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Abstract. Let X and Y be Banach spaces such that each one is isomorphic to
a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-
Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic
to Y . In this paper, we give suitable conditions on X , Y , the supplemented subspaces
of Y in X and of X in Y to yield that X is isomorphic to Y . In other words, we obtain
generalizations of Pełczyński’s decomposition method via supplemented subspaces. In
order to determine all the possible generalizations, we introduce the notion of Mixed
Schroeder-Bernstein Quadruples for Banach spaces. Then, we use some Banach spaces
constructed by W. T. Gowers and B. Maurey in 1997 to characterize them.

2000 Mathematics Subject Classification. 46B03, 46B20.

1. Introduction. Let X and Y be Banach spaces. We write X ∼ Y if X is
isomorphic to Y and X �∼ Y otherwise. If n ∈ �∗ = {1, 2, 3, · · ·}, then Xn denotes
the sum of n copies of X , X ⊕ X ⊕ · · · ⊕ X . It will be useful to denote X0 = {0}. We
recall that Y is isomorphic to a complemented subspace of X if there exists a Banach
space A such that X ∼ Y ⊕ A. In this case, we say that A is a supplemented subspace
of X associated to Y .

Suppose now that X and Y are Banach spaces such that there exist Banach spaces
A and B satisfying {

X ∼ Y ⊕ A
Y ∼ X ⊕ B.

(1)

In 1996, W. T. Gowers [11] solved the so-called Schroeder-Bernstein Problem for
Banach spaces by showing that X is not necessarily isomorphic to Y ; see also [2], [3],
[4], [5], [7] and [12]. However Pełczyński’s decomposition method [1, page 64] which
has played an important role in the isomorphic theory of classical Banach spaces,
states that X ∼ Y if we add to (1) the conditions X ∼ X2 and Y ∼ Y 2. The starting
point of this paper is the fact that these conditions can be rewritten in terms of the
supplemented subspaces A and B associated to Y and X respectively as follows:{

X ∼ Y 2 ⊕ A2

Y ∼ X2 ⊕ B2.
(2)

So if we are interested in investigating the influence of the supplemented subspaces
in decomposition methods similar to Pełczyński’s decomposition method, it is natural
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to ask whether it is possible to obtain all pairs of conditions similar to that of (2) which
added to (1) also yield X ∼ Y . To be more precise, in the spirit of [6], we make the
following definition. See Remark 2.2 below.

DEFINITION 1.1. A quadruple (p, q, r, s) in �∗ is a Mixed Schroeder-Bernstein
Quadruple for Banach spaces (in short, MSBQ) if X ∼ Y for any Banach spaces X , Y ,
A and B satisfying (1) and the conditions{

X ∼ Y p ⊕ Aq,

Y ∼ Xr ⊕ Bs.
(3)

Thus Pełczyński’s decomposition method states that (2, 2, 2, 2) is a MSBQ. On the
other hand, the above mentioned result of W. T. Gowers shows that (1, 1, 1, 1) is not a
MSBQ.

The aim of this work is to show that thanks to the development of the isomorphic
theory of Banach spaces in the last years, it is possible to characterize the quadruples
in �∗ which are MSBQ; see Theorem 3.1. Indeed, we shall see that a certain family of
Banach spaces constructed by W. T. Gowers and B. Maurey in 1997 (see Remark 2.1)
is large enough to provide such characterization (see Lemmas 3.2 and 3.4).

2. Preliminaries. We start by recalling some results on Banach spaces which are
isomorphic to complemented subspaces of each other. If m, n are integers, then m|n
means that m divides n and gcd(m, n) denotes their greatest common divisor.

REMARK 2.1. In [12, p. 563] Banach spaces Xt, for every t ∈ �, t ≥ 2, were
constructed having the following property: Xm

t ∼ Xn
t , with m, n ∈ �∗, if and only if m

is congruent to n modulo t.

REMARK 2.2. Following [6, Definition 1.1] a quadruple (p, q, r, s) in �, with p +
q ≥ 2 and r + s ≥ 2 is said to be a Schroeder-Bernstein Quadruple for Banach spaces
(in short, SBQ) if X ∼ Y for every pair of Banach spaces X and Y isomorphic to
complemented subspaces of each other and satisfying the following Decomposition
Scheme {

X ∼ Xp ⊕ Y q

Y ∼ Xr ⊕ Y s.
(4)

� = (p − 1)(s − 1) − rq is called the discriminant of the quadruple (p, q, r, s). The
main theorem of [6] states that a quadruple (p, q, r, s) in � with p + q ≥ 2 and r + s ≥ 2
is a SBQ if and only if � �= 0, �|(p + q − 1) and �|(r + s − 1).

REMARK 2.3. In [8] a quadruple (p, q, r, s) in �, with p + q ≥ 2 and r + s ≥ 2 was
said to be a Nearly Schroeder-Bernstein Quadruple for Banach spaces (in short, NSBQ)
if Xm ∼ Y n for some m, n ∈ �∗ whenever the Banach spaces X and Y are isomorphic
to complemented subspaces of each other and satisfy the Decomposition Scheme (4).
It was shown in [8, Theorem 3.2] and [9, Theorem 2.3] that a quadruple (p, q, r, s) in
�, with p + q ≥ 2 and r + s ≥ 2 is a NSBQ if and only if its discriminant � is different
from zero.

REMARK 2.4. Let X and Y be Banach spaces isomorphic to complemented
subspaces of each other. In [7, Remark 3.5] it was proved that if Xp ∼ Xp−1 ⊕ Y
for some p ∈ �, p ≥ 2 and X ∼ Xr ⊕ Y s for some r, s ∈ �, r + s ≥ 2, then X ∼ Y .
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REMARK 2.5. [5, Lemma 2.2] Suppose that X and Y are Banach spaces isomorphic
to complemented subspaces of each other with

Xi ⊕ Y j ∼ Xk ⊕ Y l,

for some i, j, k, l ∈ �. If k < i and j < l, then Xm ∼ Y n for some m, n ∈ �∗.

REMARK 2.6. Fix two Banach spaces X and Y from the class of spaces constructed
in [10], as was done in [5]. By [5] there exist Banach spaces E and Z such that

(a) E = Z ⊕ X , Z = E ⊕ Y and Z ∼ Z2 [5, p. 31].
(b) Z �∼ Z ⊕ Xm for every m ∈ �∗ [5, Theorem 3.4].

3. Characterization of the Mixed Schroeder-Bernstein Quadruples for Banach
spaces. First of all it is clear from the symmetry of Definition 1.1 that (r, s, p, q)
is a MSBQ if and only if (p, q, r, s) is one. So Theorem 3.1 provides a characterization
of the quadruple in �∗ which are MSBQ. The proof of this result is quite long and it
will be done by proving several propositions.

THEOREM 3.1. Let (p, q, r, s) be a quadruple in �∗.
(a) Suppose that p < q.

If p = 1 and q = 2, then (p, q, r, s) is a MSBQ for every r, s ∈ �∗.
If p = 1 and q > 2 then (p, q, r, s) is a MSBQ if and only if r = 1 and gcd(q − 1,

s − 1) = 1.
If p > 1 then (p, q, r, s) is a MSBQ if and only if either (r, s) = (1, 2) or q = p + 1, r ≥ 2,
(r − 1)|(p − 1) and s = 1.

(b) Suppose that p ≥ q and r ≥ s and put D = (q − 1)(s − 1) − (r − s)(p − q). Then
(p, q, r, s) is a MSBQ if and only if p ≥ 2, r ≥ 2, D �= 0, D|(p − 1) and D|(r − 1).

The following four lemmas play an important role in the proof of our theorem.
They are closely related to the Banach spaces Xt mentioned in Remark 2.1.

LEMMA 3.2. Let p, q, r, s ∈ �∗ and suppose that there exist i, j, u ∈ � with u ≥ 2,
0 ≤ i < j < u satisfying

(a) u|(i(1 − p) + j(p − q));
(b) u|(i(1 − r) + j(s − 1)).

Then (p, q, r, s) is not a MSBQ.

Proof. Since (j − i) + (u − j) − (u − i) = 0 and (u − i) + j − (j − i) = u, we have by
the property of Xu mentioned in Remark 2.1 that

{
Xu−i

u ∼ Xj−i
u ⊕ Xu−j

u

Xj−i
u ∼ Xu−i

u ⊕ Xj
u.

Now note that the condition (a) implies that u divides p(j − i) + q(u − j) − (u − i).
Furthermore, it follows from condition (b) that u also divides r(u − i) + sj − (j − i).
Thus again by Remark 2.1 we deduce


Xu−i

u ∼ Xp(j−i)
u ⊕ Xq(u−j)

u

Xj−i
u ∼ Xr(u−i)

u ⊕ Xsj
u .
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But Xu−i
u is not isomorphic to Xj−i

u , because u does not divide (u − i) − (j − i) =
u − j. Consequently (p, q, r, s) is not a MSBQ. �

By interchanging (p, q) with (r, s) in Lemma 3.2, we obtain the following lemma
which will be later referred to.

LEMMA 3.3. Let p, q, r, s ∈ �∗ and suppose that there exist i, j, u ∈ � with u ≥ 2,
0 ≤ i < j < u satisfying

(a) u|(i(1 − r) + j(r − s));
(b) u|(i(1 − p) + j(q − 1)).

Then (p, q, r, s) is not a MSBQ.

LEMMA 3.4. Let p, q, r, s ∈ �∗ with (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 and suppose
that there exist integers α and β satisfying

(a) β(p − q) ≥ α(s − 1);
(b) β(1 − q) < α(s − r);
(c) α(1 − r) + β(p − 1) < (q − p)(r − 1) + (p − 1)(s − 1).

Then (p, q, r, s) is not a MSBQ.

Proof. Put u = (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 and consider the linear system{
i(1 − p) + j(p − q) = αu
i(1 − r) + j(s − 1) = βu.

(5)

The only solution of (5) is i = β(p − q) − α(s − 1) and j = α(1 − r) + β(p − 1). It
follows from (a), (b) and (c) that 0 ≤ i < j < u. Moreover, clearly u|(i(1 − p) + j(p − q))
and u|(i(1 − r) + j(s − 1)). Therefore Lemma 3.2 implies that (p, q, r, s) is not a
MSBQ. �

By interchanging (p, q) with (r, s) in Lemma 3.4 and noting that (s − r)(p − 1) +
(r − 1)(q − 1) = (q − p)(r − 1) + (p − 1)(s − 1) we get:

LEMMA 3.5. Let p, q, r, s ∈ �∗ with (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 and suppose
that there exist integers α and β satisfying

(a) β(r − s) ≥ α(q − 1);
(b) β(1 − s) < α(q − p);
(c) α(1 − p) + β(r − 1) < (q − p)(r − 1) + (p − 1)(s − 1).

Then (p, q, r, s) is not a MSBQ.

Our main task is now to show how to use these lemmas to prove Theorem 3.1.
Theorem 3.1(a) is an immediate consequence of Propositions 3.6, 3.7, 3.8, 3.10, 3.11,
3.12, 3.13 and 3.14. Theorem 3.1(b) follows directly from Propositions 3.15 and 3.16.

PROPOSITION 3.6. If p = 1 and q = 2, then (p, q, r, s) is a MSBQ for every r, s ∈ �∗.

Proof. Let X , Y , A and B be Banach spaces satisfying (1) and (3). Thus

X ∼ Y ⊕ A2 ∼ (Y ⊕ A) ⊕ A ∼ X ⊕ A.

Consequently

X ∼ Y ⊕ A ∼ X ⊕ A ⊕ B ∼ X ⊕ B ∼ Y.

Hence (p, q, r, s) is a MSBQ. �

https://doi.org/10.1017/S0017089505002727 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002727


DECOMPOSITION METHODS IN BANACH SPACES 493

PROPOSITION 3.7. If p = 1, q > 2 and r > 1, then (p, q, r, s) is not a MSBQ for any
s ∈ �∗.

Proof. We distinguish four cases: r = s; s = 1; s > 1 and r > s; s > 1 and r < s.

Case 1. r = s. Take i = 0, j = 1 and u = q − 1 ≥ 2 and observe that u|(i(1 − r) +
j(r − s)) = 0 and u|(i(1 − p) + j(q − 1)) = q − 1. So Lemma 3.3 implies that (p, q, r, s)
is not a MSBQ.

Case 2. s = 1. Take i = 0, j = 1 and u = q − 1 ≥ 2 in and note that u|(i(1 −
p) + j(p − q)) = 1 − q and u|(i(1 − r) + j(s − 1)) = 0. Thus Lemma 3.2 implies that
(p, q, r, s) is not a MSBQ.

Case 3. s > 1 and r > s. Take i = s − 1, j = r − 1 and u = (r − 1)(q − 1) ≥
2. Observe that u|(i(1 − p) + j(p − q)) = (r − 1)(1 − q)) by the definition of u and
u|(i(1 − r) + j(s − 1)) = 0 by the choices of i and j. According to Lemma 3.2 (p, q, r, s)
is not a MSBQ.

Case 4. s > 1 and r < s. There are two subcases: r = 2 and r ≥ 3.

Subcase 4.1. r = 2. Since {s − 1} ∪ {s − 2 − k : 0 ≤ k < q − 2} is a set with q − 1
consecutive numbers, it follows that either (q − 1)|(s − 1) or (q − 1)|(s − 2 − k) for
some 0 ≤ k < q − 2.

Subcase 4.1.1. (q − 1)|(s − 1). Take i = 0, j = 1 and u = q − 1 and observe that
u|(i(1 − p) + j(p − q)) = (1 − q) and u|(i(1 − r) + j(s − 1)) = (s − 1). So Lemma 3.2
implies that (p, q, r, s) is not a MSBQ.

Subcase 4.1.2. (q − 1)|(s − 2 − k) for some 0 ≤ k < q − 2. Take i = k, j = q − 2
and u = q − 1 and note that u|(i(1 − r) + j(r − s)) = −i + (q − 2)(2 − s) = s − 2 − k +
(q − 1)(2 − s) and u|(i(1 − p) + j(q − 1)) = (q − 2)(q − 1). Thus Lemma 3.3 implies
that (p, q, r, s) is not a MSBQ.

Subcase 4.2. r ≥ 3. Thus the hypothesis (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 of
Lemma 3.4 is verified. Take u = (q − 1)(r − 1). Since q ≥ 3 and r ≥ 3, it follows that
(q − 1)/(q − 2) ≤ 2 ≤ r − 1. So

q − 1 ≤ (q − 2)(r − 1) = (q − 2)(s − 1) − (q − 2)(s − r). (6)

Let m be the greatest number in � satisfying

m(q − 1) ≤ (q − 2)(s − r). (7)

Therefore

(q − 2)(s − r) < (m + 1)(q − 1). (8)

According to (6) and (7), we have

(m + 1)(q − 1) = m(q − 1) + (q − 1) ≤ (q − 2)(s − 1). (9)

Let α = 2 − q and β = m + 1. By (8) and (9), it follows that (a) and (b) of
Lemma 3.4 are verified. Moreover, it is easy to check that α(1 − r) + β(p − 1) <

(q − p)(r − 1) + (p − 1)(s − 1). Consequently (p, q, r, s) is not a MSBQ. �
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PROPOSITION 3.8. If p = 1, q > 2 and r = 1, then (p, q, r, s), with s ∈ �∗, is a MSBQ
if and only if gcd(q − 1, s − 1) = 1.

Proof. Suppose first that u = gcd(q − 1, s − 1) ≥ 2 and take i = 0 and j = 1. So
u|(i(1 − r) + j(r − s)) = 1 − s and u|(k(1 − p) + j(q − 1)) = q − 1. Thus Lemma 3.3
implies that (p, q, r, s) is not a MSBQ.

Conversely, assume now that gcd(q − 1, s − 1) = 1 and X , Y , A and B are Banach
spaces satisfying (1) and (3).

First note that if X ∼ X ⊕ E for some Banach space E, then adding E to both
sides of this isomorphism we obtain

X ∼ X ⊕ E ∼ X ⊕ E2.

Hence by induction we deduce that for every t ∈ �∗,

X ∼ X ⊕ Et. (10)

Now by the well-known Bezout’s theorem there exist m, n ∈ � such that m(q − 1) =
1 + n(s − 1) or n(s − 1) = 1 + m(q − 1).

Case 1. m(q − 1) = 1 + n(s − 1). By (1) and (3) we have

X ∼ (Y ⊕ A) ⊕ Aq−1 ∼ X ⊕ Aq−1.

Therefore by (10) with E = Aq−1 and t = m, we obtain

X ∼ X ⊕ Am(q−1). (11)

On the other hand, by (1) we know that X ∼ X ⊕ A ⊕ B. So again by (10), with
E = A ⊕ B and t = n(s − 1), we conclude that

X ∼ X ⊕ An(s−1) ⊕ Bn(s−1). (12)

Moreover, by (3) we infer that

X ∼ Y ⊕ A ∼ X ⊕ Bs ⊕ A ∼ (X ⊕ A ⊕ B) ⊕ Bs−1 ∼ X ⊕ Bs−1.

Hence once more by (10) with E = Bs−1 and t = n, we have

X ∼ X ⊕ Bn(s−1). (13)

According to (11), (12) and (13),
X ∼ X ⊕ Am(q−1) ⊕ Bn(s−1) ∼ X ⊕ A1+n(s−1) ⊕ Bn(s−1) ∼ X ⊕ An(s−1) ⊕ Bn(s−1) ⊕ A

∼ X ⊕ A.

Thus by (1), we see that

X ∼ Y ⊕ A ∼ X ⊕ A ⊕ B ∼ X ⊕ B ∼ Y.

Case 2. n(s − 1) = 1 + m(q − 1). According to (11) and (13), we have
X ∼ X ⊕ Am(q−1) ⊕ Bn(s−1) ∼ X ⊕ Am(q−1) ⊕ B1+m(q−1) ∼ X ⊕ Am(q−1) ⊕Bm(q−1) ⊕ B

∼ X ⊕ B ∼ Y.

Therefore (p, q, r, s) is a MSBQ. �
In the sequel we shall need the following lemma.
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LEMMA 3.9. For every q, s ∈ �, with q ≥ 3 and s ≥ 3, there exists m ∈ �∗ such that

(
s − 2
s − 1

)
(q − 2) ≤ m ≤

(
s − 2
s − 1

)
(q − 1).

Proof. There exist j ∈ �∗ and k ∈ �, 0 ≤ k ≤ s − 2 such that q − 2 = j(s − 1) − k.
It will be convenient to distinguish the cases k = 0 and k �= 0.

Case 1. k = 0. Therefore

(
s − 2
s − 1

)
(q − 2) = j(s − 2) < j(s − 2) +

(
s − 2
s − 1

)
=

(
s − 2
s − 1

)
(q − 1).

Thus it is enough to take m = j(s − 2).

Case 2. k �= 0. Since 1 ≤ k < s − 1, we have

(
s − 2
s − 1

)
(q − 2) = j(s − 2) − k

(
s − 2
s − 1

)
< j(s − 2) − (k − 1)

≤ j(s − 2) − (k − 1)
(

s − 2
s − 1

)
=

(
s − 2
s − 1

)
(q − 1).

Hence it suffices to take m = j(s − 2) − (k − 1). �

PROPOSITION 3.10. If 1 < p < q and s �= 1, then (p, q, r, s), with r ∈ �∗, is a MSBQ
if and only if (r, s) = (1, 2).

Proof. Suppose first that (r, s) �= (1, 2). There are several cases to consider: s = 2
and r = 2; s = 2 and r > 2; s ≥ 3 and r = 1; s ≥ 3 and r ≥ 2. Note that in every one of
these cases the hypothesis (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 of Lemmas 3.4 and 3.5 is
verified.

Case 1. s = 2 and r = 2. Take α = 1 and β = 0. Since q > 2, we have that (a), (b)
and (c) of Lemma 3.5 are verified. So (p, q, r, s) is not a MSBQ.

Case 2. s = 2 and r > 2. Take α = p − q and β = 0. Having in mind that p > 1,
apply Lemma 3.5 to conclude that (p, q, r, s) is not a MSBQ.

Case 3. s ≥ 3 and r = 1. There are two subcases: p = 2 and p ≥ 3.

Subcase 3.1. p = 2. Let m ∈ �∗ as in the Lemma 3.9. If

(
s − 2
s − 1

)
(q − 2) ≤ m <

(
s − 2
s − 1

)
(q − 1),

then take α = −m and β = s − 2. Therefore (a), (b) and (c) of Lemma 3.4 are verified.
Thus (p, q, r, s) is not a MSBQ.

Otherwise,

(
s − 2
s − 1

)
(q − 2) < m ≤

(
s − 2
s − 1

)
(q − 1).
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Thus take α = m and β = 2 − s. Hence (a), (b) and (c) of Lemma 3.5 are verified.
Consequently (p, q, r, s) is not a MSBQ.

Subcase 3.2. p ≥ 3. Since s ≥ 3, we deduce that

(
s − 2
s − 1

)
(q − 1) −

(
s − 2
s − 1

)
(q − p) =

(
s − 2
s − 1

)
(p − 1) ≥ 1. (14)

Let m be the greatest number in � such that

m ≤
(

s − 2
s − 1

)
(q − p). (15)

Therefore by (14) and (15), we conclude that

(
s − 2
s − 1

)
(q − p) < m + 1 ≤

(
s − 2
s − 1

)
(q − 1). (16)

Let α = m + 1 and β = 2 − s. By (16) we see that (a), (b) and (c) of Lemma 3.5
are verified. Hence (p, q, r, s) is not a MSBQ.

Case 4. s ≥ 3 and r ≥ 2. Take α = p − q and β = s − 2. So β(p − q) ≥ α(s − 1).

Moreover, since p > 1,

(
s − r
s − 2

)
≤ 1 <

(
q − 1
q − p

)
.

Hence (s − 2)(q − 1) > (q − p)(s − r), that is, β(1 − q) < α(s − r).
Now observe that α(1 − r) + β(p − 1) = (p − q)(1 − r) + (s − 2)(p − 1) <

(q − p)(r − 1) + (p − 1)(s − 1). Thus Lemma 3.4 implies that (p, q, r, s) is a MSBQ.
Finally, assume that (r, s) = (1, 2). Proceeding as in the proof of Proposition 3.6

we see that (p, q, r, s) is a MSBQ. �

PROPOSITION 3.11. If 1 < p < q, s = 1 and q �= p + 1, then (p, q, r, s) is not a MSBQ
for every r ∈ �∗.

Proof. We will distinguish two cases: r = 1 and r ≥ 2.

Case 1. r = 1. Take i = 0, j = 1 and u = q − p ≥ 2. So u|(i(1 − p) + j(p − q)) =
p − q and u|(i(1 − r) + j(s − 1)) = 0. According to Lemma 3.2 (p, q, r, s) is not a MSBQ.

Case 2. r ≥ 2. Since (q − p)(r − 1) ≥ 2, it suffices to put α = p − q + 1, β = 0 and
to apply Lemma 3.4 to see that (p, q, r, s) is not a MSBQ. �

PROPOSITION 3.12. If p > 1, s = 1, q = p + 1 and r = 1, then (p, q, r, s) is not a
MSBQ.

Proof. Since q − 1 ≥ 2, it is enough to take i = 0, j = 1, u = q − 1 and to apply
Lemma 3.3 to conclude that (p, q, r, s) is not a MSBQ, because u|(i(1 − r) + j(r − s)) =
0 and u|(i(1 − p) + j(q − 1)) = q − 1. �
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PROPOSITION 3.13. If p > 1, s = 1, q = p + 1, r > 2 and r − 1 does not divide p − 1,
then (p, q, r, s) is not a MSBQ.

Proof. First note that the hypothesis (q − p)(r − 1) + (p − 1)(s − 1) ≥ 2 of
Lemma 3.5 is verified. Next, there are two cases: p < r and p > r.

Case 1. p < r. Take α = β = 1. Since r − 1 ≥ p and (r − 1) + (1 − p) < (r − 1), it
follows that (a), (b) and (c) of Lemma 3.5 are verified. So (p, q, r, s) is not a MSBQ.

Case 2. p > r. Let α be the first number in � such that α(r − 1) ≥ (p − 1).
So α ≥ 2 and (α − 1)(r − 1) < (p − 1). Since r − 1 does not divide p − 1, it follows
that α(r − 1) �= (p − 1). Therefore α(r − 1) ≥ p. Take β = 1. Thus (a), (b) and (c) of
Lemma 3.5 are verified. Hence (p, q, r, s) is not a MSBQ. �

PROPOSITION 3.14. If p > 1, s = 1, q = p + 1, r ≥ 2 and r − 1 divides p − 1, then
(p, q, r, s) is a MSBQ.

Proof. First note that (1) and (3) imply

Y ∼ Xr ⊕ B ∼ Xr−1 ⊕ X ⊕ B ∼ Xr−1 ⊕ Y. (17)

Therefore, by (1), we deduce

X ∼ Y ⊕ A ∼ Xr−1 ⊕ Y ⊕ A ∼ Xr−1 ⊕ X ∼ Xr. (18)

Next, let m ∈ �∗ such that p − 1 = m(r − 1). Again by (1) and (3) we get

X ∼ Y p ⊕ Ap ⊕ A ∼ Xp ⊕ A ∼ Xp−1 ⊕ X ⊕ A ∼ Xm(r−1) ⊕ X ⊕ A. (19)

Now adding Y on the both sides of (19) we obtain by (17)

X ⊕ Y ∼ Xr−1 ⊕ Xr−1 ⊕ · · · ⊕ Xr−1 ⊕ Y ⊕ X ⊕ A ∼ Y ⊕ X ⊕ A ∼ X2. (20)

It follows from (18), (20) and Remark 2.1 that X ∼ Y . So (p, q, r, s) is a
MSBQ. �

PROPOSITION 3.15. If p = q = 1 and r ≥ s, then (p, q, r, s) is not a MSBQ.

Proof. We will distinguish two cases: r < 2 and r ≥ 2.

Case 1. s = 1. Take i = 0, j = 1 and u = 2. By Lemma 3.2 (p, q, r, s) is not a MSBQ.

Case 2. s = 2. There are three subcases: r = 2; r = 3 and r ≥ 4.

Subcase 2.1. r = 2. Take i = 0, j = 1, u = 2. Thus u|(i(1 − r) + j(r − s)) = 0 and
u|(i(1 − p) + j(q − 1)) = 0. By Lemma 3.3 we conclude that (p, q, r, s) is not a MSBQ.

Subcase 2.2. r = 3. Take i = 1, j = 2, u = 3. Then, u|(i(1 − r) + j(r − s)) = 0 and
u|(i(1 − p) + j(q − 1)) = 0. According to Lemma 3.3 (p, q, r, s) is not a MSBQ.

Subcase 2.3. r ≥ 4. Therefore r − s ≥ 2. Let i = 0, j = 1 and u = r − s. So
u|(i(1 − r) + j(r − s)) = r − s and u|(i(1 − p) + j(q − 1)) = 0. Thus Lemma 3.3 implies
that (p, q, r, s) is not a MSBQ.

https://doi.org/10.1017/S0017089505002727 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002727
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Case 3. s ≥ 3. Take i = 0, j = 1 and u = s − 1. Hence u|(i(1 − p) + j(p − q)) = 0
and u|(i(1 − r) + j(s − 1)) = s − 1. Now it is enough to apply Lemma 3.2 to deduce
that (p, q, r, s) is not a MSBQ. �

PROPOSITION 3.16. Let p, q, r, s ∈ �∗ with p ≥ 2, r ≥ 2, p ≥ q and r ≥ s. Put D =
(q − 1)(s − 1) − (r − s)(p − q). Then (p, q, r, s) is a MSBQ if and only if D �= 0, D|(p − 1)
and D|(r − 1).

Proof. Notice first that if X , Y , A and B are Banach spaces satisfying (1) and (3),
then

X ∼ Y p−q ⊕ Y q ⊕ Aq ∼ Y p−q ⊕ (Y ⊕ A)q ∼ Xq ⊕ Y p−q; (21)

Y ∼ Xr−s ⊕ Xs ⊕ Bs ∼ Xr−s ⊕ (X ⊕ B) ∼ Xr−s ⊕ Y s. (22)

Conversely, if X , Y , A and B are Banach spaces satisfying (1), (21) and (23), then
clearly these spaces verify (3).

Therefore, since p ≥ 2 and r ≥ 2, it follows that (p, q, r, s) is a MSBQ if and only
if (q, p − q, r − s, s) is a Schroeder-Bernstein Quadruple. Since the discriminant � of
(q, p − q, r − s, s) is equal to D, it suffices to use the characterization of Schroeder-
Bernstein Quadruple mentioned in Remark 2.2 to complete the proof. �

The proof of Theorem 3.1 is now complete.

4. Characterization of the Nearly Mixed Schroeder-Bernstein Quadruples for
Banach spaces. Inspired by Theorem 3.1 and Remark 2.3 we introduce the following
definition:

DEFINITION 4.1. A quadruple (p, q, r, s) in �∗ is a Nearly Mixed Schroeder-
Bernstein Quadruple for Banach spaces (in short, NMSBQ) if for every Banach spaces
X , Y , A and B satisfying the conditions (1) and (3), we have that Xm ∼ Y n, for some
m, n ∈ �∗.

We end the paper by providing the characterization of the quadruples in �∗ which
are NMSBQ.

THEOREM 4.2. Let (p, q, r, s) be a quadruple in �∗.
(a) Suppose that p < q or r < s. Then (p, q, r, s) is a NMSBQ.
(b) Suppose that p ≥ q and r ≥ s and put D = (q − 1)(s − 1) − (r − s)(p − q). Then

(p, q, r, s) is a MSBQ if and only if p ≥ 2, r ≥ 2 and D �= 0.

Proof. (a) By symmetry it is enough to consider the case p < q. Let X , Y , A and
B be Banach spaces satisfying (1) and (3). Thus adding Y q to both sides of the first
isomorphism of (3) and using (1) we have

X ⊕ Y q ∼ Y p ⊕ Aq ⊕ Y q ∼ Y p ⊕ Xq.

Since p < q, it follows that q > 1. Hence Remark 2.5 implies that Xm ∼ Y n for
some m, n ∈ �∗. So (p, q, r, s) is NMSBQ.

(b) We distinguish the cases p = 1 and r = 1; p = 1 and r = 2; p = 2 and r = 1;
p ≥ 2 and q ≥ 2. Again by symmetry it suffices to consider the cases 1, 2 and 4.
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Case 1. p = 1 and r = 1. Thus q = 1 and s = 1. Let E, Z, X and Y be the Banach
spaces mentioned in Remark 2.6. It follows from Remark 2.6(a) that{

Z ∼ E ⊕ Y
E ∼ Z ⊕ X.

But according to Remark 2.6(b), we obtain for every m, n ∈ �∗,

Em ∼ Zm ⊕ Xm ∼ Z ⊕ Xm �∼ Z ∼ Zn. (23)

Consequently (1, 1, 1, 1) is not a NMSBQ.

Case 2. p = 1 and r = 2. There are two subcases: s = 1 and s = 2.

Subcase 2.1. s = 1. Again Remark 2.6(a) implies that{
Z ∼ E ⊕ Y
E ∼ Z2 ⊕ X.

Hence by (23) we deduce that (1, 1, 2, 1) is not a NMSBQ.

Subcase 2.2. s = 2. Once more by Remark 2.6(a) we see that{
E ∼ Z ⊕ X
Z ∼ E2 ⊕ Y 2.

Thus by (23) we conclude that (1, 1, 2, 2) is not a NMSBQ.

Case 4. p ≥ 2, r ≥ 2. Let X , Y , A and B be Banach spaces satisfying (1). By (21)
and (22) we know that (3) is equivalent to{

X ∼ Xq ⊕ Y p−q

Y ∼ Xr−s ⊕ Y s.

Therefore (p, q, r, s) is a NMSBQ if and only if (q, p − q, r − s, s) is a NSBQ. Then,
the result follows from Remark 2.3. �
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