Fifth Meeting, 8th March 1901.

R. F. Muirhead, Esq., M.A., B.Sc., in the Chair.

Some Elementary Theorems regarding Surds.

By Professor Chrystal.

1. If p and q be both commensurable, and if $p^{\frac{1}{n}}=q^{\frac{1}{r}}$, then, if n be prime to r, both the roots must be commensurable.

For, since n is prime to r, we can find two integers λ and μ such that $\lambda n+\mu r=1$.

Hence $p=p^{\lambda n+\mu r}=p^{\lambda n} p^{\mu r}$.
Now, by data, $\left(p^{\frac{1}{n}}\right)^{n r}=\left(q^{\frac{1}{r}}\right)^{n r}$, that is, $p^{r}=q^{n}$. Hence

$$
p=p^{\lambda n} q^{\mu n}=\left(p^{\lambda} q^{\mu}\right)^{n} .
$$

Hence $p^{\frac{1}{n}}$, and therefore also $\frac{1}{q^{r}}$, is commensurable.
2. If $p^{\frac{1}{n}}=q^{\frac{1}{r}}$, where p and q are both commensurable, and $p^{\frac{1}{n}}$ and $q^{\frac{1}{r}}$ both incommensurable, and $r<n$, then p must be of the form $\tilde{W}^{n^{\prime}}$ where n^{\prime} is a factor of n, and σ is commensurable.

For, by (1), n cannot be prime to r. Hence we must have $n=\lambda n^{\prime}$, and $r=\lambda r^{\prime}$, where λ is the G.C.M. of n and r, and n^{\prime} is prime to r^{\prime}.

We must therefore have
whence

$$
\begin{gathered}
p^{\frac{1}{\lambda n^{\prime}}}=q^{\frac{1}{\lambda r^{\prime}}} ; \\
\frac{1}{p^{n^{\prime}}}=q^{\frac{1}{r^{\prime}}} .
\end{gathered}
$$

Since n^{\prime} is prime to $r^{\prime}, p^{\frac{1}{n^{\prime}}}$ and $q^{\frac{1}{r^{\prime}}}$ must be both commensurable, each $=\varpi$, say. Hence $p=\boldsymbol{\sigma}^{n^{\prime}}$.
3. Hence $p^{\frac{1}{n}}$ will be a surd of lowest possible order n, if, and not unless, p be not expressible as an exact $n^{\prime \text { th }}$ power where n^{\prime} is any factor of n.
4. If $p^{\frac{1}{n}}$ be a surd of irreducible order n, then $\frac{r}{p^{n}}$, where $r<n$, is also a surd.

For, if $p^{\frac{r}{n}}$ were commensurable $=q$ say, then we should have $p^{\frac{1}{n}}=q^{\frac{1}{r}}$, where $r<n$. It would then follow by (2) and (3) that $p^{\frac{1}{n}}$ can be expressed as a surd of lower order than n.
5. If p be commensurable, then the necessary and sufficient condition for the irreducibility of $x^{n}-p$ in the domain of real rational quantity is that $p^{\frac{1}{n}}$ be a surd of irreducible order n.

The condition is necessary ; for, if $p^{\frac{1}{n}}$ can be expressed as a surd of lower order, then we must have $p=\varpi^{n \prime}$, where ϖ is commensurable, and n^{\prime} is a factor of n. We should then have

$$
\begin{aligned}
x^{n}-p \equiv x^{\lambda n^{\prime}}-\varpi^{n^{\prime}} & \equiv\left(x^{\lambda}\right)^{n^{\prime}}-\varpi^{n^{\prime}} \\
& \equiv\left(x^{\lambda}-\varpi\right)\left(x^{\lambda\left(n^{\prime}-1\right)}+\varpi x^{\lambda\left(n^{\prime}-2\right)}+\ldots \ldots+\varpi^{n^{\prime}-1}\right)
\end{aligned}
$$

that is, $x^{n}-p$ is reducible.
Also the condition is sufficient, for let us suppose that $x^{n}-p$ is reducible. Let $p^{\frac{1}{n}}$ denote as usual the principal value of the $n^{\text {th }}$ root of p; and let the $n^{\text {th }}$ roots of unity be $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$, so that the linear factors of $x^{n}-p$ are $x-p^{\frac{1}{n}}, x-\omega p^{\frac{1}{n}}, \ldots, x-\omega^{n-2} p^{\frac{1}{n}}$. Since $x^{n}-p$ is reducible, it must be possible to select a group of these factors whose product, say,

$$
\left(x-\omega^{\alpha_{1}} p^{\frac{1}{n}}\right)\left(x-\omega^{a_{2}} p^{\frac{1}{n}}\right) \ldots \ldots\left(x-\omega^{a_{r}} p^{\frac{1}{n}}\right),(r<n)
$$

is rational. Hence, in particular, the absolute term of this product, viz., $\quad(-1)^{r} \omega^{a_{1}+a_{2}+\ldots+a_{r}} p^{\frac{r}{n}}$
must be real and commensurable. Since $\omega^{a_{1}+a_{2}+\ldots+a_{r}}$ must be real, its value must be either +1 or -1 , and it is necessary that $p^{\frac{r}{n}}$ be commensurable $=q$, say. It follows that $p^{\frac{1}{n}}=q^{\frac{1}{r}}$ where $r<n$; that is, $p^{\frac{1}{n}}$ can be expressed as a surd of order lower than n.
6. If p^{n} be a surd of ir:educible order n, then a relation of the
form

$$
\begin{equation*}
a_{n-1} p^{\frac{n-1}{n}}+a_{n-2} p^{\frac{n-2}{"}}+\ldots \ldots+a_{1} p^{\frac{1}{n}}+a_{n}=0 \tag{1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n-1}$ are commensurable, and do not all vanish, is impossible.

Let $x=p^{1, n}$, then $x^{n}=p$; and we must have simultaneously

$$
\begin{gather*}
x^{n}-p=0 \tag{2}\\
a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}=0 \tag{3}
\end{gather*}
$$

Since the two equations (2) and (3) must have a root in common, their characteristic functions

$$
x^{n}-p \text { and } a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x+a_{0}
$$

must have a common factor, which, being determinable by purely rational operations, must have commensurable coefficients, since $p, a_{0}, a_{1}, \ldots, a_{n-1}$ are all commensurable. But this is impossible, for, by (5), $x^{n}-p$ is irreducible.

An exceedingly interesting proof of a particular case of this theorem, not involving the use of the imaginary roots of unity has recently been given to the Society by Mr D. B. Mair. I have several times tried without success to obtain a complete demonstration in the same manner.
(7) Two surds are said to be similar when their quotient is commensurable.

Two surds of unequal irreducible orders are necessarily dissimilar. For, if $p^{\frac{1}{r}}$ and $\frac{1}{q^{r}}(r>s)$ were similar, we should have $\frac{\frac{1}{p^{r}}}{p^{\frac{1}{r}}}$, where t is commensurable. Hence we could express $p^{\frac{1}{r}}$ in the form $\left(t^{t} q\right)^{\frac{1}{4}}$, that is, the order of $p^{\frac{1}{r}}$ is not irreducible as supposed.
8. The following theorem is an example of the consequences that follow from (6).

A root of any commensurable radicand cannot be the sum of a commensurable quantity and a surd.

If the root is commensurable, the theorem is at once obvious. If not, let the root be expressed as a surd of irreducible order r, say $p^{\frac{1}{r}}$; and let us suppose that

$$
\begin{equation*}
\frac{1}{p^{r}}=t+\frac{1}{q^{x}} \tag{1}
\end{equation*}
$$

where $q^{\frac{1}{4}}$ is a surd of irreducible order s, and t is commensurable.

First suppose that $r<s$. Then from (1) we derive

$$
\begin{align*}
p & =\left(t+q^{\frac{1}{3}}\right)^{r} \\
& =t^{r}+{ }_{r} \mathrm{C}_{1} t^{r-1} q^{\frac{1}{3}}+\ldots+\frac{\overline{q^{4}}}{} \tag{2}
\end{align*}
$$

Now $p \neq t^{r}$, and none of the coefficients ${ }_{r} \mathrm{C}_{1} t^{r-1},{ }_{r} \mathrm{C}_{2} t^{r-2}, \ldots$ can vanish. But a relation of the form (2) is impossible by (6).

If $r=s$, a slight modification of the same proof will apply.
If $r>s$, we may consider the relation

$$
\frac{1}{q^{x}}=-t+p^{\frac{1}{r}}:
$$

the impossibility of which may be proved as before.
9. A root of a commensurable radicand cannot be the sum of two dissimilar surds.

For, if possible, let

$$
\frac{1}{p^{r}}=\frac{1}{q^{r}}+\frac{1}{t^{u}}
$$

where $q^{\frac{1}{4}}$ and $t^{\frac{1}{4}}$ are dissimilar surds of irreducible orders s and u. Then we must have

$$
\overline{\frac{1}{p^{r}}} / \frac{1}{q^{\frac{1}{x}}}=1+\frac{1}{t^{\bar{u}}} / q^{\frac{1}{s}} .
$$

Now $p^{\frac{1}{r}} / q^{\frac{1}{4}}$ can be expressed as the root of a commensurable radicand, say in the form $\left(p^{x} / q^{r}\right)^{\frac{1}{r^{x}}}$. Also, since $\frac{\frac{1}{t^{u}}}{}$ and $\frac{1}{q^{x}}$ are dissimilar, their quotient is a surd, say the surd $v^{\frac{1}{x}}$ of irreducible order w. We should then have

$$
\left(\boldsymbol{p}^{*} / q^{r}\right)^{\frac{1}{)^{* x}}}=1+v^{\frac{1}{m}}
$$

which is impossible by (9).
It is curious that it should be so easy to prove the impossibility of the relation $x^{\frac{1}{m}}=y^{\frac{1}{m}}+z^{\frac{1}{m}}$ (where it is impossible); and so difficult to establish the like for $x^{n t}=y^{m}+z^{\prime m}$, where x, y, z, m are integers, and $m>$ 2.

Many other applications and connected problems at once suggest themselves; but the treatment of most of them soon leaves purely elementary lines. The whole theory is, of course, a special, but peculiarly interesting, part of the theory of An Algebraic Close (Algebraischer Zahlkörper), an elegant presentation of which will be found in Weber's Lehrbuch der Algebra.

