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Abstract
We investigate whether a benchmark and non-constant risk aversion affect the probability density distri-
bution of optimal wealth at retirement. We maximize the expected utility of the ratio of pension wealth at
retirement to an inflation-indexed benchmark. Together with a threshold and a lower bound, we are able
to generate closed-form solutions. We find that this non-constant risk aversion type of utility could shift
the probability density distribution of optimal wealth more towards the benchmark, and that the probabil-
ity of achieving a certain percentage of the desired benchmark could be increased. The probability density
distribution generated under constant relative risk aversion (CRRA) risk preference is more widely spread
along the benchmark.

Keywords: benchmark-driven investment; life-cycle investment; state-dependent utility; stochastic optimal control;
underfunded starting position
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1. Introduction

In a typical defined contribution (DC) pension plan, members contribute a proportion of their income
to build up pension funds before retirement. The accumulated funds are then used to buy a life annu-
ity to provide a pension income after retirement. In a DC pension plan, the size of the funds at retire-
ment strongly depends on the amount and frequency of contributions and the returns the pension
fund generates. Hence, plan members in a DC pension plan are uncertain about the level of retirement
income. In periods with high inflation, plan members in a DC pension plan also have serious concerns
about the stability of their purchasing power, as the purchasing power of money decreases dramatically
when the annual inflation rate is high. Ideally, an inflation-indexed annuity paying the same amount
(adjusted for inflation) each year after retirement should guarantee plan members a specific level of
retirement income. We translate the plan members’ desire to maintain the same standard of living
after retirement under a DC pension plan by setting up a life annuity at retirement as the target in
our model. Our study examines whether the obtained wealth at retirement would meet this target, par-
ticularly when the market price (i.e., its discounted value under the risk-neutral measure) for the con-
tributions is lower than that for the target. We will call this starting position an underfunded starting
position throughout our paper.

In the utility maximization literature for DC pension plans it is not a new idea that the investment
objective is to maximize the expected utility of plan members’ wealth at retirement, for instance Gao
(2008). In addition, Cairns et al. (2006) addressed a retirement pension which is closely related to the
salary that the plan member received immediately prior to retirement. They fixed the contribution rate
and maximized the expected utility of the ratio of pension wealth at retirement to final salary level, as
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well as the ratio of pension wealth at retirement to the product of final salary level and the price of a
level annuity. This is consistent with consumption-smoothing features of the life-cycle model of Ando
and Modigliani (1963) and the habit-formation model developed by Ryder and Heal (1973),
Sundaresan (1989), and Constantinides (1990). Based on the assumptions of complete market and
no arbitrage, they were able to treat the promised future premiums as if they were part of the current
assets of the pension plan, known as the augmented pension wealth, see also Boulier et al. (2001) and
Deelstra et al. (2000). Cairns et al. (2006) showed that this will produce the same expected terminal
utility as an initial single premium which takes the value of the augmented pension wealth.
Alternatively, Han and Hung (2012) modelled stochastic contribution rates and maximized the
expected CRRA utility of real pension wealth at retirement in excess of a stochastic guarantee. The
optimal asset allocations with stock, nominal bond, indexed bond, and cash were intensively investi-
gated in their study.

An extension in which the plan member optimizes expected utility but must, under all circum-
stances, outperform a certain (stochastic) benchmark is treated as a constraint on terminal wealth,
for instance in Grossman and Zhou (1996) and Tepla (2001). Tepla (2001) showed that the optimal
investment policy under such a constraint can be interpreted as an investment in the benchmark plus
an investment of the remaining wealth in a contingent claim which has a positive value. If the value of
initial wealth and the benchmark are equal, the solution to the maximizing problem is simply to invest
in the benchmark for the entire investment period. Therefore, this approach cannot cope with under-
funding. On the other hand, including a benchmark within the utility function enables one to deal
with underfunding, for instance Shen et al. (2019) and Spivak and Cvitanić (1999). The former mini-
mized the shortfall risk and the latter maximized the probability of terminal wealth being not below
the target. The limiting cases for these strategies are two extremes: either perfectly replicating the
benchmark or doing nothing.

In the framework of prospect theory (PT), Blake et al. (2013) and Donnelly et al. (2022) treated the
price of a real-life annuity at each age as the target fund throughout time and maximized the expected
value of the total discounted PT utility up to retirement. The PT utility function enables the plan
member to be risk seeking in the domain of losses and risk averse in the domain of gains by choosing
different curvature parameters for gains and losses. With this strategy, Blake et al. (2013) showed that
the plan member increases proportional wealth in risky assets if the accumulating fund is below the
present value of the target fund and decreases the proportion if the fund is above it, unless the fund is
very much above the target. Compared to CRRA preference, this strategy is more focused on achieving
the specified target fund. Donnelly et al. (2022) extended the framework by incorporating a stochastic
non-tradable labour income process and imposing time-dependent upper and lower bounds to ensure
the participant’s fund value was between particular bounds at retirement. It showed that the partici-
pant’s retirement outcomes are robustly centred around the target fund, and that imposing terminal
wealth constraints does not improve the certainty of achieving the desired target, while it increases the
chance of obtaining a lower income, which is in line with one of the findings in Basak and Shapiro
(2001). However, the framework is not easy to implement since it requires the solution of a non-linear
dynamic programming problem whenever there is new information about the key state variables, as
stated by Blake et al. (2013).

In our study, the target fund (benchmark) at retirement corresponds to the market price for
inflation-indexed future pension income at retirement. This income is generated by a series of indexed
zero bonds. Similar to Cairns et al. (2006), we maximize the expected utility of the ratio of wealth at
retirement to the benchmark. This ratio is called the replacement ratio at retirement. Our paper con-
tributes to the literature on benchmark strategies in a number of ways. First, we investigate the effect of
risk preference on the probability of achieving the target fund beyond the classical choice of CRRA risk
preference. In this paper we make use of the class symmetric asymptotically hyperbolic absolute risk
aversion (SAHARA) utility functions. This class of utility functions was first introduced by Chen et al.
(2011). In contrast to what holds true in the CRRA case, SAHARA risk preference shows a decreasing
relative risk aversion as a function of wealth when the level of wealth is below a pre-specified level, that

2 Antoon Pelsser and Li Yang

https://doi.org/10.1017/S1474747223000252 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747223000252


is, the threshold. This implies that investment strategies will prescribe more instead of less risk-taking
once the level of wealth falls below this threshold. SAHARA utility functions also enable the plan
member to have a high level of relative risk aversion around the threshold, as well as a decreasing rela-
tive risk aversion when the level of the wealth rises above the threshold. These features correspond well
with the important investment behaviours described in Mitchell and Utkus (2004): taking extra risks
when investors have made losses, locking-in certain gains, and becoming overconfident when they
have made gains, respectively. SAHARA utility resembles PT utility but there are significant differ-
ences. Plan members under SAHARA risk preference stay risk averse all the time, and it is not neces-
sary to split the utility functions into parts, as adapting the level of risk aversion to states is embedded
in SAHARA utility functions. Moreover, with SAHARA utility functions a variety of risk preferences
could be specified by choosing a threshold and modelling risk preference around it. We also add a
lower bound to control the level of optimal replacement ratios. Second, we derive closed-form optimal
solutions in complete market. In particular, the market accommodates time-varying interest rates and
inflation rates. The probability density distribution of the optimal terminal replacement ratio gener-
ated is smoother than that in Chen et al. (2011) or Spivak and Cvitanić (1999). We find that the
benchmark and non-constant risk aversion could have an impact on the distribution of the optimal
terminal replacement ratio. Mainly, they could shift the distribution more towards the benchmark.
Compared to CRRA risk preference, the probability of achieving a certain percentage of the bench-
mark could be increased, especially when the initial funding level is low.

The rest of the paper is organized as follows. We present the financial model and the benchmark in
Section 2. Section 3 provides a brief introduction to SAHARA risk preference. Section 4 derives the solu-
tions to the optimal portfolio problem under CRRA risk preference with a benchmark, and under
SAHARA risk preference with a benchmark as well as a lower bound. A numerical analysis is provided
in Section 5. In this section, we make a comparison of the performance with and without a benchmark
under CRRA risk preference. We also examine the investment strategies and explore the effect of non-
constant risk aversion as well as lower bounds on the probability density distribution of the optimal ter-
minal wealth. Section 6 concludes the paper. Technical details and proofs are provided in the Appendices.

2. Financial market and benchmark

We adapt the financial market considered by Brennan and Xia (2002). The financial market consists of
three state variables: stochastic real interest rate rt, stochastic instantaneous expected inflation rate πt,
and stochastic stock price St. The loading on the innovations are constant. The market is complete, so
that all the state variables can be spanned by the asset returns. We add a desired benchmark at retire-
ment to the model. The plan member can invest in a nominal instantaneous risk free asset, stock,
nominal, and indexed bonds.

2.1 Structure of the financial market

The components of the model are as follows:

• The (commodity) price level Π follows a diffusion process:

dPt

Pt
= ptdt + jSdWS,t + jrdWr,t + jpdWp,t , (1)

where Π0 = 1 and πt is the instantaneous expected rate of inflation and follows an Ornstein–Uhlenbeck
process:

dpt = kp(�p− pt)dt + spdWp,t. (2)
The Ornstein–Uhlenbeck process is mean-reverting, which means that in the long run, the process
tends to drift towards its long-term mean �p. The intensity of this mean-reverting tendency is scaled by
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the parameter kp. ξS, ξr, and jp represent the constant loadings on the stochastic innovations. All the
Ws are standard Brownian motions under a probability measure ℙ. dWt = [dWS,t, dWr,t, dWπ,t]

′
.

The Brownian motions dWS, dWr , and dWp are assumed to be correlated with correlation coefficient
ρ as follows:

r =
1 rSr rSp
rSr 1 rrp
rSp rrp 1

⎛
⎝

⎞
⎠.

Consequently,

Ps

Pt
= exp

∫s
t

pu − 1
2
j′rj

( )
du+

∫s
t

j′dWu

⎧⎨
⎩

⎫⎬
⎭ where j = [jS, jr , jp]

′. (3)

• The instantaneous real riskless interest rate, rt, also follows the Ornstein–Uhlenbeck process:

drt = kr(�r − rt)dt + srdWr,t (4)

where �r is the long-term mean level of the real interest rates.

• The real pricing kernel of the economy which determines the expected returns on all securities,
Mt is given by:

dMt

Mt
= −rtdt + v′dWt , (5)

where M0 = 1 and v = [vS, vr , vp]
′ represents the constant loadings on the stochastic innova-

tions in the economy. The pricing kernel relative can be written as follows:

Ms

Mt
= exp

∫s
t

−ru − 1
2
v′rv

( )
du+

∫s
t

v′dWu

⎧⎨
⎩

⎫⎬
⎭. (6)

If there are at least four securities whose instantaneous variance–covariance matrix has rank three, the
state variables can be spanned. Moreover, the variance–covariance matrix of real returns on cash,
stock, and two finite maturity bonds with different maturities has rank three.

• The nominal price at time t of a bond which matures at time T with payoff of one nominal unit,
satisfies:

P(t, T) = exp {A(t, T)− B(t, T)rt − D(t, T)pt}, (7)
where A(t, T), B(t, T), and D(t, T) are time-dependent constants, in particular
B(t, T) = k−1

r (1− ekr(t−T)), D(t, T) = k−1
p (1− ekp(t−T)), and the expression for A(t, T) is

given in Appendix A. As a result,

dP(t, T)
P(t, T)

= (Rt − B(t, T)srlr − D(t, T)splp)dt

− B(t, T)srdWr,t − D(t, T)spdWp,t ,

(8)

where λr and lp are the constant unit risk premiums associated with the innovation dWr,t and
dWπ,t, respectively. Rt is the instantaneous nominal risk-free interest rate at time t.
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Rt = rt + pt − jSlS − jrlr − jplp, where λS is the constant unit risk premium associated with
the innovation dWS,t. The derivation of equation (8) and Rt are included in Appendix A.
Moreover, λ = ρξ− ρω. The component −B(t, T)srlr − D(t, T)splp represents its nominal
risk premium. In addition, the real price at time t of an indexed bond which matures at time
T with a payoff of one real unit, is given as follows:

p∗(t, T) = exp {A∗(t, T)− B(t, T)rt}, (9)
where A*(t, T ) is a time-dependent constant and its expression is given in Appendix A. Similarly,

dp∗(t, T)
p∗(t, T)

= (rt − B(t, T)sr(−vsrSr − vr − vprrp))dt

− B(t, T)srdWr,t.

(10)

Its nominal return is P*(t, T ) =Πtp*(t, T ):

dP∗(t, T)
P∗(t, T)

=(rt + pt − B(t, T)srlr)dt + jSdWS,t

+ (jr − B(t, T)sr)dWr,t + jpdWp,t.

(11)

• The nominal stock price St follows a geometric Brownian motion:

dSt
St

= (Rt + sSlS)dt + sSdWS,t. (12)

• Premiums are payable in one of two forms: either as an initial single premium or regular
premium, that is, continuously into the plan member’s individual account at a rate of salary.
The contribution rates and the rates of consumption before retirement are determined exogen-
ously, and there are no non-pension savings in the model. For the purpose of clarity, we assume
the plan member contributes an initial single premium throughout the paper, the value of which
is equal to the market price for the future premiums, denoted by X0. This assumption will not
affect the expected utility of the wealth at retirement. X0 is our initial capital. In addition, we
assume early withdrawal is not possible.

• The fund at retirement, denoted by XT, is used to purchase a life annuity paying one real unit
annually in arrears so long as the annuitant is alive. The price for the annuity is denoted by
ΠTaT. aT is the price for the life annuity at time T in real terms, and ΠT is the inflation rate
at time T. The value of the ratio XT/(ΠTaT) is the amount of the yearly payment in real
terms the annuitant receives. This life annuity will be treated in detail in the next subsection.

2.2 Benchmark

To model the pension assets at retirement T, we assume the plan member may live τ more years after
reaching the retirement age. In particular, we consider an individual who starts working at age 25,
retires at age 65, and passes away at age 85. The current time is at age 25. Then the investment horizon
is 40 years, that is, T = 40 and τ = 20. The life annuity pays one real unit or ΠT+i (i∈ [0, τ]) nominal
unit at the end of each year for τ years. Early withdrawal before the retirement age is not allowed. We
use τ indexed bonds to generate these payments. To buy these indexed bonds at retirement T, the
required amount of asset in real terms at time T is:

aT = p∗(T , T + 1)+ p∗(T , T + 2)+ · · · + p∗(T , T + t)

= eA
∗(T ,T+1)−B(T ,T+1)rT + eA

∗(T ,T+2)−B(T ,T+2)rT + · · · + eA
∗(T ,T+t)−B(T ,T+t)rT .

(13)
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At time 0, the following equations hold:

E[aT] =
∑t
i=1

eA
∗(T ,T+i)−B(T ,T+i)E[rT ]+1

2B(T ,T+i)2Var[rT ],

E[a2T] =
∑t
i=1

∑t
j=1

e(A
∗(T+i)+A∗(T ,T+j))−(B(T ,T+i)+B(T ,T+j))E[rT ]+1

2(B(T ,T+i)+B(T ,T+j))2Var[rT ],

Var[aT] =E[a2T]− (E[aT])
2,

(14)

where E[rT] = �r + e−krT(r0 − �r), Var[rT] = (s2
r/(2kr))(1− e−2krT), and rT is normally distributed

with E[rT] and Var[rT]. This functional form of aT does not permit integration in closed-form.
Hence, we use the principle of the Fenton–Wilkinson approximation method (Fenton, 1960) to
generate a log-normal variable LT. It is important to note that this method is a log-normal approxi-
mation for sums of log-normal variables based on the first and the second moment-matching. It gives
the following:

LT =em−nrT (m, n are constant),

E[aT] =E[LT] = em−nE[rT ]+1
2n

2Var[rT ],

Var[aT] =Var[LT] = (E[LT])
2(en

2Var[rT ] − 1).

(15)

Solving for m and n gives

n =
����������������������������
ln (Var[aT]/(E[aT])

2 + 1)
Var[rT]

√
, m = ln (E[aT])+ nE[rT]− 1

2
n2Var[rT]. (16)

LT is our benchmark in real terms. Its value approximates that of the required amount of asset at
time T in real terms, that is, aT. This approximation method is satisfactory in our case. We will illus-
trate it with numerical simulations.

2.2.1 Simulation study for aT and LT
In this subsection, we provide numerical simulations to show how well the value of aT can be approxi-
mated by that of LT. Table 1 shows model parameters for the simulations. In particular, the starting
value of the real interest rate r0 is 1%, and its long-term mean �r is 2%. The intensity of its mean-
reverting tendency parameter κr has the value of 0.1 or 0.6. The Brownian motion increments under-
lying the real interest rate level are negatively correlated with that underlying the stock price level and
the instantaneous expected rate of inflation.

We run 100,000 simulations and draw the histogram of aT and LT to study their distributions.
We also make plots and tables to study the gap between the estimated value of aT and LT. The results
for κr = 0.6 and κr = 0.1 are presented in Figure 1 and Table 2.

Panels a and b in Figure 1 show that the distribution of the benchmark LT closely matches that of the
required asset at time T, that is, aT. When κr is 0.6, panels c and e reveal that the estimated value of LT and
aT are close to each other, and Table 2 shows that there is almost no gap between the values of aT and LT
when the real interest rate at time T is in the range from −10% to 15%. On the other hand, in case κr is 0.1,

Table 1. Overview of model parameters

r0 = 1% �r = 2% κr = {0.1, 0.6}
ωS =−0.20 ωr = 0.17 vp = 0.12
ρSr =−0.12 ρrπ =−0.06 σr = 0.026
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panels d and f suggest that LT underestimates aT when the real interest rate at time T becomes very high or
very low. Table 2 shows additionally that when the real interest rate at time T is in the range of −10% and
15%, the gap is below 0.5 in absolute value. This applies to around 95% of the cases.

We denote the ratio XT/(ΠTLT) by CT, that is, CT: = XT/(ΠTLT), and define CT as the replacement
ratio at retirement time T. We relate X0 to the benchmark LT in the following way such that
X0 = fE[MTLT ]. ϕ is the initial funding level. When the value of ϕ is between 0 and 1, the starting
position is underfunded.

Figure 1. Asset aT and LT.
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3. SAHARA risk preference

In this section, we briefly introduce the SAHARA utility function. It has the following form:

U(x) =
− 1
a2 − 1

((x − w0)+
�����������������
b2 + (x − w0)

2
√

)
−a

((x − w0)+ a

�����������������
b2 + (x − w0)

2
√

) a = 1

1
2
ln ((x − w0)+

�����������������
b2 + (x − w0)

2
√

)+ 1
2
b−2(x − w0)(

�����������������
b2 + (x − w0)

2
√

− (x − w0)) a = 1

⎧⎪⎨
⎪⎩ ,

(17)

for a certain scale parameter β > 0, risk aversion parameter α > 0, and threshold wealth w0∈ R, for
details see Chen et al. (2011). Similar to the PT utility function, the SAHARA utility function is
defined over gains and losses relative to a reference level, that is, w0. Moreover,

U ′(x) = ((x − w0)+
�����������������
b2 + (x − w0)

2
√

)−a = b−ae−a arcsinh(x−w0
b ),

I(y) = (U ′)−1(y) = b sinh − 1
a
ln y − lnb

( )
+ w0 = 1

2
(y−

1
a − b2y

1
a)+ w0

(18)

with domain y∈ℝ+. Its absolute risk aversion function ARA(x) satisfies

ARA(x) := −U ′′(x)
U ′(x)

= a�����������������
b2 + (x − w0)

2
√ . 0. (19)

Clearly, ARA(x) is strictly positive for all values of x∈ℝ, which implies that investors under
SAHARA risk preference are risk averse for all levels of wealth. The expression for its relative risk aver-
sion (RRA) is

RRA(x) := xARA(x) = ax�����������������
b2 + (x − w0)

2
√ . (20)

Given α, the value of RRA of the SAHARA utility function is zero when x = 0. It rises with wealth and
reaches the top when x =w0 + β2/w0, then it decreases and converges to the value of α. To give some
intuition for the parameters α and β in the SAHARA utility function, we show a numerical example
for the CRRA and SAHARA utility functions and the corresponding relative risk aversion functions.
For SAHARA risk preference, w0 is set to 1 and the combination (α, β) is from the set {(5, 1), (2, 0.1)};
for CRRA risk preference, γ is 5. Moreover, the CRRA utility function is defined as follows:

U(x) =
x1−g − 1
1− g

g = 1 and g . 0

ln x g = 1

⎧⎨
⎩ , (21)

where γ denotes investors’ risk aversion level, and x > 0.

Table 2. Estimated values of aT and LT

κr = 0.6 κr = 0.1

rT (%) aT LT aT LT

15 13.45 13.44 8.52 8.01
10 14.52 14.52 11.00 10.75
5 15.69 15.69 14.43 14.43
0 16.95 16.95 19.19 19.36
−5 18.32 18.32 25.86 25.98
−10 19.80 19.79 35.29 34.87
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Panel a in Figure 2 plots their utility as a function of wealth. Similar to the CRRA utility function,
the SAHARA utility function is concave everywhere, has a propensity to penalize outcomes in the
lower tail of a given distribution and does not give more credit for high level of wealth, see for instance
in Warren (2019) more about functional form compared between CRRA utility and reference-
dependent utility. When α is 2 and β is 0.1, the lower tail is far more vigorously penalized than
when α is 5 and β is 1, since the utility level declines much more as the level of wealth decreases.

Panel b in Figure 2 plots their RRA as a function of wealth. In case the value of β is small, for
instance β = 0.1, high level of RRA at the top can be interpreted as locking-in certain gains. Given
α, the height of the peak in relative risk aversion is controlled by the parameter β: smaller β, higher
peak. The decreasing level of RRA when the level of wealth falls below the threshold can be interpreted
that investors take additional risks when they have made losses, in an effort to recoup their investment.
We can explain this behaviour as ‘risk-taking for resurrection’ behaviour. This feature of positive
but diminishing risk aversion when we reach low levels of wealth (or, in our case replacement
ratios) helps to overcome an initial position of underfunding. While the decreasing level of RRA when
the wealth rises above the threshold, can be interpreted that investors take extra risk when they face a
realization of gains and become overconfident. We can explain the behaviour as pure return-seeking
behaviour. The steeper slope in the domain of losses can be interpreted that investors experience losses
more acutely than gains for a given money amount of gain or loss. Therefore, the SAHARA utility
function in such case has potentially important implications for investment behaviour. SAHARA utility
functions also enable us to model risk preference for investors who tend to be more risk averse after
obtaining the reference level w0 and become overconfident when the level of wealth is much higher
than the reference level, such as in the case where α is 5 and β is 1.

In addition, the SAHARA utility function contains the CRRA utility function as a limiting case.
Namely, under SAHARA risk preference, when w0 = 0 and x > 0, let β→ 0, then RRA(x)→ α, and

U(x) �
2−a x1−a

1− a
a = 1 and a . 0

1
2
ln x + 1+ 2 ln 2

4
a = 1

⎧⎪⎨
⎪⎩ , (22)

that is, the SAHARA utility function converges to the CRRA utility function apart from an overall
change of scale.

We note that a CRRA utility function will always ensure a positive level of wealth, that is, x > 0, as
the absolute risk aversion γ/x approaches infinity for x ↓ 0. However, under SAHARA utility functions
the risk aversion stays finite, even for x < 0. This means that negative wealth is possible under
SAHARA risk preference, and we have to control for this.

Figure 2. SAHARA and CRRA utility functions and their relative risk aversion (RRA).
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4. Optimizing the replacement ratio at retirement

In our model, the plan member desires to maximize the expected utility of the replacement ratio at
retirement time T. Furthermore, taking short positions is allowed. The objective function can be
specified as follows:

max
X[A(X0)

E U
XT

PTLT

( )[ ]
, (23)

where A(X0) denotes the class of all possible wealth processes that can be generated by self-financing
strategies θ in this market with an initial capital X0. Following Cox and Huang (1989) this dynamic
stochastic optimal control problem (23) can be formulated as a static optimization problem.
This implies that the objective function can be specified as follows:

max
XT

E U
XT

PTLT

( )[ ]
,

s.t. E MT
XT

PT

[ ]
= X0.

(24)

The optimal terminal wealth X∗
T from the Lagrange optimization is

X∗
T = I(vMTLT)PTLT , (25)

where v is the Lagrange multiplier at time 0 and I is the inverse function of the first derivative of the
utility function. In complete markets, closed-form solutions can be derived under CRRA risk prefer-
ence as well as under SAHARA risk preference.

4.1 CRRA risk preference with benchmark

Theorem 1. In case of CRRA risk preference, the optimal terminal real wealth is:

X∗
t

Pt
= X0M

−1
g

t

F(t, T , 1− 1
g )

F(0, T , 1− 1
g )

, (26)

where

F(t, T , g) = Et
MTLT
Mt

( )g[ ]
= egc1(t,T)+

1
2g

2c2(t,T), (27)

c1(t, T) =− 1
2
v′rv(T − t)+m− (n− nekr(t−T) + (T − t)− B(t, T))�r

− (B(t, T)+ nekr(t−T))rt ,

c2(t, T) =s2
rh2(t, T)+ v′rv(T − t)+ (nsr)

2h4(t, T)

− 2sr(vSrSr + vr + vprpr)(h1(t, T)+ nh3(t, T))+ 2ns2
rh5(t, T),

(28)

and

h1(t, T) =
1
kr

(T − t)− 1
kr

B(t, T),

h2(t, T) =
1
2k3r

{2kr[(T − t)− B(t, T)]− k2r B
2(t, T)},

h3(t, T) =B(t, T), h4(t, T) = B(t, T)− kr
2
B2(t, T),

h5(t, T) =
1
2
B2(t, T).

(29)

Proof. See Appendix B. □
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Assume that at time t (04 t4 T) the plan member invests an optimal proportion of wealth in
stock, a bond with maturity T1, and a bond with maturity T2. The remaining wealth is invested in
cash. The vector of optimal proportional wealth allocation to the stock and two bonds is denoted
by u∗t=(u∗S,t , u∗1,t , u∗2,t)

′.
Theorem 2. In case of CRRA risk preference, the vector of optimal proportional wealth allocations u∗t

can be derived as follows:

u∗t=
1
g
V−1L+ 1− 1

g

( )
V−1sr(jS, jr − (B(t, T)+ nekr(t−T))sr , jp)

′, (30)

where Ω = σρσ
′
, Λ = σλ.

If the portfolio consists of the stock, a nominal bond with maturity T1, a nominal bond with maturity
T2 and cash:

s =
sS 0 0
0 −B(0, T1)sr −D(0, T1)sp

0 −B(0, T2)sr −D(0, T2)sp

⎛
⎝

⎞
⎠;

if the portfolio consists of the stock, a nominal bond with maturity T1, an indexed bond with maturity
T2 and cash:

s =
sS 0 0
0 −B(0, T1)sr −D(0, T1)sp

jS jr − B(0, T2)sr jp

⎛
⎝

⎞
⎠.

Proof. See Appendix C. □

Equation (30) expresses the optimal portfolio as the sum of two portfolios. The first portfolio Ω−1Λ
is the nominal mean-variance tangency portfolio. The amount is inversely related to γ. The second
portfolio with weight 1− 1/γ has the largest correlation with the market price for the benchmark in
nominal terms. The proportion invested in stock is given by the expression ξS/σS− ωS/(σSγ). As in
Brennan and Xia (2002), ωs takes negative value, then the proportion invested in stock decreases
when the value of γ increases.

The optimal terminal wealth without benchmark is a special case of that with benchmark, which
can be achieved by equating m and n to 0. The optimal proportional wealth allocation under CRRA
risk preference without a benchmark is shown in Brennan and Xia (2002) as follows:

u∗t=
1
g
V−1L+ 1− 1

g

( )
V−1sr(jS, jr − B(t, T))sr , jp)

′. (31)

The difference between allocation equations (31) and (30) is the term nekr(t−T), which is originated
from the element c1(t, T ) of the benchmark LT.

4.2 SAHARA risk preference with benchmark and lower bound

To assure that the final replacement ratio does not fall below a predetermined floor, a lower bound can
be imposed on the level of the replacement ratio as long as the market price for the lower bound is
smaller than the initial wealth. Denote the lower bound by KLT. K is a constant and its value is between
0 and ϕ. In general, the objective function can be stated as follows:

max
XT

E U
XT

PTLT

( )[ ]
,

s.t. E MT
XT

PT

[ ]
= X0,

XT

PT
5 KLT .

(32)
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The paper by Grossman and Zhou (1996) showed that the optimal real terminal wealth X∗∗
T /PT

can be expressed as:

X∗∗
T

PT
= max {I(vMTLT)LT , KLT} = [I(vMTLT)LT − KLT]

++KLT , (33)

where I(vMTLT)LT is the expression for the optimal real terminal wealth when no lower bound is
imposed on the real terminal wealth, though the value of v in equation (33) needs to be recalculated.
Denote the optimal real wealth in case of no lower bound by X∗

T/PT .
Lemma 3. In case of SAHARA risk preference with no lower bound on the terminal real wealth, the

optimal terminal real wealth is

X∗
T

PT
= 1

2
((vMTLT)

−(1/a) − b2(vMTLT)
1/a)LT + w0LT , (34)

where

v = b−ae−a arcsinh((X0/F(0,T ,1)−w0)/(bec2(0,T)/(2a
2 ))

ec1(0,T)+c2(0,T)
. (35)

Proof. A detailed proof is presented in Appendix D. □

As mentioned in Section 3, the level of wealth is always positive under CRRA risk preference, which
is not the case under SAHARA risk preference. Hence, the optimal real wealth at retirement derived in
Theorem 1 is always positive, while that derived in Lemma 3 can be negative.

Theorem 4. In case of SAHARA risk preference with a lower bound KLT (0 < K < ϕ) on the terminal
real wealth:

(i) The optimal real wealth at time t (04 t4 T) is

X∗∗
t

Pt
= Lte

c2(t,T)/(2a2) 1
2
(vMte

c1(t,T)+c2(t,T))−
1
aF d(t, T , 1− 1

a
)

( )

− Lte
c2(t,T)/(2a2) 1

2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d(t, T , 1+ 1

a
)

( )

+ (w0 − K)LtF(d(t, T , 1))+ KLt ,

(36)

where Φ is the cumulative standard normal distribution function, and

Lt = F(t, T , 1) = ec1(t,T)+
1
2c2(t,T),

d(t, T , ã) =
− ln K − w0 +

�����������������
(K − w0)

2 + b2
√( )a

vMt

( )
− c1(t, T)− ãc2(t, T)��������

c2(t, T)
√ .

(37)

v is solved by imposing the condition: X∗∗
0 = X0.

(ii) The vector of optimal proportional wealth allocations is

u∗∗t = 1
at

V−1L+ 1− 1
at

( )
V−1sr(jS, jr − (B(t, T)+ nekr(t−T))sr , jp)

′, (38)
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where

at = aC∗∗
t /

���������������������������������������������������������������������������������������������
(bec2(t,T)/(2a2))2F(d(t, T , 1− 1

a))F(d(t, T , 1+ 1
a))+ (C∗∗

t − (w0 − K)F(d(t, T , 1))− K)2
√

and C∗∗
t = X∗∗

t /(PtLt).
Proof. See Appendix E. □

The probabilities and the lower bound parameter K in the expression for αt force the generated
terminal wealth not to fall below the specified lower bound. The function c2(t, T ) is a time-dependent
positive constant and its value decreases with time. Hence, the term bec2(t,T)/(2a

2) decreases with time
and becomes β at time T. It is interesting to point out that given the parameters and time t, the value of
C∗∗
t and αt are determined by vMt. Once the value of C∗∗

t is known, and so is the value of αt.

5. Numerical analysis

In this section, we provide a numerical example to characterize the dynamic behaviour of the optimal
portfolio strategy derived in the previous section, as well as to explore in complete market the effects
the benchmark, non-constant risk aversion, and lower bounds impose on the probability density dis-
tribution of the optimal replacement ratio at retirement time T.

Tables 1 and 3 show parameters used in the model. For CRRA risk preference, the risk aversion is
fixed at γ = 5. For SAHARA risk preference, the threshold wealth is fixed at w0 = 100%.

5.1 CRRA risk preference with vs. without benchmark

In this subsection, we present the probability density distribution of the optimal replacement ratio at
retirement time T under CRRA risk preference with or without the benchmark. We consider the fol-
lowing four cases:

kr = 0.6, f = 60%; kr = 0.6, f = 80%;

kr = 0.1, f = 60%; kr = 0.1, f = 80%.

Figure 3 displays the corresponding outcomes in panels a, b, c, and d, respectively. The solid line indicates
the distribution generated with the benchmark and the dashed line that without the benchmark.

Panels a and b show that under the CRRA risk preference with γ being 5, when κr is 0.6, the bench-
mark merely affects the probability density distribution of the optimal replacement ratio at retirement,
whenever the initial funding level is 60% or 80%. Panels c and d show that when κr decreases to 0.1,
the benchmark has a clear effect on the probability density distribution: the left tail shifts to the right
and the right tail to the left, such that the distribution is more centred around the threshold. Table 4
provides the tail probabilities of the optimal replacement ratio at retirement time T when κr is 0.1, that
is, P(C∗

T 5 x), for different values of χ.
With the benchmark, when the initial funding level is 60%, the probability of the optimal replace-

ment ratio at retirement being not below 90% improves by around 3%, and that being not below
80% around 6%. When the initial funding level is increased to 80%, these probabilities increase to
around 9%. In addition to that, the probability of the optimal replacement ratio at retirement being
not below 100% improves by around 8%, which is not the case when the initial funding level is 60%.
On the other hand, optimization with the benchmark results in a smaller probability of the optimal
replacement ratio at retirement being not below 200%, whenever the initial funding level is 60% or
80%. These results imply that CRRA utility function defined over the ratio of wealth to a benchmark

Table 3. Overview of model parameters (continued)

σS = 0.16 sp = 0.014 sP = 0.013
ρSπ =−0.024 K = 10%, 50% w0 = 100%
ξS = 0 ξr = 0 jp = 0.015
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could affect the probability density distribution of the optimal replacement ratio at retirement in such a
way that it is more centred around the benchmark, though this effect is sensitive to the value of κr, at least
for γ is 5.

5.2 SAHARA risk preference vs. CRRA risk preference

In this subsection, we present the investment strategies under CRRA risk preference with the bench-
mark, and that under SAHARA risk preference with the benchmark as well as a lower bound on the
replacement ratio at retirement time T. We also present the generated distributions of the optimal

Table 4. Tail probabilities under CRRA risk preference

γ = 5, κr = 0.1

ϕ = 60% ϕ = 80%

With benchmark (%) No benchmark (%) With benchmark (%) No benchmark (%)

IP(C∗
T 5 200%) 0.54 3.25 5.35 11.80

IP(C∗
T 5 100%) 38.87 40.14 74.20 66.07

IP(C∗
T 5 90%) 52.41 49.76 83.91 74.38

IP(C∗
T 5 80%) 66.92 60.47 91.52 82.44

Figure 3. Distribution of the optimal replacement ratio at retirement under CRRA risk preference.
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replacement ratio at retirement time T under these risk preferences. The lower bound parameter K
takes one of the two values: either 10% or 50%. For SAHARA risk preference, we start with α = 5,
β = 1, then decrease α to 2 and β to 0.1, to ensure the average of plausible values of αt is around
5. The parameter κr is 0.6 from now on.

5.2.1 Investment strategies
Under SAHARA risk preference, the term αt plays an important role in determining investment strat-
egies. Figure 4 plots the distribution of αt as a function of the replacement ratio in two different points
of the investment period. The distributions displayed in panels a and c are generated with a lower
bound of 10%, that is, K = 10%, and that in panels b and d with a lower bound of 50%, that is,
K = 50%. The outcomes for α being 5 and β being 1 are coloured in green, and that for α being 2
and β being 0.1 are coloured in purple.

Figure 4 shows that, when the replacement ratio falls below the threshold, the value of αt decreases,
which indicates the plan member’s tendency of ‘risk-taking for resurrection’; when the replacement
ratio approaches the lower bound, the value of αt increases, which implies that the plan member
becomes more risk averse at these positions and is less willing to invest in risky assets. The value
of αt goes to infinity when the replacement ratio is on the lower bound, which prevents the optimal
replacement ratio from falling below the lower bound. From panels c and d we see that when the value

Figure 4. Distribution of αt as a function of replacement ratio.
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of β decreases, a peak is formed around the threshold, which indicates the plan member’s tendency of
‘locking-in the desired target’. Furthermore, αt is time-dependent, as seen in equation (38). This time
effect is obvious around the turning points, that is, around the threshold and around the lower bound,
such that the value of αt is lower around the lower bound and higher around the threshold when the
time horizon gets short, particularly in panels c and d where α is 2 and β is 0.1. This implies that when
the time approaches the retirement, plan members tend to be more risk averse around the reference
level, while accept more risk if the level of the obtained wealth is far from the reference level, though
not on the lower bound. When the level of the lower bound is increased from 10% to 50%, we observe
on panels b and d that particularly the distribution of αt to the left of the threshold shifts up.
Compared to CRRA risk preference, SAHARA risk preference is more flexible in adapting the level
of risk aversion to the level of the replacement ratio.

Figure 5 plots the optimal proportional wealth allocation to the stock, a 5-year nominal bond, a
5-year indexed bond, and cash as a function of the investment horizon under the CRRA risk prefer-
ence with γ being 5. Figure 6 plots the optimal proportional wealth allocation to these assets at time
t = 10 as a function of replacement ratio under the SAHARA risk preferences with a lower bound of
10%, and Figure 7 plots that with a lower bound of 50%. Tables 5 and 6 report the optimal proportional
wealth allocation for the following replacement ratios: 50%, 100%, and 150%, when the lower bound is
imposed at 10% and 50%, respectively.

Under CRRA risk preference, the optimal proportional allocation to assets does not vary with the
level of the replacement ratio. Additionally, the proportion invested in the stock also does not vary
with the investment horizon. The allocation pattern indicates that the plan member takes a long pos-
ition in the stock and the bonds, while a short position in cash. This is consistent with one of the find-
ings in Brennan and Xia (2002).1 Regarding the short position in cash, Ma (2011) pointed out that the
cash account is not a safe asset in real terms and the returns on cash are lower than the returns on
bonds and stocks, and that investors with a high level of risk aversion would keep a short position

Figure 5. Optimal proportional
wealth allocations under CRRA risk
preference.

1It is important to also consider the case where investors are constrained from taking short positions. The constrained
optimization problem could be solved numerically, though it is beyond the scope of this paper. For readers who are interested
in this topic, Campbell and Viceira (2001) offer a welfare analysis of indexed bonds for constrained investors, but do not allow
for maturity choice.
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in cash to hedge against the inflation risk. A 5-year indexed bond turns out to be the most dominant
asset in the pension portfolio. When time t gets close to the retirement, the plan member under the
CRRA risk preference decreases the weight on the bonds and shorts less in cash, as shown in Figure 5.

Figure 6 highlights how the proportional wealth allocation varies with the level of the replacement
ratio under the SAHARA risk preferences. When α is 5 and β is 1, this difference is obvious when the

Figure 6. Proportional wealth allocation under SAHARA risk preference with K = 10%.

Figure 7. Proportional wealth allocation under SAHARA risk preference with K = 50%.

Table 5. Optimal proportional wealth allocation with K = 10%

Prop. allocation

Time t = 10

CRRA
SAHARA α = 5, β = 1 SAHARA α = 2, β = 0.1

γ = 5 CT = K CT = 50% CT = 100% CT = 150% CT = K CT = 50% CT = 100% CT = 150%

Stock 0.25 0.00 0.48 0.26 0.19 0.00 0.43 0.08 0.22
5-year nominal bond 0.43 0.01 0.80 0.44 0.33 0.01 0.73 0.15 0.37
5-year indexed bond 1.24 1.04 1.42 1.25 1.20 1.04 1.39 1.11 1.21
Cash −0.92 −0.05 −1.70 −0.95 −0.72 −0.05 −1.55 −0.34 −0.80
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replacement ratio is below 100%. Table 5 shows that when the replacement ratio falls from 100% to
50%, the proportional wealth allocated to cash decreases significantly from −0.95 to −1.70, while
that allocated to the stock, the 5-year nominal bond and the 5-year indexed bond increase slightly
from 0.26 to 0.48, from 0.44 to 0.80, and from 1.25 to 1.42, respectively. This applies to a greater extent
the smaller the value is of the replacement ratio, until the replacement ratio approaches the lower
bound. In other words, in comparison with CRRA risk preference, a plan member under SAHARA
risk preference realizes a more aggressive investment policy to overcome an underfunded position.
When the replacement ratio rises from the threshold to 150%, the proportional wealth allocation to
the stock and bonds all decrease slightly. When α and β decrease to 2 and 0.1 respectively, the plan
member shorts much less at and around the threshold. When the replacement ratio rises above the
threshold, the plan member gradually increases the proportion invested in the stock and the bonds.
This occurs to a lesser extent than in the case where the replacement ratio falls below the threshold.

When the lower bound is set at 50%, Figure 6 and Table 6 show that particularly the optimal pro-
portional wealth allocation corresponding to the level of wealth which is between the previous lower
bound and the threshold will be affected, such that plan members tend to be more risk averse, short
less in cash, and invest less in the bonds and the stock at these positions.

5.2.2 Distribution of retirement outcomes
For comparison, we consider subsequently the following four initial funding levels: ϕ = 60%, 80%,
100%, and 120%. Figure 8 plots the corresponding probability density distribution of the optimal
replacement ratio at retirement time T in panels a, b, c, and d, respectively, under the CRRA risk pref-
erence with the benchmark, as well as under the SAHARA risk preferences with the benchmark and a
lower bound of 10% on the replacement ratio at retirement time T. Table 7 provides the tail probabil-
ities of the optimal replacement ratio at retirement time T when ϕ = 60%, 80%, and Table 8 provides
that when ϕ = 100%, 120%.

Figure 8 shows that under the SAHARA risk preference with α being 2 and β being 0.1, a peak is
formed around the threshold. When ϕ is 60% or 80%, Table 7 shows that compared to CRRA risk
preference, the probability of the optimal replacement ratio at retirement time T being not below
100% decreases greatly while that not below 90% or 80% increases. The lower the initial funding
level, the greater the extent. This results in a probability distribution more centred around the thresh-
old. In case ϕ is 100% or 120%, Table 8 shows that this risk preference leads to slightly higher tail
probabilities compared to the other two types of risk preference.

Under the SAHARA risk preference with α being 5 and β being 1, Table 7 shows that compared to
CRRA risk preference, the probability of the optimal replacement ratio at retirement time T being not
below 100% or 90% or 80% increases. The lower the initial funding level, the more obvious the
improvement. When the initial funding level is 60%, this increase is substantial and its value is around
20%, 15%, and 10%, respectively. In other words, the probability of overcoming underfunding could be
improved by being less risk averse when the replacement ratio falls below the threshold. Tables 7 and 8
show additionally that this advantage gradually disappears when the initial funding level is increased
from 60% to 120%.

Table 6. Optimal proportional wealth allocation with K = 50%

Prop. allocation

Time t = 10

CRRA
SAHARA α = 5, β = 1 SAHARA α = 2, β = 0.1

γ = 5 CT = K CT = 100% CT = 150% CT = K CT = 100% CT = 150%

Stock 0.25 0.00 0.26 0.19 0.00 0.08 0.22
5-year nominal bond 0.43 0.01 0.44 0.33 0.01 0.15 0.37
5-year indexed bond 1.24 1.04 1.25 1.20 1.04 1.11 1.21
Cash −0.92 −0.05 −0.95 −0.72 −0.05 −0.34 −0.80
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Table 8. Tail probabilities when K = 10%, ϕ = 100%, 120%

K = 10%, ϕ = 100% K = 10%, ϕ = 120%

CRRA (%) SAHARA (%) CRRA (%) SAHARA (%)

γ = 5
α = 5 α = 2

γ = 5
α = 5 α = 2

β = 1 β = 0.1 β = 1 β = 0.1

IP(C∗∗
T 5 100%) 94.31 95.98 96.00 98.09 98.85 99.88

IP(C∗∗
T 5 90%) 96.94 97.80 99.72 99.15 99.47 100

IP(C∗∗
T 5 80%) 98.61 98.93 99.96 99.70 99.78 100

Figure 8. Distribution of the optimal replacement ratio at retirement.

Table 7. Tail probabilities when K = 10%, ϕ = 60%, 80%

K = 10%, ϕ = 60% K = 10%, ϕ = 80%

CRRA (%) SAHARA (%) CRRA (%) SAHARA (%)

γ = 5
α = 5 α = 2

γ = 5
α = 5 α = 2

β = 1 β = 0.1 β = 1 β = 0.1

IP(C∗∗
T 5 100%) 54.65 73.31 33.37 82.60 88.51 67.04

IP(C∗∗
T 5 90%) 66.25 81.79 72.03 89.26 93.15 92.64

IP(C∗∗
T 5 80%) 77.53 88.33 89.01 94.31 96.15 98.06
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To examine the effect of lower bound on the probability distribution of the optimal replacement
ratio at retirement, we increase the level of the lower bound from 10% to 50% for the SAHARA
risk preferences. We only consider the case where the initial funding level is 60%. The results are
displayed in Figure 9. The solid line indicates the distribution when K = 10%, and the dashed line
when K = 50%.

Figure 9 shows that a higher level of the lower bound shifts the mode of the distribution to the left.
It also leads to a higher probability of the optimal replacement ratio at retirement ending up on the
lower bound. In case the level of the lower bound is equal to the initial funding level, that is, K = ϕ,
plan members will invest in the lower bound for the entire investment period.

6. Conclusion

In this paper, we have investigated the impacts a benchmark and non-constant risk aversion have on
the probability density distribution of the optimal terminal replacement ratio. We maximize the
expected utility of the ratio of terminal pension wealth to a stochastic benchmark. This benchmark
closely approximates the value of an inflation-indexed annuity at retirement which protects
participant’s purchasing power after retirement. The real interest rate and inflation rate are stochastic.
The plan member can invest in cash, stock, nominal, or indexed bonds. Based on the assumptions of
complete market and no arbitrage, we are able to model the underfunded starting position and
derive closed-form solutions under CRRA risk preference as well as under SAHARA risk preference
with a lower bound. SAHARA utility functions allow the plan member to decrease the level of
risk aversion below a threshold to overcome underfunding and increase the level of risk aversion
around the threshold to secure desired outcomes. The optimal portfolio is the weighted sum of two
portfolios. The first portfolio is the nominal mean-variance tangency portfolio. The second portfolio
has the largest correlation with the market price for the benchmark in nominal terms. Unlike
under CRRA risk preference, the weight changes with the replacement ratio under SAHARA risk
preference.

In the numerical analysis, we demonstrated that the SAHARA utility function defined over the ratio
of terminal wealth to a benchmark, together with a threshold and a lower bound, could shift the dis-
tribution of the optimal replacement ratio more towards the benchmark, whether the starting position
is underfunded or not. On the contrary, the probability density distribution generated by the CRRA
utility function is more widely spread along the benchmark. Under SAHARA risk preference, the
chance of achieving a certain percentage of the benchmark could be increased, especially when the

Figure 9. Impact of lower bound on distribution of the optimal replacement ratio at retirement.
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initial funding level is low. All in all, optimizing based on SAHARA preferences could be a useful tool
for benchmark-driven investments.
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Appendix A
A.1. A(t, T ) and A*(t, T )

A(t, T) =[B(t, T)− (T − t)]�r∗+[D(t, T)− (T − t)�p∗]

− s2
r

4k3r
[2kr(B(t, T)− (T − t))+ k2r B

2(t, T)]

− s2
p

4k3p
[2kp(D(t, T)− (T − t))+ k2pD

2(t, T)]

+ srsprrp
krkp

(T − t)− D(t, T)− B(t, T)+ 1− e(kr+kp)(t−T)

kr + kp

[ ]

+ (jSlS + jrlr + jplp)(T − t)

=[B(t, T)− (T − t)]�r∗+[D(t, T)− (T − t)�p∗]

− s2
r

2

∫T
t

B2(u, T)du− s2
p

2

∫T
t

D2(u, T)du

− srsprrp

∫T
t

Bu,TD(u, T)du

+ (jSlS + jrlr + jplp)(T − t),

(A.1)

where B(t, T) = k−1
r (1− ekr (t−T)), D(t, T) = k−1

p (1− ekp(t−T)), �r∗=�r − lr(sr/kr), and �p∗=�p− lp(sp/kp).

A∗(t, T) = −�r − sr

kr
(vsrSr + vr + vprrp)

( )
(T − t − B(t, T))

− s2
r

4k3r
[2kr(B(t, T)− (T − t))+ k2r B

2(t, T)].

(A.2)

A.2. dP(t, T)P(t, T)
We know P(t, T) = exp {A(t, T)− B(t, T)rt −D(t, T)pt}, then

dP(t, T)
P(t, T)

= dA(t, T)− B(t, T)drt − rtdB(t, T)+ 1
2
B2(t, T)(drt)

2

− D(t, T)dpt − ptdD(t, T)+ 1
2
D2(t, T)(dpt)

2

+ B(t, T)D(t, T)drtdpt .

(A.3)

Moreover,

dB(t, T) = (krB(t, T)− 1)dt, dD(t, T) = (kpD(t, T)− 1)dt,

d(B(t, T)− (T − t)) = krB(t, T)dt, d(D(t, T)− (T − t)) = kpD(t, T)dt,
(A.4)

then

dA(t, T) =krB(t, T)�r
∗dt + kpD(t, T)�p

∗dt − s2
r

2
B2(t, T)dt

− s2
p

2
D2(t, T)dt + srsprrpB(t, T)D(t, T)dt

− (jSlS + jrlr + jplp)dt.

(A.5)
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Finally,

dP(t,T)
P(t,T)

= krB(t,T)�r
∗dt + kpD(t, T)�p

∗dt − B(t, T)drt

− rtdB(t,T)− D(t,T)dpt − ptdD(t,T)

− (jSlS + jrlr + jplp)dt

= (rt + pt − jSlS − jrlr − jplp − B(t, T)srlr − D(t, T)splp)dt

− B(t, T)srdWr,t − D(t, T)spdWp,t

(A.6)

The instantaneous nominal risk-free interest rate, Rt, is obtained by taking the limit of the return on the nominal bond of
this equation and Rt = rt + pt − jSlS − jrlr − jplp.

Appendix B. Proof of Theorem 1
The functions ηi(t, T ), i∈ {1, 2, 3, 4, 5}, are given as follows:

h1(t, T) =
∫T
t

B(u, T)du = 1
kr

(T − t)− 1
kr

B(t, T),

h2(t, T) =
∫T
t

B2(u, T)du = 1
2k3r

{2kr[(T − t)− B(t, T)]− k2r B
2(t, T)},

h3(t, T) =
∫T
t

ekr (u−T)du = B(t, T),

h4(t, T) =
∫T
t

e2kr (u−T)du = B(t, T)− kr
2
B2(t, T),

h5(t, T) =
∫T
t

B(u, T)ekr (u−T)du = 1
2
B2(t, T).

(B.1)

Moreover,

rs = �r + (rt − �r)ekr (t−s) + sr

∫s
t

ekr (u−s)dWr,u,

∫T
t

rudu = �r(T − t)+ (rt − �r)B(t, T)+ sr

∫T
t

B(u, T)dWr,u,

Et

∫T
t

rudu

⎡
⎣

⎤
⎦ = �r(T − t)+ (rt − �r)B(t, T),

Vart

∫T
t

rudu

⎡
⎣

⎤
⎦ = s2

rh2(t, T) =
s2
r

2k3r
{2kr[(T − t)− B(t, T)]− k2r B

2(t, T)}.

(B.2)
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Let ω
′
ρω =VM:

Et ln
MTLT
Mt

[ ]
= Et

∫T
t

−ru − 1
2
VM

( )
du+

∫T
t

v′dWu

⎡
⎣

+m− n(�r + (rt − �r)ekr (t−T))− nsr

∫T
t

ekr (u−T)dWr,u

⎤
⎦

= −(�r(T − t)+ (rt − �r)B(t, T))

− 1
2
VM(T − t)+m− n(�r + (rt − �r)ekr (t−T)),

= − 1
2
VM(T − t)+m− (n− nekr (t−T) + (T − t)− B(t, T))�r

− (B(t, T)+ nekr (t−T))rt ,

= :c1(t, T),

Vart ln
MTLT
Mt

[ ]
=s2

rh2(t, T)+ VM(T − t)+ (nsr)
2h4(t, T)

− 2sr(vSrSr + vr + vprpr)(h1(t, T)+ nh3(t, T))

+ 2ns2
rh5(t, T)

=: c2(t, T).

(B.3)

The function F(t, T, γ) is given as follows:

F(t, T , g) =Et
MTLT
Mt

( )g[ ]

=Et[e
g ln (MTLT/Mt )]

= egc1(t,T)+
1
2g

2c2(t,T).

(B.4)

Let t∈ [0, T ], then

X∗
t

Pt
= Et

MT

Mt

X∗
T

PT

[ ]
= Et

MT

Mt

X0L
1−1

g

T M
−1

g

T

F(0, T , 1− 1
g )

[ ]

=X0M
−1

g

t

F(t, T , 1− 1
g )

F(0, T , 1− 1
g )

.

(B.5)

Appendix C. Proof of Theorem 2
The stochastic terms of X∗

t /Pt come from Mt and c1(t, T ). The instantaneous log real return on optimally invested wealth is

d ln
X∗
t

Pt
= f1(rt , T − t)dt − vS

g
dWS,t − vp

g
dWp,t

− vr

g
+ 1− 1

g

( )
(B(t, T)+ nekr (t−T))sr

{ }
dWr,t .

(C.1)

Now consider the log real return on portfolio θt. The nominal wealth process is given by

dGt

Gt
= (Rt + (ut)

′V)dt + (ut)
′sdWt . (C.2)
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The log real wealth process, ln(Gt/Πt), is given by

d ln
Gt

Pt
= f2(rt , T − t)dt + (uS,tsS − jS)dWS,t

− [(u1,tB(0, T1)sr + u2,tB(0, T2)sr + jr]dWr,t

− [u1,tD(0, T1)sp + u2,tD(0, T2)sp + jp]dWp,t .

(C.3)

By equalizing the coefficients of WS,t, Wr,t, and Wπ,t in equations (C.3) and (C.1), we obtain

u∗t =
1
g
V−1L+ 1− 1

g

( )
V−1sr(jS, jr − (B(t, T)+ nekr (t−T))sr , jp)

′. (C.4)

Appendix D. Proof of Lemma 3

X∗
t

Pt
= Et

MT

Mt

X∗
T

PT

[ ]
= 1
2
Et (vMt)

−1
a

MTLT
Mt

( )1−1
a

[ ]

− 1
2
b2Et (vMt)

1
a

MTLT
Mt

( )1+1
a

[ ]
+ w0Et

MTLT
Mt

[ ]

= eEt [ln (MTLT /Mt )]+1
2(1+ 1

a2
)Vart [ln (MTLT /Mt )] 1

2
[(vMte

Et [ln (MTLT /Mt )]+Vart [ln (MTLT /Mt )])−
1
a

− b2(vMte
Et [ln (MTLT /Mt )]+Vart [ln (MTLT /Mt )])

1
a]+ w0e

Et [ln (MTLT/Mt )]+1
2Vart [ln (MTLT/Mt )]

= ec1(t,T)+
1
2c2(t,T)ec2(t,T)/(2a

2) 1
2
(vMte

c1(t,T)+c2(t,T))
−1

a − 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
a

[ ]

+ w0e
c1(t,T)+1

2c2(t,T)

= ec1(t,T)+
1
2c2(t,T)(ec2(t,T)/(2a

2)b sinh − 1
a
ln (vMte

c1(t,T)+c2(t,T))− lnb

( )
+ w0),

where v =b−ae
−a arcsinhX0 e

−E[ln (MT LT /M0)]−1
2Var[ln (MT LT /M0)]−w0

b eVar[ln (MT LT /M0 )]/(2a2 )

eE[ln (MTLT/M0)]+Var[ln (MTLT /M0)]
= b−ae

−a arcsinhX0/F(0,T,1)−w0

b ec2 (0,T)/(2a2 )

ec1(0,T)+c2(0,T)
.

(D.1)

v can be found by imposing the condition X∗
0 = X0.

Appendix E. Proof of Theorem 4
E.1. X∗∗

t /Pt under SAHARA risk preference

X∗∗
T

PT
= max {I(vMTLT )LT , KLT } = [I(vMTLT )LT − KLT ]

++KLT . (E.1)

X∗∗
t

Pt
= Et

MT

Mt

X∗∗
T

PT

[ ]

= Et
MT

Mt
(I(vMTLT )LT − KLT )1I(vMTLT ) 5 K +MT

Mt
KLT

[ ]

= Et
MT

Mt

1
2
((vMTLT )

−1
a − b2(vMTLT )

1
a)LT + (w0 − K)LT

( )
1I(vMTLT ) 5 K + K

MTLT
Mt

[ ]

= Et
1
2
(vMt)

−1
a

MTLT
Mt

( )1−1
a

1I(vMTLT ) 5 K

[ ]
− Et

1
2
b2(vMt)

1
a

MTLT
Mt

( )1+1
a

1I(vMTLT ) 5 K

[ ]

+ Et (w0 − K)
MTLT
Mt

1I(vMTLT ) 5 K

[ ]
+ Et K

MTLT
Mt

[ ]
.

(E.2)
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I(vMTLT )5 K leads to b sinh (−(1/a) ln (vMTLT )− lnb)+ w0 5 K .
Let x =−(1/)ln(vMTLT)− lnβ, then

b
ex − e−x

2
+ w0 5 K

x5 ln K − w0 +
�����������������
(k− w0)

2 + b2
√( )

− lnb

ln
MTLT
Mt

4 − ln K − w0 +
�����������������
(k− w0)

2 + b2
√( )a

vMt

( )
.

(E.3)

Moreover, E[ecX1X≤�j] = ecm+
1
2c

2s2
F(�j− m− cs2/s), where X∼N(μ, σ2), c and �j are constant. As a result,

Et
MTLT
Mt

( )1−1
a

1I(vMTLT ) 5 K

[ ]

= e(1−
1
a)c1(t,T)+1

2(1−1
a)

2c2(t,T)F
−ln K − w0 +

�����������������
(K − w0)

2 + b2
√( )a

vMt

( )
− c1(t, T)− (1− 1

a )c2(t, T)��������
c2(t, T)

√
⎛
⎝

⎞
⎠

= e(1−
1
a)c1(t,T)+1

2(1−1
a)

2c2(t,T)F d(t, T , 1− 1
a
)

( )
.

(E.4)

Similarly,

Et
MTLT
Mt

( )1+1/a

1I(vMTLT ) 5 K

[ ]
=e(1+1/a)c1(t,T)+(1/2)(1+1/a)2c2(t,T)F d t, T , 1+ 1

a

( )( )
,

Et
MTLT
Mt

( )
1I(vMTLT ) 5 K

[ ]
=ec1(t,T)+(1/2)c2(t,T)F(d(t, T , 1)).

(E.5)

Hence,

X∗∗
t

Pt
=Lte

c2(t,T)/(2a2) 1
2
(vMte

c1(t,T)+c2(t,T))
−1

aF d t, T , 1− 1
a

( )( )
− 1

2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d t, T , 1+ 1

a

( )( )[ ]

+ Lt(w0 − K)F(d(t, T , 1))+ KLt .

(E.6)
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In addition,

C∗∗
t = ec2(t,T)/(2a

2) 1
2
(vMte

c1(t,T)+c2(t,T))
−1

aF d t, T , 1− 1
a

( )( )
− 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d t, T , 1+ 1

a

( )( )[ ]

+ (w0 − K)F(d(t, T , 1))+ K

= ec2(t,T)/(2a
2)F d t, T , 1− 1

a

( )( )
1
2
(vMte

c1(t,T)+c2(t,T))
−1

a − 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
a
F(d(t, T , 1+ 1

a ))

F(d(t, T , 1− 1
a ))

[ ]

+ (w0 − K)F(d(t, T , 1))+ K

= ec2(t,T)/(2a
2)F d t, T , 1− 1

a

( )( )
1
2
(vMte

c1(t,T)+c2(t,T))
−1

a − 1
2
b̃
2
(vMte

c1(t,T)+c2(t,T))
1
a

[ ]

+ (w0 − K)F(d(t, T , 1))+ K

= ec2(t,T)/(2a
2)F d t, T , 1− 1

a

( )( )
b̃ sinh − 1

a
ln (vMte

c1(t,T)+c2(t,T))− ln b̃

( )
+ (w0 − K)F(d(t, T , 1))+ K

= ec2(t,T)/(2a
2)b

���������������������������������������������
F d t, T , 1− 1

a

( )( )
F d t, T , 1+ 1

a

( )( )√
sinh − 1

a
ln (vMte

c1(t,T)+c2(t,T))− ln b̃

( )

+ (w0 − K)F(d(t, T , 1))+ K ,

(E.7)

where b̃ = b(
�����������������������������������������������
F(d(t, T , 1+ 1/a))/F(d(t, T , 1− 1/a))

√
).

E.2. u∗∗t under SAHARA risk preference
The lower bound ensures that the value of X∗∗

t /Pt is always positive. From equation (E.6):

d ln
X∗∗
t

Pt
= d ln Lt + d lnC∗∗

t . (E.8)

dC∗∗
t = ec2(t,T)/(2a

2) 1
2
(vMte

c1(t,T)+c2(t,T))−
1
aF d t, T , 1− 1

a

( )( )
− 1
a

( )
(d lnMt + dc1(t, T))

+ ec2(t,T)/(2a
2) 1
2
(vMte

c1(t,T)+c2(t,T))−
1
af d t, T , 1− 1

a

( )( )
− d lnMt + dc1(t, T)��������

c2(t, T)
√

( )

− ec2(t,T)/(2a
2) 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d t, T , 1+ 1

a

( )( )
1
a
(d lnMt + dc1(t, T))

− ec2(t,T)/(2a
2) 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
af d t, T , 1+ 1

a

( )( )
− d lnMt + dc1(t, T)��������

c2(t, T)
√

( )

+ (w0 − K)f(d(t, T , 1)) − d lnMt + dc1(t, T)��������
c2(t, T)

√
( )

.

(E.9)

Moreover,

d t, T , 1− 1
a

( )
= d(t, T , 1)+

��������
c2(t, T)

√
a

, d t, T , 1+ 1
a

( )
= d(t, T , 1)−

��������
c2(t, T)

√
a

,

d t, T , 1− 1
a

( )
− d t, T , 1+ 1

a

( )
= 2

��������
c2(t, T)

√
a

, d t, T , 1− 1
a

( )
+ d t, T , 1+ 1

a

( )
= 2d(t, T , 1),

(E.10)
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hence,

ec2(t,T)/(2a
2) 1
2
(vMte

c1(t,T)+c2(t,T))−
1
af d t, T , 1− 1

a

( )( )
− ec2(t,T)/(2a

2) 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
af d t, T , 1+ 1

a

( )( )

+ (w0 − K)f(d(t, T , 1))

= ec2(t,T)/(2a
2)f d t, T , 1+ 1

a

( )( )
1
2
(vMte

c1(t,T)+c2(t,T))
−1

ae−(2
������
c2(t,T)

√
/a)d(t,T ,1) − 1

2
b2(vMte

c1(t,T)+c2(t,T))
1
a

[ ]

+ (w0 − K)f d t, T , 1+ 1
a

( )( )
e−(

������
c2(t,T)

√
/a)d(t,T ,1)+c2(t,T)/(2a2)

= ec2(t,T)/(2a
2)f d t, T , 1+ 1

a

( )( )

× 1
2
(vMte

c1(t,T)+c2(t,T))
−1

a K − w0 +
�����������������
(K − w0)

2 + b2
√( )2

(vMte
c1(t,T)+c2(t,T))

2
a − 1

2
b2(vMte

c1(t,T)+c2(t,T))
1
a

[ ]

+ (w0 − K)f d t, T , 1+ 1
a

( )( )
e−(

������
c2(t,T)

√
/a)d(t,T ,1)+c2(t,T)/(2a2)

= ec2(t,T)/(2a
2)f d t, T , 1+ 1

a

( )( )
(vMte

c1(t,T)+c2(t,T))
1
a K − w0 +

�����������������
(K − w0)

2 + b2
√( )

(K − w0 + w0 − K)

= 0.

(E.11)

Therefore,

dC∗∗
t = ec2(t,T)/(2a

2) 1
2
(vMte

c1(t,T)+c2(t,T))−
1
aF d t, T , 1− 1

a

( )( )
− 1
a

( )
(d lnMt + dc1(t, T))

− ec2(t,T)/(2a
2) 1
2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d t, T , 1+ 1

a

( )( )
1
a
(d lnMt + dc1(t, T))

=− 1
a
ec2(t,T)/(2a

2) 1
2
(vMte

c1(t,T)+c2(t,T))
−1

aF d t, T , 1− 1
a

( )( )
+ 1

2
b2(vMte

c1(t,T)+c2(t,T))
1
aF d t, T , 1+ 1

a

( )( )[ ]

× (d lnMt + dc1(t, T))

=− 1
a

�������������������������������������������������������������������������������������������������������
(bec2(t,T)/(2a2))2F d t, T , 1− 1

a

( )( )
F d t, T , 1+ 1

a

( )( )
+ (C∗∗

t − (w0 − K)F(d(t, T , 1)− K))2
√

× (d lnMt + dc1(t, T)).

(E.12)
Finally,

d ln
X∗∗
t

Pt
= d ln Lt − 1

a

1
C∗∗
t

�������������������������������������������������������������������������������������������������������
(bec2(t,T)/(2a2))2F d t, T , 1− 1

a

( )( )
F d t, T , 1+ 1

a

( )( )
+ (C∗∗

t − (w0 − K)F(d(t, T , 1)− K))2
√

× (d lnMt + dc1(t, T))

= d lnLt − 1
at

(d lnMt + dc1(t, T))

= f3(rt , T − t)dt − (B(t, T)+ nekr (t−T))srdWr,t − 1
at

(vdWt − (B(t, T)+ nekr (t−T))srdWr,t)

= f3(rt , T − t)dt − vS

at
dWS,t − vp

at
dWp,t − vr

at
+ (1− 1

at
)(B(t, T)+ nekr (t−T))sr

{ }
dWr,t .

(E.13)
Together with equation (C.3), the expression for u∗∗t can be determined.
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