
3 
CHANGE OF RINGS 

In this chapter, we introduce a family of constructions that show off the 
functorial approach to great advantage. The common theme is that they allow 
us to pass from a category of modules over one ring to a category of modules 
over another ring. These constructions are based on the tensor product, which 
we introduce in the first section. Given a ring R, a right R-module M and a 
left R-module N, their tensor product M @R N is an abelian group that has 
a certain universal property. If also M or N is a bimodule, then M @R N 
inherits a module structure. Thus, by holding one of M and N fixed and 
varying the other, we obtain functors between module categories. 

An important matter is whether or not these functors are exact; this leads 
to the concept of a flat module, which always gives an exact functor. Some 
fundamental examples and properties of flat modules are given in section 2. 

One way of changing rings is by means of a ring homomorphism from one 
ring to another. Classically, such homomorphisms are inclusions and the 
functors are extension and restriction of scalars. In the third section, we look 
at these functors for a ring homomorphism in general. 

3.1 THE TENSOR PRODUCT 

The tensor product is a fundamental tool for constructing functors between 
various categories of modules. In this section, we give the definition and basic 
properties of the tensor product M @R N of a right R-module M and a left 
R-module N, where R is an arbitrary ring. We then establish the functorial 
properties of the tensor product, which can be viewed variously as a functor 
of the second term N, with M being kept fixed, or of the first term M, with 
N kept fixed, or as a bifunctor. We discuss how the tensor product behaves 
on various module categories, and we investigate the adjointness between the 
tensor product and the Hom functor. 
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136 CHANGE OF RINGS 

Finally, we show that the category of modules over a generalized triangular 
matrix ring can be realized as a morphism category. 

3.1.1 The definition 
Let R be an arbitrary ring, let MR be a right R-module and let RN be a left 
R-module. 

A biadditive R-balanced map on the pair M, N is a function fJ from the 
cartesian product M x N to some abelian group A, with the following prop­
erties: 

and 

fJ(m + m', n) = fJ(m, n) + fJ(m', n), 

fJ(m, n + n') = fJ(m, n) + fJ(m, n') 

fJ(mr, n) = fJ(m, rn) 

for all m, m' in M, n, n' in Nand r in R. 
The tensor product M ®R N is defined to be the universal object with 

respect to such maps (see (1.4.2)). This means that M ®R N is an abelian 
group and that there is a biadditive R-balanced map 

r: M x N -----> M®RN 

with the property that, given any fJ as above, there is a unique homomorphism 

a : M ®R N -----> A 

with aT = fJ. 
For a category-theoretic description, consider the category whose objects 

are the biadditive R-balanced maps fJ : M x N --t A on the pair M, N, a 
morphism from fJ : M x N --t A to fJ' : M x N --t A' being a homomorphism 
of abelian groups a : A --t A' with afJ = fJ'. Then T : M x N --t M ®R N is 
the initial object in this category. The associated diagram is 

T 
MxN 

/ 
A 

Such a definition does not guarantee the existence of the required universal 
object, which we now establish. 
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3.1 THE TENSOR PRODUCT 137 

3.1.2 The construction 
To see that the tensor product exists, start with the free abelian group M #N 
generated by the cartesian product M x N; elements of M #N can be uniquely 
expressed as sums of the form 

zl(ml, nd + ... + zk(mk, nk), 

where Zi E Z, mi E M, ni E N for i = 1, ... , k, and k 2: 0 (the vacuous sum 
with k = 0 is to be read as 0). 

Next, let B(M, N) be the subgroup of M#N which is generated by all 
expressions of the form 

and 

(m + m', n) - (m, n) - (m', n), 

(m, n + n') - (m, n) - (m, n'), 

(mr,n) - (m,rn), 

with m, m' in M, n, n' in Nand r in R. 
We write 

M 0R N = (M#N)/B(M,N), 

and put T(m, n) = m 0 n, where T : M x N ....... M 0R N is the canonical 
homomorphism. (Where it is felt safe to do so, we occasionally write M 0 N, 
omitting the ring R.) 

A typical element of the tensor product is then a sum of the form 

zl(ml 0 nd + ... + zk(mk 0 nk), 

and the identities 

(m + m') 0 n = m 0 n + m' 0 n, 

m 0 (n + n') = m 0 n + m 0 n', 

and 

mr0n = m0rn 

hold among the generators of M 0 R N. 
Thus T is biadditive R-balanced as desired. It is straightforward to check 

that T is universal among such maps in the sense described previously and 
thus that M 0R N is the tensor product. 

Although applied mathematicians and physicists have long computed with 
tensors, the formal definition of the tensor product is comparatively recent. 
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138 CHANGE OF RINGS 

It was given for abelian groups in [Whitney 1938], and subsequently for arbi­
trary rings and modules in [Bourbaki 1948]. It should be remarked that the 
tensor product is not in fact a product or coproduct as defined in (1.4.11) and 
(1.4.12), but a 'coend'. For a definition of this term and a category-theoretic 
analysis of the tensor product, see [Mac Lane 1971] p. 222. 

3.1.3 Bimodule structures 
Commonly, M ® R N is rather more than just an abelian group. For example, 
when N is an R-S-bimodule, then M ®R N becomes an S-module via 

(m ® n)s = m ® ns for mE M, n E Nand s E S. 

To verify this assertion, note that M #N can be made into a right S-module 
by setting (m, n)s = (m,ns). Then B(M, N) is an S-submodule of M#N and 
so the quotient abelian group M ®R N inherits a right S-module structure as 
indicated. 

This method of constructing actions or mappings on M ® R N can be de­
scribed informally as specifying what happens to elements of the form m ® n 
and then extending the effect to linear combinations of such elements 'by lin­
earity'. Properly speaking, the action or mapping must first be defined on 
the generators of M#N, and then it must be verified that B(M,N) is invari­
ant, so that there is a corresponding induced action or mapping on M ®R N. 
However, such verifications are usually trivial. 

If M is a T-R-bimodule for some ring T, then M ®R N is a left T-module, 
and if M is a T-R-bimodule and N an R-S-bimodule, then M ®R N is a 
T-S-bimodule. 

Our first computation is the following result, wherein R is viewed as an 
R-R-bimodule. 

3.1;4 Proposition 
Let MR be a right R-module and let RN be a left R-module. Then 

(i) M ®R R ~ M as right R-modules 
and 

(ii) R ®R N ~ N as left R-modules. 

Proof 
(i) Define homomorphisms TJ : M ®R R ~ M and ,\ : M ~ M ®R R, 
by m ® r 1---+ mr and m 1---+ m ® 1 respectively. Since m ® r = mr ® 1 (and 
ml = m), TJ and ,\ are mutually inverse R-module homomorphisms. 
(ii) Similar. 0 
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3.1 THE TENSOR PRODUCT 139 

The next fact can be interpreted as saying that the tensor product is asso­
ciative. 

3.1.5 Proposition 

Let Rand S be rings and let LR, RM8 and 8N be modules as indicated. 
Then there is an isomorphism 

(L0R M) 08 N ~ L0R (M 08 N). 

Proof 
The expected isomorphism is that under which (£ 0 m) 0 n corresponds 

to £ 0 (m 0 n). We must check that this correspondence does in fact give a 
well-defined homomorphism. 

Take a fixed element n of N. The map 

(3(n) : L x M ~ L 0R (M 08 N), 

(£, m) f------> £ 0 (m 0 n), 

is biadditive and R-balanced (since r(m 0 n) = rm 0 n), and so it induces a 
homomorphism 

(3'(n) : L 0R M ~ L0R (M 08 N). 

Allowing n to vary, we see that the maps (3'(n) define a biadditive S-balanced 
map (3' : (L 0R M) x N ~ L 0R (M 08 N), which induces a homomorphism 
() : (L 0R M) 08 N ~ L 0R (M 08 N) as desired. 

Reversing this construction, and appealing to the universal property of the 
tensor product, we confirm that () has the expected inverse. D 

3.1.6 Functorial properties of tensor products 

We wish to see how the tensor product behaves as a functor when one of 
the modules MR or RN is kept fixed and the other varies through RMoD 
or MODR. As we are mainly concerned with functors on categories of right 
modules, we give the arguments in the case where the second module in the 
tensor product is regarded as being constant. The parallel results where the 
first module is viewed as constant are noted from time to time, the details 
usually being left to the reader, who will easily get them right. 

Let S be an arbitrary ring and suppose that N is an R-S-bimodule. As 

https://doi.org/10.1017/9780511608667.004 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.004


140 CHANGE OF RINGS 

noted above, for any right R-module M the tensor product M ® R N is a right 
S-module under the rule 

(m®n)s = m®ns, s E S. 

Thus, for any homomorphism 0: : M' ~ M of right R-modules, the induced 
homomorphism 

defined by 

(0: ® idN )(m' ® n) = o:m' ® n, 

is a homomorphism of right S-modules. 
Write 0: ®R N = 0: ® idN , so that the symbol - ®R N represents both a 

mapping from the objects of MODR to those of MODs and a collection of 
mappings 

- ®R N: HomR(M',M) ---+ Homs(M' ®R N,M ®R N), 

one for each pair of R-modules M', M. This information, together with the 
obvious properties 

and 

defines a functor from MODR to MODs, which we again denote - ®R N. 
Moreover, - ® R N is additive because if 0: : M' ~ M and 0:' : M' ~ Mare 
right R-module homomorphisms, then 

In summary, we have the following result. 

3.1.7 Lemma 

- ®R N is an additive covariant functor from MODR to MODs, D 

3.1.8 Proposition 

Let M = EB>'EAM>. be a direct sum of right R-modules, where A is any 
ordered set. Then 
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Proof 
When A is finite, the assertion follows immediately from the preceding 

result, since additive functors preserve finite direct sums (2.2.20). 
Now suppose that A is infinite. An element of either M 0 N or of the 

direct sum EB>'EA (M>. 0R N) involves nonzero terms m>. E M>. for only a 
finite subset E of A, which makes it clear that there is a homomorphism 

¢; M 0R N -----+ EB>'EA (M>. 0R N) 

and that ¢ is surjective. 

Suppose that ¢(x) = O. Then the preimage of ¢(x) in EBE(Ma#N) belongs 
to the direct sum of relation subgroups EBE B(Ma, N). Thus the preimage of 
x is already 0 in (EBEMa) 0N, and hence x = O. 0 

Any left R-module N is automatically an R-Z-bimodule, so our discussion 
includes the case when N has not been attributed any particular structure as 
a right module. The functor - 0R N is then a functor from MODR to As, 
the category of abelian groups. 

3.1.9 Fixing the first argument 
We now review the results and notation that arise when the first module of a 
tensor product is considered to be an operator on the second. 

Let M be a T-R-bimodule for some ring T. Then there is an additive 
functor 

On modules, 

(M 0R -)(N) = M 0R N, 

with the T-module structure given by 

t(m0n) = tm0n, 

and for a homomorphism ( ; N' ~ N of left R-modules, 

M 0 (= (idM 0 () ; m 0 n' 1--+ m 0 n'(. 

When idM 0 ( is to be considered as a left T-module homomorphism, as 
happens in (5.1.19) for example, we write idM 0 ( as a right operator, in 
accord with our convention (1.1.4). 

However, sometimes we are given only that M is a right R-module, and we 
wish to consider M to be a Z-R-bimodule in the natural way. In this case, 
the functor M 0R - takes values in ZMOD, but, for applications, it is often 
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more convenient to compose it with the mirror functor Mir : ZMOD ----; MODZ 
and view M 0R - as having values in As = MODZ. 

Thus, for a homomorphism ( : N' ----; N of left R-modules, idM 0 ( is to be 
viewed as a left operator on M 0 R N', which is the convention most commonly 
met in the literature. With this notation, M 0 R - is a covariant functor from 
RMoD to MODZ that appears to 'reverse products'; in the terminology of 
(1.2.6), it is a contrachiral functor. 

This approach is especially handy when we have both a right R-module 
homomorphism a : M' ----; M and a left R-module homomorphism ( : N' ----; 
N, in which case the composite 

cannot in general be regarded as a module homomorphism. 
We use the convention that idM 0 ( is to be considered as a left operator 

for the remainder of the present chapter. 
Next, we note some naturality properties of the functors M 0R - and 

-0R N. 

3.1.10 Proposition 
Let T, Rand S be arbitrary rings. 

(i) Let ( : N' ----; N be a homomorphism of left R-modules or of R-S­
bimodules. Then ( induces a natural transformation 

- 0R ( : - 0R N' ---+ - 0R N. 

(ii) Let a : M' ~ M be a homomorphism of right R-modules or of T -R­
bimodules. Then a induces a natural transformation 

a0R -: M'0R - ---+ M0R-· 

Proof 
The argument is a matter of interpreting the requirements for a natural 

transformation (1.3.1) in terms of the notation of the tensor product. Fix (, 
and define "lM for each M in MODR by 

"lM = idM 0 ( : M 0R N' ---+ M 0R N. 

Given a homomorphism a : M' ----; M of right R-modules, we need to check 
that (a 0 N)"lM' = "lM(a 0 N'). But both sides are simply a 0 (. 0 

If we allow both M and N to vary simultaneously, the preceding result can 
be interpreted as saying that - 0R - is a bifunctor from MODR x RMoD to 
the category As of abelian groups. 

https://doi.org/10.1017/9780511608667.004 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.004


3.1 THE TENSOR PRODUCT 143 

We now state a refined version of (3.1.4). 

3.1.11 Proposition 

(i) The functor - ® R R is naturally isomorphic to the identity functor on 
MODR· 

(ii) The functor R ®R - is naturally isomorphic to the identity functor on 
RMoD. 

Proof 
For each right R-module M, let 

"lM : M ®R R ---->1 M, "lM(m ® r) = mr, 

be the isomorphism of right R-modules defined in (3.1.4). If a: M' -T M is a 
homomorphism of right R-modules, then the formula a(m'r) = a(m')r gives 

a"lM' = "lM(a ® idR); 

thus "l is a natural transformation of functors. 0 
As M ® R - and - ® R N are additive functors, the next result is immediate 

from (2.2.20). 

3.1.12 Proposition 

(a) Suppose that M ~ M' EEl Mil as a right R-module and that N is an R-S­
bimodule. Then 

as a right S -module. 
(b) Suppose that N ~ N' EEl Nil as a left R-module and that M is a T-R­

bimodule. Then 

as a left T -module. o 
Since the isomorphisms in parts (a) and (b) of the above proposition are 

evidently natural in Nand M respectively, the definitions of a direct sum of 
functors (2.2.21) and of a natural isomorphism (1.3.3) lead to the following 
functorial interpretation of the proposition. 
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3.1.13 Proposition 

(a) Suppose that M ~ M' ffiM" as a right R-module. Then there is a natural 
isomorphism 

M Q9R - '::::' M' Q9R - ffi Mil Q9R-

of functors from RMoD to As. 
(b) Suppose that N ~ N' ffi Nil as a left R-module. Then there is a natural 

isomorphism 

- Q9R N '::::' - Q9R N' ffi - Q9R Nil 

of functors from MODR to As. o 
The above proposition easily leads to the next, in the case of finite direct 

sums. However, we also need to consider direct sums based on an infinite 
ordered set A, and to introduce some notation. Recall that we write the 
standard free right R-module on A as RA. The standard free left R-module is 
written as AR, and we view AR as the 'space of row vectors' over AR indexed 
by A. When the index set is the finite set {I, ... ,n}, we use the more familiar 
notations Rn and nR for the free right and left modules respectively. The 
direct sum of copies of a general R-module M is written MA or Mn, regardless 
of chirality. 

3.1.14 Proposition 

(a) The two functors 

MODR X OnD ------+ MODR 

given respectively by 

and 

are naturally isomorphic. 
(b) The two functors 

given respectively by 

and 

(M, A) f-------+ MA 

(N, A) f-------+ N A 
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are naturally isomorphic. 

Proof 
It suffices to discuss (a). The key point is that the sequences (mA), with each 

m A EM, ..\ E A, that make up MA, have only finitely many terms m A nonzero. 
Writing the standard generators of AR as eA, we map M ®R AR to MA by 
sending Ei(EA mi ® riAeA) to (Ei miriA)A' Clearly this defines a surjective 
natural transformation, whose injectivity follows from the interchangeability 
of the finite summations: 

L(L mi ® riAeA) = L(L miriA) ® eA' o 
A A 

We also note an important special case .of the above proposition. Let 
Mm,n(R) denote the additive group of m x n matrices with entries in the 
ring R. Clearly, Mm,n(R) is an Mm(R)-Mn(R)-bimodule, and we know that 
Rm is an Mm(R)-R-bimodule and that the standard free left R-module nR is 
an R-Mn(R)-bimodule. A direct verification gives the following result. 

3.1.15 Corollary 
Rm ®R nR ~ Mm,n(R) as an Mm(R)-Mn(R)-bimodule. o 

3.1.16 Return of the dyads 

In classical tensor analysis, an m x n matrix that can be expressed as the 
matrix product of a column vector by a row vector (that is, an m x 1 matrix 
by a 1 x n matrix) is called a dyad, especially when m = n. Thus the above 
result tells us that any matrix is a sum of dyads. 

We next investigate the effect of a tensor product when it acts on subcat­
gories of MODR. Recall that MR is the category of finitely generated right 
R-modules and that PR is the category of finitely generated projective right 
R-modules. 

3.1.17 Lemma 
Let N be an R-S -bimodule. 

(i) The functor - ®R N from MODR to MODS induces a functor 

-®RN: MR --tMs 

if and only if N is finitely generated as a right S -module. 
(ii) The functor - ®R N from MODR to MODS induces a functor 

- ®R N : PR --t Ps 
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if and only if N is finitely generated and projective as a right S -module. 

Proof 
Necessity is clear in both cases, since N ~ R 0R N must be in the target 

category. On the other hand, if N has a finite set {nI' ... , nk} of generators 
as an S-module, and M has generators {mI, ... , md as an R-module, then 
{mI 0 nI, ... , mR 0 nd generates M 0R N, which gives (i). 

For (ii), note that any module P in PR is a direct summand of Rn for some 
integer n. But then P 0R N is a direct summand of Rn 0R N ~ Nn, which 
is projective precisely when N is, by a standard result ([BK: IRM] Theorem 
2.5.5). [] 

3.1.18 The adjointness of the functors Hom and 0 
The homomorphism functors and the tensor product are connected by an 
adjointness relation, the existence of which serves to explain and simplify 
some calculations, especially in the Morita theory. 

It will be convenient to depart from our customary labels for rings in order 
to avoid some confusing substitutions in applications. Let A, Band C be 
arbitrary rings, and take bimodules ALB, BMC and ANC as indicated. 

Then L 0B M is an A-C-bimodule, and we can form the abelian group 
HomA-c(L 0B M,N) of A-C-bimodule homomorphisms from L 0B M to 
N. It is easy to verify that this group is natural with respect to bimodule 
homomorphisms of each variable, being contravariant in the first two variables 
and covariant in the third. Thus we have a trifunctor 

We can also give Hom(Mc, Nc) the structure of an A-B-bimodule by the 
usual rule: 

(ap,b)(m) = a(p,(bm)) for mE M, p, E Hom(Mc, Nc). 

We can then form the group HomA-B(L, Hom(Mc, Nc)), so obtaining a tri­
functor 

HomA-B( -, Hom( -c, -c)) : ABTMODB X BBTMODC X ABTMODC -------+ AB. 
A third variation on this theme is to view Hom(AL, AN) as a B-C-bimodule 
and form the group HomB-c(M, Hom(AL, AN). Notice that the order of the 
bimodules L, M and N is changed. Despite this alteration, we again have a 
trifunctor 
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The Adjointness Theorem tells us that all three general constructions yield 
essentially the same trifunctor. More precisely, the following result holds. 

3.1.19 The Adjointness Theorem for Hom and ® 

Let A, Band C be arbitrary rings. Then there are natural isomorphisms 

T]: HomA-c(L®B M,N) ----+ HomA-B(L,Hom(Mc , N c )), 

and 

of trifunctors from ABIMODB X BBIMODC X ABIMODC to AB. 
In particular, for M in BBIMODC, the functor 

is left adjoint to 

and for L in ABIMODB, the functor 

is left adjoint to 

Proof 
We establish the first assertion only, the argument for the second being 

similar. 

Take bimodules ALB, BMC and ANc and let 0: be in Hom A-dL®BM, N). 
Then a map T]O: : L ---+ Hom(Mc , Nc) is defined by setting 

((T]o:)(£))(m) = 0:(£ ® m) for each £ ELand mE M. 

Since C acts on L®M by (£®m)c = £®mc and 0: is a right C-module homo­
morphism (and the tensor product is linear in each variable), every (T]O:)(£) is 
a right C-module homomorphism. It is also clear that T]O: is an additive map 
on L. 

The verification that T]O: is anA-B-bimodule homomorphism is a matter of 
careful book-keeping. We need to check that for all £ E L, a E A and b E B 
we have 

(T]o:)(a£b) = a((T]o:)(£))b. 
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For any m E M, 

((1]a )(a£b ))(m) a(a£b@ m) 
a(a(£@ bm)) 

which is the desired result. 

a(a(£@ bm)) 
a(1]a(£)) (bm) 

CHANGE OF RINGS 

(a( (1]a)( £))b) (m), 

We define the inverse T of 1] as follows. Let/' E HomA-B(L, Hom(Mc, Nc)), 
and put (T/,)(£@m) = /'(£) (m). Routine checking confirms that T/, arises from 
a B-balanced biadditive map on L x M in the expected way and that T/, is 
an A-C-bimodule homomorphism. 

It is clear that 1] and T are mutually inverse isomorphisms for each triple L, 
M and N, and further routine verification shows them to be natural in each 
variable. 0 

3.1.20 An equivalence of categories 

Finally, we use the tensor product to generalize the characterization of trian­
gular matrix rings that was given in (1.3.18). 

Let Rand S be arbitrary rings and let W be an R-S-bimodule. We define 
the morphism category relative to W (a variant of the fibre category of (1.2.9)) 
to be the category MOR(W; R, S) whose objects are triples (a, M, N) in which 
M is a right R-module, N is a right S-module and a : M @R W ----t N is a 
homomorphism of right S-modules. 

A morphism from (a', M', N') to (a, M, N) is a pair (J-l, v) of homomor­
phisms, J-l : M' ----t M and v : N' ----t N, such that va' = a(J-l @ id), which 
means that the following diagram must commute: 

M'@RW 
a' 

) N' 

J-l@id 1 lv@id 
a 

M@RW )N 

Thus with W = R = S, we regain the morphism category MOR(MoDR). 
The rings Rand S and the bimodule W also define the generalized trian-

gular matrix ring T = (~ ~) . 

3.1.21 Theorem 

The categories MODT and MOR(W; R, S) are equivalent. 
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Proof 
As the details of the argument are very similar to those of the proof of 

(1.3.18), we merely indicate the correspondence between right T-modules L 
and homomorphisms 0: : M 0 R W --t N. 

Suppose that L is a right T-module. Since the direct product R x S is a 
subring of T, L can be decomposed into a direct sum M EEl N with M a right 
R-module and N a right S-module. For m in M and win W, we can write 

(m,O) (~ ~) = (0, o:(m, w)) 

with o:(m, w) E N. It is easy to check that 0: is biadditive and R-balanced, 
and so gives rise to a homomorphism 13 : M 0 R W --t N. 

Conversely, given such a homomorphism 13, we can define a T-module struc-
ture on M EEl N. The remaining details are for the reader. 0 

Exercises 
3.1.1 Let 13 : M --t Mil and ~ : N --t Nil be surjective homomorphisms 

of right and left R-modules respectively. Show that Ker 13 0 ~ is the 
subgroup of M 0 N generated by the set 

{k0n,m0£lkEKerj3, £EKer~, mEM, nEN}. 

3.1.2 Let a and b be ideals ofthe ring R. Show that R/a0RR/b 2'! R/(a+b). 
(The preceding exercise is relevant.) 

Hence compute Z/aZ 0z Z/bZ for various integers a and b. 
3.1.3 Dedekind domains 

Let 0 be a Dedekind domain. This exercise requires some facts 
about O-modules which are summarized in (2.3.20). 

(a) Let P be a finitely generated projective O-module. Then, by 
Steinitz' Theorem, P is isomorphic to a projective module in the 
standard form P 2'! or-l EEl a where the rank r and the ideal class 
{a} are uniquely determined by P. Compute P 00 Q for any 
finitely generated projective modules P, Q. 

(b) Using the Primary Decomposition Theorem and Exercise 3.1.2 
above, describe M 00 N for any pair M and N of finitely gener­
ated torsion O-modules. 

(c) Using the fact that any finitely generated O-module has the form 
T EEl P with T torsion and P projective, describe M 00 N for any 
pair M and N of finitely generated O-modules. 
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3.1.4 Associativity of the tensor product 
Let Rand S be rings and let LR, RMS and sN be modules as 

indicated. 
Show that the isomorphism 

(L 0R M) 0s N ~ L 0R (M 0s N) 

of (3.1.5) is natural in each variable. 
Deduce that the functors (- 0R -) 0s - and - 0R (- 0s -) from 

MODR x Rl3ZMODs X SMOD to As are naturally isomorphic. 
3.1.5 Let A, B, and C be rings with bimodules ALB, BMe and ANe as 

indicated. 
Using the Adjointness Theorem (3.1.19) together with the charac­

terizations of projective and injective modules in terms of the Hom 
functor given in (2.1.8), show that 

(i) if LB and Me are both projective, then L 0B M is projective as 
a right C-module (here, take A = Z); 

(ii) if Me is projective and AN is injective, then Hom(Me, No) is 
left A-injective (here, take B = Z.) 

3.1.6 (Tricky!) 
Let T be the ring of upper triangular 2 x 2-matrices over R. By 

(3.1.21), there is an equivalence between the categories MODT and 
MOR(MoDR). Show that the projective T-modules correspond to 
split surjections a : P -+ Q with both P and Q R-projective. 

Dualize this statement to one about injectives. 

3.2 EXACTNESS OF THE TENSOR PRODUCT 

We next investigate whether or not a tensor product functor - 0R N is an 
exact functor. The answer depends both on the left R-module N that is 
kept fixed and on the category of right R-modules on which it operates. The 
modules that always give exact functors form an important class of modules, 
namely, the fiat modules. We give some criteria for a module to be fiat, and 
we prove Villamayor's Lemma, a fundamental result which shows that a fiat 
module enjoys a weak form of the splitting property that defines projective 
modules. We also give a summary of the properties of the functors Tor~ that 
are used to repair the non-exactness of the tensor product, and we show that 
the tensor product induces a pairing on MODR for a commutative ring R. 

The novelty of our proofs is that they are 'elementary' in that they avoid 
the use of the machinery of homological algebra. 
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We also show that, for R commutative, the tensor product defines a binary 
operation on the category of R-modules. 

Unless otherwise stated, the ring R is arbitrary. Our main object of atten­
tion is a left module, since we wish to investigate operators on categories of 
right modules. 

3.2.1 Flat modules 
Let C be a G-exact category of right R-modules, that is, C is a subcategory 
of MODR together with a specified set Ex(C) of short exact sequences as in 
(2.4.1), and let N be an R-S-bimodule. The additive functor - &;R N may 
or may not be an exact functor on C as defined in (2.4.6). It will be so if C is 
split exact, but it is not in general, as the following example for MODZ shows. 

For any nonzero integer n, there is an exact sequence of ::Z:-modules 

n o ---+ Z ----> Z ---+ Z / nZ ---+ 0 

in which the first map is multiplication by n. Tensoring with Z/nZ (as a 
Z-module) gives the sequence 

o o ---+ Z / nZ ----> Z / nZ ---+ Z / nZ ---+ 0 

which evidently fails to be exact at the first term Z/nZ. 
A left R-module N for which - &;RN : MODR --; MODZ is an exact functor 

is, by definition, a fiat module. Thus, the left R-module N is flat if for any 
short exact sequence 

0: f3 o ---+ M' -----+) M -----+) M" ---+ 0 

of right R-modules the sequence 

0: &; id f3 &; id o ---+ M' &; R N -------;) M &; R N -------;) Mil &; R N ---+ 0 

is also a short exact sequence. The definition of a flat right R-module is 
analogous. 

We have an almost tautologous lemma. 

3.2.2 Lemma 
Suppose that the R-S -bimodule N is fiat as a left R-module and finitely 

generated as a right S-module (where Rand S are arbitrary rings). Then the 
functor 
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is exact. 

CHANGE OF RINGS 

o 
Before we make a detailed analysis of the properties of flat modules, we 

discuss the extent to which exactness is preserved by modules in general. 

3.2.3 Proposition 

(a) Let N be a left R-module and let 

a 13 o ~ M' --~) M --~) Mil ~ 0 

be a short exact sequence of right R-modules. Then the sequence 

a&; id 13 &; id 
M' &;R N -----+) M &;R N -----+) Mil &;R N ~ 0 

is exact. 
(b) Let M be a right R-module and let 

a 13 o ~ N' --~) N --~) Nil ~ 0 

be a short exact sequence of left R-modules. Then the sequence 

id &; a id &; 13 
M&;RN' -----+) M&;RN ) M&;RN" ~O 

is exact. 

Proof 
(a) The fact that Mil &; N is generated by symbols mil &; n shows imme-
diately that 13 &; id is surjective. Since 

0= j3a &; id = (13 &; id)(a &; id), 

we have 

Im(a &; id) <:;;; Ker(j3 &; id). 

We must verify that this inclusion is equality. Write I = Im( a &; id) and let 

..\: (M&;RN)jI ~ Mil &;RN 

be the homomorphism induced by 13. It suffices to show that ..\ is an isomor­
phism, which we do by constructing an inverse. 

Recall that Mil &;R N = M"#NjB(M",N) (3.1.2). Define 

JL: M"#N ~ (M&;RN)jI 
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by 

p,(m",n) =mQ9n+I, 

where m is any element of M such that f3m = mil. 

153 

If also f3ml = mil, then exactness at M implies that m - ml is in 1m ex and 
hence 

m Q9 n + I = ml Q9 n + I. 
Thus p, is well-defined. Since p, is trivial on B(M", N), it induces a homo­
morphism Mil Q9R N --+ (M Q9R N)/I which is evidently inverse to A. 

The proof of (b) is analogous. 0 

3.2.4 Corollary 
A left R-module N is fiat if and only if for each injective right R-module 

homomorphism ex : M' -r M, the group homomorphism 

ex Q9 idN : M' Q9R N --+ M Q9R N, 

is also an injection. o 
The existence of flat modules is guaranteed by the next result. 

3.2.5 Corollary 
Suppose that N is a projective left R-module. Then N is fiat. 

Proof 
That any free module RA is flat follows from (3.1.14), since any injective 

right R-homomorphism M' -r M induces an injection M,A -r MA. Now, 
for the module N, we have NEB Q ~ AR for some left R-module Q and free 
module AR. Therefore, by (3.1.13), 

- Q9R N EB - Q9R Q ~ - Q9R AR. 

So - Q9R N is exact by Exercise 2.4.6. o 

3.2.6 The functors Tor~ 
The failure of the tensor product to be an exact functor can be measured by a 
sequence of derived functors Tor~ ( -, - ) for n 2: 1. These may be constructed 
as follows. 

Given a right R-module M and a left R-module N, where R is an arbitrary 
ring, we take a short exact sequence 

O--+L--+ F--+ N--+ 0 
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of left R-modules with F flat (for example, projective), and define 

Torf(M, N) = Ker(M 0R L -+ M 0R F) 

and 

Tor;;(M, N) = Tor;;_l (M, L) for n > l. 

It can be shown that the abelian groups Tor;;(M, N) are independent of the 
choice of the short exact sequence for N, and that they could equally be 
defined by taking a similar short exact sequence for M and considering the 
kernel after tensoring with N. Further, Tor;;(M, N) is a covariant additive 
functor in each of its arguments, and, given a short exact sequence 

° -----t N' -----t N -----t N" -----t ° 
of left R-modules, there is a long exact sequence 

------+ Tor;;+l (M, Nil) ------+ 

------+ Tor;;(M, N') ------+ Tor;;(M, N) ------+ Tor;;(M, Nil) ------+ 

------+ 

------+ Torf(M, Nil) ------+ 

------+ M0R N' ------+ M0RN ------+ M0R N" ------+ 0, 

and likewise for the other variable. 
Much analysis is required to verify these claims; a good account is given in 

[Rotman 1979]. 
Note that the flat left R-modules can be characterized as those modules 

F for which the functors Tor;; ( -, F) (n ~ 1) are identically zero (and corre­
spondingly for right flat modules). Some very elementary calculations with 
the Tor functors are indicated in Exercise 3.2.7 below, and in Exercise 6.2.1, 
which justifies the notation 'Tor'. Flat modules made a reticent entrance into 
the mathematical landscape in Exercise 3 of Ch. VI of [Cartan & Eilenberg 
1956], where they are defined in terms of the vanishing of the functors Torn. 
The pivotal role that flat modules now play will become clear in subsequent 
chapters of this text. 

3.2.7 Criteria for flatness and Villamayor's Lemma 
We now obtain some useful criteria for flatness and thence Villamayor's Lemma. 
For the next few results and proofs, it is convenient to say that a functor F 
respects the injectivity of a module monomorphism /-l if F/-l is also a monomor­
phism. 
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3.2.8 Proposition 

(a) For a left R-module N, the following assertions are equivalent. 

(i) RN is fiat. 
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(ii) The functor -&;RN respects the injectivity of any R-module monomor­
phism 0: : M~ ~ MR with M~ finitely generated. That is, 

0: &; id : M' &; R N -----+ M &; R N 

is also injective. 
(iii) The functor -&;RN respects the injectivity of any R-module monomor­

phism M~ ~ MR. 
(iv) The functor - &;R N : MODR ~ As is exact. 

(b) For a right R-module M, the following assertions are equivalent. 

(i) MR is fiat. 
(ii) The functor M &; R - respects the injectivity of any R-module monomor­

phism RN' ~ RN with RN' finitely generated. 
(iii) The functor M&;R- respects the injectivity of any R-module monomor­

phism RN' ~ RN. 
(iv) The functor M &;R - : RMoD ~ As is exact. 

Proof 
The only outstanding points to check are the implications (ii) =} (iii); we 

deal with (a) only. Consider an injective homomorphism 0: : M~ ~ MR 
with M~ not necessarily finitely generated, and let x = 2:.:7=1 (m~ &; ni) be in 
Ker(o: &; id). Then x also lies in Ker(o:' &; id), where 0:' is the restriction of 0: 

to the submodule of M generated by mi, ... , m~. This forces x = 0, so that 
Ker( 0: &; id) = 0 as required. D 

The following criterion is designed to simplify one's workload in establishing 
that a given module is flat. 

3.2.9 The Flat Test 
A left R-module N is fiat if and only if - &; R N respects the injectivity of all 

inclusions J.L : a ~ R of finitely generated right ideals in R. The corresponding 
statement holds with left and right interchanged. 

Proof 
Necessity of the condition is immediate from the preceding proposition. 

Sufficiency is proved in four stages. First, we note that the argument just 
given to prove (ii) =} (iii) above also shows that -&;RN respects the injectivity 
of inclusions J.L : a ~ R of arbitrary right ideals in R. Second, we argue by 
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induction on n to show that - 0 R N respects injectivity for J-l : M ----+ Rn, the 
case n = 1 having just been settled. 

For the inductive step, we use the standard embedding of R n- 1 in Rn. Put 
Mil = Mj(M n Rn-l). Since Mil ~ (M + Rn-1)jRn- 1 and RnjRn- 1 ~ R, 
there is an injective homomorphism from Mil to R. So there is a commuting 
diagram with exact rows, the lower of which is split: 

(M n Rn-l) 0R N ---+ M 0R N ---+ M"0R N ---+ 0 

j j j 
o ---+ 

Then the injectivity of the two outside vertical arrows implies that of the 
middle one. 

The next step is to show that - 0 R N respects the injectivity of a monomor­
phism J-l : M ----+ F where F is an arbitrary free module. Again, it is enough 
to check the case where the domain M is finitely generated. But then, if 
(J-l0 id)x = 0 in F 0 R M, there is a finitely generated free submodule G of the 
codomain F such that (J-l0 id)x = 0 in G 0 R M already, since any member of 
the relation group B(F, M) (3.1.2) can involve only finitely many generators 
of F. By the previous step, x = O. 

For the final step, let J-l : M' ----+ M be an arbitrary injective homomorphism 
of right R-modules, and let F be a free right R-module with f3 : F ----+ M an 
R-homomorphism onto M, having kernel K, say. Then, in the pull-back 

M' 

F 
f3 

M 

7J also has kernel K, and so there is a commuting diagram with exact rows 

K0RN ---+ F0RN 

id j Tl0 id j 
K0RN ---+ F0RN 

---+ M' 0R N ---+ 0 

J-l0id j 
---+ M 0R N ---+ 0 

Since Tl 0 id is now known to be injective, so too is J-l 0 id, and the proof is 
complete. 0 
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3.2.10 Corollary 
Let 0 -+ N' -+ N -+ Nil -+ 0 be a short exact sequence of left R-modules. 

If N' and Nil are fiat, then so too is N. 

Proof 
Considering any inclusion a -+ R of a right ideal in R, simply chase the 

following commutative diagram of exact rows and columns to show that the 
middle row commences with an injection. 

0 

j 
O~ a0RN' ~ R0RN'~ Rja0R N' ~ 0 

j j j 
a0R N ~ R0RN ~ Rja0RN ~O 

j j j 
O~ a0R Nil ~ R0RN"~ Rja0RN"~ 0 

j j j 
0 0 0 D 

3.2.11 Villamayor's Lemma 
Let M be a right R-module. Then the following assertions are equivalent. 

(i) M is fiat. 
(ii) Given any pair (E, L), where E : F -+ M is a surjective homomorphism of 

right R-modules with F free, and L is a finitely generated submodule of 
Ker E, then there is an R-homomorphism p : F -+ Ker E which restricts to 
the identity map on L and which has finitely generated image pF. 

Proof 
First assume that M is fiat. We argue by induction on the number of 

generators Ul, ... ,Un of the submodule L. 
n = 1. Write Ul = 2:7=1 Xiri with Xl, ... , xn elements of a free generating 
set for F. Let a be the left ideal of R generated by rl, ... ,rk. Since M is fiat, 
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the obvious map M 0R a -+ M 0R R ~ M is an injection. So in the following 
commutative diagram with exact rows, the right vertical arrow is injective. 

(KerE) 0R a ---+ F 0R a ---+ M 0R a ---+ 0 

111 
o ---+ KerE ---+ F M 

Since Ul is the image of the element 2::7=1 Xi 0 ri of F 0R a, a diagram chase 
shows that 

k h 

LXi 0 ri = Im(LYj 0 Sj) 

i=1 j=1 

for elements Yj E Ker 10 and Sj E a. Write Sj = 2::7=1 aijri for j = 1, ... ,h, 
with each aij in R, and put Vi = 2::7=1 Yjaij for each i. Then 

k k 
Ul = Im(L Vi 0 ri) = L Viri with each Vi E Ker E. 

i=1 i=1 
The R-homomorphism PI : F -+ Ker 10, sending Xi to Vi for i = 1, ... ,k and 
each other generator of F to zero, has finitely generated image and PI Ul = Ul. 

n > 1. Let PI : F -+ Ker 10 be as above, and let p' : F -+ Ker 10 be the homo­
morphism obtained by applying the induction hypothesis to the submodule 
of Ker 10 generated by U2 - PI U2, ... , Un - PI Un. Then the R-homomorphism 

P = PI + p' (id - PI) : F ~ Kerf 

has the desired property. 

For the converse, we wish to apply the Flat Test. Therefore let a be a left 
ideal of R (with inclusion t : a -+ R) and let 10 : F -+ M be some surjection 
from a free module F. We obtain the same diagram as above, but this time 
seek to establish the injectivity of the right-hand vertical arrow. 

Since the free module F is flat by the left-handed version of (3.2.5), id 0 
t : F 0 R a -+ F 0 R R ~ F is injective. Thus, by an easy diagram chase, 
the injectivity of the right-hand arrow will follow once we can show that 

if 2::7=1 Xi 0 ai is in F 0R a and 10(2::7=1 Xiai) = 0, then 2::7=1 Xiai lies in 
(id 0 t)((Kerf) 0R a). 

Now by hypothesis there exists an R-homomorphism P : F -+ Kerf which 

restricts to the identity map on 2::7=1 Xiai. Then 2::7=1 PXi 0 ai E (Ker E) 0 R a 
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and 
k k k 

LP(xi)ai = P(Lxiai) = LXiai, 
i=l i=l i=l 

as required. 0 

Note that here L is not quite a direct summand of F. We now show that 
in favourable circumstances we do obtain a direct summand. The first result 
is obvious, the next rather deeper. 

3.2.12 Corollary 
Suppose that 10 : F -----> M is surjective, with F free and M fiat. If Ker 10 is 

finitely generated, then F ~ Ker 10 EB M. 0 

Although the finitely generated submodule L in Villamayor's Lemma need 
not be a summand of F, the next result shows that it is contained in a finitely 
generated summand provided that F is 'big enough'. This result is used 
in (5.2.7) to help in the derivation of another important characterization of 
flatness. 

3.2.13 Lemma 

Suppose that (10, L) is a pair as in Villamayor's Lemma, and also that M is 
fiat and that F = FrR(X), where for each x E X there exist infinitely many 
y E X such that lOy = loX. Then there is a finitely generated direct summand 
L' of F with 

L S;; L' S;; Ker f. 

Proof 
With P : F -----> Kerf as above, let Xl be the finite set of elements of X 

occurring in the expressions of the generators of pF as linear combinations 
of elements of X. By hypothesis, we can partition X as X = Xl U X 2 U X3 
with Xl and X 2 in bijective correspondence such that corresponding elements 
have the same images under f. Write Fi = Fr R (Xi)' so that L S;; Hand 
F = Fl EBF2 EBF3, and let 7rl : F -----> Fl denote projection to the first summand. 
The bijection Xl -----> X 2 defines an injective homomorphism a: Fl -----> F2 '----t F 
with 7rl a = 0 and fa = f. Define 

T = id + a(p - id) : Fl -----> F, 

with image L' = T Fl. (Roughly speaking, T - id is just P - id shifted away 
from Fl.) Evidently, 7rl T = id, so that the inclusion of L' in F is split by 
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T7rl : F --> T Fl. Because the restriction of T to £ is the identity map, £ ~ £'. 
Finally, since E(J = E and Ep = 0, we have £' ~ Ker E. 0 

3.2.14 A pairing on MODR 

As we remarked following (3.1.10), the tensor product -®R- can be regarded 
as a bifunctor from MODR x RMoD to AB. For a general ring R and arbitrary 
modules MR and RN, there is no natural method by which M®RN can be en­
dowed with an R-module structure. However, if both M and N belong to the 
category R!3ZMODR of R-R-bimodules (and R-R-bimodule homomorphisms), 
then M ®R N is also in R!3zMODR (see (3.1.3)). 

This observation permits us to use the tensor product to define a binary 
operation in MODR when the ring R is commutative. An R-R-bimodule is 
said to be balanced if rm = mr for all m in M and r in R. Clearly, any right 
(or left) R-module M can be viewed as a balanced R-R-bimodule by setting 
rm = mr for all r in Rand m in M. Thus we can choose to identify both 
MODR and RMoD with the category !3ALR of balanced R-bimodules. 

Using this identification, we can regard -®R- as a bifunctor from MODR x 
MODR to MODR. Such a bifunctor which is additive in both variables is 
sometimes called a pairing on MODR. It is clear that this pairing induces a 
pairing on MR, the category of finitely generated R-modules. 

The next result shows that this pairing is, in essence, commutative. The 
proof is an easy exercise. 

3.2.15 Proposition 
Let M and N be balanced bimodules over the commutative ring R. Then 

there is a natural isomorphism M ®R N ~ N ®R M of balanced R-bimodules. 
o 

The above pairing can be viewed as a generalization of the product of 
fractional ideals of a commutative domain O. Let K be the field of fractions 
of 0, and recall that a fractional ideal of 0 is a finitely generated (balanced) 
O-submodule of K, and that the product ab of fractional ideals a and b is 
the submodule of K generated by all products ab with a E a, b E b (2.3.20). 
Then ab is also a fractional ideal. The connection between the pairing and 
the product is given by the following useful computation. 

3.2.16 Proposition 
Let 0 be a commutative domain with field of fractions K, and let a and b 

be fractional ideals of O. 
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Then there is an isomorphism a @o b ~ ab ~ K, given by a @ b I----> abo 

Proof 
Clearly, the map a @ b I----> ab is a well-defined surjection, so we need only 

check injectivity. Suppose first that b = Ox is principal. Then b is projective 
and so flat as an V-module, and the natural inclusion a ~ K gives an injective 
homomorphism a@oOx ~ K@oOx. Arguing as in (3.1.4), we have a@oVx ~ 
ax and K @o Ox ~ Kx = K via a @ x I----> ax. 

In general, suppose that al, ... , ak are in a and bl , ... , bk are in b, and that 
L:i ai @ bi I----> 0 in K. Finding a common denominator x E K, we can write 
bi = CiX with Ci E V for all i. Then 

so L:i aiCi = 0 in a. Thus L:i ai @ Ci = 0 in a @o V and, after multiplication 
by x, L:i ai @ bi = 0 in a @ b. 0 

Exercises 
3.2.1 Let R be the ring of dual numbers A[E] over a ring A, and recall that 

A is both a left and right R-module, with E acting as 0 on A. By 
considering the short exact sequence of right R-modules 

where a is the inclusion and f3 the obvious surjection, show that A is 
not R-flat. 

3.2.2 Let N = EB AEA NA be a direct sum of left R-modules, where A is any 
ordered set. Show that N is flat if and only if each NA is flat. 

3.2.3 An R-module M is said to be finitely related if there is a short exact 
sequence of the form 

o ------. Rm ------. RA ------. M ------. O. 

Show that if also M is flat, then M is projective. 
3.2.4 Given a subring 0 of a ring R, we introduce two O-relative G-exact 

categories MR,O and PR,o as follows. 
The category MR,o has as underlying category MR and we take 

the set Ex(MR,o) of admissible short exact sequences to be all the 
short exact sequences in MR which are split as exact sequences of 
O-modules. The underlying category of PR,o is the full subcategory 
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of MR whose objects are in Po, the class EX(PR,O) consisting of all 
short exact sequences with terms in Po (so PR,o is repletely exact). 

Show that - ®R N is exact on MR,O and PR,O for any left R­
module N. 

(In applications, MR,o is useful when 0 is a commutative domain 
and R is an O-order, while PR,o is useful when 0 is arbitrary and R 
is the group ring OG for a suitable group G ([Berrick 1982] p. 94).) 

3.2.5 Firm modules over nonunital rings 
For a nonunital ring R with unitalization R, recall from (1.3.2)(iv) 

that an R-module is just the same thing as an R-module. In par­
ticular, R itself is an R-bimodule. We define a right R-module V 
to be firm if multiplication induces a right R-module isomorphism 
V ®Ji R -> V; similarly for firm left R-modules. The ring R itself is 
called a firm nonunital ring if it is firm as a right R-module. Show 
that this is equivalent to R being firm as a left R-module, and to 
there being a canonical (nonunital) ring isomorphism R ®Ji R -> R, 
where R ®Ji R has ring structure defined by 

(rl ® r2)(r~ ® r~) = rl(r2rD ® r~ = rl ® (r2r~)r~. 

Now suppose that R is a firm nonunital ring, and let V be a firm 
right R-module and W a firm left R-module equipped with a surjec­
tive R-bimodule homomorphism a : W ®z V -> R. Define a multipli­
cation on the abelian group S = V ® R W by 

(v ® w)(v' ® w') = V· a(w, v') ® w' = v ® a(w, v') . w'. 

Show that S is thereby also a firm nonunital ring. 
3.2.6 Let 0 be any commutative ring. Using (3.2.14), show that the tensor 

product induces biadditive functors from 

(i) Mo x Mo to Mo, 
(ii) Fo x Fo to Fo, 

(iii) Po x Po to Po, 
and 

(iv) Mo x TORo to TORo. 
3.2.7 Calculations with Tor 

For this exercise, we assume the properties of the functor Tor as 
outlined in (3.2.6). 

(i) Let M be an abelian group (that is, a Z-module.) Show that, 
for any positive integer a, 

Torf(M,Z/Za) = {rn E M I rna = O} 
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and that 

Tor~(M, -) == 0 for n > l. 

(ii) Let R = A[E] be the ring of dual numbers over a coefficient ring 
A and let M be a right R-module. After Exercise 3.2.1, there is 
a short exact sequence (ofleft or right R-modules) 

O~A~R~A~O 

in which the inclusion is multiplication by E and the surjection 
is the natural one. 
Show that M 0R A ~ M/ME and that Torf(M,A) ~ M,/ME 
where M, = {m E M I mE = O}. Deduce that Torf(A,A) ~ A, 
as a group. 
Show also that Tor~_l (M, A) ~ Tor~(M, A) for n > l. 

(iii) Prove (3.2.10) using the long exact sequence. 

3.2.8 Let 

O~N'~N~N"~O 

be any short exact sequence of left R-modules, with Nil flat, and let 
M be any right R-module. 

(a) Choose a short exact sequence 

O~K~F~M~O 

with F flat, and construct a 3 x 3 commutative diagram as in 
(3.2.10). By chasing the diagram, show that M 0R N' maps 
injectively into M 0R N. 

(b) From the case where N is free, observe that Torf(M, Nil) = o. 
(c) Also deduce from (a) that if N is flat, then so is N', a converse 

to (3.2.10). 

3.3 CHANGE OF SCALARS 

Now that the tensor product and the language of category theory are available 
to us, we can analyse in detail the relationships between various categories of 
modules that arise from homomorphisms between rings. 

Given a ring homomorphism 

f:R~S, 

where Rand S are arbitrary rings, we define two functors 

f# : MODs ~ MODR 
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and 

f# : MODR ~ MODs, 

which are called respectively restriction and extension of scalars. These func­
tors generalize the notions of restriction and extension of scalars between, for 
example, real and complex vector spaces (where f is the inclusion map of lR 
in C), to modules over arbitrary rings. 

An important special case occurs when the ring homomorphism is an auto­
morphism of R, which we prefer to write as a rather than f. In this situation, 
an R-module M can be 'twisted' to obtain a new R-module MO (3.3.22), 
which turns out to be the restriction a# M (3.3.25). Twisted modules are 
encountered frequently in the theory of skew polynomial rings. 

The functorial analysis of change of scalars through the tensor product 
was initiated in [Cartan & Eilenberg 1956], Ch. II §6. Our emphasis on 
the preservation of exact sequences and the twisting of module structures 
anticipates the requirements of K-theory. 

As usual, we concentrate on right modules. It will be obvious that our 
definitions and results have analogues for left modules (see (3.3.21)). We do 
not always state these analogues separately. Note that we always write ring 
homomorphisms on the left of their arguments. 

The reader is warned that there is considerable variation in the notation 
and terminology for restriction and extension. For example, [Quillen 1973] 
§4 (5), uses f* where we use f#, and 1* for our f#. The variation stems 
from the convention that covariant behaviour is usually indicated by a sub­
script and contravariant by a superscript. In applications to geometry and 
topology, the interest is in the action of restriction and extension on cate­
gories of varieties, schemes or topological spaces rather than modules [Fulton 
& Lang 1985], II §l. However, the functors that link rings to these objects 
are themselves contravariant [Hartshorne 1997], I (3.8), II (2.3), with a re­
sulting switch in the variance of restriction and extension. We mention the 
alternative terminologies from time to time. 

3.3.1 Restriction 
Let M be a right S-module and suppose that there is a ring homomorphism 
f:R----tS. 

Given elements r of Rand m of M, define 

m·r=m·(jr). 

It is clear that this rule gives M the structure of a right R-module, which we 
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denote by f# M. It is evident that a homomorphism 

0: : M' ------t M 

of right S-modules is also a homomorphism 

of right R-modules and that 

is an additive covariant functor, which we call restriction or restriction of 
scalars 

The terminology is most appropriate when f is an injection, because we 
are then 'restricting the scalars' in the literal sense. When f is surjective, the 
reader may meet the terms pull-back to describe f# and coinduced module to 
describe f# M. Finally, in K-theory f# gives rise to various homomorphisms 
of K -groups; many of these homomorphisms are called transfer maps. 

Here are some elementary properties of the restriction functor. 

3.3.2 Lemma 

(i) (idR )# is the identity functor IdR : MODR ----. MODR. 

(ii) Given ring homomorphisms f : R ----. Sand g : S -+ T, there is a natural 
isomorphism between the functors (g f) # and f# g# . 0 

If we put (R)# = MODR, then (-)# is a contravariant functor from the 
category RING of all rings to the category CAT of all categories. 

Next, we consider the behaviour of the restriction functor on various sub­
categories of MODS. To save notation, we use the same symbol f# to denote 
a number of functors arising from f#. 

3.3.3 Proposition 

(i) The functor f# induces a functor 

if and only if f# S is a projective right R-module. 
(ii) The functor f# induces a functor 

f# : Ms ------t MR 

if and only if f# S is a finitely generated right R-module. 
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(iii) The functor f# induces a functor 

f# : Ps ------+ PR 

if and only if f# S is a finitely generated projective right R-module. 
(iv) The functor f# induces a functor 

f# : :F S ------+ :F R 

if and only if f# S is a free right R-module of finite rank. 
In each case, if the functor f# exists, it is exact. 

Proof 
Since all the subcategories that occur are full subcategories of MOD R or 

MODS, we need only verify that f# has the desired action on modules. 
(i). Suppose first that f# S is R-projective. If M is in PnoJS, then M EB 
N ~ SA for some module N and index set A ([BK: IRM] Theorem 2.5.8), 
and clearly f# M EB f# N ~ (f# st also, which shows that f# M is projective 
([BK: IRM] Theorem 2.5.5). 

The converse is obvious since S is in PnoJS. 

(ii) - (iv). Similar to (i); note that if an S-module M has a finite set of 
generators {m1' ... ,me} and S has a finite set of generators {Sl' ... ,sd as a 
right R-module, then the set of products {miSj} is a finite set of generators 
of the R-module f# M. 

The final assertion follows from the observation that restriction must pre­
serve exact sequences of modules since it has no effect on the underlying 
abelian groups. Note also that all the categories mentioned are repletely G­
exact subcategories of MODR or MODS. D 

3.3.4 Extension 
Again, let f : R ~ S be a ring homomorphism. To define the extension 
functor f# : MODR ~ MODS, we first consider S as a left R-module by the 
rule r· s = (fr)s, so that S becomes an R-S-bimodule. (Strictly speaking, 
this amounts to replacing S by its image f#(S) under the restriction functor 
for left modules - see (3.3.21).) 

Then we put 

f# = - ®R S: MODR ------+ MODS; 

explicitly, for a right R-module M, 
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and for a homomorphism 

a : M' -----t M 

of right R-modules, 

By (3.1.7), f# is an additive covariant functor from MODR to MODS. 
The functor f# is called extension of scalars and the module f#(M) the 

extended module. In particular, for a right ideal a of R, f#a is easily seen to 
be naturally isomorphic to the right ideal of S generated by the image f (a) 
of a; f # a is commonly known as the extension or extended ideal of a. 

As with restriction, the terminology is perhaps most appropriate when f is 
an injection. In special cases, alternative terms may be used. For example, 
when S = Rr, is a localization of R, f# is also called localization, which we 
discuss in detail in Chapter 6. When H is a subgroup of a group G and 
f : AH ~ AG is the obvious inclusion of group rings (see Exercise 3.3.8), f# 
is called induction. Here A can be any coefficient ring. 

Here are some of the basic properties of the extension functor. 

3.3.5 Lemma 

(i) (idR)# is the identity functor IdR : MODR ~ MODR. 
(ii) Given ring homomorphisms f : R ~ Sand g : S ~ T, then there is a 

natural isomorphism 

Proof 
The first assertion is obvious. The second follows from the fact that, for 

any R-module M, there is an associativity isomorphism from M ®R (S ®s T) 
to (M ®R S) ®s T (3.1.5), which is easily seen to be natural in M. 0 

3.3.6 Corollary 

In (ii) above, suppose that S is fiat when viewed as a left R-module by 
restriction and that T is fiat as a left S -module. Then T is fiat as a left 
R-module. 

Proof 
We appeal to (3.2.8). Since RS and sT are fiat, f# and g# are exact 

functors. Thus (g/)# is an exact functor and so RT is fiat. 0 
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If we write f#(R) = MODR and put g#f# = (g1)#, then (-)# is a covari­
ant functor from RING to CAT. 

As with restriction, we use the same symbol f # for several functors arising 
from f#. 

3.3.7 Proposition 

(i) For any index set A, f#(RA) ~ SA. 
(ii) f# induces additive functors 

and 

Proof 
The functor f#( -) = - (3m S is additive (3.1.7) and has f#(R) ~ S by (ii) 

of (3.1.4), so (i) follows from the left-handed version of (3.1.8). Explicitly, the 
isomorphism is defined by the map 

(r>.) ® sf----> (f(r>.)s), 

which has inverse 

where e>. has entry 1 in the A th place and zero elsewhere (recall that only a 
finite number of entries of either RA or SA can be nonzero). 

The remaining assertions in (ii) follow from (3.1.17). 0 

3.3.8 Exactness 
The functors 

and 
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are all exact, since in each case the domain is a split G-exact category. In 
general, 

1#:MR~Ms 

will not be exact, which can be seen by taking I : Z ----> Z/nZ to be the stan­
dard surjection and considering the effect of 1# on the short exact sequence 

as in (3.2.1). 

n 
O~Z----+Z~Z/nZ~O 

3.3.9 An identification 
Suppose that R is a subring of S and that I : R ----> S is the inclusion. Given a 
right R-module M, it is tempting to view the extended module I#M simply 
as the right S-module M S generated by the members of M. This temptation 
must usually be resisted, since there may be no S-module that contains the 
elements of M. For example, take R to be Z, S to be Q and M to be Z/2Zj 
then I#(M) = O. 

However, it is legitimate to identify I#M with MS when M is a fiat R­
module, since I then induces an injection 

id® I 
M -----+) M ®R R ------+) M ®R Sj 

more properly, we identify each m E M with its image m ® 1 E M ®R S, so 
that 

k 

M ®R S = {L miSi I mi EM, Si E S, k ::::: I} = MS. 
i=l 

Likewise, if N is a fiat left R-module, we can write I#N = S ®R N as SN. 

3.3.10 The quotient functor 
When the ring homomorphism I : R ----> S is a surjection, 1# is called the 
quotient lunctor, which we now describe in more detail. 

Let a be the kernel of f. Given an R-module M, write 

IQ(M) = M/Ma, 

where M a is the submodule of M generated by all products mx with x E a 

and m E M. 
It is clear that IQ(M) is an S-module under the rule 

m· Ir =mr, 
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and that an R-module homomorphism a : M --+ Mil defines an S-module 
homomorphism fQ(a) : fQ(M) --+ fQ(M") by the rule 

fQ(a)(m) = (am). 

Thus we have an additive covariant functor 

3.3.11 Proposition 
The functors f# and fQ are naturally isomorphic. 

Proof 
Let M be a right R-module. By (3.2.3), there is an exact sequence 

By (3.1.4), the obvious map TJM : m Q9 r f-+ mr from M Q9R R to M is 
an isomorphism of right R-modules, and this isomorphism clearly maps the 
image of M Q9R a in M Q9R R onto Ma in M. 

Thus TJM induces an isomorphism between f#M and fQM, which can be 
verified directly or, more eruditely, by appealing to the Five Lemma (2.3.23). 
Since the construction is natural in M, we have a natural isomorphism be­
tween f# and fQ. D 

The relationship between the extension functor and the restriction functor 
in general is given by the following result. 

3.3.12 Proposition 
There are natural transformations 

(i) 

(ii) 
and 

where Ids and IdR are the identity functors on MeJDs and MODR re­
spectively. 

(iii) For any right S-module N, we have 
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Proof 
(i) Let N be a right S-module. Then f#f# N = N Q9R S and we define 

'r/N : N Q9R S ~ N 

by 

'r/N(n Q9 s) = ns; 

as in (3.1.4), this is a well-defined homomorphism which is clearly natural in 
N. 
(ii) On the other hand, given the right R-module M, we define the homo-
morphism 

by 

which is again natural. 
(iii) This is immediate from the above formulas. o 

There are also relations between these functors and tensor products, when 
the rings act on the appropriate sides of the modules. The first is called 
a projection (or reciprocity) formula. (See Exercise 3.3.12 for the usage of 
'reciprocity' in the representation theory of groups.) Its proof follows easily 
from the naturality of the various constructions involved, using (3.1.11) and 
Exercise 3.1.4. 

3.3.13 Proposition 
For a ring homomorphism f : R ---4 S and modules M in MOD Rand N in 

SBIMODS there is a natural isomorphism 

of right R-modules. 
In particular, when N = S, 

o 
The next result follows from (3.2.15), again using the naturality results in 

(3.1.11) and Exercise 3.1.4. 

https://doi.org/10.1017/9780511608667.004 Published online by Cambridge University Press

https://doi.org/10.1017/9780511608667.004


172 CHANGE OF RINGS 

3.3.14 Proposition 
For a homomorphism f : R ~ S of commutative rings and modules M in 

MODR and N in BALR, there is a natural isomorphism 

of right S-modules. o 
A further relationship between restriction and extension can be most neatly 

expressed in the language of category theory. 

3.3.15 Proposition 
The extension functor is left adjoint to the restriction functor. In other 

words, given a ring homomorphism f : R ~ S and modules M in MODR and 
N in MODs, then there is a natural isomorphism 

Proof 
Recall from the Adjointness Theorem (3.1.19) that for arbitrary rings A, B 

and C and bimodules ALB, BMe and ANe as indicated, there is a natural 
isomorphism 

'f/: HomA-c(L Q9B M,N) -----> HomA-B(L, Hom(Me , Ne)) 

of trifunctors from ABIMODB X BBIMODe X ABIMODe to AB. 
Take A = Z, B = Rand C = S, and let M be S viewed as a (fixed) 

R-S-bimodule in the usual way. We then obtain a natural isomorphism 

'f/: Homs(L Q9R S,N) -----> HomR(L,Hom(Ss, Ns)) 

of bifunctors from MODR x MODs to AB. 
The functor Ns f---> Hom(Ss, Ns) is naturally isomorphic to the identity 

functor on MODs (Exercise 2.1.3), so the result follows on noting that f#L = 
L Q9 R S and changing notation. 0 

3.3.16 IR and C 

To illustrate what has gone before, we consider the special case in which 
f : IR ~ C is the usual inclusion of the field of real numbers in the complex 
numbers. 

Let V be a real vector space, say of finite dimension n, with basis 

{el, ... ,en }. 
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Then f # V is a complex vector space of the same dimension, with basis 

{e1 Q9 1, ... ,en Q9 I}, 

and f# f # V is the real space of dimension 2n with basis 

wherei=H. 

173 

In the other direction, a complex vector space W of dimension n becomes 
a real space f#W of dimension 2n and then a complex space f#f#W of 
dimension 2n. These matters are developed further in [Adams 1969], Chapter 
3. 

The relationship generalizes in the following way. 

3.3.17 Proposition 
Suppose that a ring homomorphism f : R ----) S is an injection which gives S 

the structure of a free right R-module Rk of finite rank, with basis {Sl' ... , sd. 

(i) If M ~ Rh is a free right R-module, with basis {m1, ... , mh}, then 
f# f#M is a free right R-module of rank hk, with basis {mi Q9 Sj}. 

(ii) If N ~ sn, then f#N ~ Rnk and f#f#N ~ snk. 0 

3.3.18 Skew fields unbalanced 

The structure of S as a left R-module is irrelevant in the above result. It is 
worth remarking at this point that the left R-module structure of S may well 
differ from the right module structure. For example, [Schofield 1985] gives 
examples of inclusions of skew fields V ----) V' such that the left and right 
dimensions of Vi over V take any preassigned pair of values, provided neither 
is 1. 

Next, we consider the relationship between the functors which arise when 
we have two ring homomorphisms f and 9 from R to S. 

3.3.19 Theorem 
Let f and 9 : R ----) S be ring homomorphisms. Then the following state­

ments are equivalent. 

(i) There is an element>. of S such that 

f(r)>. = >.g(r) 

for all elements r of R. 
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(ii) There is a natural transformation of restriction functors 

TJ:g#~f#. 

(iii) There is a natural transformation of extension functors 

lI:g#~f#· 

Furthermore, ,\ is a unit of R if and only if either one (and hence both) of TJ 
and 1I is an isomorphism. 

Proof 
(ii) =} (i). We know that there is an R-module homomorphism 

TJs: g#S ~ f#S. 

Write ,\ = TJs(ls). 
Now, for any element n of an S-module N, there is a homomorphism 

p(n):S~N 

given by 

p(n)s = ns, 

and because TJ is a natural transformation, there is a commutative diagram 

g#S 

g#p(n) 1 
g#N 

TJs 

TJs 

which means that TJN(p(n)s) = p(n)(TJs(s)). 
With s = Is, we see that 

(3.1) 

so that the natural transformation TJ is completely determined by the element 
,\ of S. 

Now, the fact that TJs respects the R-module structures on S means that 
TJs(ls . r) = TJs(ls) . r, that is, 

g(r)'\ = ,\f(r). 

To establish the converse implication (i) =} (ii), it is enough to verify that, 
for every right R-module N, the formula 

TJ~n = n'\ for n in N, 
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defines a natural transformation r/' : g# ----t f# when A satisfies the given 
condition (i). This is left to the reader, as is the equivalence of (i) and (iii). 

For the final assertion, recall from Equation 3.1 above that any "I as in (ii) 
is "I = TJA for some A E S. The claim now follows from the observations that 
TJ/-LTJA = TJA/-L and TJ(1s) = Ids. D 

We note an important consequence of the theorem. Recall that a ring 
endomorphism a of R is an inner automorphism if ar = ArA-1 for some unit 
A of R. 

3.3.20 Corollary 

For an endomorphism a of a ring R, the following statements are equivalent. 

(i) a is an inner automorphism of R. 
(ii) a# is naturally isomorphic to IdR . 

(iii) a# is naturally isomorphic to IdR. 

3.3.21 The definitions for left modules 

D 

For the convenience of the reader, we quickly review the definitions of restric­
tion and extension for left modules. 

Given a ring homomorphism f : R ----t S and a left S-module N, the restric­
tion of N is the left R-module f# N, with action given by the rule 

r . n = (fr) . n. 

With right-handed restriction, the ring S is itself an S-R-bimodule, and the 
extended module f#N is defined to be the left S-module S @R N. 

It is clear that all our results for the right-handed restriction and extension 
functors have left-handed versions. 

3.3.22 The twisting of modules 
When a is an automorphism of a ring R, we may view the extension and 
restriction functors in a different light. Given a right R-module M, we define 
the twisted module Met in MODR as follows. Elements of Ma are symbols 
ma , addition is given by 

and the action of R is given by 

ma . r = (m· ar)a. 
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Similarly, a left R-module N can be twisted to obtain the left R-module aN, 
in which r· an = a(ar· n). 

Applying these operations to R itself, we obtain new R-R-bimodules Ra 
and aR. 

3.3.23 Lemma 

(i) The map ( : x I--> (ax)a from R to Ra is an isomorphism of right R­
modules. 

(ii) The map ~ : x I--> a(ax) from R to aR is an isomorphism of left R­
modules. 

Proof 
For r in R, (( xr) = (ax· ar) a, which is (ax) a . r by the definition. Thus 

((xr) = ((x) . r. Clearly, ( is an additive bijection, so (i) is proven. The 
argument for (ii) is much the same. D 

The above result generalizes to a description of the effect of twisting on 
projective modules. We use some results on the relationship between projec­
tive modules and idempotent matrices that are considered in detail in [BK: 
IRM] (2.5.9)ff. 

3.3.24 Lemma 

Let a : R -+ R be a ring automorphism, and let ak denote the induced 
automorphism of the matrix ring Mk(R) for each k ~ 1 (thus a1 = a). 
Suppose that P is a finitely generated projective right R-module. Then the 
following hold. 

(i) p ~ ryRk for some k x k idempotent matrix ry over R. 
(ii) There is a right R-module isomorphism pa ~ ak1(ry)Rk. 

(iii) pa is also a finitely generated projective right R-module. 

Proof 
(i) There is a surjective R-module homomorphism 7r : Rk -+ P for some 
k which is split by an R-module homomorphism a : P -+ Rk. Then a7r is 
an idempotent endomorphism of Rk which can be represented by a k x k 
idempotent matrix ry (1.3.4), and clearly P ~ ryRk. 
(ii) Let aEf)k = a EB ... EB a : Rk -+ Rk be the R-module homomorphism 
induced by a, and define 
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by 
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It is clear that B is a well-defined additive bijection. Moreover, for any r in 
R, we have 

B((1Jx)a . r) B((1Jx, a(r))a) 
a;k(1Jx, a(r)) 

= a;k(1Jx), r 
= B((1Jx)a). r, 

showing B to be an R-module homomorphism as desired. 
(iii) Since a;l(1J) is again idempotent, a;l(1J)Rk is a direct summand of 
Rk and hence projective. 0 

The next result shows that a twisted module can be viewed equally as being 
a restricted or an extended module. 

3.3.25 Proposition 

(a) Let M be a right R-module. Then there are isomorphisms, natural in M, 
between the following right R-modules: 

(i) the twisted module Ma, 
(ii) the restricted module a# M, 

and 
(iii) the extended module (a- 1 )#M. 

(b) Let N be a left R-module. Then there are isomorphisms, natural in N, 
between the following left R-modules: 

(i) the twisted module aN, 
(ii) the restricted module a# N, 

and 
(iii) the extended module (a- 1 )#N. 

Proof 
We give the argument for (a) only. We first consider the relation between 

the twisted module and the restricted module. 
For clarity, we write a typical element of a# Mas #m, so that the R-action 

on a# M is given by #m· r = #(m . ar). Then the function a# M ~ M a 
sending #m to m a is clearly an isomorphism. 

Next, to compare Ma with the extended module (a- 1)#M, recall that the 
extended module is generated by elements of the form m Q9 t, where ms Q9 t = 
m Q9 (a -1 s )t. Because a is an automorphism, it follows that each element 
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of (o;-l)#M may in fact be written in the form m ® 1. Then the function 
M a -+ (0;-1 )#M given by m a f--> m®l is evidently a bijection. The R-actions 
are respectively 

and 

so that the map is also a homomorphism. o 

3.3.26 Group rings 
The representation theory of groups plays an important role in K-theory, both 
as a tool for use in constructing the theory, and as a source of problems within 
the theory. We therefore give a brief summary of the terminology and some 
special constructions which arise when we apply 'change of rings' to modules 
over group rings. 

Let A be a commutative coefficient ring and let G be a group, usually but 
not necessarily finite. The group ring AG is the free (left) A-module generated 
by the set G, with multiplication inherited from G. Thus an element x E AG 
looks like x = 2:9Ec Xgg with only a finite set of nonzero coefficients x g, and 
multiplication is given by 

( l: xgg) ( l: Yhh) = l: xgYhgh. 
gEC hEC ghEC 

In particular, AG is a balanced A-module, and the identity for the multipli­
cation is lAIc. 

Any right AG-module will be a right A-module, which we always take to 
be a balanced A-module. 

A group homomorphism f : H -+ G gives an evident ring homomorphism 
f : AH -+ AG (of the same name). In this context, the extension functor 
f# : MAH -+ (M ®AH AG)AC is called the induction functor, M ®AH AG be­
ing the induced module. The terminology for restriction is unchanged. Both 
the terms induction and restriction are most appropriate when the group 
homomorphism f is an inclusion, but their usage is extended to general ho­
momorphisms. 

Given a right AH-module M, the induced AG-module is more often written 
M C, the ring A being understood. Similarly, the restriction of a right AG­
module N is written N H. 

The special nature of a group ring allows further operations on AG-modules. 
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The map i: G ~ G given by inversion, i(g) = g-1, is an anti-automorphism 
and so gives an anti-automorphism of AG. Thus the group ring AG is isomor­
phic to its opposite ring AGo, and so a right AG-module N can be regarded 
as a left AG-module by the action gn = ng-1 for 9 in G and n in N. However, 
N will not be an AG-AG-bimodule unless G is abelian. (This is a special case 
of the method for switching from right to left modules given in [BK: IRM] 
(1.2.6); the connection between opposites and anti-automorphisms for rings 
is explored in [BK: IRM] Exercise 1.2.13, and, for groups, in Exercise 1.1.5 of 
the present text.) 

This manoeuvre permits the definition of a pairing on MODAG with values 
in MODA, namely (N, P) f--+ N ®AG P, where P becomes a left AG-module 
as above. 

It is also possible to define a pairing on MODAG with values in MODAG, by 
tensoring over A rather than AG. Given right AG-modules Nand P, N ®A P 
becomes a right AG-module by the diagonal action of G. This is given on the 
generators of the tensor product by 

(n ® p)g = ng ® pg for n in N, pin P and 9 in G, 

and extends by linearity to both N ®A P and AG. 
A full exploration of the above constructions belongs to works on represen­

tation theory, for example, [Curtis & Reiner 1966], [Curtis & Reiner 1981], 
[Curtis & Reiner 1987] or [Serre 1977]. We give some formal results as exer­
cises below. 

Exercises 
3.3.1 Let 1 : R ~ S be a surjective ring homomorphism, with kernel a. 

Verify that 

(i) 1# I#M 3:' M/Ma for an R-module M, 
(ii) 1#1# N 3:' N for an S-module N, 

(iii) 1#1# '::"- Ids: MODS ~ MODS· 

3.3.2 Let 1 : R ~ S be a ring homomorphism. Given a right R-module N, 
show that the R-S-bimodule structure of S gives a right S-module 
structure on Hom R(S, N). 

Prove that HomR(S, -) : MODR ~ MODS is a covariant functor 
which is right adjoint to the restriction functor 1#, in that there is a 
natural isomorphism 

Hom R(f# M, N) 3:' Hom s(M, Hom R(S, N)). 
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([Cartan & Eilenberg 1956] call the module Hom R(S, N) the con­
travariant f -extension of N, in distinction to the covariant f -extension 
N ®R S.) 

3.3.3 Let A be a ring and let a be a (ring) endomorphism of A. The skew 
polynomial ring A[T, a] consists of all right polynomials 

ao +Tal +T2a2 + ... + Tkak' k ~ 0, 

with coefficients ao, al, ... , ak in A, and multiplication given by 

a·T=T·a(a) foraEA. 

A detailed discussion of skew polynomial rings can be found in [BK: 
IRM] §3.2. 

Show that a can be extended to an endomorphism a of the skew 
polynomial ring A[T, a]. 

Verify that there are natural transformations 

a# ----+ Id A[T,aJ and a# ----+ Id A[T,aJ. 

Show that these transformations are natural isomorphisms if and 
only if the corresponding statement is already true for a and IdA. 

3.3.4 Let R = RI X ... x Rn be a direct product of rings, viewed as a 
direct sum of nonunital rings, with 7ri : R ~ Ri and ai : Ri ~ R, 
i = 1, ... ,n, the corresponding surjective and injective nonunital ring 
homomorphisms. 

Show that (7ri)# = (ai)# and (7ri)# = (ai)# for all i. 
Prove that there is a natural isomorphism 

where the direct sum of functors is defined as in (2.2.21). 
Using (2.3.17) (or directly), give an alternative proof of (a general­

ization of) (1.3.16): 

MODR is equivalent to MODR1 x ... X MODRn • 

Deduce the corresponding decompositions for MR and PRo 
These decompositions of categories give an alternative view of some 

elementary results on the structure of modules over a direct product 
of rings - see [BK: IRM] §2.6, particularly (2.6.7), (2.6.8). 

3.3.5 Let a be a right ideal of the ring R, and a an automorphism of R. 
Further, let ( : x f---+ (ax)a from R to Ra be the isomorphism of right 
R-modules given in (3.3.23). 

Show that aa = ((a-Ia) and hence that aO< ~ a-Ia as a right 
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R-module. Deduce that (Rja)O ~ RO jaO ~ Rja-Ia as a right R­

module. 
3.3.6 Let 'Y be an automorphism of the field !C, and let f E !c[T] be a 

polynomial. 

Show that (f!C[TJ)"Y = f!C[T] if and only if f E F[TJ, where 

F = {x E !C I 'YX = x} 

is the fixed field of 'Y. 

Let !C = Q(X), the field of rational functions over Q, and define 
the automorphism a of!C by aX = X + 1. Find an ideal a of !C[T] 
such that (a )Oi i= a for any i 2: 1. 

3.3.7 Let 0 be the ring of integers of a quadratic number field Q( Vd), and 
let 'Y : a + bVd t-t a - bVd be the conjugation automorphism. 

(a) Let p be a nonzero prime ideal of 0, so that p n Z = pZ for 
some integer prime p. The relationship between p and p is found 
by considering the prime factorization (2.3.20 - A) of pO as an 
ideal over the Dedekind domain 0, which must fall into one of 
the following three cases ([BK: IRM] (5.3.2)). In each case, verify 
that the effect of 'Y on P is as claimed. 

(i) P = pO (p is inert). Then p"Y = p. 
(ii) p2 = pO (p is ramified). Then p"Y = p. 

(iii) p = Pi, i = 1,2, where PI and P2 are distinct prime ideals of 
o with PIP2 = pO (p is split). Then pI = P3-i· 

(b) Let P be a projective O-module with ideal class {a} E Cl(O). 
Show that p"Y has ideal class {"(-la}. 
Deduce that P ~ p"Y if and only if {a} = {"(-la} (see Steinitz' 
Theorem (2.3.20 - D)). 

Using the calculation of the ideal class group of the ring of integers 
of Q( v' -71) given in [BK: IRM] Theorem 5.3.20, or otherwise, 
find an example with P '#- p"Y. 

(c) Show that (Ojpnp = OJ(p"Y)n for any prime ideal p and integer 
n. Using the structure theory for O-modules given in (2.3.20), 
find M"Y for an arbitrary finitely generated O-module M. 

3.3.8 Group rings 
The remaining exercises in this section explore the behaviour of the 

extension and restriction functors on group rings. 

Let H be a subgroup of a group G and suppose that the index of H 
in G is finite, say [G : H] = k, so that G can be written as a disjoint 
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union G = H g1 u· .. u H gk of cosets of H. Following standard usage, 
we take g1 = l. 

Let A a commutative ring and let M be a right AH-module. Show 
that, as an abelian group, MG = (M ®AH 1) EB··· EB (M ®AH gk). 

Suppose further that H is normal in G. For i = 1, ... , k, let 'Y(i) 
be the ring automorphism of AH induced by the conjugation auto­
morphism 'Y(i) : h f-+ gihg;1 on H, so that 1'(1) = id. 

Verify that (MG)H ~ M EB M'Y(2) EB··· EB M'Y(k) as an AH-module. 

3.3.9 Let G be a group and let G act on the direct product G x G by the 
diagonal action: (x, y)g = (xg, yg) for x, y, 9 E G. Show that for a 
given pair (x,y) there are unique elements x',g' E G with (x,y)g' = 
(x', 1). 

Deduce that, with the diagonal action on the tensor product, 

AG®AAG= L)x®l)AG. 
xEG 

Contrast this with the equation AG ®AG AG = AG. 
3.3.10 Let H be a subgroup of a group G and let A be an arbitrary commu­

tative coefficient ring. Let M be a right AH-module and let N be a 
right AG-module. 

Show that the map 

0: : (n ® m) ® 9 f-----+ ng ®A (m ® g), 

induces an isomorphism of right AG-modules 

which is natural in both M and N. 
Show also that restriction respects products: if Nand Pare AG­

modules, then NH ®A PH ~ (N ®A P)H. 
Note. The tensor products over A must be regarded as modules 

over AH or AG by the diagonal action. 
Contrast these formulas with those obtained in (3.3.13) and (3.3.14) 

for arbitrary rings Rand S; in those results, tensor products were 
taken over R or S. 

3.3.11 Let H be a subgoup of G, let A be a commutative ring and let N be 
an AH-module. Verify that HomAH(AG, N) is a right AG-module, 
the coinduced module. 
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Suppose that [G : H] = k is finite. Show that Hom AH(AG, N) 9:' 

N k as a right AH-module. 
3.3.12 Let H be a subgroup of a group G, and let A be a commutative ring. 

Use the Adjointness Theorem (3.1.19) to obtain the isomorphism of 
A-modules 

HomAH(M,NH) 9:' HomAG(MG,N). 

Hint. Note that N 9:' HomAG(AG, N) as a right AG-module, and 
that the isomorphism gives an isomorphism of the restrictions of both 
sides. 

Remark. The above formula is called the Frobenius Reciprocity 
Law, although the original statement was in the context of complex 
character theory. A number of similar formulas, such as the isomor­
phism (NH Q9A M)G 9:' N Q9A MG of Exercise 3.3.10, are also called 
reciprocity laws. A discussion can be found in [Curtis & Reiner 1981], 
§1O. 

3.3.13 Let G be a group and let € : G -+ 1 be the unique homomorphism 
from G to the trivial group 1. For any commutative coefficient ring A, 
the induced homomorphism € : AG -+ A is called the augmentation 
homomorphism and its kernel 2t is the augmentation ideal of AG. 

Show that 2t is generated by the set {g - 1 I g E G}. 
Let M be any right AG-module. Prove the universal properties 

which show that 

(i) €#M is the 'largest quotient' of M on which AG acts trivially; 
(ii) Hom AG(A, M) is the 'largest submodule' of M on which AG acts 

trivially, the module of G-invariants of M. 

Hint. Exercise 3.3.1 helps. 
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