorname{map} \bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{3} \times S p i n(10)$ by

$$
\bar{f}:(a(t), x, y) \mapsto\left(t^{4}, t^{3}, x, y\right)
$$

It induces a map $f: \mathbf{M} \rightarrow G L_{3} \times H$ Spin(10). Under the identification, $H_{\alpha_{1}}(t) H_{\alpha_{2}}\left(t^{2}\right)$ is the diagonal element $\operatorname{diag}\left(t, t, t^{-2}\right)$ in $S L_{3}, H_{\alpha_{4}}\left(t^{5}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{2}\right) H_{\alpha_{8}}\left(t^{3}\right)$ is in Spin (10). From this, we see that $f\left(H_{\alpha_{3}}(t)\right)=(\operatorname{diag}(1,1, t), b(t))$, where $b(t)$ is an element in H Spin(10).

Let π_{1}, π_{2} be cuspidal representations of $G L_{3}, H \operatorname{Spin}(10)$ with central characters ω_{1}, ω_{2}, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{4} \omega_{2}^{3}
$$

Let $\hat{t}_{1}=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right) \in G L_{3}(\mathbb{C})$ be the Satake parameter attached to $\pi_{1 v}$. Let $\hat{t}_{2} \in G \operatorname{Spin}(10, C)$ be the Satake parameter attached to $\pi_{2 v}$. Using the 2-to-1 map $\phi: G \operatorname{Spin}\left(10,(\mathbb{C}) \rightarrow G S O_{10}(\mathbb{C})\right.$, we can write it as

$$
\phi\left(\hat{t}_{2}\right)=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{5}^{2}, b_{5}^{-2} b_{0}^{2}, \ldots, b_{1}^{-2} b_{0}^{2}\right) \in G S O_{10}(\mathbb{C})
$$

Note that $\omega_{2}=b_{0}^{2}$. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=a_{1} a_{2}^{-1}, \quad \chi \circ H_{\alpha_{2}}=a_{2} a_{3}^{-1}, \quad \chi \circ H_{\alpha_{7}}=b_{1}^{2} b_{2}^{-2} \\
\chi \circ H_{\alpha_{6}}=b_{2}^{2} b_{3}^{-2}, \quad \chi \circ H_{\alpha_{5}}=b_{3}^{2} b_{4}^{-2}, \quad \chi \circ H_{\alpha_{8}}=b_{4}^{2} b_{5}^{-2} \\
\chi \circ H_{\alpha_{4}}=b_{4}^{2} b_{5}^{2} b_{0}^{-2}, \quad \chi(a(t))=\omega_{1}^{4} \omega_{2}^{3}=\left(a_{1} a_{2} a_{3}\right)^{4} b_{0}^{6}
\end{gathered}
$$

From this, we can see $\chi \circ H_{\alpha_{3}}=a_{3}\left(b_{1} b_{2} b_{3} b_{4} b_{5}\right)^{-1} b_{0}^{3}$. Hence, we can compute that $m=4$,

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{3} \otimes \operatorname{Spin}^{16}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s,\left(\tilde{\pi}_{1 v} \otimes \omega_{1}\right) \times \pi_{2 v}^{\prime}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \tilde{\pi}_{2 v}, \operatorname{Spin}^{16} \otimes\left(\omega_{1} \omega_{2}\right)\right) \\
& L\left(s, \pi_{v}, r_{4}\right)=L\left(s, \pi_{1 v} \otimes\left(\omega_{1} \omega_{2}\right)\right)
\end{aligned}
$$

Here π_{2}^{\prime} is the cuspidal representation of $G \operatorname{Spin}(10)$, induced by π_{2} and the 2-to-1 map $G \operatorname{Spin}(10) \rightarrow H \operatorname{Spin}(10)$. Hence the Satake parameter of $\pi_{2 v}^{\prime}$ is $\phi\left(\hat{t}_{2}\right) \in$ $G S O_{10}(\mathbb{C})={ }^{L} G \operatorname{Spin}(10)$. Note that the second L-function is the Rankin-Selberg L-function for $G L_{3} \times G \operatorname{Spin}(10)$.

2.7.4 $E_{8}-4$

Let $\theta=\Delta-\left\{\alpha_{2}\right\}$. Then $\tilde{\alpha}_{5}=e_{1}+e_{2}-2 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then

$$
\begin{array}{r}
\mathbf{A}=\left\{a(t)=H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{8}\right) H_{\alpha_{4}}\left(t^{10}\right) H_{\alpha_{5}}\left(t^{12}\right) H_{\alpha_{6}}\left(t^{8}\right) H_{\alpha_{7}}\left(t^{4}\right) H_{\alpha_{8}}\left(t^{6}\right):\right. \\
\left.t \in \bar{F}^{*}\right\} .
\end{array}
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence

$$
\begin{gathered}
\mathbf{M}_{D}=S L_{2} \times E_{6} \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{4}}\left(t^{4}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{4}\right): t^{6}=1\right\}
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{2} \times E_{6}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Note that $H_{\alpha_{2}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{5}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{2}\right) H_{\alpha_{8}}\left(t^{3}\right)$ is exactly the same as the center of $G E_{6}$ in Section 2.6.7.

We define a map $\bar{f}: \mathbf{A} \times \mathbf{M}_{D} \rightarrow G L_{1} \times G L_{1} \times S L_{2} \times E_{6}$ by

$$
\bar{f}:(a(t), x, y) \mapsto\left(t^{3}, t^{2}, x, y\right)
$$

It induces a map $f: \mathbf{M} \rightarrow G L_{2} \times G E_{6}$. Let π_{i} be cuspidal representations of $G L_{2}, G E_{6}$ with central characters $\omega_{i}, i=1,2$, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character of π is

$$
\omega_{\pi}=\omega_{1}^{3} \omega_{2}^{2}
$$

In this case, $m=3$, and $L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{2} \otimes \rho_{E_{6}}\right)$, where $\rho_{E_{6}}$ is the standard L-function of $G E_{6}(\mathbb{C})$. The second L-function $L\left(s, \pi_{\nu}, r_{2}\right)$ is the standard L-function of $G E_{6}$ attached to $\pi_{2}((\mathbf{x x x})$ case; see Section 2.6.7). The third L-function $L\left(s, \pi_{v}, r_{3}\right)$ is the standard L-function of $G L_{2}$ attached to π_{1}.

2.7.5 $E_{8}-5$

Let $\theta=\Delta-\left\{\alpha_{6}\right\}$. Then $\tilde{\alpha}_{6}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}-3 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{4}\right) H_{\alpha_{2}}\left(t^{8}\right) H_{\alpha_{3}}\left(t^{12}\right) H_{\alpha_{4}}\left(t^{16}\right) H_{\alpha_{5}}\left(t^{20}\right) H_{\alpha_{6}}\left(t^{14}\right) H_{\alpha_{7}}\left(t^{7}\right) H_{\alpha_{8}}\left(t^{10}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence

$$
\begin{gathered}
\mathbf{M}_{D}=S L_{7} \times S L_{2} \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{4}\right) H_{\alpha_{2}}\left(t^{8}\right) H_{\alpha_{3}}\left(t^{12}\right) H_{\alpha_{4}}\left(t^{2}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{7}}\left(t^{7}\right) H_{\alpha_{8}}\left(t^{10}\right): t^{14}=1\right\} .
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{7} \times S L_{2}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

As in the $E_{7}-4$ case, we construct a map $f: \mathbf{M} \rightarrow G L_{7} \times G L_{2}$ such that

$$
f\left(H_{\alpha_{6}}(t)\right)=(\operatorname{diag}(1,1,1,1,1, t, t), \operatorname{diag}(1, t))
$$

Let π_{i} be cuspidal representations of $G L_{7}, G L_{2}$ with central characters $\omega_{i}, i=1,2$, resp. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and π_{1}, π_{2}. Then the central character is

$$
\omega_{\pi}=\omega_{1}^{4} \omega_{2}^{7}
$$

Now suppose $\pi_{i v}$ is an unramified representation, given by

$$
\pi_{1 v}=\pi\left(\mu_{1}, \ldots, \mu_{7}\right), \quad \pi_{2 v}=\pi\left(\nu_{1}, \nu_{2}\right)
$$

Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$. Then π_{v} is induced from the character χ of the torus. We have

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{5}}(t)=\mu_{5} \mu_{6}^{-1}(t), \\
\chi \circ H_{\alpha_{8}}(t)=\mu_{6} \mu_{7}^{-1}(t), \quad \chi \circ H_{\alpha_{7}}(t)=\nu_{1} \nu_{2}^{-1}(t), \quad \chi(a(t))=\omega_{1}^{4} \omega_{2}^{7}(t) .
\end{gathered}
$$

Since $f\left(H_{\alpha_{6}}(t)\right)=(\operatorname{diag}(1,1,1,1,1, t, t), \operatorname{diag}(1, t))$, we have $\chi \circ H_{\alpha_{6}}(t)=\mu_{6} \mu_{7} \nu_{2}$. Hence, we can compute that $m=4$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \wedge^{2} \rho_{7} \otimes \rho_{2}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\pi}_{1 v}, \wedge^{3} \rho_{7} \otimes \omega_{1} \omega_{2}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \tilde{\pi}_{1 v} \times\left(\pi_{2 v} \otimes \omega_{1} \omega_{2}\right)\right) \\
& L\left(s, \pi_{v}, r_{4}\right)=L\left(s, \pi_{1 v} \otimes \omega_{1} \omega_{2}^{2}\right)
\end{aligned}
$$

2.7.6 (xiii) in [La]

Let $\theta=\Delta-\left\{\alpha_{8}\right\}$. Then $\tilde{\alpha}_{8}=-3 e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$, where

$$
a(t)=H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}\left(t^{9}\right) H_{\alpha_{4}}\left(t^{12}\right) H_{\alpha_{5}}\left(t^{15}\right) H_{\alpha_{6}}\left(t^{10}\right) H_{\alpha_{7}}\left(t^{5}\right) H_{\alpha_{8}}\left(t^{8}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence

$$
\mathbf{M}_{D}=S L_{8}
$$

$\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{3}\right) H_{\alpha_{2}}\left(t^{6}\right) H_{\alpha_{3}}(t) H_{\alpha_{4}}\left(t^{4}\right) H_{\alpha_{5}}\left(t^{7}\right) H_{\alpha_{6}}\left(t^{2}\right) H_{\alpha_{7}}\left(t^{5}\right): t^{8}=1\right\}$.

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times S L_{8}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

As in the (\mathbf{x}) case (Section 2.5.3), we construct a map $f: \mathbf{M} \rightarrow G L_{1} \times G L_{8}$ such that

$$
f\left(H_{\alpha_{8}}(t)\right)=(t, \operatorname{diag}(1,1,1,1,1, t, t, t))
$$

Let σ be a cuspidal representation of $G L_{8}$ with the central character ω. Let η be a grössencharacter of F. Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$, induced by f and σ, η. Then the central character of π is

$$
\omega_{\pi}=\omega^{3} \eta^{8}
$$

Now suppose σ_{v} is an unramified representation, given by $\sigma_{v}=\pi\left(\mu_{1}, \ldots, \mu_{8}\right)$. Let χ be the character of the torus, given by π_{ν}. We have

$$
\chi \circ H_{\alpha_{1}}(t)=\mu_{1} \mu_{2}^{-1}(t), \ldots, \chi \circ H_{\alpha_{7}}(t)=\mu_{7} \mu_{8}^{-1}(t), \quad \chi(a(t))=\omega_{\pi_{v}}(t)
$$

Since $f\left(H_{\alpha_{8}}(t)\right)=(t, \operatorname{diag}(1,1,1,1,1, t, t, t))$, we have $\chi \circ H_{\alpha_{8}}(t)=\mu_{6} \mu_{7} \mu_{8} \eta_{v}$. Hence, we can compute that $m=3$, and

$$
\begin{aligned}
& L\left(s, \pi_{v}, r_{1}\right)=L\left(s, \sigma_{v}, \wedge^{3} \rho_{8} \otimes \eta_{v}\right) \\
& L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \tilde{\sigma}_{v}, \wedge^{2} \rho_{8} \otimes \omega_{v} \eta_{v}^{2}\right) \\
& L\left(s, \pi_{v}, r_{3}\right)=L\left(s, \sigma_{v} \otimes \omega_{v} \eta_{v}^{3}\right)
\end{aligned}
$$

Here $L\left(s, \pi, r_{1}\right)$ is the exterior cube L-function of $G L_{8}$ and it has degree 56 .

2.7.7 (xxviii) in [La]

Let $\theta=\Delta-\left\{\alpha_{7}\right\}$. Then $\tilde{\alpha}_{7}=e_{1}+\cdots+e_{7}-e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then $\mathbf{A}=\left\{a(t): t \in \bar{F}^{*}\right\}$ where

$$
a(t)=H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{4}\right) H_{\alpha_{3}}\left(t^{6}\right) H_{\alpha_{4}}\left(t^{8}\right) H_{\alpha_{5}}\left(t^{10}\right) H_{\alpha_{6}}\left(t^{7}\right) H_{\alpha_{7}}\left(t^{4}\right) H_{\alpha_{8}}\left(t^{5}\right)
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence

$$
\begin{gathered}
\mathbf{M}_{D}=\operatorname{Spin}(14), \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{3}}\left(t^{2}\right) H_{\alpha_{5}}\left(t^{2}\right) H_{\alpha_{6}}\left(t^{3}\right) H_{\alpha_{8}}(t): t^{4}=1\right\} .
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times \operatorname{Spin}(14)\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)
$$

Since $G \operatorname{Spin}(14)=\left(G L_{1} \times \operatorname{Spin}(14)\right) /\{1, c\}$ (see Section 2.3.4), there is a surjective map $G \operatorname{Spin}(14) \rightarrow \mathbf{M}$. Hence we have a dual map ${ }^{L} M \rightarrow G S O_{14}(\mathbb{C})=$ ${ }^{L} G$ Spin(14). Since the center of \mathbf{M} is connected, the derived group of ${ }^{L} M$ is simply connected (See [Bo, p. 30]). Hence it is Spin(14, C). Therefore ${ }^{L} M=G \operatorname{Spin}(14, \mathbb{C})$.

Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$ with central character ω. Let π_{v} be the unramified representation of $\mathbf{M}\left(F_{v}\right)$ with the corresponding semisimple conjugacy class \hat{t} in \hat{T}, the torus in ${ }^{L} M$. We have a 2-to-1 map $\phi:{ }^{L} M \rightarrow G S O_{14}(\mathbb{C})$. Let $\phi(\hat{t})$ be given by

$$
\phi(\hat{t})=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{7}^{2}, b_{0}^{2} b_{7}^{-2}, \ldots, b_{0}^{2} b_{1}^{-2}\right)
$$

Note that it is the Satake parameter for the representation π_{v}^{\prime} of $G \operatorname{Spin}\left(14, F_{v}\right)$, where $\pi^{\prime}=\otimes_{v} \pi_{v}^{\prime}$ is the cuspidal representation of $G \operatorname{Spin}(14, \mathbb{A})$, induced by π and the map $G \operatorname{Spin}(14) \rightarrow \mathbf{M}$. Note also that $\omega_{\pi}=\omega_{\pi^{\prime}}$, and hence $\omega_{\pi_{v}}=b_{0}^{2}$.

Let η be a grössencharacter of F. Then we can think of η as a character of $\mathbf{M}(\mathbb{A})$ by setting $\eta(a(t))=\eta\left(t^{4}\right)$. Since $\left.\eta\right|_{\mathbf{A} \cap \mathbf{M}_{D}}=1$, it is well-defined. We consider $\pi_{\eta}=$ $\pi \otimes \eta$. Let χ be the inducing character of the torus attached to $\pi_{\eta, v}$. Then we have the relationship

$$
\chi \circ \alpha^{\vee}(\varpi)=\alpha^{\vee}(\hat{t})
$$

where α^{\vee} on the right is considered as a root of ${ }^{L} M$. Then

$$
\begin{gathered}
\chi \circ H_{\alpha_{1}}=b_{1}^{2} b_{2}^{-2}, \ldots, \chi \circ H_{\alpha_{5}}=b_{5}^{2} b_{6}^{-2} \\
\chi \circ H_{\alpha_{8}}=b_{6}^{2} b_{7}^{-2}, \quad \chi \circ H_{\alpha_{6}}=b_{6}^{2} b_{7}^{2} b_{0}^{-2}, \quad \chi(a(t))=\eta_{v}^{4} \omega_{v}=\eta_{v}^{4} b_{0}^{2} .
\end{gathered}
$$

From this, we have $\chi \circ H_{\alpha_{7}}=\eta_{v}\left(b_{1} \cdots b_{7}\right)^{-1} b_{0}^{4}$. Hence, we can compute that $m=2$, and

$$
\begin{aligned}
L\left(s, \pi_{\eta, v}, r_{1}\right)^{-1}=(1 & \left.-\eta_{v}\left(b_{1} \cdots b_{7}\right)^{-1} b_{0}^{4} q_{v}^{-s}\right) \\
& \times \prod_{1 \leq i<j \leq 7}\left(1-\eta_{v}\left(b_{1} \cdots b_{7}\right)^{-1} b_{0}^{2}\left(b_{i} b_{j}\right)^{2} q_{v}^{-s}\right) \\
& \times \prod_{1 \leq i<j<k \leq 7}\left(1-\eta_{v} b_{1} \cdots b_{7}\left(b_{i} b_{j} b_{k}\right)^{-2} q_{v}^{-s}\right) \\
& \times \prod_{i=1}^{7}\left(1-\eta_{v} b_{1} \cdots b_{7} b_{0}^{-2} b_{i}^{-2} q_{v}^{-s}\right) \\
L\left(s, \pi_{\eta, v}, r_{2}\right)= & L\left(s, \pi_{v}^{\prime} \otimes \eta_{v}^{2}\right)=\prod_{i=1}^{7}\left(1-\eta_{v}^{2} b_{i}^{2} q_{v}^{-s}\right)^{-1}\left(1-\eta_{v}^{2} b_{i}^{-2} b_{0}^{2} q_{v}^{-s}\right)^{-1}
\end{aligned}
$$

Here r_{1} is called the half-spin representation and has degree 64, and the second L function is the standard L-function for $G \operatorname{Spin}(14)$.

2.7.8 (xxxii) in [La]

Let $\theta=\Delta-\left\{\alpha_{1}\right\}$. Then $\tilde{\alpha}_{1}=e_{1}-e_{9}$. Let $\mathbf{P}=\mathbf{P}_{\theta}=\mathbf{M N}$ and \mathbf{A} be the connected component of the center of \mathbf{M}. Then

$$
\mathbf{A}=\left\{H_{\alpha_{1}}\left(t^{2}\right) H_{\alpha_{2}}\left(t^{3}\right) H_{\alpha_{3}}\left(t^{4}\right) H_{\alpha_{4}}\left(t^{5}\right) H_{\alpha_{5}}\left(t^{6}\right) H_{\alpha_{6}}\left(t^{4}\right) H_{\alpha_{7}}\left(t^{2}\right) H_{\alpha_{8}}\left(t^{3}\right): t \in \bar{F}^{*}\right\}
$$

Since \mathbf{G} is simply connected, the derived group \mathbf{M}_{D} of \mathbf{M} is simply connected, and hence

$$
\begin{gathered}
\mathbf{M}_{D}=\text { simply-connected } E_{7} \\
\mathbf{A} \cap \mathbf{M}_{D}=\left\{H_{\alpha_{2}}(t) H_{\alpha_{4}}(t) H_{\alpha_{8}}(t): t^{2}=1\right\}
\end{gathered}
$$

If we identify \mathbf{A} with $G L_{1}$, then

$$
\mathbf{M}=\left(G L_{1} \times E_{7}\right) /\left(\mathbf{A} \cap \mathbf{M}_{D}\right)=G E_{7}
$$

Let π be a cuspidal representation of $G E_{7}(\mathbb{A})$ with the central character ω. Then ${ }^{L} M=G E_{7}(\mathbb{C})$, and we see that $m=2, L\left(s, \pi_{v}, r_{1}\right)$ is the standard L-function of $G E_{7}(\mathbb{C})$. It has degree 56. Also $L\left(s, \pi_{v}, r_{2}\right)=L\left(s, \omega_{v}\right)$.

3 Proof of a Conjecture of Shahidi

In this section, let F be a local field of characteristic zero and we omit the subscript v. Here G, M denote the group of F-rational points $\mathbf{G}(F), \mathbf{M}(F)$, resp. Recall Conjecture 7.1 of [Sh1]:
Conjecture Assume π is tempered and generic. Then each $L\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

This conjecture is true for archimedean places [A]. In fact, for archimedean places, the L-function $L\left(s, \pi, r_{i}\right)$ and the ϵ-factor are Artin factors [Sh7]. In particular $L\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$. This conjecture has many important applications. It played a crucial role in proving the functorial product of $G L_{2} \times G L_{3}$ and functoriality of symmetric cube in [Ki-Sh]. First we start with known results.

Proposition 3.1 ([Sh1, p. 309]) Assume π is tempered and generic.
(1) If $m=1, L(s, \pi, r)$ is holomorphic for $\operatorname{Re}(s)>0$.
(2) If $m=2$ and $L\left(s, \pi, r_{2}\right)=\prod_{j}\left(1-\alpha_{j} q_{v}^{-s}\right)^{-1}$, possibly an empty product where each $\alpha_{j} \in \mathbb{C}$ is of absolute value one (in particular if r_{2} is one-dimensional, this holds), then $L\left(s, \pi, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

Proposition 3.2 ([Ca-Sh, p. 573]) If G is a quasi-split classical group, then the conjecture holds.

Proposition 3.3 (Asgari [As]) Let G be a simply connected split group of type D_{n} and F_{4}. Then the conjecture holds.

Lemma 3.4 ([Sh1, Proposition 7.3 and Corollary 7.6]) Let ρ be a generic supercuspidal representation of M. Then
(1) For $i=1,2, L\left(s, \rho, r_{i}\right)$ is a product of $\left(1-u q^{-s}\right)^{-1}$, where u is a complex number of absolute value 1 .
(2) If $i \geq 3, L\left(s, \rho, r_{i}\right)=1$.
(3) If $L\left(s, \rho, r_{1}\right) L\left(s, \rho, r_{2}\right)$ has pole at $s=0$, then it is simple. Namely, only one of $L\left(s, \rho, r_{1}\right)$ and $L\left(s, \rho, r_{2}\right)$ has a simple pole at $s=0$.

Recall the following induction step, which we can see immediately through our explicit calculations in Section 2.

Proposition 3.5 ([Sh1, Proposition 4.1]) Let F be a number field. Let \mathbf{G} be a quasisplit connected reductive group over F. Let $\mathbf{P}=\mathbf{M N}$ be a standard maximal parabolic subgroup of \mathbf{G} with respect to an F-Borel subgroup \mathbf{B}. Let π be a globally generic cuspidal representation of $\mathbf{M}(\mathbb{A})$. Let $r=\bigoplus_{i=1}^{m} r_{i}$ be the adjoint action of ${ }^{L} M$ on ${ }^{L} \mathfrak{n}$ as before. Then for each $i, 2 \leq i \leq m$, there exists a quasi-split connected reductive F-group \mathbf{G}_{i}, a maximal F-parabolic subgroup $\mathbf{P}_{i}=\mathbf{M}_{i} \mathbf{N}_{i}$ of \mathbf{G}_{i}, a globally generic cuspidal representation π^{\prime} of $\mathbf{M}_{i}(\mathbb{A})$, such that, if the adjoint action r^{\prime} of ${ }^{L} M_{i}$ on ${ }^{L} \mathfrak{n}_{i}$ decomposes as $r^{\prime}=\bigoplus_{j=1}^{m^{\prime}} r_{j}^{\prime}$, then

$$
L\left(s, \pi, r_{i}\right)=L\left(s, \pi^{\prime}, r_{1}^{\prime}\right)
$$

Lemma 3.6 Let π be a generic, tempered representation. Then for $i \geq 3, L\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

Proof Except for r_{3} in the case of $E_{8}-1$, all $r_{i}, i \geq 3$, come from non-self conjugate parabolic subgroups with $m=1$. Hence Proposition 3.1 applies.

Suppose we are in the $E_{8}-1$ case. Then r_{3} comes from the $E_{6}-2$ case. In that case, we calculate directly to see our assertion. We postpone the proof until Section 3.2.2.

Proposition 3.7 Let π be tempered and generic. Then $L\left(s, \pi, r_{i}\right)$ is holomorphic at $\operatorname{Re}(s)=\frac{1}{2}$.

Proof Note that

$$
\gamma\left(s, \pi, r_{i}, \psi\right)=\epsilon\left(s, \pi, r_{i}, \psi\right) \frac{L\left(1-s, \pi, \tilde{r}_{i}\right)}{L\left(s, \pi, r_{i}\right)}
$$

and $L\left(s, \pi, r_{i}\right)$ is defined to be

$$
L\left(s, \pi, r_{i}\right)=P_{\pi, i}\left(q^{-s}\right)^{-1}
$$

where $P_{\pi, i}$ is the unique polynomial satisfying $P_{\pi, i}(0)=1$ such that $P_{\pi, i}\left(q^{-s}\right)$ is the numerator of $\gamma\left(s, \pi, r_{i}, \psi\right)$.

Suppose $L\left(s, \pi, r_{i}\right)$ has a pole at $\operatorname{Re}(s)=\frac{1}{2}$. Then it contains the inverse of a factor $1-u q^{1 / 2-s}$, where u is a complex number with $|u|=1$. Then by unitarity of π and [Sh1, Proposition 7.8], we see $L\left(1-s, \pi, \tilde{r}_{i}\right)$ contains the inverse of a factor $1-\overline{u q^{1 / 2}} q^{-(1-s)}=1-u^{-1} q^{s-\frac{1}{2}}=u^{-1} q^{s-\frac{1}{2}}\left(1-u q^{\frac{1}{2}-s}\right)$. Hence there is a cancellation. This contradicts the definition of $L\left(s, \pi, r_{i}\right)$.

The following is a slight generalization of Proposition 3.1.

Proposition 3.8 ([Sh1, Theorem 3.5] and [Sh2, Proposition 3.3.1]) Let π be tempered and generic, and let $C_{\chi}\left(s, \pi, w_{0}\right)$ be the local coefficient attached to (M, π) [Sh2]. Then we have

$$
C_{\chi}\left(s, \pi, w_{0}\right)=\prod_{i=1}^{m} \gamma\left(i s, \pi, r_{i}, \psi\right)
$$

In particular, $\prod_{i=1}^{m} \gamma\left(i s, \pi, r_{i}, \psi\right)$ has no zeros for $\operatorname{Re}(s)>0$, and $L\left(s, \pi, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s)>0$ if $\prod_{i=2}^{m} L\left(1-i s, \pi, r_{i}\right)$ has poles only at $\operatorname{Re}(s)=\frac{1}{2}$ in the region $\operatorname{Re}(s)>0$.

Proof Note that since we are only dealing with split groups, there is no λ-function in the formula. Also we can make $a=1$ in Theorem 3.5 of [Sh1], by making ψ and w_{0} compatible. By the definition of $C_{\chi}\left(s, \pi, w_{0}\right), C_{\chi}\left(s, \pi, w_{0}\right) A\left(s, \pi, w_{0}\right)$ has no zeros. Since $A\left(s, \pi, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s)>0, C_{\chi}\left(s, \pi, w_{0}\right)$ has no zeros for $\operatorname{Re}(s)>0$. The last statement follows from Proposition 3.7.

Recall the multiplicativity of γ-factors. Let π be an irreducible generic admissible representation of M. Suppose $\pi \subset \operatorname{Ind}_{M_{\theta} N_{\theta}}^{M} \sigma \otimes 1$, where $M_{\theta} N_{\theta}, \theta \subset \Delta$, is a parabolic subgroup of M and σ is an irreducible generic admissible representation of M_{θ}. Let $\theta^{\prime}=w(\theta) \subset \Delta$ and fix a reduced decomposition $w=w_{n-1} \cdots w_{1}$ of w as in Lemma 2.1.1 of [Sh2]. Then for each j, there exists a unique root $\alpha_{j} \in \Delta$ such that $w_{j}\left(\alpha_{j}\right)<0$. For each $j, 2 \leq j \leq n-1$, let $\bar{w}_{j}=w_{j-1} \cdots w_{1}$. Set $\bar{w}_{1}=1$. Also let $\Omega_{j}=\theta_{j} \cup\left\{\alpha_{j}\right\}$, where $\theta_{1}=\theta, \theta_{n}=\theta^{\prime}$, and $\theta_{j+1}=w_{j}\left(\theta_{j}\right), 1 \leq j \leq n-1$. Then the group $M_{\Omega_{j}}$ contains $M_{\theta_{j}} N_{\theta_{j}}$ as a maximal parabolic subgroup and $\bar{w}_{j}(\sigma)$ is a representation of $M_{\theta_{j}}$. The L-group ${ }^{L} M_{\theta}$ acts on V_{i}. Given an irreducible constituent of this action, there exists a unique $j, 1 \leq j \leq n-1$, which under w_{j} is equivalent to an irreducible constituent of the action of ${ }^{L} M_{\theta_{j}}$ on the Lie algebra of ${ }^{L} N_{\theta_{j}}$. We denote by $i(j)$ the index of this subspace of the Lie algebra of ${ }^{L} N_{\theta_{j}}$. Finally, let S_{i} denote the set of all such i 's where S_{i}, in general, is a proper subset of $1 \leq i \leq n-1$.

Proposition 3.9 ([Sh1, 3.13]) For each $j \in S_{i}$, let $\gamma\left(s, \bar{w}_{j}(\sigma), r_{i(j)}, \psi\right)$ denote the corresponding factor. Then

$$
\gamma\left(s, \pi, r_{i}, \psi\right)=\prod_{j \in S_{i}} \gamma\left(s, \bar{w}_{j}(\sigma), r_{i(j)}, \psi\right) .
$$

We follow the exposition in [Sh6, p. 280]. Let $\phi: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow{ }^{L} M$ be the parametrization of π. Then ϕ factors through ${ }^{L} M_{\theta}$, i.e., there exists

$$
\phi^{\prime}: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow{ }^{L} M_{\theta}
$$

such that $\phi=i \circ \phi^{\prime}$, where $i:{ }^{L} M_{\theta} \hookrightarrow{ }^{L} M$. Let $r_{i}^{\prime}=\left.r_{i}\right|_{L_{M}}$. Then $r_{i}^{\prime}=\oplus_{j} r_{i(j)}$, and

$$
\gamma\left(s, \phi, r_{i}, \psi\right)=\prod_{j} \gamma\left(s, \phi^{\prime}, r_{i(j)}, \psi\right)
$$

Given an irreducible component of $\left.r_{i}\right|^{L_{M}}$, there exists a unique j, which under w_{j}, makes this component equivalent to an irreducible constituent of the action of ${ }^{L} M_{\theta_{j}}$ on the Lie algebra of ${ }^{L} N_{\theta_{j}}$. Hence we have:

Proposition 3.10 Suppose π, σ be as in Proposition 3.9. Suppose π is tempered, and $\gamma\left(s, \bar{w}_{j}(\sigma), r_{i(j)}, \psi\right)$ is an Artin factor for each $j \in S_{i}$, namely, $\gamma\left(s, \bar{w}_{j}(\sigma), r_{i(j)}, \psi\right)=$ $\gamma\left(s, \phi^{\prime}, r_{i(j)}, \psi\right)$ for each j. Then $\gamma\left(s, \pi, r_{i}, \psi\right)$ and $L\left(s, \pi, r_{i}\right)$ are also Artin factors. In particular, $L\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

Proof Clear from the multiplicativity formulas. Since π is tempered, γ-factors determine the L-factors uniquely. Artin L-functions satisfy the holomorphy.

Hence once we know that $\gamma\left(s, \rho, r_{i}, \psi\right)$ is an Artin factor for supercuspidal ρ, Conjecture 7.1 of [Sh1] is obvious by Proposition 3.10 and multiplicativity of γ-factors. However, except for a few cases, it is not known that $\gamma\left(s, \rho, r_{i}, \psi\right)$ is an Artin factor. For example, Shahidi [Sh5] has shown that for Rankin-Selberg L-functions for $G L_{k} \times G L_{l}$, his L-functions are Artin L-functions. However it is not even known that Shahidi's exterior square L-function, $L\left(s, \rho, \wedge^{2}\right)$, is an Artin L-function, where ρ is a supercuspidal representation of $G L_{n}(F)$. Later on, in many situations, all the rankone factors in Proposition 3.10 are the Rankin-Selberg γ and L-factors for $G L_{k} \times G L_{l}$.

We have:

Lemma 3.11 Let ρ_{1} be a tempered representation of $G L_{n-2}$ and ρ_{2}, ρ_{3} be tempered representations of $G L_{2}$. Then in $D_{n}-2$ case, the triple L-function $L\left(s, \rho_{1} \times \rho_{2} \times \rho_{3}\right)=$ $L\left(s, \rho_{1} \times\left(\rho_{2} \boxtimes \rho_{3}\right)\right)$ is an Artin L-function, where $\rho_{2} \boxtimes \rho_{3}$ is the functorial product given by the local Langlands correspondence [Ra]. The same is true for the ϵ-factor.

Proof It is enough to prove it when ρ_{i} 's are supercuspidal representations. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be cuspidal representations of $G L_{n-2}(\mathbb{A}), G L_{2}(\mathbb{A}), G L_{2}(\mathbb{A})$, resp. such that $\sigma_{i v}=\rho_{i}$ and $\sigma_{i w}$ is unramified for all $w \neq v$ and $w<\infty$. By considering the $D_{n}-2$ case, we obtain the triple L-function $L\left(s, \sigma_{1} \times \sigma_{2} \times \sigma_{3}\right)$. Let $\sigma_{2} \boxtimes \sigma_{3}$ be the functorial product, obtained in [Ra]. It is an automorphic representation of $G L_{4}(\mathbb{A})$. Now we compare two functional equations:

$$
\begin{gathered}
L\left(s, \sigma_{1} \times \sigma_{2} \times \sigma_{3}\right)=\epsilon\left(s, \sigma_{1} \times \sigma_{2} \times \sigma_{3}\right) L\left(1-s, \tilde{\sigma}_{1} \times \tilde{\sigma}_{2} \times \tilde{\sigma}_{3}\right), \\
L\left(s, \sigma_{1} \times\left(\sigma_{2} \boxtimes \sigma_{3}\right)\right)=\epsilon\left(s, \sigma_{1} \times\left(\sigma_{2} \boxtimes \sigma_{3}\right)\right) L\left(1-s, \tilde{\sigma}_{1} \times\left(\tilde{\sigma}_{2} \boxtimes \tilde{\sigma}_{3}\right)\right) .
\end{gathered}
$$

Since $L\left(s, \sigma_{1 w} \times \sigma_{2 w} \times \sigma_{3 w}\right)=L\left(s, \sigma_{1 w} \times\left(\sigma_{2 w} \boxtimes \sigma_{3 w}\right)\right)$ for all $w \neq v$, we have (see [Ki5, Proposition 5.1.3] for the details)

$$
\gamma\left(s, \sigma_{1 v} \times \sigma_{2 v} \times \sigma_{3 v}, \psi_{v}\right)=\gamma\left(s, \sigma_{1 v} \times\left(\sigma_{2 v} \boxtimes \sigma_{3 v}\right), \psi_{v}\right)
$$

Note that $\rho_{2} \boxtimes \rho_{3}$ is tempered (see [Ki5, Proposition 5.1.4]). Hence the equality of γ-factors implies the equality of L-factors.

Next we have [Sh6, Theorem 5.2]:

Proposition 3.12 (Multiplicativity of L-factors) Let π, σ be as in Proposition 3.9. Suppose π is tempered, and σ is a discrete series. Suppose Conjecture 7.1 of [Sh1] is valid for every $L\left(s, \bar{w}_{j}(\sigma), r_{i(j)}\right), j \in S_{i}$. Then

$$
L\left(s, \pi, r_{i}\right)=\prod_{j \in S_{i}} L\left(s, \bar{w}_{j}(\sigma), r_{i(j)}\right)
$$

Now we show the application of Conjecture 7.1 of [Sh1] to the functorial lift: let G be a reductive group over a local field F, and suppose we have a homomorphism of L-groups $f:{ }^{L} G \rightarrow G L_{N}(\mathbb{C})$. Then Langlands' functoriality predicts that, given an irreducible admissible representation π of $G(F)$, there exists a local lift Π of $G L_{N}(F)$ such that if $\phi: W_{F} \times S L_{2}(\mathbb{C}) \rightarrow{ }^{L} G$ parametrizes π, then $f \circ \phi$ parametrizes Π. If such parametrization is available (namely, the local Langlands correspondence), it is easy to see that if π is tempered, then Π is tempered. Note that π is tempered if and only if the image $\phi\left(W_{F}\right)$ is bounded (see, for example, [Ku, Lemma 5.2.1]). In that case, it is obvious that $f \circ \phi\left(W_{F}\right)$ is bounded. Hence Π is tempered.

In general, the local Langlands correspondence is not available. Hence we introduce the concept of the local lift in the following way:

We say Π is the local lift of π if it satisfies

$$
\gamma(s, \sigma \times \pi, \psi)=\gamma(s, \sigma \times \Pi, \psi), \quad L(s, \sigma \times \pi)=L(s, \sigma \times \Pi)
$$

where σ is a discrete series representation of $G L_{m}(F)$.
The left-hand sides are Shahidi's γ and L-factors, and the right-hand sides are Rankin-Selberg γ and L-factors. Hence according to Section 2, this makes sense only when $G=G L_{2} \times G L_{2}, G L_{2} \times G L_{3}, G L_{4}$, and groups of type B_{n}, C_{n}, D_{n}. The case $G L_{2} \times G L_{2}$ is a subject of [Ra] and [Ki5] (We need the $D_{4}-2$ case in Section 2); The case $G L_{2} \times G L_{3}$ is a subject of [Ki-Sh] (We need the $D_{5}-2, E_{6}-1, E_{7}-1$ cases in Section 2). In those two cases, the L-group homomorphisms are tensor product maps $G L_{2}(\mathbb{C}) \times G L_{k}(\mathbb{C}) \rightarrow G L_{2 k}(\mathbb{C}), k=2,3$. The case $G L_{4}$ is a subject of [Ki5] (We need the $D_{n}-3, n=4,5,6,7$ cases in Section 2). It is an exterior square lift, where the L-group homomorphism is the exterior square $G L_{4}(\mathbb{C}) \rightarrow G L_{6}(\mathbb{C})$. When $G=S O_{2 n+1}$, the local lift was obtained in [CKPSS]. Suppose conjecture 7.1 of [Sh1] is valid in all those cases (We will prove it in Theorem 3.16).

Proposition 3.13 Suppose the local lift exists. If π is tempered (unitary), Π is tempered.

Proof Suppose Π is not tempered. We write it as a Langlands' quotient of $\Xi=$ Ind $|\operatorname{det}|^{r_{1}} \sigma_{1} \otimes \cdots \otimes|\operatorname{det}|^{r_{k}} \sigma_{k}$, where the σ_{i} 's are (unitary) discrete series representations of smaller GL's and $r_{1} \geq \cdots \geq r_{k}$. Since π is unitary, Π has the unitary central character and hence $r_{k}<0$. (Since Π is not tempered, not all r_{i} 's are zero.) Consider the equality $L\left(s, \tilde{\sigma}_{k} \times \pi\right)=L\left(s, \tilde{\sigma}_{k} \times \Pi\right)$. The left hand side is holomorphic for $\operatorname{Re}(s)>0$ by Conjecture 7.1 of [Sh1]. However,

$$
L\left(s, \tilde{\sigma}_{k} \times \Pi\right)=\prod_{i=1}^{k} L\left(s+r_{i}, \tilde{\sigma}_{k} \times \sigma_{i}\right)
$$

has a pole at $s=-r_{k}>0$.

In the following, we indicate a proof of Proposition 3.2 due to Casselman and Shahidi [Ca-Sh]. The proof requires two ingredients. The first is that due to the fact that the Levi subgroups are simple, namely, of the form $G L_{n_{1}} \times \cdots \times G L_{n_{k}} \times G_{l}$, where G_{l} is a quasi-split classical group, the multiplicativity of γ-factors (Proposition 3.9) becomes simple. The second is a partial classification of generic discrete series of quasi-split classical groups. We now have a complete classification of discrete series with generic supercuspidal support of quasi-split classical groups due to Moeglin and Tadic [M-Ta] (cf. [Ja1-Ja3]). In [Ca-Sh], due to a lack of classification at the time, the authors first had to give a partial classification of generic discrete series of quasi-split classical groups.

Recall that a discrete series of $G L_{n}$ comes from a distinguished unipotent orbit (p), which gives rise to a complex parameter

$$
\left(\frac{p-1}{2}, \frac{p-1}{2}-1, \frac{p-1}{2}-2, \ldots,-\frac{p-1}{2}\right) .
$$

This gives rise to an induced representation

$$
\text { Ind } \rho|\operatorname{det}|^{\frac{p-1}{2}} \otimes \rho|\operatorname{det}|^{\frac{p-1}{2}-1} \otimes \cdots \otimes \rho|\operatorname{det}|^{-\frac{p-1}{2}}
$$

where ρ is a supercuspidal representation of $G L$. Let $\operatorname{St}(\rho, p)$ be the discrete series which is the unique subrepresentation of the above induced representation. Then $L(s, \operatorname{St}(\rho, p) \times \tilde{\rho})^{-1}$ is obtained as a numerator of $\gamma(s, \operatorname{St}(\rho, p) \times \tilde{\rho}, \psi)$ which comes from the induced representation

$$
\text { Ind } S t(\rho, p)|\operatorname{det}|^{\frac{5}{2}} \otimes \rho|\operatorname{det}|^{-\frac{5}{2}}
$$

It is a subrepresentation of

$$
\text { Ind } \rho|\operatorname{det}|^{\frac{s}{2}+\frac{p-1}{2}} \otimes \rho|\operatorname{det}|^{\frac{s}{2}+\frac{p-1}{2}-1} \otimes \cdots \otimes \rho|\operatorname{det}|^{\frac{s}{2}-\frac{p-1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{s}{2}}
$$

By multiplicativity of γ-factors (Proposition 3.9),

$$
\gamma(s, S t(\rho, p) \times \tilde{\rho}, \psi)=\prod_{i=0}^{p-1} \gamma\left(s+\frac{p-1}{2}-i, \rho \times \tilde{\rho}, \psi\right)
$$

Note that $\gamma(s, \rho \times \tilde{\rho}, \psi)=\epsilon(s, \rho \times \tilde{\rho}, \psi) \frac{L(1-s, \rho \times \tilde{\rho})}{L(s, \rho \times \tilde{\rho})}$ and $L(s, \rho \times \tilde{\rho})=\left(1-q^{-r s}\right)^{-1}=$ $\prod_{i=1}^{r}\left(1-\eta_{i}(\varpi) q^{-s}\right)^{-1}$, where r is the order of the cyclic group of unramified characters η_{i} of F^{*} such that $\rho \simeq \rho \otimes \eta_{i}(\operatorname{det})$. Hence

$$
L(s, S t(\rho, p) \times \tilde{\rho})=L\left(s+\frac{p-1}{2}, \rho \times \tilde{\rho}\right)
$$

Notice the cancellation in $\gamma(s, S t(\rho, p) \times \tilde{\rho}, \psi)$. Also if $p \geq q$, then

$$
L(s, S t(\rho, p) \times \widetilde{\operatorname{St(}(\rho, q)})=\prod_{i=0}^{q-1} L\left(s+\frac{p-1}{2}+\frac{q-1}{2}-i, \rho \times \tilde{\rho}\right)
$$

Let $G=G_{n}$ be a quasi-split classical group of type B_{n}, C_{n}, D_{n}, and let σ be a discrete series of $G L_{k}$ and τ be a discrete series of G_{l} with generic supercuspidal support. We describe a partial classification of discrete series for quasi-split classical groups which we need. First, we remark that if τ is a discrete series which is a subrepresentation of $\operatorname{Ind}|\operatorname{det}|^{a} \rho \otimes \tau_{0}$, where ρ is a supercuspidal representation of $G L_{k}$ and τ_{0} is a generic supercuspidal representation of a quasi-split group, then $a=\frac{1}{2}$ or 1 . This is a deep result of Shahidi [Sh1]. We say that (ρ, τ_{0}) satisfies (Ci) if Ind $|\operatorname{det}|^{a} \rho \otimes \tau_{0}$ is reducible at $s=i$.

Following the $G L_{n}$ example, we introduce a concept of chains. Given integers $a>$ $b>0$ (we assume that a, b have the same parity) and a supercuspidal representation ρ of $G L_{k}$, denote by $\delta(a, b, \rho), \delta(a, \rho)$, the representations

$$
\begin{aligned}
\delta(a, b, \rho) & =|\operatorname{det}|^{\frac{a-1}{2}} \rho \otimes|\operatorname{det}|^{\frac{a-1}{2}-1} \rho \otimes \cdots \otimes|\operatorname{det}|^{-\frac{b-1}{2}} \rho \\
\delta(a, \rho) & =|\operatorname{det}|^{\frac{a-1}{2}} \rho \otimes|\operatorname{det}|^{\frac{a-1}{2}-1} \rho \otimes \cdots \otimes|\operatorname{det}|^{\frac{a+1}{2}-\left[\frac{a}{2}\right]} \rho
\end{aligned}
$$

where

$$
\frac{a+1}{2}-\left[\frac{a}{2}\right]= \begin{cases}\frac{1}{2}, & \text { if } a \text { is even } \\ 1, & \text { if } a \text { is odd }\end{cases}
$$

Note that $\delta(a, b, \rho)$ gives rise to $[\delta(a, b, \rho)]=|\operatorname{det}|^{\frac{a-b}{4}} \operatorname{St}\left(\rho, \frac{a+b}{2}\right)$ as the unique subrepresentation of

$$
\operatorname{Ind}_{G L_{k} \times \cdots \times G L_{k}}^{G(a, b, \rho) ; ~} \delta
$$

$\delta(a, \rho)$ gives rise to $[d(a, \rho)]=|\operatorname{det}|^{\frac{1}{2}\left[\frac{a+1}{2}\right]} \operatorname{St}\left(\rho,\left[\frac{a}{2}\right]\right)$. Then a partial classification of discrete series shows (cf. [M-Ta], [Ja1-Ja3]) that a discrete series τ with generic supercuspidal support is a subrepresentation of
$\operatorname{Ind}\left[\delta\left(a_{1}, b_{1}, \rho_{1}\right)\right] \otimes \cdots \otimes\left[\delta\left(a_{r}, b_{r}, \rho_{r}\right)\right] \otimes\left[\delta\left(a_{r+1}, \rho_{r+1}\right)\right] \otimes \cdots \otimes\left[\delta\left(a_{r+l}, \rho_{r+l}\right)\right] \otimes \tau_{0}$,
where
(1) $\rho_{1}, \ldots, \rho_{r+l}$ are self-contragredient supercuspidal representations of GL and τ_{0} is a generic supercuspidal representation of $G_{l_{0}}$, and
(2) the chain $\delta\left(a_{r+j}, \rho_{r+j}\right)$ can be present only when $\left(\rho_{r+j}, \tau_{0}\right)$ satisfies $\left(C \frac{1}{2}\right)$ or (C1). In that case, a_{r+j} is even or odd, depending on $\left(\rho_{r+j}, \tau_{0}\right)$ satisfies $\left(C \frac{1}{2}\right)$ or (C1), resp. Also the ρ_{r+j} 's are pairwise non-equivalent.
Of course, the complete classification of discrete series requires additional conditions on a_{i}, b_{i} 's, such as $a_{1}, b_{1}, a_{2}, b_{2}$ are all distinct when $\rho_{1} \simeq \rho_{2}$.

The necessity of the parity condition in (2) can be seen in the following proposition. First we need

Lemma 3.14 Suppose $\left(\rho, \tau_{0}\right)$ satisfies (C1). Then $L(s, \rho \times \rho)^{-1} \operatorname{divides} L\left(s, \rho \times \tau_{0}\right)^{-1}$ as polynomials in q^{-s}, namely,

$$
L\left(s, \rho \times \tau_{0}\right)=L(s, \rho \times \rho) \prod_{j}\left(1-u_{j} q^{-s}\right)^{-1}
$$

where $u_{j} \in \mathbb{C}$ is of absolute value 1.
Proof Let δ be the square integrable representation, which is the unique subrepresentation of Ind $|\operatorname{det}| \rho \otimes \tau_{0}$. Then by Proposition 3.1(2), $L(s, \rho \times \delta)$ is holomorphic for $\operatorname{Re}(s)>0$. (For example, if we consider $G L \times S O$ (odd), the second L-function is $L\left(s, \rho\right.$, Sym $\left.^{2}\right)$, which is a form given in Proposition 3.1(2) by Lemma 3.4.)

Consider the induced representation Ind $|\operatorname{det}|^{s} \rho \otimes \delta$. By multiplicativity of γ-factors,

$$
\gamma(s, \rho \times \delta, \psi)=\gamma\left(s, \rho \times \tau_{0}, \psi\right) \gamma(s+1, \rho \times \rho, \psi) \gamma(s-1, \rho \times \rho, \psi)
$$

If $1-u q^{-s}$ divides $L(s, \rho \times \rho)^{-1}$, then $1-u q^{1-s}$ appears in the numerator of $\gamma(s-1, \rho \times \rho, \psi)$. Since $L(s, \rho \times \delta)$ is holomorphic for $\operatorname{Re}(s)>0$, it should cancel with a factor in the denominator of $\gamma\left(s, \rho \times \tau_{0}, \psi\right)$. Hence $L\left(s, \rho \times \tau_{0}\right)^{-1}$ contains a factor $1-u^{-1} q^{-s}$. Note that $L(s, \rho \times \rho)=\left(1-q^{-r s}\right)^{-1}=\prod\left(1-u_{i} q^{-s}\right)^{-1}$, where $\left|u_{i}\right|=1$. Hence if $1-u q^{-s}$ divides $L(s, \rho \times \rho)^{-1}$, then $1-u^{-1} q^{-s}$ also divides $L(s, \rho \times \rho)^{-1}$.

Let σ be a discrete series of $G L_{k}$ and τ be a discrete series of G_{l} with generic supercuspidal support. In [Sh1], the γ-factor $\gamma(s, \sigma \times \tau, \psi)$ and the L-function $L(s, \sigma \times \tau)$ are defined only when τ itself is generic. However, if τ is not generic, we define the γ-factor $\gamma(s, \sigma \times \tau, \psi)$, using the multiplicativity of γ-factors in Proposition 3.9. And then as usual, we define the L-function $L(s, \sigma \times \tau)$ to be

$$
L(s, \sigma \times \tau)=P\left(q^{-s}\right)^{-1}
$$

where $P(X)$ is the unique polynomial satisfying $P(0)=1$ such that $P\left(q^{-s}\right)$ is the numerator of $\gamma(s, \sigma \times \tau, \psi)$. We define the ϵ-factor $\epsilon(s, \sigma \times \tau, \psi)$ to satisfy the relation

$$
\gamma(s, \sigma \times \tau, \psi)=\epsilon(s, \sigma \times \tau, \psi) \frac{L(1-s, \tilde{\sigma} \times \tilde{\tau})}{L(s, \sigma \times \tau)}
$$

Note that if two discrete series are subquotients of the same induced representation, they are in the same L-packet. Hence our definition of L-functions agrees with Shahidi's conjecture [Sh1, Section 9] that two discrete series which are in the same L-packet have the same γ-function.

Proposition 3.15 Suppose $\sigma=\operatorname{St}(\rho, p)$ and τ is a subrepresentation of

$$
\operatorname{Ind}[\delta(a, b, \rho)] \otimes \tau_{0}
$$

(We assume $\frac{a+b}{2} \geq p>b$. The other cases are similar.) Then

$$
\begin{aligned}
L(s, \sigma \times \tau)=L(s & \left.+\frac{p-1}{2}, \rho \times \tau_{0}\right) \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) \\
& \times \prod_{i=0}^{b-1} L\left(s+\frac{b-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right)
\end{aligned}
$$

If τ is a subrepresentation of $\operatorname{Ind}[\delta(a, \rho)] \otimes \tau_{0}$, then (assume $\frac{a}{2} \geq p-$ the other cases are similar)

$$
L(s, \sigma \times \tau)= \begin{cases}L\left(s+\frac{p-1}{2}, \rho \times \tau_{0}\right) \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) & \text { if a is even } \\ \frac{L\left(s+\frac{p-1}{2}, \rho \times \tau_{0}\right)}{L\left(s+\frac{p-1}{2}, \rho \times \rho\right)} \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) & \text { if a is odd } .\end{cases}
$$

Proof First we calculate $L\left(s, \sigma \times \tau_{0}\right) . I\left(s, \sigma \otimes \tau_{0}\right)$ is a subrepresentation of

$$
\text { Ind }|\operatorname{det}|^{s+\frac{p-1}{2}} \rho \otimes|\operatorname{det}|^{s+\frac{p-1}{2}-1} \rho \otimes \cdots \otimes|\operatorname{det}|^{s-\frac{p-1}{2}} \rho \otimes \tau_{0} .
$$

By multiplicativity of γ-factors,

$$
\gamma\left(s, \sigma \times \tau_{0}, \psi\right)=\prod_{i=0}^{p-1} \gamma\left(s+\frac{p-1}{2}-i, \rho \times \tau_{0}, \psi\right)
$$

If $L\left(s, \rho \times \tau_{0}\right)$ has a pole at $s=0$ (i.e., when $I\left(s, \rho \otimes \tau_{0}\right)$ is reducible at $s=1$), then note that there is a cancellation between $\gamma\left(s+\frac{p-1}{2}-i-1, \rho \times \tau_{0}, \psi\right)$ and $\gamma\left(s-\frac{p-1}{2}+i, \rho \times \tau_{0}, \psi\right)$. Hence

$$
L\left(s, \sigma \times \tau_{0}\right)=L\left(s+\frac{p-1}{2}, \rho \times \tau_{0}\right) .
$$

If $L\left(s, \rho \times \tau_{0}\right)$ has no pole at $s=0$, then $L\left(s, \sigma \times \tau_{0}\right)=1$.
Next, suppose τ is a subrepresentation of $\operatorname{Ind}[\delta(a, b, \rho)] \otimes \tau_{0}$. Then $I(s, \sigma \otimes \tau)$ is a subrepresentation of

$$
\text { Ind }|\operatorname{det}|^{s} S t(\rho, p) \otimes|\operatorname{det}|^{\frac{a-b}{4}} S t\left(\rho, \frac{a+b}{2}\right) \otimes \tau_{0}
$$

By multiplicativity of γ-factors,

$$
\gamma(s, \sigma \times \tau, \psi)=\gamma\left(s, \operatorname{St}(\rho, p) \times \tau_{0}, \psi\right) \gamma\left(s \pm \frac{a-b}{4}, \operatorname{St}(\rho, p) \times \operatorname{St}\left(\rho, \frac{a+b}{2}\right), \psi\right) .
$$

We only do the case $\frac{a+b}{2} \geq p>b$. Then $a>p$, and

$$
\begin{aligned}
L(s, \sigma \times \tau)=L(s & \left.+\frac{p-1}{2}, \rho \times \tau_{0}\right) \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) \\
& \times \prod_{i=0}^{b-1} L\left(s+\frac{b-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right)
\end{aligned}
$$

Next, suppose τ is a subrepresentation of $\operatorname{Ind}[\delta(a, \rho)] \otimes \tau_{0}$. Then $I(s, \sigma \otimes \tau)$ is a subrepresentation of

$$
\text { Ind }|\operatorname{det}|^{s} S t(\rho, p) \otimes|\operatorname{det}|^{\left.\frac{1}{2} \frac{a+1}{2}\right]} \operatorname{St}\left(\rho,\left[\frac{a}{2}\right]\right) \otimes \tau_{0}
$$

By multiplicativity of γ-factors,
$\gamma(s, \sigma \times \tau, \psi)=\gamma\left(s, \operatorname{St}(\rho, p) \times \tau_{0}, \psi\right) \gamma\left(s \pm \frac{1}{2}\left[\frac{a+1}{2}\right], \operatorname{St}(\rho, p) \times \operatorname{St}\left(\rho,\left[\frac{a}{2}\right]\right), \psi\right)$.
Suppose first a is even and for convenience, $\frac{a}{2} \geq p$. Then in $\gamma\left(s-\frac{a}{4}, \operatorname{St}(\rho, p) \times\right.$ $\left.\operatorname{St}\left(\rho, \frac{a}{2}\right), \psi\right)$, there is a cancellation between $\gamma\left(s-\frac{1}{2}-\frac{p-1}{2}+i, \rho \times \rho, \psi\right)$ and $\gamma(s-$ $\left.\frac{1}{2}+\frac{p-1}{2}-i, \rho \times \rho, \psi\right)$ for $i=0,1, \ldots,\left[\frac{p-1}{2}\right]$. Hence if p is odd, there is a middle term $\gamma\left(s-\frac{1}{2}, \rho \times \rho, \psi\right)$, which cancels with itself. Therefore,

$$
L(s, \sigma \times \tau)=L\left(s+\frac{p-1}{2}, \rho \times \tau_{0}\right) \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) .
$$

Suppose a is odd and for convenience, $\frac{a-1}{2} \geq p$. Recall that (ρ, τ_{0}) satisfies (C1). Then in $\gamma\left(s-\frac{a+1}{4}, \operatorname{St}(\rho, p) \times \operatorname{St}\left(\rho, \frac{a-1}{2}\right), \psi\right)$, there is a cancellation between $\gamma(s-1-$ $\left.\frac{p-1}{2}+i+1, \rho \times \rho, \psi\right)$ and $\gamma\left(s-1+\frac{p-1}{2}-i, \rho \times \rho, \psi\right)$ for $i=0, \ldots,\left[\frac{p-1}{2}\right]$. Hence if p is odd, only $\gamma\left(s-1-\frac{p-1}{2}, \rho \times \rho, \psi\right)$ contributes. If p is even, two terms $\gamma\left(s-\frac{1}{2}, \rho \times \rho, \psi\right)$ and $\gamma\left(s-1-\frac{p-1}{2}, \rho \times \rho, \psi\right)$ contribute. However, $\gamma\left(s-\frac{1}{2}, \rho \times \rho, \psi\right)$ cancels with itself. By the above lemma, $\gamma\left(s-1-\frac{p-1}{2}, \rho \times \rho, \psi\right)$ cancels with $\gamma\left(s-\frac{p-1}{2}, \rho \times \tau_{0}, \psi\right)$. Hence

$$
L(s, \sigma \times \tau)=\frac{L\left(s+\frac{p-1}{2}, \rho \times \tau_{0}\right)}{L\left(s+\frac{p-1}{2}, \rho \times \rho\right)} \prod_{i=0}^{p-1} L\left(s+\frac{a-1}{2}+\frac{p-1}{2}-i, \rho \times \rho\right) .
$$

This completes the proof of Proposition 3.15.
In general, when a discrete series τ is a subrepresentation of
$\operatorname{Ind}\left[\delta\left(a_{1}, b_{1}, \rho_{1}\right)\right] \otimes \cdots \otimes\left[\delta\left(a_{r}, b_{r}, \rho_{r}\right)\right] \otimes\left[\delta\left(a_{r+1}, \rho_{r+1}\right)\right] \otimes \cdots \otimes\left[\delta\left(a_{r+l}, \rho_{r+l}\right)\right] \otimes \tau_{0}$,
then

$$
\begin{aligned}
\gamma(s, \sigma \times \tau, \psi) & =\gamma\left(s, \operatorname{St}(\rho, p) \times \tau_{0}, \psi\right) \\
& \times \prod_{i=1}^{r} \gamma\left(s \pm \frac{a_{i}-b_{i}}{4}, \operatorname{St}(\rho, p) \times \operatorname{St}\left(\rho_{i}, \frac{a_{i}+b_{i}}{2}\right), \psi\right) \\
& \times \prod_{j=1}^{l} \gamma\left(s \pm \frac{1}{2}\left[\frac{a_{r+j}+1}{2}\right], \operatorname{St}(\rho, p) \times \operatorname{St}\left(\rho_{r+j},\left[\frac{a_{r+j}}{2}\right]\right), \psi\right) .
\end{aligned}
$$

Hence we have a similar formula as in Proposition 3.15 and we can see that $L(s, \sigma \times \tau)$ is holomorphic for $\operatorname{Re}(s)>0$.

Exceptional groups will be treated on a case by case analysis. One of the key arguments is the use of the multiplicativity of γ-factors (Proposition 3.9). In the following, π is a generic tempered representation.

$3.1 D_{n}$ Cases

3.1.1 $D_{n}-1$ Case

See [As, Proposition 3.3]. Due to the complicated nature of the Levi subgroup, it is difficult to apply the multiplicativity of γ-factors with $\operatorname{Spin}(2 n)$, especially for Steinberg representations. Asgari's idea is to use $G \operatorname{Spin}(2 n)$.

3.1.2 $D_{n}-2$ Case

See [As, Proposition 3.3] or Lemma 3.11.

3.1.3 $D_{n}-3$ Case

See [As, Proposition 3.3].

$3.2 \quad E_{6}$ Cases

3.2.1 $\quad E_{6}-1$

Case 1: π is a discrete series. If one of π_{i} 's is not supercuspidal, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $G L_{k} \times G L_{l}$. Apply Proposition 3.10. If all of π_{i} 's are supercuspidal, then apply Lemma 3.4 and Proposition 3.1.

Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $D_{4}-2, D_{5}-2$ and $G L_{k} \times G L_{l}$. Apply Proposition 3.10 and Lemma 3.11.

3.2.2 $\quad E_{6}-2$

Case 1: π is a discrete series. If π_{2} is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If π_{2} is a non-cuspidal square integrable representation, it is given as the unique subrepresentation of Ind $\mu|\cdot|^{2} \otimes \mu|\cdot| \otimes \mu \otimes \mu|\cdot|^{-1} \otimes \mu|\cdot|^{-2}$. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $G L_{1} \times G L_{2} \subset G L_{3}$. Hence it is an Artin factor. Apply Proposition 3.10.

Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $D_{5}-3, D_{4}-2$ and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12. (Since π is unitarily induced from discrete series, there are no shifts in the complex parameter s).

3.2.3 (x) Case; (xxiv) Case in [La]

Apply Proposition 3.1.

3.3 $\quad E_{7}$ Cases

3.3.1 $\quad E_{7}-1$

Case 1: π is a discrete series. If π_{1} or π_{2} is not supercuspidal, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $G L_{k} \times G L_{l}$. Hence it is an Artin factor. Apply Proposition 3.10. Suppose π_{1} and π_{2} are both supercuspidal. If π_{3} is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If π_{3} is given as the unique subrepresentation of $\operatorname{Ind} \rho|\operatorname{det}|^{\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{1}{2}}$, where ρ is a supercuspidal representation of $G L_{2}$, then the rank-one situation in the multiplicativity of γ-factors, is $D_{5}-2$ and $G L_{k} \times G L_{l}$. Apply Proposition 3.10.

Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{6}-1, D_{6}-2, D_{5}-2, D_{4}-2$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.3.2 $\quad E_{7}-2$

Case 1: π is a discrete series. It is exactly the same as $E_{6}-2$ case.
Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{6}-2, D_{n}-3, n=4,5,6, D_{n}-2, n=4,5$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.3.3 $\quad E_{7}-4$

Case 1: π is a discrete series. Suppose π_{1} is supercuspidal. If π_{2} is supercuspidal, then apply Lemma 3.4 and Proposition 3.1. If π_{2} is a Steinberg representation, given
as the unique subrepresentation of Ind $\mu|\cdot|^{\frac{1}{2}} \otimes \mu|\cdot|^{-\frac{1}{2}}$, then from Section 2.6.4, $L\left(1-3 s, \pi, r_{3}\right)$ can have a pole only at $\operatorname{Re}(s)=\frac{1}{2}$. Apply Proposition 3.8.

Suppose π_{1} is given as the unique subrepresentation of Ind $\rho|\operatorname{det}|^{\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{1}{2}}$, where ρ is a supercuspidal representation of $G L_{3}$. If π_{2} is supercuspidal, from Section 2.6.4, we see that $L\left(s, \pi, r_{3}\right)=1$ and $L\left(s, \pi, r_{2}\right)$ is of the form $L\left(s, \tilde{\rho} \times \tilde{\rho} \otimes \omega^{\prime}\right)$, where ω^{\prime} is a unitary character. Hence we can apply Proposition 3.1. If π_{2} is a Steinberg representation, by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $G L_{k} \times G L_{l}$. Apply Proposition 3.10.

Suppose π_{1} is given as the unique subrepresentation of Ind $\rho|\operatorname{det}|^{1} \otimes \rho \otimes \rho|\operatorname{det}|^{-1}$, where ρ is a supercuspidal representation of $G L_{2}$. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $D_{4}-2$ and $G L_{2} \times$ $G L_{1}$. Apply Proposition 3.10 and Lemma 3.11.

If π_{1} is given as the unique subrepresentation of $\operatorname{Ind} \mu|\cdot|^{\frac{5}{2}} \otimes \mu|\cdot|^{\frac{3}{2}} \otimes \mu|\cdot|^{\frac{1}{2}} \otimes$ $\mu|\cdot|^{-\frac{1}{2}} \otimes \mu|\cdot|^{-\frac{3}{2}} \otimes \mu|\cdot|^{-\frac{5}{2}}$, it is similar.

Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{6}-2, D_{6}-2, D_{5}-2, D_{4}-2$ and $G L_{k} \times G L_{l}$. Same for L-factors. Apply Proposition 3.12.

3.3.4 (xi) in [La]

Case 1: σ is a discrete series. If σ is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If σ is a Steinberg representation, given as the unique subrepresentation of Ind, $\mu|\cdot|^{3} \otimes \mu|\cdot|^{2} \otimes \cdots \otimes \mu|\cdot|^{-3}$, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $G L_{2} \subset G L_{3}$. Apply Proposition 3.10 .

Case 2: σ is not a discrete series. Then σ is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for (\mathbf{x}) in [La], $A_{n-1} \subset D_{n}, n=4,5,6$, and $G L_{k} \times G L_{l}$. Same for L-factors. Apply Proposition 3.12.

3.3.5 (xxvi) and (xxx) in [La]

Apply Proposition 3.1.

$3.4 \quad E_{8}$ Cases

3.4.1 $\quad E_{8}-1$

Case 1: π is a discrete series. If all of π_{i} 's are supercuspidal, apply Lemma 3.4 and Proposition 3.1. If not all of π_{i} 's are supercuspidal, one of them is a Steinberg representation, which is a unique subrepresentation of a principal series. Then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-factors for $G L_{k} \times G L_{l}$. Apply Proposition 3.10.

Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from a discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{7}-1, E_{6}-1, D_{n}-2, n=4,5,6,7$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.4.2 $E_{8}-2$

Case 1: π is a discrete series. If π_{2} is a Steinberg representation, which is a subrepresentation of a principal series, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-factors for $G L_{k} \times G L_{l}$. Apply Proposition 3.10.

Suppose π_{2} is supercuspidal. If π_{1} is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If π_{1} is a Steinberg representation, which is a subrepresentation of a principal series, then apply Proposition 3.10 through multiplicativity of γ-factors. If π_{1} is given as the unique subrepresentation of $\operatorname{Ind} \rho|\operatorname{det}|^{\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{1}{2}}$, where ρ is a supercuspidal representation of $G L_{2}$, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{6}-2$, namely,

$$
\gamma\left(s, \pi, r_{1}, \psi\right)=\gamma\left(s+\frac{1}{2}, \sigma_{1}, \psi\right) \gamma\left(s-\frac{1}{2}, \sigma_{2}, \psi\right)
$$

where σ_{1}, σ_{2} are square integrable representations of M^{\prime} whose derived group is $S L_{2} \times$ $S L_{5}$. Note that $L\left(s, \sigma_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$ by the $E_{6}-2$ case and hence the only possible pole of $L\left(s, \pi, r_{1}\right)$ is $\operatorname{Re}(s)=\frac{1}{2}$, which is excluded.
Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{7}-1, E_{7}-2, E_{6}-2, D_{n}-3, n=4,5,6,7$, $D_{n}-2, n=4,5,6$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.4.3 $E_{8}-5$

Case 1: π is a discrete series. If π is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If π is not supercuspidal, one of π_{i} 's is a subrepresentation of a principal series, and apply Proposition 3.10.
Case 2: π is not a discrete series. Then π is a full induced representation, unitarily induced from a discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for $E_{7}-4, E_{6}-1, D_{5}-3, D_{n}-2$, $n=4,5,6,7$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.4.4 (xiii) in [La]

Case 1: σ is a discrete series. If σ is supercuspidal, apply Lemma 3.4 and Proposition 3.1. If σ is given as the unique subrepresentation of $\operatorname{Ind} \rho|\operatorname{det}|^{\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{1}{2}}$, where ρ is a supercuspidal representation of $G L_{4}$, then from Section 2.7.6, we see that $L\left(s, \pi, r_{3}\right)=1$ and $L\left(s, \pi, r_{2}\right)$ is of the form $L\left(s, \tilde{\rho} \times \tilde{\rho} \otimes \omega^{\prime}\right)$, where ω^{\prime} is a unitary character. Hence we can apply Proposition 3.1. If σ is given as the unique subrepresentation of $\operatorname{Ind} \rho|\operatorname{det}|^{\frac{3}{2}} \otimes \rho|\operatorname{det}|^{\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{1}{2}} \otimes \rho|\operatorname{det}|^{-\frac{3}{2}}$, where ρ is a supercuspidal
representation of $G L_{2}$, then by multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-factors for $D_{4}-2$ and $G L_{2} \times G L_{1}$. Apply Proposition 3.10 and Lemma 3.11. If σ is a Steinberg representation, which is a subrepresentation of a principal series, then apply Proposition 3.10 through multiplicativity of γ-factors.
Case 2: σ is not a discrete series. Then σ is a full induced representation, unitarily induced from discrete series. By multiplicativity of γ-factors, $\gamma\left(s, \pi, r_{1}, \psi\right)$ is a product of γ-functions for rank-one situations for (x), (xi), $A_{n-1} \subset D_{n}, n=4,5,6,7$, and $G L_{k} \times G L_{l}$. Similarly for L-factors. Apply Proposition 3.12.

3.4.5 (xxxii) in [La]

Apply Proposition 3.1.
In conclusion, we have proved:
Theorem 3.16 Let π be tempered and generic. Then, except possibly for the four cases $E_{7}-3, E_{8}-3, E_{8}-4$, and (xxviii) in [La] $\left(D_{7} \subset E_{8}\right), L\left(s, \pi, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s)>0$.

Remark In the four exceptional cases above, the Levi subgroups involve either a group of type D_{n} (spin group) or an exceptional group of type E_{6}. Due to lack of the classification of generic discrete series for the groups of type D_{n} and E_{6}, we are unable to prove the conjecture. However, we may only need a partial classification.

4 Proof of Assumption (A)

Recall the following from [Ki3]:
Assumption (A) Let $\pi=\bigotimes_{v} \pi_{v}$ be a generic cuspidal representation of $\mathbf{M}(\mathbb{A})$. Then $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s) \geq \frac{1}{2}$ for any v.

This assumption is absolutely necessary in determining poles of automorphic L functions in Langlands functionality [CKPSS, Ki-Sh, Ki5]. It is also essential in determining the residual spectrum (cf. [Ki1]). In fact, we need a stronger asseriton that $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0$. We start with:

Lemma 4.1 Let ρ be a supercuspidal representation of $\mathbf{M}\left(F_{v}\right)$. Then the normalized intertwining operator $N\left(s, \rho, w_{0}\right)$ is holomorphic and non-zero except possibly at $\operatorname{Re}(s)=-1$, unless $m \geq 2$ and the induced representation $I(s, \rho)$ is reducible at $s=\frac{1}{2}$, in which case $N\left(s, \rho, w_{0}\right)$ is holomorphic and non-zero except at $\operatorname{Re}(s)=-\frac{1}{2}$.

Proof By the general theory in [Sh1], in (1.1), $\prod_{i=1}^{m} L\left(i s, \rho, r_{i}\right)^{-1} A\left(s, \rho, w_{0}\right)$ is entire and non-zero for a supercuspidal representation ρ. Therefore the poles of $N\left(s, \rho, w_{0}\right)$ come from zeros of $\prod_{i=1}^{m} L\left(1+i s, \rho, r_{i}\right)^{-1}$. However, by Lemma 3.4,

$$
\prod_{i=1}^{m} L\left(1+i s, \rho, r_{i}\right)^{-1}
$$

has a zero at $\operatorname{Re}(s)=-\frac{1}{2}$ or -1 , at only one of them.

Lemma 4.2 Let π_{v} be a tempered, generic representation of $\mathbf{M}\left(F_{v}\right)$. Then $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s) \geq 0$, except for the four cases excluded in Theorem 3.16.

Proof In (1.1), $A\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>0$. By Theorem 3.16, $L\left(s, \pi_{v}, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s)>0$ except for the cases excluded in Theorem 3.16. Hence $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>0$. For $\operatorname{Re}(s)=0$, it is well-known by the theory of R-groups. (Or see [Zh, Lemma 2].)

Lemma 4.3 Let π_{v} be a generic tempered representation which is a subrepresentation of $I(\Lambda, \rho)$, where ρ is a supercuspidal representation and the coordinates of Λ are halfintegers, i.e., $\left\langle\Lambda, \beta^{\vee}\right\rangle$ is a half-integer for all positive roots. Then $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>-\frac{1}{2 m}$, where m is as in (1.1).

Proof We only have to show for $-\frac{1}{2 m}<\operatorname{Re}(s)<0$. By the assumption, $I\left(s, \pi_{v}\right) \subset$ $I(s \tilde{\alpha}+\Lambda, \rho)$. Then

$$
N\left(s, \pi_{v}, w_{0}\right)=\left.N\left(s \tilde{\alpha}+\Lambda, \rho, w^{\prime}\right)\right|_{I\left(s, \pi_{v}\right)} .
$$

Note that $\left\langle s \tilde{\alpha}+\Lambda, \beta^{\vee}\right\rangle=i s+$ half-integers, where $i=1, \ldots, m$. Hence by Lemma 4.1, $N\left(s \tilde{\alpha}+\Lambda, \rho, w^{\prime}\right)$ is holomorphic except for $\operatorname{Re}(s)=\frac{n}{i}$ or $\frac{n}{2 i}$, where $i=1, \ldots, m$ and $n \in \mathbb{Z}$. For $n \in \mathbb{Z}$, we have $\frac{n}{i}, \frac{n}{2 i} \notin\left(-\frac{1}{2 m}, 0\right)$, and so $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic for $-\frac{1}{2 m}<\operatorname{Re}(s)<0$. Since its inverse is holomorphic in this region, it would have to be non-zero there also.

In many cases, such as $\mathbf{M}=G L_{k} \times S O_{2 l}$ or $G L \times S O_{2 l+q}$, we have $\left\langle s \tilde{\alpha}+\Lambda, \beta^{\vee}\right\rangle=i s+$ integers. In those cases, $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>-\frac{1}{m}$.

Corollary 4.4 Let π_{v} be a generic tempered representation.
(1) In the case of $D_{n}-2, N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>-\frac{1}{4}$.
(2) In the case of $A_{n-1} \subset D_{n}, N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>-\frac{1}{2}$.

Proof Just observe that in the case of $D_{n}-2, A_{n-1} \subset D_{n}, \pi_{v}$ is a tempered representation of $G L_{k}$ and we know that any tempered representation of $G L_{k}$ is a subrepresentation of $I(\Lambda, \rho)$, where ρ is a supercuspidal representation of $G L$ and the coordinates of Λ are half-integers.

In the case of $G L_{k} \times G L_{l} \subset G L_{k+l}$, we have (see [Ki4, Lemma 2.10]):
Proposition 4.5 ([M-W2]) Let $\sigma(\tau)$ be a tempered representation of $G L_{k}$ ($G L_{l}$, resp.). Then the normalized intertwining operator $N\left(s, \sigma \otimes \tau, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s)>-1$.

Now let $\pi=\bigotimes_{\nu} \pi_{v}$ be a generic unitary cuspidal representation of $\mathbf{M}(\mathbb{A})$. Then for all v, π_{v} is generic and unitary. Suppose π_{v} is non-tempered. The following standard module conjecture is proved for various cases including $G L_{n}$. Especially it is true for archimedean places due to Vogan [V]. In [Mu1], it is proved for $S p_{2 n}$ and $\mathrm{SO}_{2 n+1}$ over non-archimedean places. In [Ca-Sh], it is proved for any quasi-split group when π_{0} is supercuspidal.
Standard Module Conjecture Given a non-tempered, generic π_{v}, there is a tempered data π_{0} and a complex parameter Λ_{0} which is in the corresponding positive Weyl chamber so that

$$
\pi_{v}=I_{M_{0}}\left(\Lambda_{0}, \pi_{0}\right)=\operatorname{Ind}_{M_{0}}^{M}\left(\pi_{0} \otimes q_{v}^{\left\langle\Lambda_{0}, H_{P_{0}}^{M}()\right\rangle}\right)
$$

Recall the following [Ki3, Lemma 2.4].
Lemma 4.6 If s $\tilde{\alpha}+\Lambda_{0}$ is in the corresponding positive Weyl chamber for $\operatorname{Re}(s) \geq \frac{1}{2}$ together with standard module conjecture and Conjecture 7.1 of [Sh1], then Assumption (A) holds.

Lemma 4.7 ([Zh]) Let π_{0} be an irreducible tempered, generic representation and consider the induced representation $I\left(\Lambda, \pi_{0}\right)$. Assume Conjecture 7.1 of [Sh1] for each rankone situation. If $N\left(\Lambda, \pi_{0}, w_{0}\right)$ is holomorphic at Λ_{0}, then it is non-zero at Λ_{0}.

Recall:

Proposition 4.8 (Langlands [La2, Lemma 7.5] or [Ki3, Proposition 2.1]) Let π be a cuspidal representation of $\mathbf{M}(\mathbb{A})$. Unless $\mathbf{P}=\mathbf{M N}$ is self-conjugate and $w_{0} \pi \simeq \pi$, the global intertwining operator $M\left(s, \pi, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0$.

The following proposition is an immediate consequence of [Ki4, Proposition 1.8], (see the proof of [Sh3, Theorem 5.2]).

Proposition 4.9 Let $\pi=\bigotimes_{v} \pi_{v}$ be a unitary, generic cuspidal representation of $\mathbf{M}(\mathbb{A})$. Fix a place v. If π_{v} is non-tempered, assume the standard module conjecture and write π_{v} as $\pi_{v}=I_{M_{0}}\left(\Lambda_{0}, \pi_{0}\right)$. Assume Conjecture 7.1 of [Sh1] for each rank-one situation so that Lemma 4.7 may be applied. Then the normalized operator $N\left(s, \pi_{\nu}, w_{0}\right)$ and the local L-function $L\left(s, \pi_{v}, r_{1}\right)$ are holomorphic for $\operatorname{Re}(s) \geq 1$.

Proof Fix a place w where π_{w} is spherical. By checking the L-functions in Section 2 (or use [Ki-Sh, Proposition 2.1]), we can take a grössencharacter χ such that
(1) $\chi_{v}=1$ and χ_{w} is highly ramified;
(2) $w_{0}(\pi \otimes \chi) \not 千 \pi \otimes \chi$;
(3) $w_{0}^{\prime}\left(\pi_{i}^{\prime} \otimes \chi\right) \nsucceq \pi_{i}^{\prime} \otimes \chi$ for all i, where π_{i}^{\prime} is as in Proposition 3.5, namely, $L\left(s, \pi, r_{i}\right)=L\left(s, \pi_{i}^{\prime}, r_{1}^{\prime}\right)$, and w_{0}^{\prime} is the Weyl group element for π_{i}^{\prime}.
Then $M\left(s, \pi \otimes \chi, w_{0}\right)$ and $M\left(s, \pi_{i}^{\prime} \otimes \chi, w_{0}^{\prime}\right)$ are holomorphic for $\operatorname{Re}(s) \geq 0$ by Proposition 4.8. Hence by omitting χ, we can assume that $M\left(s, \pi, w_{0}\right)$ and $M\left(s, \pi_{i}^{\prime}, w_{0}^{\prime}\right)$ are holomorphic for $\operatorname{Re}(s) \geq 0$.

Recall (see [Sh3, (2.7)])

$$
\begin{equation*}
M\left(s, \pi, w_{0}\right) f=\prod_{i=1}^{m} \frac{L_{S}\left(i s, \pi, r_{i}\right)}{L_{S}\left(1+i s, \pi, r_{i}\right)} \bigotimes_{u \notin S} \tilde{f}_{u} \otimes \bigotimes_{u \in S} A\left(s, \pi_{u}, w_{0}\right) f_{u} \tag{4.1}
\end{equation*}
$$

where S is a finite set of places including archimedean places such that $v \in S$ and π_{u} is unramified for $u \notin S$, and $f=\bigotimes_{u} f_{u}$ is such that for each $u \notin S, f_{u}$ is the unique K_{u}-fixed function normalized by $f_{u}\left(e_{u}\right)=1$ and \tilde{f}_{u} is the K_{u}-fixed function in the space of $I\left(-s, w_{0}\left(\pi_{u}\right)\right)$, normalized in the same way.

Now, by induction, we show that for all $i, L_{S}\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s) \geq \frac{1}{2}$, and has no zeros for $\operatorname{Re}(s) \geq 1$. For each $u \in S, A\left(s, \pi_{u}, w_{0}\right)$ is not a zero operator. Since $M\left(s, \pi, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0$, the quotient $\prod_{i=1}^{m} \frac{L_{s}\left(i s, \pi, r_{i}\right)}{L_{s}\left(1+i s, \pi, r_{i}\right)}$ is holomorphic for $\operatorname{Re}(s) \geq 0$. Now starting at $\operatorname{Re}(s)>N_{0}$, where $\prod_{i=1}^{m} L_{S}\left(i s, \pi, r_{i}\right)$ is absolutely convergent, and arguing inductively, we can see that $\prod_{i=1}^{m} L_{S}\left(i s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0$.

Next, recall the ψ-Fourier coefficient of the Eisenstein series [Sh2] (see [Ki3, Lemma 2.3]):

$$
E_{\psi}(s, f, e, P)=\frac{\prod_{u \in S} W_{f_{u}}\left(s, e_{u}\right)}{\prod_{i=1}^{m} L_{S}\left(1+i s, \pi, r_{i}\right)}
$$

Since $M\left(s, \pi, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0$, the Eisenstein series is holomorphic in the same region, and hence $\prod_{i=1}^{m} L_{S}\left(1+i s, \pi, r_{i}\right)$ has no zeros for $\operatorname{Re}(s) \geq 0$.

Now we apply the induction on m. First, let $m=1$. It is clear. Suppose our assertion is true for $L_{S}\left(s, \pi, r_{i}\right), i=2, \ldots, m$, i.e., for all $2 \leq i \leq m, L_{S}\left(s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s) \geq \frac{1}{2}$, and has no zeros for $\operatorname{Re}(s) \geq 1$. Since $\prod_{i=1}^{m} L_{S}\left(i s, \pi, r_{i}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 0, L_{S}\left(s, \pi, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s) \geq \frac{1}{2}$. Since $\prod_{i=1}^{m} L_{S}\left(1+i s, \pi, r_{i}\right)$ has no zeros for $\operatorname{Re}(s) \geq 0, L_{S}\left(s, \pi, r_{1}\right)$ has no zeros for $\operatorname{Re}(s) \geq 1$. This finishes the induction step.

Applying the induction again on m, this time for the local L-functions, we can assume that $L\left(s, \pi_{v}, r_{i}\right), i=2, \ldots, m$, is holomorphic for $\operatorname{Re}(s) \geq 1$. Now we normalize $A\left(s, \pi_{v}, w_{0}\right)$ as in (1.1). Since for each $u \in S, u \neq v, A\left(s, \pi_{u}, w_{0}\right)$ is not a zero operator, pick $f_{u}, u \in S, u \neq v$, so that $A\left(s, \pi_{u}, w_{0}\right) f_{u} \neq 0$. Then (4.1) is written as

$$
\begin{aligned}
M\left(s, \pi, w_{0}\right) f=\prod_{i=1}^{m} \frac{L_{S}\left(i s, \pi, r_{i}\right)}{L_{S}\left(1+i s, \pi, r_{i}\right)} & \prod_{i=1}^{m} \frac{L\left(i s, \pi_{v}, r_{i}\right)}{L\left(1+i s, \pi_{v}, r_{i}\right)} \bigotimes_{u \notin S} \tilde{f}_{u} \\
\otimes & \bigotimes_{u \in S, u \neq v} A\left(s, \pi_{u}, w_{0}\right) f_{u} \otimes \frac{N\left(s, \pi_{v}, w_{0}\right)}{\prod_{i=1}^{m} \epsilon\left(s, \pi_{v}, r_{i}, \psi_{v}\right)}
\end{aligned}
$$

Now pick $N_{0} \geq 1$ so large that $L\left(1+s, \pi_{v}, r_{1}\right)$ has no poles for $\operatorname{Re}(s) \geq N_{0}$. If $\operatorname{Re}(s) \geq$ $N_{0}-1$, the left-hand side is holomorphic and each term on the right-hand side except possibly $N\left(s, \pi_{v}, w_{0}\right)$ is not zero there. Hence the normalized operator $N\left(s, \pi_{v}, w_{0}\right)$ is holomorphic for $\operatorname{Re}(s) \geq N_{0}-1$. By Lemma 4.7, $N\left(s, \pi_{v}, w_{0}\right)$ is non-vanishing for $\operatorname{Re}(s) \geq N_{0}-1$ (apply it by identifying $N\left(s, \pi_{v}, w_{0}\right)$ with $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, w_{0}\right)$). Hence $L\left(s, \pi_{v}, r_{1}\right)$ has no poles for $\operatorname{Re}(s) \geq N_{0}-1$. Arguing inductively, we see that $L\left(s, \pi_{v}, r_{1}\right)$ has no poles for $\operatorname{Re}(s) \geq 1$.

The above proposition has a very important application when applied to the $E_{8}-2$ case. Let $\pi=\bigotimes_{v} \pi_{v}$ be a cuspidal representation of $G L_{2}(\mathbb{A})$. Let $\operatorname{diag}\left(\alpha_{v}, \beta_{v}\right)$ be the Satake parameter for an unramified π_{v}. Let $\pi_{1}=A^{3}(\pi)=\operatorname{Sym}^{3}(\pi) \otimes \omega_{\pi}^{-1}$, constructed in [Ki-Sh], and $\pi_{2}=\operatorname{Sym}^{4}(\pi)$, constructed in [Ki5]. Then we obtain the L-function $L\left(s, \pi_{1} \otimes \pi_{2}, \rho_{4} \otimes \wedge^{2} \rho_{5}\right)$ in the $E_{8}-2$ case. In [Ki-Sh2], we applied the machinery of [Sh3] and showed that $q_{v}^{-1 / 9}<\left|\alpha_{v}\right|,\left|\beta_{v}\right|<q_{v}^{1 / 9}$, using the fact that the local L-function $L\left(s, \pi_{v}, r_{1}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 1$ for π_{v} unramified [Sh3, Lemma 5.8]. Now our explicit calculation of the L-functions enable us to extend the result to the archimedean places, thanks to Proposition 4.9. Let S be a finite set of places of finite places such that π_{v} is unramified for $v \notin S, v<\infty$. By standard calculation, we have

$$
\begin{aligned}
L_{S}\left(s, \pi_{1} \otimes \pi_{2}, \rho_{4} \otimes\right. & \left.\wedge^{2} \rho_{5}\right)=L_{S}\left(s, \pi, \operatorname{Sym}^{9}\right) L_{S}\left(s, \pi, \operatorname{Sym}^{7} \otimes \omega_{\pi}\right) \\
& \times L_{S}\left(s, \pi, \operatorname{Sym}^{5} \otimes \omega_{\pi}^{2}\right)^{2} L_{S}\left(s, \operatorname{Sym}^{3}(\pi) \otimes \omega_{\pi}^{3}\right)^{2} L_{S}\left(s, \pi \otimes \omega_{\pi}^{4}\right)
\end{aligned}
$$

This immediately implies meromorphic continuation and the functional equation of the 9th symmetric power L-functions. Now Proposition 4.9 implies that for each v, $L\left(s, \pi_{1 v} \otimes \pi_{2 v}, \rho_{4} \otimes \wedge^{2} \rho_{5}\right)$ is holomorphic for $\operatorname{Re}(s) \geq 1$, and so is $L\left(s, \pi_{v}, \operatorname{Sym}^{9}\right)$. Therefore we have:

Theorem 4.10 Let $\pi=\otimes_{v} \pi_{v}$ be a cuspidal representation of $G L_{2}(\mathbb{A})$. Let π_{v} be a local (finite or infinite) spherical component, given by $\pi_{v}=\operatorname{Ind}\left(|\cdot|{ }_{v}^{s_{1 v}} \otimes|\cdot|_{v}^{s_{2} v}\right)$. Then

$$
\left|\operatorname{Re}\left(s_{i v}\right)\right|<\frac{1}{9}
$$

If $F=(\mathbb{O}, v=\infty$, this means

$$
\lambda_{1}=\frac{1}{4}\left(1-s^{2}\right)>\frac{77}{324} \approx 0.238
$$

where $s=2 s_{1 v}=-2 s_{2 v}$ and λ_{1} is the first eigenvalue of the Laplace operator on the corresponding hyperbolic space.

Now we prove:
Theorem 4.11 Assumption (A) holds except possibly for the following twelve cases. Five cases where the standard module conjecture is not available: $B_{n}-1(\operatorname{Spin}(2 n+1))$; $D_{n}-1(\operatorname{Spin}(2 n)) ;(\mathbf{x x x})$ in [La] $\left(E_{6} \subset E_{7}\right) ; E_{8}-4$; $(\mathbf{x x x i i})$ in [La] $\left(E_{7} \subset E_{8}\right)$. Seven cases where the Levi subgroup contains a group of type B_{3}, C_{3}, D_{n} : (xviii) in [La] $\left(B_{3} \subset F_{4}\right) ;(x x i i)$ in [La] $\left(C_{3} \subset F_{4}\right) ;(x x i v)$ in [La] $\left(D_{5} \subset E_{6}\right) ; E_{7}-3 ;(x x v i)$ in [La] $\left(D_{6} \subset E_{7}\right) ; E_{8}-3$; (xxviii) in [La] $\left(D_{7} \subset E_{8}\right)$.

By Lemma 4.2, we only have to show for non-tempered π_{v}. Using standard module conjecture, we denote

$$
I\left(s, \pi_{v}\right)=I\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}\right) \subset I\left(s \tilde{\alpha}+\Lambda_{0}^{\prime}, \sigma_{v}\right)
$$

where π_{0} is a generic tempered representation and σ_{v} is a generic discrete series. Hence we can identify $N\left(s, \pi_{v}, w_{0}\right)$ with $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}_{0}\right)$. Also we have

$$
N\left(s, \pi_{v}, w_{0}\right)=\left.N\left(s \tilde{\alpha}+\Lambda_{0}^{\prime}, \sigma_{v}, w^{\prime}\right)\right|_{I\left(s, \pi_{v}\right)}
$$

It is enough to show that $N\left(s \tilde{\alpha}+\Lambda_{0}^{\prime}, \sigma_{v}, w^{\prime}\right)$ is holomorphic for $\operatorname{Re}(s) \geq \frac{1}{2}$. Then $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}_{0}\right)$ is holomorphic there, and by Zhang's lemma (Lemma 4.7), it is non-zero as well. In what follows, we can assume that s is real. All we need to do is that for $\frac{1}{2} \leq s<1$, rank-one normalized operators are holomorphic. We can see checking case by case, that in the cases under consideration, rank-one operators for the exceptional four cases which were excluded in Theorem 3.16 do not appear. By identifying roots of \mathbf{G} with respect to a parabolic subgroup, with those of \mathbf{G} with respect to the maximal torus, it is enough to check $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle>-1$ if the rankone operators are for those of $G L_{k} \times G L_{l} \subset G L_{k+l}$. If there are rank-one operators for other situation, we need to check $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle>-\frac{1}{2 m}$.

We check case by case. First recall the classification of unitary representations of $G L_{n}\left(F_{v}\right)$ due to Tadic [Ta]: a generic, unitary representation π_{v} is of the form

$$
\begin{aligned}
\pi_{v} & =\operatorname{Ind}|\operatorname{det}|^{r_{1}} \sigma_{1} \otimes|\operatorname{det}|^{r_{k}} \sigma_{k} \otimes \tau_{1} \otimes \cdots \otimes \tau_{l} \otimes|\operatorname{det}|^{-r_{k}} \sigma_{k} \otimes \cdots \otimes|\operatorname{det}|^{-r_{1}} \sigma_{1} \\
& =I\left(\Lambda_{0}, \pi_{0}\right)
\end{aligned}
$$

where $0<r_{k} \leq \cdots \leq r_{1}<\frac{1}{2}$ and $\sigma_{1}, \ldots, \sigma_{k}, \tau_{1}, \ldots, \tau_{l}$ are discrete series of $G L_{n_{i}}\left(F_{v}\right)$. Here we can write Λ_{0} as $\Lambda_{0}=s_{1} e_{1}+s_{2} e_{2}+\cdots+\left(-s_{2}\right) e_{n-1}+\left(-s_{1}\right) e_{n}$, where $0 \leq s_{\left[\frac{n}{2}\right]} \leq$ $\cdots \leq s_{2} \leq s_{1}<\frac{1}{2}$. In terms of roots, $\Lambda_{0}=s_{1} \alpha_{1}+\left(s_{1}+s_{2}\right) \alpha_{2}+\cdots+\left(s_{1}+\cdots+s_{\left[\frac{n}{2}\right]}\right) \alpha_{\left[\frac{n}{2}\right]}+$ $\left(s_{1}+\cdots+s_{\left[\frac{n}{2}\right]-1}\right) \alpha_{\left[\frac{n}{2}\right]+1}+\cdots+s_{1} \alpha_{n-1}$, where $\left\{\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}\right\}$ is the set of simple roots.

Also let $\tau=\bigotimes_{v} \tau_{v}$ be a generic cuspidal representation of

$$
G_{n}(\mathbb{A})=S p_{2 n}(\mathbb{A}), S O_{2 n+1}(\mathbb{A})
$$

We showed in [Ki4, Lemma 3.3] that τ_{v} is of the form

$$
\tau_{v}=\operatorname{Ind}|\operatorname{det}|^{r_{1}} \tau_{1} \otimes \cdots \otimes|\operatorname{det}|^{r_{k}} \tau_{k} \otimes \tau_{0}=I\left(\Lambda_{0}, \pi_{0}\right)
$$

where $0<r_{k} \leq \cdots \leq r_{1}<1$ and $\tau_{1}, \ldots, \tau_{k}$ are discrete series of $G L_{n_{i}}\left(F_{v}\right)$ and τ_{0} is a generic tempered representation of $G_{l}\left(F_{v}\right)$. We can write Λ_{0} as $\Lambda_{0}=s_{1} e_{1}+\cdots+$ $s_{n} e_{n}$, where $0 \leq s_{n} \leq \cdots \leq s_{1}<1$. We did not treat $\mathrm{SO}_{2 n}$ in [Ki4] because the standard module conjecture was not available. However, it is now proved for $\mathrm{SO}_{2 n}$ by Muić [Mu2]. Hence we have the same result, except that Langlands' data are more complicated [Ja1]: τ_{v} is of the same form as above, or it is induced from the Levi subgroup $M=G L_{n_{1}} \times \cdots \times G L_{n_{k}} \times F^{\times}$. In that case,

$$
\tau_{v}=\operatorname{Ind}|\operatorname{det}|^{r_{1}} \tau_{1} \otimes \cdots \otimes|\operatorname{det}|^{r_{k-1}} \tau_{k-1} \otimes| |^{r_{k}} \mu=I\left(\Lambda_{0}, \pi_{0}\right)
$$

where $\left|r_{k}\right|<r_{k-1}<\cdots<r_{1}<1$, and $\tau_{1}, \ldots, \tau_{k}$ are tempered representations of $G L_{n_{i}}$ and μ is a unitary character of F^{\times}. Hence in the case of $\mathrm{SO}_{2 n}$, we can write Λ_{0} as $\Lambda_{0}=s_{1} e_{1}+\cdots+s_{n-1} e_{n-1}+s_{n} e_{n}$, where $\left|s_{n}\right| \leq s_{n-1} \leq \cdots \leq s_{1}<1$.

$4.1 \quad D_{n}$ Cases

$D_{n}-1$: We cannot prove Assumption (A) if π_{2} is an arbitrary generic cuspidal representation of $G \operatorname{Spin}(2 l, A)$ since the standard module conjecture is not available. So let π_{2} be a generic cuspidal representation of $G S O_{2 l}(\mathbb{A})$ and extend it to a generic cuspidal representation of $G \operatorname{Spin}(2 l, \mathbb{A})$, using the homomorphism $G \operatorname{Spin}(2 l) \rightarrow$ $\mathrm{GSO}_{2 l}$. Then we can apply the standard module conjecture.

In this case, $\tilde{\alpha}=e_{1}+\cdots+e_{k} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+\cdots+\left(-r_{2}\right) e_{k-1}+\left(-r_{1}\right) e_{k}+r_{k+1} e_{k+1}+$ $\cdots+r_{n-1} e_{n-1}+r_{n} e_{n}$, where $\frac{1}{2}>r_{1} \geq \cdots \geq r_{\left[\frac{k}{2}\right]} \geq 0,1>r_{k+1} \geq \cdots \geq r_{n-1} \geq\left|r_{n}\right|$. Hence

$$
s \tilde{\alpha}+\Lambda_{0}=\left(s+r_{1}\right) e_{1}+\cdots+\left(s-r_{1}\right) e_{k}+r_{k+1} e_{k+1}+\cdots+r_{n-1} e_{n-1}+r_{n} e_{n}
$$

Therefore, we see that if $s \geq \frac{1}{2}, s-r_{1}-r_{k+1}>-1$ for rank-one situations of $G L_{a} \times G L_{b}$. Other rank-one situations appear only when $r_{m}=0$ for some $m>k$. In that case, rank-one operators are in the corresponding positive Weyl chamber, and Lemma 4.6 applies.
$D_{n}-2$: In this case, $\tilde{\alpha}=e_{1}+\cdots+e_{n-2} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+\cdots+\left(-r_{2}\right) e_{n-3}+$ $\left(-r_{1}\right) e_{n-2}+s_{1}\left(e_{n-1}-e_{n}\right)+s_{2}\left(e_{n-1}+e_{n}\right)$, where $\frac{1}{2}>r_{1} \geq r_{2} \geq \cdots \geq 0$ and $\frac{1}{2}>s_{1}, s_{2} \geq 0$. Here $\pi_{2 v}$ is tempered if $s_{1}=0$. Hence
$s \tilde{\alpha}+\Lambda_{0}=\left(s+r_{1}\right) e_{1}+\left(s+r_{2}\right) e_{2}+\cdots+\left(s-r_{2}\right) e_{n-3}+\left(s-r_{1}\right) e_{n-2}+\left(s_{1}+s_{2}\right) e_{n-1}+\left(-s_{1}+s_{2}\right) e_{n}$.

The rank-one situations are $G L_{k} \times G L_{l}$, unless s_{1} or s_{2} is zero, in which case we can see that the rank-one situations are in the corresponding positive Weyl chamber, and Lemma 4.6 applies. Suppose none of s_{1} and s_{2} are zero. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+s_{1}+s_{2}\right)>-1$, if $s \geq \frac{1}{2}$.
$D_{n}-3$: In this case, $\Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+\cdots+\left(-r_{2}\right) e_{n-4}+\left(-r_{1}\right) e_{n-3}+\left(r_{1}^{\prime}+r_{2}^{\prime}\right) e_{n-2}+$ $\left(r_{1}^{\prime}-r_{2}^{\prime}\right) e_{n-1}$, where $\frac{1}{2}>r_{1} \geq \cdots \geq r_{\left[\frac{n-3}{2}\right]} \geq 0, \frac{1}{2}>r_{1}^{\prime} \geq r_{2}^{\prime} \geq 0$. Here $r_{1}=0$ if $\pi_{1 v}$ is tempered. The same is true for $\pi_{2 v}$. Hence

$$
s \tilde{\alpha}+\Lambda_{0}=\left(s+r_{1}\right) e_{1}+\cdots+\left(s-r_{1}\right) e_{n-3}+\left(r_{1}^{\prime}+r_{2}^{\prime}\right) e_{n-2}+\left(r_{1}^{\prime}-r_{2}^{\prime}\right) e_{n-1} .
$$

The rank-one situations are $G L_{k} \times G L_{l}$, unless $r_{1}^{\prime}=r_{2}^{\prime} \neq 0$, in which case the rank-one operator is for $D_{k}-2$. It is the case when $\pi_{2 v}=\operatorname{Ind}|\operatorname{det}|^{r^{\prime}} \rho \otimes|\operatorname{det}|^{-r^{\prime}} \rho$, where ρ is a tempered representation of $G L_{2}$. Then by direct computation, we see that $N\left(s \tilde{\alpha}+\Lambda_{0}, \pi_{0}, \tilde{w}_{0}\right)$ is a product of the following three operators; $N\left(s \tilde{\alpha}^{\prime}+\Lambda_{0}^{\prime}, \pi_{1 v} \otimes\right.$ $\left.\rho \otimes \rho, w_{0}^{\prime}\right), N\left(\left(s-2 r^{\prime}\right) \tilde{\alpha}^{\prime}+\Lambda_{0}^{\prime}, \pi_{1 v} \otimes \omega_{\rho}, w_{0}^{\prime}\right), N\left(\left(s+2 r^{\prime}\right) \tilde{\alpha}^{\prime}+\Lambda_{0}^{\prime}, \pi_{1 v} \otimes \omega_{\rho}, w_{0}^{\prime}\right)$, where $s \tilde{\alpha}^{\prime}+\Lambda_{0}^{\prime}=\left(s+r_{1}\right) e_{1}+\cdots+\left(s-r_{1}\right) e_{n-3}$. The first operator is the operator for the $D_{k}-2$ case and it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. The last two operators are the operators for $G L_{k} \times G L_{1}$. Since $s-2 r^{\prime}-r_{1}>-1$ if $s \geq \frac{1}{2}$, they are holomorphic.

Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{1}^{\prime}+r_{2}^{\prime}\right)>-1$, if $s \geq \frac{1}{2}$.

4.2 $\quad F_{4}$ Cases

$F_{4}-1: \tilde{\alpha}_{3}=2 e_{1}+e_{2}+e_{3} ; \Lambda_{0}=r_{1} \alpha_{1}+r_{1} \alpha_{2}+r_{2} \alpha_{4}, 0 \leq r_{1}, r_{2}<\frac{1}{2}$. Here if $r_{2}=0$, $\pi_{2 v}$ is tempered. Then

$$
s \tilde{\alpha}_{3}+\Lambda_{0}=\left(2 s+\frac{r_{1}}{2}\right) e_{1}+\left(s-\frac{r_{1}}{2}+r_{2}\right) e_{2}+\left(s-\frac{r_{1}}{2}-r_{2}\right) e_{3}+\frac{r_{1}}{2} e_{4}
$$

The rank-one situations are $G L_{k} \times G L_{l}$, and the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}\right)>-1$ if $s \geq \frac{1}{2}$.
$F_{4}-2: \tilde{\alpha}_{2}=\frac{1}{2}\left(3 e_{1}+e_{2}+e_{3}+e_{4}\right) ; \Lambda_{0}=r_{1} \alpha_{1}+r_{2} \alpha_{3}+r_{2} \alpha_{4}, 0 \leq r_{1}, r_{2}<\frac{1}{2}$. Here $\pi_{1 v}$ is tempered if $r_{1}=0$. Then

$$
s \tilde{\alpha}_{2}+\Lambda_{0}=\frac{3 s+r_{1}}{2} e_{1}+\left(\frac{s-r_{1}}{2}+r_{2}\right) e_{2}+\frac{s-r_{1}}{2} e_{3}+\left(\frac{s-r_{1}}{2}-r_{2}\right) e_{4}
$$

The rank-one situations are $G L_{k} \times G L_{l}$, and the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}\right)>-1$ if $s \geq \frac{1}{2}$.
(xviii) in [La] ($B_{3} \subset F_{4}$): Then $\tilde{\alpha}_{1}=e_{1}$. We cannot prove Assumption (A) if π is an arbitrary generic cuspidal representations of $G \operatorname{Spin}(7, A \mathbb{A})$ since the standard module conjecture is not available. So let π be a generic cuspidal representation of $\mathrm{SO}_{7}(\mathbb{A})$ and extend it to a generic cuspidal representation of $G \operatorname{Spin}(7, \mathbb{A})$, using the homomorphism $G \operatorname{Spin}(7) \rightarrow S O_{7}$. Then we can apply the standard module conjecture. However, $\Lambda_{0}=a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}$, where $1>a_{2} \geq a_{3} \geq a_{4} \geq 0$ and

$$
s \tilde{\alpha}_{1}+\Lambda_{0}=s e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}
$$

We can see that the least value of $\left\langle s \tilde{\alpha}_{1}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(a_{2}+a_{3}+a_{4}\right)$. Hence we need to assume that $a_{2}<\frac{1}{2}$, in order to conclude that $s-\left(a_{2}+a_{3}+a_{4}\right)>-1$ if $s \geq \frac{1}{2}$. In order to obtain $a_{2}<\frac{1}{2}$, we need a functorial lift from cuspidal representations of $S O_{7}$ to $G L_{6}$.
(xxii) in [La] $\left(C_{3} \subset F_{4}\right)$: Similar to the above case.

4.3 $\quad E_{6}$ Cases

$E_{6}-1: \tilde{\alpha}_{3}=e_{1}+e_{2}+e_{3}+3 \epsilon ; \Lambda_{0}=r_{1} \alpha_{1}+r_{1} \alpha_{2}+r_{2} \alpha_{4}+r_{2} \alpha_{5}+r_{3} \alpha_{6}$, where $0 \leq r_{1}, r_{2}, r_{3}<\frac{1}{2}$. Here $r_{1}=0$ if $\pi_{1 v}$ is tempered. Then

$$
\begin{aligned}
s \tilde{\alpha}_{3}+\Lambda_{0}=(s & \left.+r_{1}\right) e_{1}+s e_{2}+\left(s-r_{1}\right) e_{3}+\left(r_{2}+r_{3}\right) e_{4} \\
& +r_{3} e_{5}+\left(r_{3}-r_{2}\right) e_{6}+\left(3 s+r_{3}\right) \epsilon
\end{aligned}
$$

The rank-one situations $G L_{k} \times G L_{l}$ and the least value of $\left\langle s \tilde{\alpha}_{3}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+\right.$ $\left.r_{2}+r_{3}\right)$ when $\beta=\alpha_{3}$. And $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$ if $s \geq \frac{1}{2}$.
$E_{6}-2: \tilde{\alpha}_{2}=e_{1}+e_{2}+2 \epsilon ; \Lambda_{0}=r_{1} \alpha_{1}+r_{2} \alpha_{5}+\left(r_{2}+r_{3}\right) \alpha_{4}+\left(r_{2}+r_{3}\right) \alpha_{3}+r_{2} \alpha_{6}$, where $0 \leq r_{1}<\frac{1}{2}$ and $0 \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$. Note that $\pi_{1 v}$ is tempered if $r_{1}=0$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{2}+\Lambda_{0}= & \left(s+r_{1}\right) e_{1}+\left(s-r_{1}\right) e_{2}+\left(r_{2}+r_{3}\right) e_{3} \\
& +r_{2} e_{4}+\left(r_{2}-r_{3}\right) e_{5}+\left(2 s+r_{2}\right) \epsilon
\end{aligned}
$$

The rank-one situations are $G L_{k} \times G L_{l}$, unless $\pi_{2 v}$ is tempered, i.e., $r_{2}=r_{3}=0$, in which case the rank-one operator is for $A_{4} \subset D_{5}$ and it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose $\pi_{2 v}$ is not tempered. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$, if $s \geq \frac{1}{2}$.
(x) in [La] $\left(S L_{6} \subset E_{6}\right): \tilde{\alpha}_{6}=2 \epsilon ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+\left(-r_{3}\right) e_{4}+\left(-r_{2}\right) e_{5}+\left(-r_{1}\right) e_{6}$, where $0 \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$. Hence

$$
s \tilde{\alpha}_{6}+\Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+\left(-r_{3}\right) e_{4}+\left(-r_{2}\right) e_{5}+\left(-r_{1}\right) e_{6}+2 s \epsilon
$$

The rank-one situations are $G L_{k} \times G L_{l}$, unless $r_{2}=r_{3}=0$, in which case the rank-one operator is for $A_{3} \subset D_{4}$. It is the case when $\sigma_{v}=\operatorname{Ind}_{F \times \times G L_{4} \times F^{\times}}^{G L_{6}}|\cdot|{ }^{r_{1}} \mu \otimes \rho \otimes|\cdot|^{-r_{1}} \mu$, where ρ is a tempered representation of $G L_{4}\left(F_{v}\right)$. We can see easily that it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$, if $s \geq \frac{1}{2}$.
(xxiv) in [La] $\left(D_{5} \subset E_{6}\right): \tilde{\alpha}_{1}=e_{1}+\epsilon$. We cannot prove Assumption (A) if π is an arbitrary generic cuspidal representations of $G \operatorname{Spin}(10, A)$ since the standard module conjecture is not available. So let π be a generic cuspidal representation of $S O_{10}(\mathbb{A})$ and extend it to a generic cuspidal representation of $G \operatorname{Spin}(10, \mathbb{A})$, using the homomorphism $G \operatorname{Spin}(10) \rightarrow S O_{10}$. Then we can apply the standard module conjecture. However,

$$
\begin{aligned}
\Lambda_{0}=r_{1} \alpha_{5}+\left(r_{1}+r_{2}\right) & \alpha_{4}+\left(r_{1}+r_{2}+r_{3}\right) \alpha_{3} \\
& +\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}-r_{5}\right) \alpha_{2}+\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}+r_{5}\right) \alpha_{6}
\end{aligned}
$$

where $1>r_{1} \geq r_{2} \geq r_{3} \geq r_{4} \geq\left|r_{5}\right|$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{1}+\Lambda_{0}=s e_{1} & +\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}-r_{5}\right) e_{2}+\frac{1}{2}\left(r_{1}+r_{2}+r_{3}-r_{4}+r_{5}\right) e_{3} \\
& +\frac{1}{2}\left(r_{1}+r_{2}-r_{3}+r_{4}+r_{5}\right) e_{4}+\frac{1}{2}\left(r_{1}-r_{2}+r_{3}+r_{4}+r_{5}\right) e_{5} \\
& +\frac{1}{2}\left(-r_{1}+r_{2}+r_{3}+r_{4}+r_{5}\right) e_{6}+\left(s+\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}+r_{5}\right)\right) \epsilon
\end{aligned}
$$

We see that $\left(s \tilde{\alpha}_{1}+\Lambda_{0}, e_{1}-e_{2}\right)=s-\frac{1}{2}\left(r_{1}+r_{2}+r_{3}+r_{4}-r_{5}\right)$. We need $r_{1}<\frac{1}{2}$ to see that $\left(s \tilde{\alpha}_{1}+\Lambda_{0}, e_{1}-e_{2}\right)>-1$ if $s \geq \frac{1}{2}$. In order to obtain $r_{1}<\frac{1}{2}$, we need a functorial lift from cuspidal representations of $S O_{10}$ to $G L_{10}$, which is not yet known.

4.4 $\quad E_{7}$ Cases

$E_{7}-1: \tilde{\alpha}_{4}=e_{1}+e_{2}+e_{3}+e_{4}+4 e_{8} ; \Lambda_{0}=r_{1} \alpha_{1}+\left(r_{1}+r_{2}\right) \alpha_{2}+r_{1} \alpha_{3}+r_{3} \alpha_{5}+r_{3} \alpha_{6}+r_{4} \alpha_{7}$, where $0 \leq r_{2} \leq r_{1}<\frac{1}{2}, 0 \leq r_{3}, r_{4}<\frac{1}{2}$. Here $\pi_{1 v}$ is tempered when $r_{1}=r_{2}=0$.

Then

$$
\begin{aligned}
s \tilde{\alpha}_{4}+\Lambda_{0}= & \left(s+r_{1}\right) e_{1}+\left(s+r_{2}\right) e_{2}+\left(s-r_{2}\right) e_{3}+\left(s-r_{1}\right) e_{4}+\left(r_{3}+r_{4}\right) e_{5} \\
& +r_{4} e_{6}+\left(r_{4}-r_{3}\right) e_{7}+\left(4 s+r_{4}\right) e_{8}
\end{aligned}
$$

All rank-one situations are $G L_{k} \times G L_{l}$, unless $r_{1}=r_{2}, r_{3}=r_{4}=0$, in which case the rank-one operator is for $D_{5}-2$. It is the case when $\pi_{3 v}=$ Ind $|\operatorname{det}|^{r} \rho \otimes|\operatorname{det}|^{-r} \rho$, where ρ is a tempered representation of $G L_{2}\left(F_{v}\right)$. We can see easily that it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{3}+r_{4}\right)>-1$, if $s \geq \frac{1}{2}$.
$E_{7}-2: \tilde{\alpha}_{3}=e_{1}+e_{2}+e_{3}+3 e_{8} ; \Lambda_{0}=r_{1} \alpha_{1}+r_{1} \alpha_{2}+r_{2} \alpha_{6}+\left(r_{2}+r_{3}\right) \alpha_{5}+\left(r_{2}+r_{3}\right) \alpha_{4}+r_{2} \alpha_{7}$, where $0 \leq r_{1}<\frac{1}{2}, 0 \leq r_{3} \leq r_{2}<\frac{1}{2}$. Here $r_{1}=0$ if $\pi_{1 v}$ is tempered. Then

$$
\begin{aligned}
s \tilde{\alpha}_{3}+\Lambda_{0}= & \left(s+r_{1}\right) e_{1}+s e_{2}+\left(s-r_{1}\right) e_{3}+\left(r_{2}+r_{3}\right) e_{4} \\
& +r_{2} e_{5}+\left(r_{2}-r_{3}\right) e_{6}+\left(3 s+r_{2}\right) e_{8}
\end{aligned}
$$

The possible rank-one cases are $A_{4} \subset D_{5}$, in which case $r_{2}=r_{3}=0$, or $D_{5}-2$, in which case, $r_{1}=0, r_{2}=r_{3}$. The remaining cases are $G L_{k} \times G L_{l}$. In the first two cases, the rank-one operators are in the corresponding positive Weyl chamber and Lemma 4.6 applies. In the remaining cases, the least value of $\left\langle s \tilde{\alpha}_{3}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$, if $s \geq \frac{1}{2}$.
$E_{7}-4: \tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+3 e_{8} ; \Lambda_{0}=r_{1} \alpha_{1}+\left(r_{1}+r_{2}\right) \alpha_{2}+\left(r_{1}+r_{2}+r_{3}\right) \alpha_{3}+$ $\left(r_{1}+r_{2}\right) \alpha_{4}+r_{1} \alpha_{7}+r_{4} \alpha_{6}$, where $r_{4}=0$ if $\pi_{2 v}$ is tempered and $0 \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{5}+\Lambda_{0}= & \left(s+r_{1}\right) e_{1}+\left(s+r_{2}\right) e_{2}+\left(s+r_{3}\right) e_{3}+\left(s-r_{3}\right) e_{4} \\
& +\left(s-r_{2}\right) e_{5}+\left(r_{1}+r_{4}\right) e_{6}+\left(r_{1}-r_{4}\right) e_{7}+\left(3 s+r_{1}\right) e_{8} .
\end{aligned}
$$

All rank-one cases are $G L_{k} \times G L_{l}$, unless $r_{1}=r_{2}=r_{3}=0$, in which case the rank-one operator is for $A_{5} \subset D_{6}$. We can easily see that it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{4}\right)>-1$, if $s \geq \frac{1}{2}$.
(xi) in [La] $\left(S L_{7} \subset E_{7}\right): \tilde{\alpha}_{7}=2 e_{8} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}-r_{3} e_{5}-r_{2} e_{6}-r_{1} e_{7}$, where $0 \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$. Then

$$
s \tilde{\alpha}_{7}+\Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}-r_{3} e_{5}-r_{2} e_{6}-r_{1} e_{7}+2 s e_{8}
$$

All rank-one cases are $G L_{k} \times G L_{l}$, unless $r_{2}=r_{3}=0$, in which case the rank-one operator is for $A_{5} \subset D_{6}$. It is the case when $\sigma_{v}=\operatorname{Ind}_{F \times \times G L_{5} \times F \times}^{G L_{7}}|\cdot|^{r} \mu \otimes \rho \otimes|\cdot|^{-r} \mu$, where ρ is a tempered representation of $G L_{5}\left(F_{v}\right)$. We can easily see that it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$, if $s \geq \frac{1}{2}$.

4.5 $\quad E_{8}$ Cases

$E_{8}-1: \tilde{\alpha}_{5}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}-5 e_{9} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}-r_{2} e_{4}-r_{1} e_{5}+r_{3} e_{6}-r_{3} e_{8}+$
$r_{4}\left(e_{6}+e_{7}+e_{8}\right)$, where $0 \leq r_{2} \leq r_{1}<\frac{1}{2}, 0 \leq r_{3}<\frac{1}{2}$, and $0 \leq r_{4}<\frac{1}{2}$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{5}+\Lambda_{0}= & \left(6 s+r_{1}\right) e_{1}+\left(6 s+r_{2}\right) e_{2}+6 s e_{3}+\left(6 s-r_{2}\right) e_{4} \\
& +\left(6 s-r_{1}\right) e_{5}+\left(5 s+r_{3}+r_{4}\right) e_{6}+\left(5 s+r_{4}\right) e_{7}+\left(5 s+r_{4}-r_{3}\right) e_{8} .
\end{aligned}
$$

The possible rank-one cases are $E_{6}-1$, in which case $r_{2}=r_{3}=r_{4}=0$, or $D_{5}-2$, in which case $r_{1}=r_{2}, r_{3}=r_{4}=0$. The remaining cases are $G L_{k} \times G L_{l}$. In the first two cases, the rank-one operators are in the corresponding positive Weyl chamber and Lemma 4.6 applies. In the remaining cases, the least value of $\left\langle s \tilde{\alpha}_{5}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{3}+r_{4}\right)>-1$, if $s \geq \frac{1}{2}$.
$E_{8}-2: \tilde{\alpha}_{4}=e_{1}+e_{2}+e_{3}+e_{4}-4 e_{9} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}-r_{2} e_{3}-r_{1} e_{4}+r_{3} \alpha_{7}+\left(r_{3}+\right.$ $\left.r_{4}\right) \alpha_{6}+\left(r_{3}+r_{4}\right) \alpha_{5}+r_{3} \alpha_{8}$, where $0 \leq r_{2} \leq r_{1}<\frac{1}{2}$ and $0 \leq r_{4} \leq r_{3}<\frac{1}{2}$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{4}+\Lambda_{0}= & \left(5 s+r_{1}\right) e_{1}+\left(5 s+r_{2}\right) e_{2}+\left(5 s-r_{2}\right) e_{3}+\left(5 s-r_{1}\right) e_{4} \\
& +\left(4 s+r_{3}+r_{4}\right) e_{5}+\left(4 s+r_{3}\right) e_{6}+\left(4 s+r_{3}-r_{4}\right) e_{7}+4 s e_{8}
\end{aligned}
$$

The possible rank-one cases are $E_{6}-2$, in which case $r_{1}=r_{2}, r_{3}=r_{4}=0$, or $D_{6}-2$, in which case $r_{1}=r_{2}=0, r_{3}=r_{4}$, or $D_{4}-2$, in which case $r_{1}=r_{2}, r_{3}=r_{4}$. The remaining cases are $G L_{k} \times G L_{l}$. In the first case, the rank-one operator is in the corresponding positive Weyl chamber and Lemma 4.6 applies. The next two cases occur when $\pi_{2 v}=\operatorname{Ind}_{G L_{2} \times F^{\times} \times G L_{2}}^{G L_{5}}|\operatorname{det}|^{r} \rho \otimes \mu \otimes|\operatorname{det}|^{-r} \rho$, where ρ is a tempered representation of $G L_{2}$. By direct computation, we see that the operators for $D_{6}-2$ and $D_{4}-2$ are in the corresponding positive Weyl chamber. For example, if $\pi_{1 v}$ is tempered, then we have the operator $N\left(s, \pi_{1 v} \otimes \rho \otimes \rho, w^{\prime}\right)$. If $\pi_{1 v}$ is of the form $\operatorname{Ind}_{G L_{2} \times G L_{2}}^{G L_{4}}|\operatorname{det}|^{r^{\prime}} \rho^{\prime} \otimes|\operatorname{det}|^{-r^{\prime}} \rho^{\prime}$, where ρ is a tempered representation of $G L_{2}\left(F_{v}\right)$, then we have the operator $N\left(s-r^{\prime}, \rho^{\prime} \otimes \rho \otimes \rho, w^{\prime \prime}\right)$.

In the remaining cases, the least value of $\left\langle s \tilde{\alpha}_{4}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{3}+r_{4}\right)>-1$, if $s \geq \frac{1}{2}$.
$E_{8}-5: \tilde{\alpha}_{6}=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}-3 e_{9} ; \Lambda_{0}=r_{1} \alpha_{1}+\left(r_{1}+r_{2}\right) \alpha_{2}+\left(r_{1}+r_{2}+\right.$ $\left.r_{3}\right) \alpha_{3}+\left(r_{1}+r_{2}+r_{3}\right) \alpha_{4}+\left(r_{1}+r_{2}\right) \alpha_{5}+r_{1} \alpha_{8}+r_{4} \alpha_{7}$, where $0 \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$ and $0 \leq r_{4}<\frac{1}{2}$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{6}+\Lambda_{0}= & \left(4 s+r_{1}\right) e_{1}+\left(4 s+r_{2}\right) e_{2}+\left(4 s+r_{3}\right) e_{3}+4 s e_{4} \\
& +\left(4 s-r_{3}\right) e_{5}+\left(4 s-r_{2}\right) e_{6}+\left(3 s+r_{1}+r_{4}\right) e_{7}+\left(3 s+r_{1}-r_{4}\right) e_{8}
\end{aligned}
$$

All rank-one cases are $G L_{k} \times G L_{l}$. The least value of $\left\langle s \tilde{\alpha}_{6}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{4}\right)>$ -1 , if $s \geq \frac{1}{2}$.
(xiii) in [La] $\left(S L_{8} \subset E_{8}\right): \tilde{\alpha}_{8}=-3 e_{9} ; \Lambda_{0}=r_{1} e_{1}+r_{2} e_{2}+r_{3} e_{3}+r_{4} e_{4}-r_{4} e_{5}-r_{3} e_{6}-$ $r_{2} e_{7}-r_{1} e_{8}$, where $0 \leq r_{4} \leq r_{3} \leq r_{2} \leq r_{1}<\frac{1}{2}$. Then

$$
\begin{aligned}
s \tilde{\alpha}_{8}+\Lambda_{0}= & \left(3 s+r_{1}\right) e_{1}+\left(3 s+r_{2}\right) e_{2}+\left(3 s+r_{3}\right) e_{3}+\left(3 s+r_{4}\right) e_{4} \\
& +\left(3 s-r_{4}\right) e_{5}+\left(3 s-r_{3}\right) e_{6}+\left(3 s-r_{2}\right) e_{7}+\left(3 s-r_{1}\right) e_{8}
\end{aligned}
$$

All rank-one cases are $G L_{k} \times G L_{l}$, unless $r_{2}=r_{3}=r_{4}=0$, in which case the rank-one operator is for $A_{5} \subset D_{6}$. It is the case when $\sigma_{v}=\operatorname{Ind}_{F \times \times G L_{6} \times F^{\times}}^{G L_{8}}|\cdot|^{r} \mu \otimes \rho \otimes|\cdot|^{-r} \mu$, where ρ is a tempered representation of $G L_{6}\left(F_{v}\right)$. We can easily see that it is in the corresponding positive Weyl chamber and Lemma 4.6 applies. Suppose we are not in the above case. Then the least value of $\left\langle s \tilde{\alpha}+\Lambda_{0}, \beta^{\vee}\right\rangle$ is $s-\left(r_{1}+r_{2}+r_{3}\right)>-1$, if $s \geq \frac{1}{2}$.

Corollary 4.12 (Corollary to the $D_{n}-1$ case) Look at the $D_{n}-1$ case ($A_{n-1} \subset D_{n}$ with n odd). Let π be a cuspidal representation of $G L_{n}(\mathbb{A})$ with n odd. Then the twisted exterior square L-function $L\left(s, \pi, \wedge^{2} \otimes \chi\right)$ is entire for any grössencharacter χ. Hence the twisted symmetric square L-function $L\left(s, \pi, \operatorname{Sym}^{2} \otimes \chi\right)$ always has a pole at $s=0,1$.

Proof Apply [Ki3].

Corollary 4.13 (Corollary to the $E_{6}-2$ case) Look at the $E_{6}-2$ case. Let π_{1}, π_{2} be cuspidal representations of $G L_{2}(\mathbb{A}), G L_{5}(\mathbb{A})$, resp. Then the completed L-function $L\left(s, \pi_{1} \otimes \pi_{2}, \rho_{2} \otimes \wedge^{2} \rho_{5}\right)$ is entire.

Proof Apply [Ki3, Theorem 3.11].
Remark In the case when $G=S p_{2 n}, S O_{2 n+1}, S O_{2 n}$, and $M=G L_{n}$, we have a stronger result that $N\left(s, \sigma_{v}, w_{0}\right)$ is holomorphic and non-zero for $\operatorname{Re}(s) \geq 0$. Just note that a generic, unitary representation σ_{v} is of the form

$$
\sigma_{v}=\operatorname{Ind}|\operatorname{det}|^{r_{1}} \sigma_{1} \otimes|\operatorname{det}|^{r_{k}} \sigma_{k} \otimes \tau_{1} \otimes \cdots \otimes \tau_{l} \otimes|\operatorname{det}|^{-r_{k}} \sigma_{k} \otimes \cdots \otimes|\operatorname{det}|^{-r_{1}} \sigma_{1}
$$

where $0<r_{k} \leq \cdots \leq r_{1}<\frac{1}{2}$ and $\sigma_{1}, \ldots, \sigma_{k}, \tau_{1}, \ldots, \tau_{l}$ are discrete series of GL. Then $I\left(s, \sigma_{v}\right)$ is

Ind $|\operatorname{det}|^{\frac{s}{2}+r_{1}} \sigma_{1} \otimes|\operatorname{det}|^{\frac{s}{2}+r_{k}} \sigma_{k} \otimes|\operatorname{det}|^{\frac{s}{2}} \tau_{1} \otimes \cdots \otimes|\operatorname{det}|^{\frac{s}{2}} \tau_{l} \otimes|\operatorname{det}|^{\frac{s}{2}-r_{k}} \sigma_{k} \otimes \cdots \otimes|\operatorname{det}|^{\frac{s}{2}-r_{1}} \sigma_{1}$,
if $G=S O_{2 n+1}, S O_{2 n}$, and
Ind $|\operatorname{det}|^{s+r_{1}} \sigma_{1} \otimes|\operatorname{det}|^{s+r_{k}} \sigma_{k} \otimes|\operatorname{det}|^{s} \tau_{1} \otimes \cdots \otimes|\operatorname{det}|^{s} \tau_{l} \otimes|\operatorname{det}|^{s-r_{k}} \sigma_{k} \otimes \cdots \otimes|\operatorname{det}|^{s-r_{1}} \sigma_{1}$,
if $G=S p_{2 n}$.
All rank-one operators are holomorphic and non-zero for $\operatorname{Re}(s) \geq 0$.
Acknowledgments The main result of this paper was obtained at the Institute for Advanced Study in the special year 1999-2000 in the Theory of Automorphic Forms and L-functions. I would like to thank the organizers, E. Bombieri, H. Iwaniec, R. P. Langlands, and P. Sarnak for inviting me to participate in the special year. I would like to thank Prof. F. Shahidi for his constant help in explaining his results and for many discussions, and also Dr. P. Trapa for helpful discussions regarding spin groups. Thanks are due to the referee who read this manuscript thoroughly and gave many comments and suggestions.

References

[A] J. Arthur Intertwining operators and residues I. Weighted characters. J. Funct. Anal. 84(1989), 19-84.
[As] M. Asgari Local L-functions for split spinor groups. Canad. J. Math. 54(2002), 673-693.
[Bo] A. Borel, Automorphic L-functions. In: Automorphic Forms and Automorphic Representations, Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979, pp. 27-61.
[Bou] N. Bourbaki, Groupes et algébres de Lie., Chap. 4-6, Paris: Hermann, 1968.
[Ca-Sh] W. Casselman and F. Shahidi, On irreducibility of standard modules for generic representations. Ann. Sci. École Norm. Sup. 31(1998), 561-589.
[CKPSS] J. Cogdell, H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $G L_{N}$. Publ. Math. Inst. Hautes Études Sci. 93(2001), 5-30.
[G-O-V] V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras III. In: Encyclopedia of Mathematical Sciences, Vol 41, Springer-Verlag, 1990.
[Ja1] C. Jantzen, Degenerate principal series for orthogonal groups. J. Reine Angew. Math.441(1993), 61-98.
[Ja2] \longrightarrow, On supports of induced representations for symplectic and odd-orthogonal groups. Amer. J. Math. 119(1997), 1213-1262 .
[Ja3] , On square-integrable representations of classical p-adic groups. Can. J. Math. 52(2000), 539-581.
[Kil] H. Kim, The residual spectrum of Sp. ${ }_{4}$. Comp. Math. 99(1995), 129-151
[Ki2] , The residual spectrum of G_{2}. Can. J. Math. 48(1996), 1245-1272.
[Ki3] $\xrightarrow[\text { exterior square L-functions. Can. J. Math. 51(1999), 835-849. }]{ }$ Langlands-Shahidi method and poles of automorphic L-functions: application to
[Ki4] , Langlands-Shahidi method and poles of automorphic L-functions II. Israel J. Math. 117(2000), 261-284.
[Ki5] \longrightarrow, Functoriality for the exterior square of $G L_{4}$ and the symmetric fourth of $G L_{2}$. J. Amer. Math. Soc. 16(2003), 139-183.
[Ki-Sh] H. Kim and F. Shahidi, Functorial products for $G L_{2} \times G L_{3}$ and symmetric cube for $G L_{2}$. Ann. of Math. 155(2002), 837-893.
[Ki-Sh2] \qquad
[Ko] R. E. Kottwitz, Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(1984), 611-650.
[Ku] S. Kudla, The local Langlands correspondence: the non-archimedean case. In: Proceedings of Symposia in Pure Mathematics 55, American Mathematical Society, Providence, RI, 1994, pp. 365-391.
[La] R. P. Langlands, Euler Products. Yale University Press, New Haven, CN, 1971.
[La2] , On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics vol. 544, Springer-Verlag, Berlin, 1976.
[M-W1] C. Moeglin and J. L. Waldspurger, Spectral Decomposition and Eisenstein series, une paraphrase de l'Ecriture. Cambridge Tracts in Mathematics 113, Cambridge, Cambridge University Press, 1995.
[M-W2] \quad Le spectre résiduel de $G L(n)$. Ann. Scient. Éc. Norm. Sup. 22(1989), 605-674.
[M-Ta] C. Moeglin and M. Tadic, Construction of discrete series for classical p-adic groups. J. Amer. Math. Soc. 15(2002), 715-786.
[Mu1] G. Muić, Some results on square integrable representations; irreducibility of standard representations. Internat. Math. Res. Notices 14(1998), 705-726.
[Mu2] \qquad A proof of Casselman-Shahidi's conjecture for quasi-split classical groups. Canad. Math. Bull. 44(2001), 298-312.
[Ra] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math. 152(2000), 45-111.
[Sh1] F. Shahidi, A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Annals of Math. 132(1990), 273-330.
$\xrightarrow{\longrightarrow}$, On certain L-functions. Amer. J. Math. 103(1981), 297-355.
, On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. of Math. 127(1988), 547-584.
\longrightarrow On non-vanishing of twisted symmetric and exterior square L-functions for GL(n). $\overrightarrow{\text { Pacific J. Math. Olga Taussky-Todd memorial issue (1997), 311-322. }}$
[Sh5] , Fourier transforms of intertwining operators and Plancherel measures for $G L(n)$. Amer. J. Math. 106(1984), 67-111 .
[Sh6] \longrightarrow, On multiplicativity of local factors. In: Festschrift in honor of I. I. Piatetski-Shapiro, Part II, Israel Math. Conf. Proc. 3, Weizmann, Jerusalem, 1990, pp. 279-289.
[Sh7] , Local coefficients as Artin factors for real groups. Duke Math. J. 52(1985), 973-1007.
[Ta] M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case. Ann. Sci. Ec. Norm. Sup. 19(1986), 335-382.
[V] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. Math. 48(1978), 75-98.
[Ze] A.V. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible representations of $G L(n)$. Ann. Sci. École Norm. Sup. 13(1980), 165-210.
[Zh] Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators. Pacific J. Math. 180(1997), 385-398.

Deptartment of Mathematics

University of Toronto
Toronto, ON M5S 3G3
e-mail: henrykim@math.toronto.edu

[^0]: Received by the editors March 18, 2002; revised May 1, 2003.
 Partially supported by NSF grant DMS9988672, NSF grant DMS9729992 (at the IAS), by an NSERC grant and by the Clay Mathematics Institute, where the author was a recipient of a fellowship.

 AMS subject classification: 11F70, 22E55.
 (C)Canadian Mathematical Society 2005.

[^1]: ${ }^{1}$ Thanks are due to Prof. Shahidi who pointed this out

