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Abstract. The purpose of this paper is to investigate a conjecture about the universality of the
circular distribution made by Robert Coleman. The algebraic property of the universal distri-
bution is the main ingredient in studying Euler system of Kolyvagin and Rubin. We study the

universality of the circular distribution by using the Iwasawa theory and the theory of the
Euler systems. The conjecture is a characterization of Euler systems in the case of number
field. The results here assert that Euler systems are essentially made out of cyclotomic units.
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1. Introduction

Let n be a positive integer. Let mn be the set of nth roots of unity in a fixed algebraic

closure Q of Q: Let m1 ¼ [n2N mn and m�n ¼ mn n f1g; m�1 ¼ m1 n f1g; where N is the

set of positive integers. A Galois equivariant map f from m�1 toQ
	
is called a circular

distribution ifY
zd¼E

fðzÞ ¼ fðEÞ for E 2 m�1 and d 2 N:

By E we denote the set of all circular distributions. We give a natural

R :¼ lim
 

Z½GalðQðmnÞ=QÞ� module structure on E. Let F be the Galois equivariant

map from m�1 to Q
	
defined by

FðzÞ ¼ 1 z; z 2 m�1:

Then one can show that F is a circular distribution. Coleman raised a question of

whether E is the cyclic R-module generated by F: Coleman showed that the question

is not true by finding some mysterious examples in E but not in RF: More precisely

for any finite set of odd primes S, let xS be the Galois equivariant map on m�1 defined

by

xSðznÞ ¼
1; if n is divisible by all and only those primes in S,
1; otherwise:

�

Then xS 2 E n RF and, hence, E 6¼ RF ([13]).
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By imposing some congruence relations on E such that the above examples do not

satisfy, Coleman defined an R-submodule F of E as follows. Let F be the R sub-

module of E such that for each prime number l and n 2 N; ðn; l Þ ¼ 1;

fðEzÞ � fðzÞ modulo primes over ðlÞ for all E 2 m�l ; z 2 m�n:

Then one can see that F 2 F and, hence, RF � F. The above examples of Coleman

show that xS 2 E n F as well as E 6¼ F ([13]). We are now ready to introduce the fol-

lowing conjecture made by Coleman.

CONJECTURE ðColemanÞ. F ¼ RF:

To approach the proof of the conjecture, we want to show that the values of F and

RF in the m�n are equal for all n. We denote by C0ðnÞ the group of cyclotomic numbers

of QðmnÞ, i.e., C
0ðnÞ is the group generated by 1 z, z 2 m�n over the group ring

Z½GalðQðmnÞ=QÞ�. Note that RFðzÞ :¼ fgðzÞ j g 2 RF; z 2 m�ng ¼ C0ðnÞ: Let FðmnÞ ¼
f fðzÞ j f 2 F; z 2 mng: In [14], we were able to show that Greenberg’s conjecture

implies FðmnÞ ¼ CðnÞ for all n 2 N: Without Greenberg’s conjecture, we can use

the argument of Euler systems ([13, 14]). The following fact is due to Rubin. For

each p j-fðnÞ; FðmnÞ � Zp ¼ CðnÞ � Zp:

In this paper, we extend this result to the cyclotomic Zp-extensions using Iwasawa

theory. Let EðnÞ be the group of global units of QðmnÞ. We let E0ðnÞ be the multipli-

cative subgroup of QðmnÞ
	 generated by f fðzÞ j f 2 E; z 2 m�ng and let EðnÞ ¼

E0ðnÞ \ EðnÞ. We now state the main theorems. Notice that even if the following the-

orems are about E, the theorems are also true for F.

THEOREM A. Let p be a prime number such that ðfðnÞ; pÞ ¼ 1. Then

]ðEðmnprÞ=Cðnp
rÞ � ZpÞ ¼ 1 for all r and the indices ½EðnprÞ : CðnprÞ� are bounded

independently of r.

THEOREM B. Let f 2 E and p be an odd prime number. Then there is a positive

integer c independent of n and f, such that

fðzpnÞ
c
¼ ð1 zpn Þ

rn with ðrnÞn5 1 2 lim
 

Z½GalðQðmpnÞ=QÞ�:

NOTATIONS

E0ðnÞ ¼ the group generated by p-units of QðmnÞ
	, p j n.

C0ðnÞ ¼ the subgroup of QðmnÞ
	 generated by 1 z for z 2 m�n:

E0ðnÞ ¼ the multiplicative subgroup of QðmnÞ
	 generated by ffðzÞj f 2 E; z 2 m�ng.

EðnÞ ¼ the group of global units of QðmnÞ:
CðnÞ ¼ C0ðnÞ \ EðnÞ; and EðnÞ ¼ E

0

ðnÞ \ EðnÞ.

En ¼ the group of global units of QðmnÞ
þ:

En ¼ EðnÞ \QðmnÞ
þ and Cn ¼ CðnÞ \QðmnÞ

þ:
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Cn ¼ the group of cyclotomic units of QðmnÞ
þ:

Cln ¼ the p-part of the ideal class group of QðmnÞ
þ:

(We use similar notations for the F i.e., F0ðnÞ;FðnÞ and Fn.)

2. Main Results

Let n ¼ n0p, ðn0; pÞ ¼ 1: Let D ¼ GalðQðmnÞ
þ=QÞ be the Galois group of the maximal

totally real subfield QðmnÞ
þ
¼ Qðzn þ z1n Þ of the nth cyclotomic field QðmnÞ over Q:

Let

k ¼ k0 � k1 � k2 � � � � � k1 ¼ [r2N kr ¼ [r2NQðmnpr Þ
þ

denote the cyclotomic Zp-extension of k ¼ QðmnÞ
þ: If w: D!Q

	

p is a Q
	

p -valued

character of D, let QpðwÞ be the field generated by the values of w over Qp: If

w;c:D! Q
�

p are p-adic characters, we say w is conjugate to c over Qp if there is a

s 2 GðQp=QpÞ such that w ¼ sc: Let X be the set of conjugacy classes of p-adic char-

acters of D. Then each element in X corresponds to an isomorphism class of an irre-

ducible Zp-representation of D. Let ZpðwÞ be the ring of integers of QpðwÞ: Let M be a

Zp½D�-module. We let Mw :¼M�Zp½D� ZpðwÞ be the w-part of M where G acts via w.
Let ew be the idempotent of Zp½D� corresponding to w,

ew ¼
1

jDj

X
d2D

TrQpðwÞ=Qp
wðd1Þd;

where TrQpðwÞ=Qp
is the trace map fromQpðwÞ toQp. The group ring Zp½D� decomposes

as a product of discrete valuation rings, Zp½D� ¼
Q

w2X ewZp½D� ¼
Q

w2X ZpðwÞ,
Mw ¼ ewM and M ¼

Q
w2 X M

w. For each prime p of Qðmnpr Þ
þ over p, let U1

p be the

group of principal units in the completion QðmnprÞ
þ
p of QðmnprÞ

þ at p: For a given

submodule M of Enpr , let M1 ¼M \
Q

pjp U
1
p under the natural inclusion of

M to Qðmnpr Þ
þ
p and �MM be the topological closure of M1 in

Q
pjp U

1
p,

M� Zp ,!
� �MM �

Q
pjp U

1
p: The isomorphism follows from the fact that Leopoldt con-

jecture is true in abelian case. Let �EE1 ¼ lim
 

�EEnpr ; �EE1 ¼ lim
 

�EEnpr ; �CC1 ¼ lim
 

�CCnpr ;

Cl1 ¼ lim
 

Clnpr ; with respect to the norm maps. For each finitely generated L-mod-

ule N, the structure theorem of finitely generated L-modules asserts that there is

a pseudo-isomorphism,N � Lr
	

Q
i2I L=P

ni
i ; wherePi are the prime ideals of height

1. We denote by charðNÞ the product of all these prime ideals Pi; charðNÞ ¼
Q

i2I P
ni
i :

In fact, since the prime ideals p of height 1 in L are ðpÞ and the ideals generated by an

irreducible Weierstrass polynomial FðtÞ over Zp; we can write

N � Lr
	

Y
i2I
0

L=pmi 	
Y
j2I
00

L=Fnj
j :

Let w be a Zp-valued even character of GalðQðmnpÞ=QÞ. When k ¼ QðmpÞ
þ, we have

Iwasawa’s main conjecture charðð �EE1= �CC1Þ
w
Þ ¼ charðClw1Þ: The following generalized

form of Iwasawa’s main conjecture was proven by Mazur and Wiles [11].
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THEOREM 2.1 ðMazur and WilesÞ. Let p j-fðnÞ then for all even irreducible

Zp-character w of D we obtain charðð �EE1= �CC1Þ
w
Þ ¼ charðClw1Þ:

The proof of Iwasawa’s main conjecture was simplified by the use of Euler systems

by Rubin ([12, 13]) and this was extended to the generalized form by Greither

(cf. ([6]). We need the following lemma due to Coleman which is Lemma 4.1 of

[14] to apply Rubin’s arguments in [13]. For number fields K � L, we write NL=K

for the norm from L to K.

LEMMA 2.2 ð¼ Lemma 4.1 of [14]Þ. Let J ðtÞ be the set of positive square free

integers divisible only by primes ‘ � 1ðmod tÞ: If F is an Abelian number field of

conductor t then the function on J ðtÞ, aðLÞ ¼ NQðmtLÞ=FðmLÞ fðz
Q

‘jL z‘Þ is an Euler system
for F for any z 2 mt.

We state a crucial theorem which shows the characteristic ideal, charð �EE1= �CC1Þ of
�EE1= �CC1 is trivial. Thus we can see that the growth of the p-part of the quotient
�EEnpr= �CCnpr is bounded in the Zp-tower.

THEOREM 2.3. Let p j-fðnÞ. charð �EE1= �CC1Þ ¼ 1:

Proof. Rubin’s arguments in his proof of Theorem 2.3.3 in [12] together with

Lemma 2.2 show that charðCl1Þ j charð �EE1= �EE1Þ:
Since

charðCl1Þ ¼ charð �EE1= �CC1Þ (Thm 2.1)

and

charð �EE1= �EE1Þ j charð �EE1= �CC1Þ;

Theorem 2.3 follows. &

For a given finitely generated L-module N, N � Lr
	

Q
i2I L=p

mi 	
Q

j2I L=F
nj
j , the

Iwasawa invariants are defined by,

rankLðN Þ ¼ r; mðN Þ ¼
X
i2I

mi; lðN Þ ¼
X
j2J

nj degðFjÞ:

The classical Iwasawa invariants lpðkÞ; mpðkÞ; npðkÞ are defined for the p-primary part

of the ideal class groups in a Zp-extension of any number field k (cf. [7]). For the tor-

sion L-module Cl1, Ferrero and Washington showed that the Iwasawa invariant

mpðkÞ ¼ mðCl1Þ of the cyclotomic Zp-extension kp1=k vanishes for abelian number

fields (cf. [3]). Moreover Iwasawa showed that the Iwasawa invariants lðCl1Þ and
lð �EE1= �CC1Þ are equal.

Theorem 2.3 together with Ferrero and Washington’s theorem tell us that the Iwa-

sawa invariants, lð �EE1= �CC1Þ as well as mð �EE1= �CC1Þ are equal to 0. This means that
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]ð �EEnpr= �CCnpr Þ is bounded independently of r. We know the natural inclusion maps are

injective (cf. [5], H 0ðGm;n; �CCnpm Þ ¼ �CCnpn );

0! �EEnpr= �CCnpr !
�EEnprþ1= �CCnprþ1 :

Therefore they are isomorphisms and the operator on �EEnprþk= �CCnprþk norm to
�EEnpr= �CCnpr followed by inclusion is the multiplication by pk. Hence, the inverse limit

of �EEnpr= �CCnpr with respect to the norm maps is zero; lim
 
ð �EEnpr= �CCnprÞ ¼ 1. Let Frobp be

the Frobenius map at p, FrobpðzuÞ ¼ zpu for all ðu; pÞ ¼ 1. For each element

f in E; the sequence ð f ðznprÞÞr2N can be made a norm coherent sequence

ð ~ffðznprÞÞr2N :¼ ð fðzprz
Frobrp
n ÞÞr2N with respect to the norm maps, NQðmnprþkÞ=Qðmnpr Þ.

This argument together with lim
 
ð �EEnpr= �CCnprÞ ¼ 1 lead to,

THEOREM 2.4. Suppose that p j-fðnÞ: Then

]
Enpr

Cnpr
� Zp

� �
¼ 1; for all r:

As an immediate corollary we have

COROLLARY 2.5. ]ðEpr=Cpr � ZpÞ ¼ 1; for all r:

For a prime l j-fðnp2Þ; we consider the Zl-extension Qðmnprl1Þ of Qðmnpr Þ: Applying

Theorem 2.4, the indices ]ðEnprls=Cnprls � ZlÞ ¼ 1 for all s:

Since H0ðGnprls;npr ;Cnprls � ZlÞ ¼ Cnpr � Zl; we conclude

THEOREM 2.6. Suppose that l j-fðnp2Þ: Then ]ðEnpr=Cnpr � ZlÞ ¼ 1; for all r:

Suppose now that lð6¼ pÞ j fðnp2Þ. To bound the l-part ]ðEnpr=Cnpr � ZlÞ of

]ðEnpr=Cnpr Þ, we need the following theorem of Washington.

THEOREM 2.7 ðWashingtonÞ. Let k be an Abelian number field and K=k the

cyclotomic Zp-extension of k. Let l 6¼ p be a prime and let len be the exact power of l

dividing hn. Then en is bounded independently of n.

From Washington’s theorem, we have that ]ðEnpr=Cnpr � ZlÞ is bounded indepen-

dently of r. Hence, Washington’s theorem and Theorem 2.6 imply that ]ðEnpr=CnprÞ is

bounded independently of r: To finish the proof of Theorem A we need a lemma.

Let j be the complex conjugation. For any Z 2 EðnÞ, we have

Z=Zj ¼ ðznÞ
a
¼ ð1 znÞ

að1jÞ

for some a 2 Z, and Zð1 znÞ
a lies in En. Hence, EðnÞ ¼ EnEðnÞ: The natural map

induces the following isomorphism EðnÞ=EðnÞ ffi En=En: Moreover, E
0

ðnÞ and EðnÞ
0

can be written, as
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E 0ðnÞ ¼ EðnÞ �
Y
peðpÞjjn

ð1 zpeðpÞ Þ
Z; and EðnÞ

0

¼ EðnÞ �
Y
peðpÞjjn

ð1 zpeðpÞ Þ
Z:

This provides us the proof of the following lemma.

LEMMA 2.8. For all n,

E 0ðnÞ=EðnÞ
0

ffi EðnÞ=EðnÞ ffi En=En;

and

E 0ðnÞ=FðnÞ
0

ffi EðnÞ=FðnÞ ffi En=Fn:

Theorem 2.6 together with Lemma 2.8 complete the proof of Theorem A.

As a corollary to Theorem A, we can obtain the following theorem.

THEOREM 2.9. For each f 2 E, there is a constant c independent of f and s so that

fðzpmÞ
c can be written

fðzpmÞ
c
¼ ð1 zpm Þ

rm ; with rm 2 lim
 

Z½GalðQðmpmÞ=QÞ�:

To prove Theorem 2.9 we need to compute the annihilators of cyclotomic units in

the group ring, Rpm :¼ Z½GalðQðmpm Þ=QÞ�: Using this, for each norm coherent

sequence am ¼ ð1 zpm Þ
aðmÞ in the p-tower, we can find representatives of aðmÞ in

lim
  Rpm : For each s 2 GalðQðmpmÞ=QÞ we denote by s ¼ si when sðzpmÞ ¼ zipm : Let
vi :¼ si  si and let

wk :¼
4v1  2v2; when k ¼ 1
kv1  vk1 ; when k 6¼ 1:

�

PROPOSITION 2.10. The annihilator Að pmÞ of 1 zpm in the group ring Rpm is

generated by the following set as Z-module:

Spm ¼ fw1; wk j 3 � k � pm; ðk; pÞ ¼ 1; k odd numberg:

Proof. Let jpm be the map jpm : Rpm !C
0

ð pmÞ defined by jppm ðaÞ ¼ ð1 zpmÞ
a

and jpm be the map followed by the projection map from C
0

ð pmÞ to C
0

ð pmÞ=mpm ,

jpm : Rpm !C
0

ð pmÞ=mpm . Write Að pmÞ ¼ KerðjpmÞ for the annihilators of ð1 zpm Þ

in Rpm and Apm ¼ KerðjpmÞ. Then we have the following diagram:

0 ! Að pmÞ ! Rpm ! Cð pmÞ ! 0

   

0 ! Apm ! Rpm ! Cð pmÞ=� mpm ! 0

By the snake lemma we see that the cokernel of the map from Að pmÞ to Apm has

order 2pm. Now, Cð pmÞ=mpm and Rpm are free Z-modules of rank jð pmÞ=2, jð pmÞ,
respectively. By comparing the rank in the second row, we can see that
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G1 :¼ fvi j 1 � i � pm; ði; pÞ ¼ 1; i : odd numberg is a Z-basis for Apm . We also

define the following Z-independent set G2 in Að pmÞ, G2 :¼ fw1;

wk j 3 � k � pm; ðk; pÞ ¼ 1; k : odd numberg: We let A ¼ ðaijÞ be a jð pmÞ=2	
jð pmÞ=2 matrix defined in the following way: wi ¼

P
aijvj; where wi and vi are

ordered as above. Then A can be written,

4 0 0 0 � � � 2
3 1 0 0 � � � 0
5 0 1 0 0 � � � 0
g

pm  4 0 0 � � � 1 0
pm  2 0 0 0 � � � 1

0
BBBBBB@

1
CCCCCCA

The absolute value of the determinant is 2pm which shows that G2 is a Z-basis for

Að pmÞ from the above diagram. &

Proposition 2.10 tells us that we can lift each annihilators of Apm in p-tower.

LEMMA 2.11. Let lim
 

Að pmÞ be the inverse limit of Að pmÞ with respect to restriction

maps. Then the natural projection map from lim
 

Að pmÞ to Að pmÞ is surjective

lim
 

Að pmÞ !Að pmÞ ! 0:

Proof. Each element of the set Spm in Proposition 2.10 lifts to an element of the

set Spmþ1 : &

Using Lemma 2.11, we show the following proposition.

PROPOSITION 2.12. For any f 2 F and prime p, there exist an r ¼ ðrmÞ 2 lim
 

Rpm

such that for all m, fðzpmÞ ¼ ð1 zpm Þ
rm if and only if Fpm ¼ Cpm for all n.

Proof. Let fðzpmÞ ¼ ð1 zpmÞ
um : The natural restriction map rs;m : Rps !Rpm

takes ups to upm modulo the annihilators in Rpm of 1 zpm whenever s � m by the

norm coherent property of fðzpm Þ. Thus rs;mðusÞ  um in Að pmÞ: This element can be

lifted to get u 2 lim
 

Rpm by Lemma 2.11. &

From Proposition 2.12 and Theorem A, there is a constant c such that

fðzpmÞ
c
¼ ð1 zpm Þ

rm ; with rm 2 lim
 

Rpm :

This completes the proof of Theorem 2.9 which is Theorem B.
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