(1.) If a line through the origin cut the conic U in A, and V in B, to find the equation of che locus of a point P which divides $A B$ in the ratio $\lambda: \mu,(\lambda+\mu=1)$.

Here the required equation is

$$
\left|\begin{array}{lllll}
9^{4} & r & r^{4} & r & 1 \\
2\left(\lambda a_{1}+\mu \beta_{1}\right), & 1 & 0 & 0 & 0 \\
2\left(\lambda^{2} a_{2}+\lambda \mu a_{1} \beta_{1}+\mu^{2} \beta_{2}\right), & s_{1} & 2 & 0 & 0 \\
2 \lambda^{3} a_{3}+3 \lambda^{2} \mu a_{2} \beta_{1}+3 \lambda \mu^{2} a_{1} \beta_{2}+2 \mu^{2} \beta_{3}, & s_{2} & s_{1} & 3 & 0 \\
2 \lambda^{4} a_{4}+4 \lambda^{3} \mu a_{3} \beta_{1}+6 \lambda^{2} \mu^{2} a_{3} \beta_{3}+4 \lambda \mu^{3} a_{3} \beta_{3}+2 \lambda^{4} \beta_{4}, & s_{1} & s_{1} & a_{2} & 4
\end{array}\right|
$$

This, when finally reduced, gives

$$
\begin{aligned}
& u_{3}^{2}\left(v_{2}+\mu v_{1}+\mu^{2} v_{0}\right)^{2}+\lambda^{2} w_{1}^{2} v_{2}\left(v_{2}+\mu v_{1}+\mu^{2} v_{0}\right) \\
& +\lambda^{2} u_{0} u_{2}\left(2 v_{2}^{3}+2 \mu v_{1} v_{2}-2 \mu^{2} v_{0} v_{2}+\mu^{2} v_{1}^{3}\right) \\
& +\lambda u_{1} u_{2}\left(\mu v_{1}+2 v_{2}\right)\left(v_{2}+\mu v_{1}+\mu^{2} v_{0}\right) \\
& +\lambda^{0} u_{0} u_{1} v_{2}\left(\mu v_{1}+2 v_{3}\right) \\
& +\lambda^{4} u_{0}^{2} v_{2}^{2}=0 .
\end{aligned}
$$

(2.) If $\mathrm{OP}^{1}=\mathrm{OA}$. OB , we get by the same method,

$$
\begin{aligned}
& u_{2}^{2} v_{2}^{2}\left(u_{2} v_{2}-u_{0} v_{0}\right)^{2}-u_{1} v_{1} u_{2}^{2} v_{2}^{2}\left(u_{2} v_{2}+u_{0} v_{0}\right) \\
& +\left(u_{2}^{2} v_{2}^{2}-4 u_{0} v_{0} u_{2} v_{2}\right)\left(u_{1}^{2} v_{0} v_{3}+u_{0} u_{2} v_{1}^{2}\right) \\
& +u_{1}^{4} v_{0}^{2} v_{2}^{2}+u_{0}^{2} u_{2}^{2} v_{1}^{4}=0 .
\end{aligned}
$$

(3.) Finally, if \mathbf{P} be the harmonic conjugate of O with respect to A and B, we get for the equation to the locus of P,

$$
\begin{aligned}
& \left(u_{2} v_{0}-u_{0} v_{2}\right)^{2}+\left(u_{2} v_{1}+u_{1} v_{2}\right)\left(u_{1} v_{0}+u_{0} v_{1}\right) \\
& +\left(4 u_{3} v_{0}+u_{1} v_{1}+4 u_{0} v_{2}\right)\left(u_{1} v_{0}+u_{0} v_{1}\right) \\
& +4\left(u_{1} v_{0}+u_{0} v_{1}\right)^{2}+4 u_{0} v_{0} u_{2} v_{1} \\
& +8 u_{0} v_{0}\left(u_{2} v_{0}+u_{0} v_{2}\right) \\
& +16 u_{0} v_{0}\left(u_{2} v_{0}+u_{0} v_{1}\right) \\
& +16 u_{0}^{2} v_{0}^{2}=0 .
\end{aligned}
$$

> A Trigonometrical Note.
> By De J. S. Mackay.

