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NON-PERIODIC CONTINUED FRACTIONS
IN HYPERELLIPTIC FUNCTION FIELDS

ALFRED J. VAN DER POORTEN

Dedicated to George Szekeres on his 90th birthday

We discuss the exponential growth in the height of the coefficients of the partial quo-
tients of the continued fraction expansion of the square root of a generic polynomial.

1. BASICS

Given a Laurent series
oo

771/ \r\ \ "* / \r—h

" l-̂  / = / //l-^ 1
h=—m

in a variable X~x and over some field F, define its sequence (Fi)^ of complete quotients
by setting Fo = F, and F*+i = l/(Fi — Oj). Here, the sequence (aj)j^o of partial quotients
of F is given by a* = \_F{\ where [ J denotes the polynomial part in X of its argument.
Plainly we have

1
F = a0 +

ai +

a3 +

It is only the partial quotients that matter, so such a continued fraction expansion may
be conveniently denoted just by [a0 , ai , a2 , a3 , . . . ] .

The truncations [ao , Oi , . . . , a/,] plainly are rational functions x^/yh- Here, the
pairs of relatively prime polynomials xh, yh are given by the matrix identities

fa0 l \ fai l \ (ah \\ = fxh iA_A
\l 0 ^ 1 0 ; - ^ l o) [yh y^)

and the remark that the empty matrix product is the identity matrix.
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332 A.J. van der Poorten [2]

The correspondence here alleged, whereby matrix products provide the sequences of
continuants (xh)h^o and {yh)h^o, and thus the convergents xh/yh, may be confirmed by
induction on the number of matrices on recalling the definition

[a0 , ai , . . . , Oh] = ao + l/[ai , . . . , a/,], [ao] = a0 .

Because F = [ao , o i . . . , Oh , F/,+i ], we see by the correspondence that

- (?;) (?;)•• (?;)fr;)
_ (xh xh-i\ (Fh+l A ^ ^ xftFh+1 + xh-\

\Vh Vh-i) \ 1 Oy j/hFh+i + j/h-i '

That is, we have

F = — • , and so Fh + 1 = .
yhFh+i + yh-i VhF - xh

Recalling that z_i = 1, y_i = 0 because an empty matrix product is the identity matrix,
we obtain

(2) (-1)"F1F2 • • • Fh+l - (xh - Fy , ) - 1 .

Taking determinants in the matrix correspondence entails

Xh/Vh = Sh-i/2/A-i + {-^)h~l/yh-\Vh

oo

whence, by induction, F = a0 + 5Z(—l)'~'/yt-i2/ti and so
«=i

deg(yhF - xh) = - deg?/h+i = -(degaA + 1 + degyh) < - degyh .

This displays the excellent quality of approximation to F provided by its convergents.
Incidentally, (1) readily yields the evaluation

+ yh-i yh (Fh+i + 1/h-i/j/h) '

PROPOSITION 1 . Let x,y be relatively prime polynomials. Then

deg(yF -x) < -degy

if, and only if, the rational function x/y is a convergent to F.
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[3] Non-periodic continued fractions 333

P R O O F : The ' i f part of the claim is given immediately above, so we may take h so

that degyh-i ^ degy < degy/,, and note that supposing x/y is not a convergent entails

that y is not a constant multiple of yn-i- Because XhVh-i — £/i-iVh = ±1> there are

nonzero polynomials a and b such that

V = ayh-i + byh

x = axh-i +bxh,

and so yF — x = a(yh-\F — x^-i) + b(yhF — X/,). Now suppose that the two terms on

the right are of different degree, deg a — deg y/, and deg b — deg yn+i, respectively. In that

case plainly deg(yF — x) > deg(y/,_iF — Xh-\) > deg(y/,F — a;/,), confirming that the

convergents provide the locally best approximations to F.

To verify the suggestion that the degrees of the two terms are different, notice that

degay/,_i = deg byh, otherwise degy < degy/, is not possible, so

deg a - degy/, = deg b - degyh-i > deg b - degy h + 1 .

Moreover, deg a — degy/, = deg(yF — x). Finally, because deg a must be at least as large

as degyh - degyh_i , it is plain that deg a - degy/, ^ - d e g y . D

2. C O N T I N U E D F R A C T I O N E X P A N S I O N O F T H E S Q U A R E R O O T O F A P O L Y N O M I A L

Let D a polynomial in X over F, not a square, and consider the Laurent series

F = \/~D. Plainly F is in F ( (X~ 1 ) ) if and only if D is of even degree, say deg D — 2g + 2

for some nonnegative integer g, and its leading coefficient is a square in F. We assume

those conditions in the sequel.

Then it is easy to see that the complete quotients F/, of F are all of the shape

with Qh\D - P^ and, this remark is in part just setting the notation, the generic step in
the continued fraction algorithm for F = \[D is

(3) Fh = (Ph + VD)/Qk = ah- (Ph+l - VD)/Qh .

Here the sequences of polynomials (Ph) and (Qh) are given sequentially by

Ph+i + Ph = ahQh, and Qh+lQh = D - P^+l.

PROPOSITION 2 . The polynomials Q and P satisfy deg Qh ^ g = (deg D-l)/2

and deg Ph+1 =g+l = (deg D)/2 for all h = 0, 1, . . . .

PROOF: Given deg<2/, ^ g it follows from — (Ph+i — \/D)/Qh being a remainder,

so that it is of negative degree, that deg Ph+\ = g + 1 and deg(Pf t+1 - \/D) is less than

degQh- Thus Qh+iQh = D — P^ + 1 entails that degQh+\ < g- Finally, Fo = \fD displays

that QQ = 1, so degQo is no more than g. D

Notice that Ph+i + Ph = o.hQh entails that degQ/, = 0 is equivalent to deg a/, = 5 + 1.
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3. NUMBERS AND FUNCTIONS

The continued fraction expansion of the square root of an integer, which is
not a square is always periodic. The main features of the example \ /6l
= [ 7 , 1 , 4 , 3 , 1 , 2 , 2 , 1 , 3 , 4 , 1 , 14] are general. Just so, those features are shared
by the continued fraction expansion of a square root of a polynomial, provided that the
expansion is quasi-periodic.

In particular, the convergent [ 7 , 1 , 4 , 3 , 1 , 2 , 2 , 1 , 3 , 4 , 1 ] = 29718/3805 yields
the fundamental unit 29718 + 3805\/6l of the domain Z[\/6l]; it is the cube of the
fundamental unit of the ring of all integers of Q(\/6T). However, periodicity per se is
of little interest. Periodicity of expansions such as that for \ /6l is important because
periodicity coincides with the production of a unit. In the function field case, however,
all nonzero elements of the base field F are units. One is therefore interested in all
convergents x(X)/y(X) of, say, yjD(X) so that x2 — Dy2 is a nonzero constant. If that
constant is different from 1 such a convergent x/y corresponds to a quasi-period.

It happens, as is nicely explained by Berry [2] (see also [11], and remarks of Friesen
[7] that first drew the issue to my attention), that if the continued fraction expansion of
the square root of a polynomial has a quasi-period, then 'twice that quasi-period' yields
a period proper. Incidentally, the results of [4] do not contradict this fact. David Cantor
deals with rational functions D(X)/X2, where D(X) is a quadratic polynomial.

For an integer D, not a square, one finds the inequalities 0 < Ph+\ < \TO and
0 < Qh < 2\/Z?- Thus, in the numerical case, there are only finitely many possibilities
for the pairs {PH,QH), and periodicity follows by the box principle. In the function field
case, however, the constraints on the degrees of the Ph+l and of the Qh nonetheless allow
infinitely many possibilities for the pairs (Ph, Qh) whenever the base field F is infinite. In
that case, when deg-D is greater than 2, periodicity of the continued fraction expansion of
y/D(X) is only happenstance; it is an improbable event. [The fact that any quadratic is
a square up to a constant (by 'completing the square') means one always gets periodicity
when deg-D = 2.]

When the base field is finite, the box principle does guarantee periodicity. The
end of the quasi-period is signalled by a partial quotient ar of degree 5 + 1 , that is, by
degQr = 0.

To see that, recall the identity (2) of page 332. Noting that Fh = (Ph + \/D)/Qh

and Pl+l - D = -QhQh+i, taking norms yields x\ - Dy\ = (-l)h+1Qh+i. That is,
xr^i — yr-i\/D is a unit if and only if degar = g + 1.
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4. Two CONTRASTING EXAMPLES

Consider XA - 2X3 + 3X2 + 2X + 1, and set

6(X) = \ZX* - 2X3 + 3X2 + IX + 1

= X2 - X + 1 + 2X~l + 2X~2 - 4X~4 - 8X~b - QX'6 + lO^"7 + 40X~a

+58X~9 + 2X~W -

The following tableau reveals that S happens to have a periodic continued fraction ex-
pansion.

6 =X2-X + 1 -{S + X2-X + l)

(6 + X2-X + l)/4X =\x~\ -

(<5 + X2 - X - \)/X = 2 X - 2 -

X

X2-X + l)/X =2X-2

X2

X2

X2

X2

-X-
-X +

-X -

-x +

1)/4X

D/x

l)/X

l)/4X(5 + X2-X-l)/4X =-X - (
c I y -2 V" _i_ -I n y 2 O Y" _1_ 0 fi£ _1_ V^ y . -i \

The reader might now enjoy noticing that with a(u) = u4 — 3u3 + 5M2 — 2u and b(u)
— u2 — 2u + 2 this data shows we have a2 — D(u)b2 = —4. It follows that

4i — 1
:dt

= log(u4 - 3u3 + 5u2 - 2w + (u2 -2u + 2)\fu* - 2u3 + 3u2 + 2u +

The story of such pseudo-elliptic integrals is detailed in [11].

However, we need the example

2X

2X+l\x i 2X 2\x2 l= | X2-X+l, \x - i , 2X - 2, \x2 - l-X + l- , 2X - 2, \x - i , 2X2 - 2X + 2 |,
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only so as to contrast it with

= \/X4 - 2X3 + 3X2 + 2X + 2

-\x2-X - X - - — X-— 9 2 6 1 y 2 9 6 3 0 7 9 488095744
~ [ + ' 2 8 ' 21 441 ' 7936 1968128 ' 2572789149

16216931891200 21440698686186129 1665322334299891329867
+ 34035427652121 ' 1136033082245120 + 42646681907481804800 '

1600956438806866952192000 3371996766956576002150497085030400
-JC —88607770352600487715818861 256351315939101539512201711796263641 '

80083198356049188999341382795525473293961
975968207083235989098500587163484160000

255369300674062782420731816474523944637364177546099
" 12679074228671726095323776878469612834847195136000 '

4117934429867578468642904208184426566140181398969531760640000
503230723831903952989142036290969243284756393383295955214733129

267842912006437191134169045543528305515206296540594830431118591703121920000
"22953474733170075135048388320813442171721920531699498816628220662260670805921 '

One can feel instantly that this expansion is not eventually periodic. Happily, it follows

from the considerations central to [11] that this expansion is indeed not periodic; we pro-

vide a more direct proof below. Similarly, one guesses that the coefficients of the partial

quotients continue to grow explosively in complexity and one might wonder whether all

(excepting of course the zero-th) are linear. For this example (and other non-periodic

examples with deg.D = 4), the linearity of the partial quotients a^ turns out to be ob-

vious. The mild surprise is that we can also prove that the number of different primes

dividing one or both of the coefficients of each partial quotient grows with h.

5. SOME HINTS

The fact is that the expansion of y/D(X) is perfectly normal both in having its

partial quotients of degree 1, and in having the height of the coefficients of those partial

quotients growing at exponential rate. [The word 'normal' in this context in fact has

the technical meaning that all partial quotients are of degree 1 and that the complexity

of their coefficients does grow exponentially] We need only notice that a remainder

J2 fhX~h has a reciprocal with polynomial part of degree greater than one, and thus gives

rise to a partial quotient of degree greater than one, if and only if / t = 0. Moreover, the

partial quotient is f±lX — /2/f2 if/1 / 0, and the next remainder is ( / | - / i /3 ) / f 3 ^ '~ 1 - l -

terms of lower degree in X. Specifically, the critical coefficients of the remainders are

multivariate polynomials in the coefficients of the given formal power series, But such

a polynomial is 'nonzero "almost always", or "with probability one" ' (see [9, p.375]).

The matter is considered in extenso by Knuth [9] in the context of his discussion of the
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Euclidean algorithm for polynomials over a field. Moreover, that discussion also makes

clear that the 'explosive growth' of the coefficients of the partial quotients is precisely

the better known extraordinary growth of the coefficients in performing the Euclidean

algorithm on a pair of polynomials over the integers Z.

Although the just given expansion seems wild and uncontrolled, factorising the nu-

merators and denominators of its coefficients calms it somewhat. There is then some

'structure' to explain. The observations above, and the following summary remarks, ex-

tracted from [10], on formal manipulation of continued fraction expansions may assist

the reader in recognising some of the structure of the expansion.

LEMMA 3 . (Multiplication)

B [ C a Q , B a t , C a 2 , B a 3 , C a 4 , . . . ] = C [ B a 0 , C a x , B a 2 , C a 3 , B a 4 , . . . ] .

LEMMA 4 . (Nega t ion )

-P = [0,1,1,1, 0,0] and - / ? = [ 0 , 1 , 1 , 1 , 0 ; / ? ] .

LEMMA 5 . (Remova l a n d C r e a t i o n of P a r t i a l Q u o t i e n t s )

[a,B,y} = [a + B-1 ,-B^-B] and [a + C , 7 ] = [a , C'1 , - C 2
7 - C].

6. T H E REDUCTION PRINCIPLE

All this said, the main lesson seems that, morally, one should not study continued
fraction expansions of formal power series over infinite fields. To that end we now ask
how to reduce to the case of finite fields Fp. A primary restriction is that the given power
series should have reduction at p (that it should be defined over Fp). Indeed, because the
example power series

- 2X3

= X2 - X + 1 + 2X2 - X + 1 + 2X~l + ^X~2 + l-X~3 - 4X~* - y X - 5 - jX~6 + ™

.361 8 167 9 735 10 2841 u 2361 12 12813 13
+ —X +—X +—X - — X - — X - - j g - A " + • •

has no reduction at 2 we must certainly avoid p = 2. (Indeed, in characteristic 2 it
is simply not appropriate to study a square root Y, where Y2 = D(X). Rather, one
considers the Artin-Schreier square root Y, where Y2 + t(X)Y = D{X).) It is also
appropriate to avoid the other primes, 3 and 31, dividing the discriminant 13392 of the
polynomial D(X) = X4 - 2X3 + 3X2 + 2X + 2, where the curve Y2 = D{X) has bad
reduction.

The idea behind the reduction principle for continued fractions of formal power series
is to return to a first principles genesis of the sequence of continuants (yh) providing the
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denominators of the convergents to F. It suffices to recall that the convergents x^/yh are
characterised by the property

deg(yhF - xh) < - deg yh .

Set deg yh — dh, and notice that degah = dh - dh_i. So the series F characterises a
strictly increasing sequence (dh) of integers and we may view the yh as those polynomials,
of degree dh respectively, so that the Laurent series yhF has no terms of degree —1, - 2 ,
. . . , nor —dh. In this spirit, one defines the polynomials xh so that deg(yhF - xh) < dh =
degyh- Notice that this viewpoint encourages us to renormalise the yh, and thence the
Xh, to our convenience.

There is indeed nothing to stop us from normalising the polynomials yh so that
each has integer coefficients not sharing a common factor. Presuming that F has good
reduction at p, that entails a normalisation for the xh that also gives the xh good reduction
at p. Note that the yh each are constant multiples of the continuants provided by the
matrix form.

All this makes us able to consider the continuants in characteristic p for all primes p
at which the series F has good reduction. To keep track we mark all reduced quantities
with a . The trick in the following argument is, in effect, that notwithstanding degyh

^ deg?//,, nonetheless, deg(yhF - xh) < -degyh.

THEOREM 6 . (Reduction Principle) Suppose F has good reduction at p. Then
the distinct reductions yh of the renormalised «//, yield all the convergents of F.

P R O O F : Certainly, each yh yields a convergent to F, because

deg(yhF - xh) < - deg yh implies that deg( yhF - xh ) < - deg yh ^ - deg yh .

However, some of the yh may coincide. Denote representatives of the distinct yh by yhi0),
Vh(i)> • • • > VhU)< • • •' w h e r e e a c h h t i ) i s m a x i m a l ; t h a t i s y h ( j ) = y h { j ) ^ = • • • = y h U _ 1 ) + v

Then

deg(j//,u)F - xh{j)) = -degyh{j)+l entails deg( yh{j)F - xh{i)) ^ -degyhU)+1.

The last inequality informs us that the corresponding next partial quotient of ~F, let's
call it &7+i, has degree at least degj/ftyj+i — degj/hyj. But

- degyhU_1)+1) ^ ^ ( d e g 2 / M j ) + 1 - degyh0_i)+1) = degyh{n)+l,
j=o j=o

where we recall yh^ = yh(j_^+l, and that by the formalism yh(-i)+i = 1 so that 2//,(_1)+1

is of degree zero.

However, it is plain — say again from the matrix form, that

+ 1 ^ degyh(n)+i •
3=0
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It follows that the above inequalities all are equalities, that is, degyA(y_!)+1 = degy/,y_i)+i

and deg?/ft(j)+1 — degj//,^) = degbj+i, and the j//,yj must account for all the convergents

of F as claimed. D

In a nutshell, the first partial quotient that has bad reduction 'collapses' to a partial

quotient of higher degree.

7. S O M E E X A M P L E R E D U C T I O N S

We give several expansions and invite the reader to compare these with the expansion
of y/D{X) over Q[X] at the end of Section 4. We take particular note of the regulator

m = mp in each case. Here m is the sum of the degrees of the partial quotients making up
the quasi-period; that is, if x—y\jD(X) is the fundamental unit, it isdega; = &egy-\-g+1.
For the reader's convenience, we repeat the expansion of

= \fx4 - 2X3 + SX2 + 2X + 2

v 2 v . i l
Y

 5 2 5 v 2 3 ' 4 3 3 3 • 7 3
 y 3 2 • 7 2 • 6 7 1 9

A - A + 1 , - X 2 3 ' 3 T 7 A W^'~2*-31X~ 2H-312

2i4 . 313 211 • 52 • 312 • 329591 33 • 73 • 132293 _
-f-

34 • 74 • 13229 3 4 • 74 • 132292 ' 2 1 7 • 5 • 314 • 1877
32 • 72 • 132292 • 21577726507 22 1 • 5 3 • 31 4 • 18773

2 i 9 • 52 • 31 4 • 18772 ' ~ 3 • 7 - 1 1 • 132294 • 12524251
21 9 • 5 2 • 314 • 47 • 18772 • 2693 • 1180897

3 2 • 72 • I I 2 • 132294 • 125242512 '

I I 3 • 132294 • 125242513 I I 2 • 132294 • 2109269 • 12524251 • 208276252871

. 5-t . 315 . 1 8 7 7 4 . 130960463 2 2 9 • 5 3 • 31 6 • 18774 • 1309604632

23 3 • 54 • 31 7 • 18774 • 1309604633

3 2 • 7 • I I 4 • 67 • 331 • 132294 • 125242514 • 32646599'
229 , 5 i . 3 1 6 , 1 8 7 7 4 . 13Q96Q4632 . 672668401 • 6280895711017969

34 • 72 • I I 4 • 672 • 3312 • 132294 • 125242514 • 326465992

Note that the first occurrence of a prime p in a denominator of a partial quotient must,

according to the Reduction Principle, signal the end of the quasi-period for the expansion

over Fp. This is, because the occurrence of a partial quotient of degree greater than g = 1

entails the end of a quasi-period. For reasons hinted at in Section 5 such primes then

reappear in a denominator of every second subsequent partial quotient.

OverF3: y/X4 - 2X3 + 3X2 + 2X + 2 = [X2 + 2X + 1, 2X + 2 , 2X2 + X + 2j .

OverF5: VX4 - 2X3 + 3X2 + 2X + 2

= \X2 + 4X + 1, 3X , 2X + 1, AX + 2 , AX , AX2 + X + 4 ,

AX , AX + 2, 2X + 1, 3X, 2X2 + 3X + 2] .
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The second half of the period is its first half multiplied by 3 = 1/2, see Lemma 5. The
regulator is m^ = 6. (Recall the definition of 'regulator' at the start of Section 7.)

Over F7: VX* - 2X3 + 3X2 + 2X + 2 = [X2 + 6X + 1, 4X + 2 , 2X2 + bX + 2 ] .

The regulator is m7 = 3.

Over F!!: \/X4 - 2X3 + 3X2 + 2X + 2

= [X2 + 10X + 1, 6X + 9, X + 8, 9X + 3, X + 8, 6X + 9, 2X2 + 9X + 2 ] .

We see that mn =7.

Over Fj3: vOf4 - 2X3 + 3X2 + 2X + 2
2 + 12X + 1, IX +1, 4X + 6, 10X + 4, 9AT + 12,

2X + 7, 6X + 5 , 11X + 10, 12X + 11, 12X2 + X + 12, 12A" + 11, . . . ] .

The second half of the period is its first half multiplied by 11 = 1/6. Note that the
quasi-period is of odd length, 9, so the period has length 18. More to the point, the
regulator is mi3 = 10.

Over F17: VX4 - 2X3 + 3X2 + 2X + 2
= \X2 + 16A" + 1, 9X + 10 , 8X + 4, 10X + 1, 15X + 3, 12X + 5, 13A" + 12 ,

AX + 4 , 15X + 5, 6X + 13 , 15X + 5 , 4X + 4,

13A + 12 , 12X + 5 , 15X + 3, 10X + 1, 8X + 4, 9X + 10 , 2X2 + 15X + 2] .

Here the period length is 18. Note that there cannot be a quasi-period of even length.
Notice that mn = 19.

Over F31: e{X) = VX4 - 2X3 + 3A2 + 2X + 2 = [x2 + 30* + 1,

16X + 15, 2X + 29, 16X2 + 15A" +16, 2X + 29, 16A + 15, 2X2 + 29X + 2] .

(e + X2 + 30X + 30)/X =2X + 29 - (e + X2 + 30X + 1)/X

{e + X2 + 30X + l)/4 = 16X2 + 15X + 16 - (e +A 2 + 30X + l)/4

(£ + X2 + 30A + 1)/X =2A+29 - ( e + A2

- (e + X2

2 - (e + AT2

I added this reduction and its details for the bemusement of the reader. Why, I ask, does
it resonate so closely with the original example 5{X) periodic in characteristic zero? By
the way, D{X) = (X - 4)2(X2 + 6X + 4) over F31.
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8. NON-PERIODICITY

Consider a curve C : Y2 = D(X) and let p be a prime of good reduction for C (that
is, p does not divide the discriminant of 4D(X)). Denote the reduction mod p of C by
Cp. Jing Yu [14] recently pointed out to me that, by the reduction theory of Abelian
varieties, if the divisor class of oo+ — oo_ is of order m in JacC then, unless p\m, the
divisor class of oo+ - oo_ is also of order mp = m in Jac Cp .

Conversely, suppose p and q are primes of good reduction for C. Suppose further
that the regulator of Cp is mp, that q]fmp, and that the regulator of Cq is mq. Unless
there is an integer i so that mpp' = mq, \/D{X) does not have a periodic continued
fraction expansion.

Specifically, the data m5 = 6 and m? = 3 already shows that our example at the end
of Section 4 is indeed not periodic. Notice, also, that a careful glance at the 'factorised'
expansion at the start of Section 7 already reveals that the first partial quotient to blow
up at p = 5 is as, so over F5 the quasi-period has length 5 and thus indeed 7715 = 6.
Similarly the partial quotient 02 blows up at 7, so over F7 the quasi-period has length 2,
and m^ = 3. Thus the start itself of the expansion makes it manifest that the expansion
is not periodic.

When degD = 4 we have g = 1. Hence, in characteristic 0, all the partial quotients
of the example \/X4 - 2X3 + 3X2 + 2A" + 2 must be of degree one because, as remarked
at the conclusion of Section 3, degar = g + 1 = 2 signals a quasi-period.

Because the expansion is periodic over every finite field Fp, p not even, every prime
eventually appears in a denominator of a partial quotient.

However, it is the convergents Xh/llh, rather than the partial quotients a/,, that are
important. The issue should not be whether the partial quotients indeed increase in
height at exponential rate, but whether the convergents increase in height at a doubly
exponential rate. And if the convergents are the issue, we may as well study the sequence
(xh - yh'/D)h^o of approximants.

9. PADE APPROXIMATION

In the periodic case we eventually obtain a unit i r_i — ?/r_i\/D. Being a unit, its
divisor is supported only at infinity and must be m(oo+ — oo_), where m = degxr_i =
degyr_! + 3 + I . Thus the 'point' oo+ - oo_ on the Jacobian is a torsion point, of order
m. In this case the sequence of approximants (x* — ykVD)k^o increases in height at just
an exponential rate.

In general however, the 'divisor at infinity' is not torsion. (I owe this remark to
a question that Everett Howe asked me at the Oberwolfach meeting on 'Finite Fields'
of January, 2001.) In that case the continued fraction process leads to a sequence of
approximants (xk - Vk^D)k^o which corresponds to the sequence (A;(oo+ - oo_))A>0 of

https://doi.org/10.1017/S000497270003999X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003999X


342 A.J. van der Poorten [12]

divisors which according to the theory of Neron-Tate height increases in height at doubly
exponential rate. (Recall that these heights are normally given as logarithmic heights.
It is then well known that that h(kP) — k2h(P), given that P is not torsion, illustrating
the doubly exponential growth alluded to.) A study of [1] provides justification for the
somewhat vague suggestion that therefore indeed the coefficients of the continuants x^
and yk grow in height at a doubly exponential rate.

More to the point, exactly this has been proved by Paula Cohen and Enrico Bombieri
[3] in a wider context. They prove that simultaneous Pade approximation of the powers
Yl, i = 0, 1, . . . , r — 1 of an algebraic function Y of degree r leads to Pade approximants
whose coefficients increase in height at a doubly exponential rate — unless there is a point
Q, with conjugate points Qy, ..., Qr, on the defining curve C so that rQ- (QiH \-Qr)
is a torsion point on the Jacobian of C.

10. PERIODICITY

Readers may be interested to have some examples of polynomials D so that y/D(x)
does have a periodic continued fraction expansion. All cases with deg D = A have been
detailed as elliptic surfaces by my student Xuan Chuong Tran [13]; see [11] for some
examples. The extreme case known to me is y2 = x6 + Ax4 + 10x3 + Ax2 — Ax + 1 provided
by [6]. Here the torsion point at infinity is of order 39.
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