
6

Basic Data Management in R

As we saw in the previous chapter, using spreadsheets to prepare data
for analysis may be convenient at first, but entails a number of major
drawbacks. In this chapter, we introduce the basics of data management
using the R statistical toolkit. R is one of the most popular software tools
for data analysis – it has numerous features and extension packages for
statistics, visualization, machine learning, etc. Therefore, it is convenient
to also use it to prepare your data before you actually analyze it. This way,
you can stick to a single software package and one language to implement
your entire research workflow from beginning to end.
As you know, you interact with R not by pointing and clicking

with your mouse, but by entering commands in the R programming
language. This way, you can have R run statistical analyses for you,
visualize your data, but also perform data management operations.While
cumbersome at first, this mode of interaction is extremely powerful and
has a number of advantages. Most importantly, the set of commands
you send to R (which is typically called a “script”) can be saved, such
that you can later return to it, fix potential problems, or simply replicate
the steps you carried out to arrive at a particular result. This resolves
one of the main drawbacks in the spreadsheet-based data management
approach we discussed in the previous chapter, where it is difficult – if
not impossible – to keep track of the different modifications you made to
your data.
In this chapter, we focus on “base R,” which is the set of commands

and functions that are part of R’s core functionality. We do this with a
particular emphasis on R’s features for data storage and processing, and
how we can get data into R and back out. In the next chapter, I describe

74

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.1 Application: Inequality and Economic Performance in the US 75

the tidyverse, an R extension that follows a different approach for data
processing. While many consider the tidyverse as superior, I believe that
it is still necessary to be familiar with R’s basic functions and syntax for
data management.

6.1 application: inequality and economic
performance in the us

Inequality remains a global issue of major concern (Piketty, 2014). In the
practical example for this chapter, we focus on the historic development
of inequality in the US,which former president Barack Obama considered
to be a “defining challenge of our time” (The White House, 2013). How
does inequality during Obama’s presidency compare to other presidents?
To what extent does inequality depend on the size of the US economy
overall?
To find out, we use data from different sources. Data on inequality

comes from the World Inequality Database (WID, 2020). The dataset
contains time series for several measures related to inequality for many
countries, and therefore allows for systematic, historical research into
the determinants and consequences of inequality. In our example, we use
one of the many indicators for income inequality: the share of the pre-
tax income received by the top 10% of all individuals with the highest
income in a country. Higher values of this measure indicate higher levels
of inequality. TheWID has a powerful web interface at https://wid.world/
data/, where users can select the indicators, the countries and the years of
observation they are interested in. The data file in the repository, however,
was created using the bulk download function for the entire database,
selecting the US and only the variable we are interested in. The resulting
table was saved as a CSV file, which you can find in the data repository
for this chapter in the file us-inequality.csv.
Data on US economic performance can be obtained from the FRED

data portal of the US Federal Reserve Bank St. Louis (2020). The real
gross domestic product per capita series was selected and downloaded
in CSV format. The dataset is available in the data repository for this
book in the file us-gdp-pc.csv. In addition, we combine the inequality
estimates from the WID and the GDP data with data on US presidents,
available online from the US Library of Congress (2020). For your con-
venience, the latter data is available in a shortened version in the file
us-presidents.csv in the data repository.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://wid.world/data/
https://wid.world/data/
https://doi.org/10.1017/9781108990424.009

76 6 Basic Data Management in R

6.2 loading the data

We start by importing the three data files into R. Let us take a closer look
at the inequality data from the WID first. If you open this file in RStudio’s
editor, you will see the following first three lines:

country,variable,percentile,year,value,age,pop

US,sptincj992,p90p100,1913,0.4231,992,j

US,sptincj992,p90p100,1914,0.4295,992,j

The structure of this file is straightforward; the first line contains the
variable names, and the data start in the second row. A comma is used to
separate the different fields in a row.1 In our data, variable refers to the
particular variable we are using from the WID, in our case the share (thus
“s”) of the pre-tax income (“ptinc”). percentile specifies the percentile
range of the distribution we are looking at: p90p100 is the range between
the 90th and the 100th percentile, and thus corresponds to the top 10%
of earners. We can use R’s standard functions to read the data from the
CSV file:

wid <- read.csv(file.path("ch06", "us-inequality.csv"))

A quick summary of the data shows that the import worked correctly:

summary(wid)

country variable percentile year
Length:100 Length:100 Length:100 Min. :1913
Class :character Class :character Class :character 1st Qu.:1938
Mode :character Mode :character Mode :character Median :1963

Mean :1963
3rd Qu.:1989
Max. :2014

value age pop
Min. :0.3384 Min. :992 Length:100
1st Qu.:0.3604 1st Qu.:992 Class :character
Median :0.4026 Median :992 Mode :character
Mean :0.4071 Mean :992
3rd Qu.:0.4536 3rd Qu.:992
Max. :0.4803 Max. :992

One issue we should fix is the presence of unnecessary data in our data
frame. Many of the variables such as country or variable are constant,
and are only included because our data is a subset of the entire WID

1 If you choose to download a custom-defined data file from theWID yourself, the import is
not straightforward, since these files contain a header that does not conform to a regular
CSV format.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.2 Loading the Data 77

(which contains many more countries and variables). We therefore retain
only the data in columns 4 and 5 (year and value), and give them more
meaningful names:

wid <- wid[4:5]
colnames(wid) <- c("year", "p90p100")
summary(wid)

year p90p100
Min. :1913 Min. :0.3384
1st Qu.:1938 1st Qu.:0.3604
Median :1963 Median :0.4026
Mean :1963 Mean :0.4071
3rd Qu.:1989 3rd Qu.:0.4536
Max. :2014 Max. :0.4803

Next, we need to import the GDP per capita estimates. The CSV data
file is formatted according to standard conventions, using a comma as
field separator and a header with the column names, which is why the
import is straightforward. However, we again adjust the column names
to something meaningful and change the type of the first column such
that it properly reflects the dates:

gdp <- read.csv(file.path("ch06", "us-gdp-pc.csv"))
colnames(gdp) <- c("date", "gdppc")
gdp$date <- as.Date(gdp$date)
summary(gdp)

date gdppc
Min. :1947-01-01 Min. :13999
1st Qu.:1965-03-09 1st Qu.:21153
Median :1983-05-16 Median :30482
Mean :1983-05-17 Mean :33533
3rd Qu.:2001-07-24 3rd Qu.:46691
Max. :2019-10-01 Max. :58392

As you can see, the gdp data frame contains quarterly estimates of GDP
per capita. We only need one estimate per year, which is why we retain
only the observations for July:

gdp <- subset(gdp, as.numeric(format(date, "%m")) == 7)

Finally, let us import the dataset with the US presidents. This dataset
was exported from a spreadsheet, which is why a semicolon is used as a
field separator. This requires us to set the sep parameter of the read.csv()
function accordingly. R again obtains the column names from the first line
in the file. It replaces the whitespaces in the names with dots, since R does

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

78 6 Basic Data Management in R

not accept column names with spaces. We again set the column names to
lower case and retain only those columns we need later.

presidents <- read.csv(file.path("ch06", "us-presidents.csv"), sep = ";")
colnames(presidents) <- tolower(colnames(presidents))
presidents <- subset(presidents, select = c(inoffice, president))
summary(presidents)

inoffice president
Length:15 Length:15
Class :character Class :character
Mode :character Mode :character

All three datasets – wid, gdp, and presidents – are data frames, which,
as you know, is the main data structure for tables in R. In RStudio, you
can view data frames just like spreadsheet tables using the View() com-
mand or by clicking on the data frame in the “Environment” tab in the
top right panel. Note that, unlike in a spreadsheet program, you cannot
manually edit the data – this would have to be done using R commands.
As we have discussed above, there is no fixed standard for storing data in
text files (CSV and similar formats). This is why you need to be careful
when importing these data and make sure that the import was successful.
Above, we checked some of our imported datasets simply by printing a
summary. Another way to achieve this is the str() function:

str(wid)

'data.frame': 100 obs. of 2 variables:
$ year : int 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 ...
$ p90p100: num 0.423 0.429 0.422 0.444 0.449 ...

In particular, this allows you to check:

• Whether all rows have been imported. If you load the CSV file in a
text editor, you can easily count the rows in the original file. This file
typically has one more row than the data frame in R (the header in
the first line). Some CSV files have empty lines at the end; these can
be excluded from the import using the nrows parameter in read.csv(),
which restricts the number of rows to import.

• Whether all columns have been imported. Usually, inconsistencies in
the number of cells between different lines will trigger errors and the
file will not be read, but even if there are no error messages, it is still
useful to check whether all columns were imported successfully and
have the right names.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.3 Merging Tables 79

• Whether the columns have the right data type. The str() function
shows us the type of data contained in the columns (e.g., int and num
for the WID data frame). Since standard CSV files explicitly specify
only the names – but not the types – of the table columns, the default
behavior in R is to infer the variable types from the data it encounters
in the respective columns. That is, if a column contains only numeric
values and properly codedmissing values – as is the case for the p90p100
column in the wid data frame – R will correctly use a numeric type for
it. If, however, we were to denote missing values with the string n.a.
in the original CSV dataset, R would convert the entire column to a
character variable, and you could not use it for any type of analysis
that requires numeric input.

In general, if you encounter text files that deviate from common stan-
dards and cause issues during the import, I recommend that you try to
address these problems using R code rather than fixing the data file man-
ually. For example, you can skip a given number of lines at the beginning
of a CSV file with read.csv()’s skip parameter, which is useful for some
CSV files that have a header ofmore than a single line. Fixing import issues
using R’s functions rather than manually editing the files has a number of
advantages. You could easily replace the old version of the data file with
a newly downloaded one, for example, if a new version of the data has
been released. Also, you avoid making undocumented modifications to a
raw data file, which is something I recommended against at the beginning
of the book.

6.3 merging tables

For comparing inequality and economic performance in the US over time,
it is convenient to merge the two tables with each other. Both contain
annual observations, so this is straightforward. However, before we can
do this, we need to make sure that both tables have columns we can use to
join them. The wid data frame already has a column containing the year
of the observation; for the gdp data frame, we still need to create such a
column by extracting the year from the date column:

gdp$year <- as.numeric(format(gdp$date, "%Y"))

We use again the format() function for this and convert the result to a
number. Now, we are ready to merge the WID and GDP tables and store
the result in a new data frame:

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

80 6 Basic Data Management in R

data_annual <- merge(wid, gdp, by = "year")
summary(data_annual)

year p90p100 date gdppc
Min. :1947 Min. :0.3384 Min. :1947-07-01 Min. :14008
1st Qu.:1964 1st Qu.:0.3549 1st Qu.:1964-12-30 1st Qu.:21088
Median :1982 Median :0.3703 Median :1981-12-30 Median :30232
Mean :1981 Mean :0.3872 Mean :1981-06-30 Mean :32314
3rd Qu.:1998 3rd Qu.:0.4254 3rd Qu.:1998-03-31 3rd Qu.:43412
Max. :2014 Max. :0.4714 Max. :2014-07-01 Max. :53452

What does the merge() function do? It takes two data frames and joins
them line by line, for all lines that have the same values in the year column.
This is why our resulting data frame will have all the columns from the
first and the second data frame combined, as well as the column(s) used
for merging. In our case, the merge column has the same name in both
datasets, but merge() can also deal with merge columns of different names
(you would use the by.x and by.y parameters instead of by). The function
can also deal with applications where you merge not just on a single
column, but on multiple ones (e.g., if you merge annual observations for
different countries).
Now, take a closer look at the number of observations in the original

and the merged datasets:

nrow(gdp)

[1] 73

nrow(data_annual)

[1] 66

The merged data frame contains fewer observations. The reasons is
that our WID data do not start until 1962, while the GDP data are avail-
able from 1947 onwards. merge() retains only lines with at least one
match in the other dataset, so we lose those observations from gdp that
do not have a match in the WID. If we wanted to keep all observations
from gdp, we could use the all.y = T parameter setting. However, in the
merged table, the corresponding fields for the WID values would remain
empty (NA).
As a final step, we need to merge the information about the US pres-

idents to our data_annual dataset. However, the presidents data frame
contains time periods, each with a start and an end year. This is why
we cannot use it directly in the merge() function, because it requires a
common attribute. Therefore, we need to make the time periods in the

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.3 Merging Tables 81

presidents data frame (which is currently a character variable) compati-
ble with the year variable (which is a number) in the WID. A first step for
doing this is to extract the start year and the end year of each president
and to add them to the data frame. You probably noticed that the periods
given in the data are overlapping; for every presidency, the first year is
the same as the last year of the previous one. To avoid confusion in our
dataset with annual observations, we therefore reduce the end year given
in the data by one, such that we have exactly one president per year:

presidents$startyear <- as.numeric(substr(presidents$inoffice, 1, 4))
presidents$endyear <- as.numeric(substr(presidents$inoffice, 6, 9)) - 1

Since the information in startyear and endyear is now redundant in
the table, we can remove the old variable:

presidents$inoffice <- NULL

We now need to merge the two data frames based on the corresponding
years; so for each entry in the data_annual data frame, we need to look
up the corresponding president based on the start and the end year of his
tenure. This would be simple if we had a dataset with annual observations
of US presidents. We do not have this, so we need to use a simple trick.
We first create all possible combinations of rows from data_annual and
from presidents. The merge() function does this if we set the all = T
parameter:

data_annual <- merge(data_annual, presidents, all = T)
data_annual[1:5,]

year p90p100 date gdppc president startyear endyear
1 1947 0.3708 1947-07-01 14008 Harry S. Truman 1945 1948
2 1948 0.3891 1948-07-01 14515 Harry S. Truman 1945 1948
3 1949 0.3836 1949-07-01 14182 Harry S. Truman 1945 1948
4 1950 0.3899 1950-07-01 15388 Harry S. Truman 1945 1948
5 1951 0.3771 1951-07-01 16223 Harry S. Truman 1945 1948

The result of this operation is called the Cartesian product of the two
tables. Obviously, it yields many useless combinations. For example, the
first line contains the inequality and GDP values for 1962, combined
with the information on President Truman, who was in office during
1945–1949 and 1949–1953, which makes little sense. This result is not
surprising, since we specify no condition whatsoever about which rows
are supposed to match. However, in an additional step, we can now use
simple filtering to get rid of the lines with non-matching information.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

82 6 Basic Data Management in R

Specifically, we retain those lines where the current year (indicated by
the year variable) is larger than the first year of the respective president’s
term (as specified in the startyear column), and smaller or equal to the
last year (as contained in the endyear column):

data_annual <- subset(data_annual, year >= startyear & year <= endyear)
data_annual[15:20,]

year p90p100 date gdppc president startyear endyear
213 1961 0.3583 1961-07-01 18319 John F. Kennedy 1961 1962
214 1962 0.3609 1962-07-01 19126 John F. Kennedy 1961 1962
281 1964 0.3698 1964-07-01 20567 Lyndon B. Johnson 1963 1964
348 1966 0.3629 1966-07-01 22650 Lyndon B. Johnson 1965 1968
349 1967 0.3529 1967-07-01 23020 Lyndon B. Johnson 1965 1968
350 1968 0.3551 1968-07-01 24009 Lyndon B. Johnson 1965 1968

This gives us exactly what we want: a table with GDP and WID infor-
mation, combined with information about the US president in office dur-
ing the respective year. The above approach for merging tables by creating
the Cartesian product and then retaining only the matching lines is a
recipe you should remember for later parts of this book.

6.4 aggregating data from a table

We now have a complete data frame with all the data we need for our
simple analysis. Before we present the final result of our analysis, let us
take a look at how we aggregate the data in different ways to show
descriptive statistics for the different presidencies. As we have already
discussed in Chapter 3, “aggregate” statistics are computed over groups
of rows. In our example, we may be interested in the average level of
inequality and GDP for each president’s term(s). This can be done using
the doBy package, where we specify the variables to be aggregated as well
as the grouping variable(s), as follows:

library(doBy)
summaryBy(p90p100 + gdppc ˜ president, data = data_annual)

president p90p100.mean gdppc.mean
1 Barack Obama 0.4608167 51305.17
2 Bill Clinton 0.4172000 42081.50
3 Dwight D. Eisenhower 0.3586750 17377.50
4 George Bush 0.3893000 37397.00
5 George W. Bush 0.4431250 49458.38
6 Gerald R. Ford 0.3424667 26642.67
7 Harry S. Truman 0.3792667 15103.67
8 Jimmy Carter 0.3463500 29470.75

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.4 Aggregating Data from a Table 83

9 John F. Kennedy 0.3596000 18722.50
10 Lyndon B. Johnson 0.3601750 22561.50
11 Richard M. Nixon 0.3439000 25195.60
12 Ronald Reagan 0.3642375 32733.25

This simple aggregation groups the rows in our data frame by presi-
dents. For each group, it applies the mean() function to each of the spec-
ified variables, p90p100 and gdppc. Note the naming of the aggregated
columns: The default behavior of the summaryBy() function is that it uses
the name of the original variable and appends the name of the function
applied to it. For example, the p90p100.mean variable contains the averages
of the p90p100 values for each president.
Computing averages is the default, but we can also specify other aggre-

gation functions. For example, we can count the number of years that the
respective president was in office. To do this, we simply add the length()
function as an additional one to be applied to each group of rows:

summaryBy(p90p100 + gdppc ˜ president,
data = data_annual,
FUN = c(length, mean)

)

president p90p100.length gdppc.length p90p100.mean gdppc.mean
1 Barack Obama 6 6 0.4608167 51305.17
2 Bill Clinton 8 8 0.4172000 42081.50
3 Dwight D. Eisenhower 8 8 0.3586750 17377.50
4 George Bush 4 4 0.3893000 37397.00
5 George W. Bush 8 8 0.4431250 49458.38
6 Gerald R. Ford 3 3 0.3424667 26642.67
7 Harry S. Truman 6 6 0.3792667 15103.67
8 Jimmy Carter 4 4 0.3463500 29470.75
9 John F. Kennedy 2 2 0.3596000 18722.50
10 Lyndon B. Johnson 4 4 0.3601750 22561.50
11 Richard M. Nixon 5 5 0.3439000 25195.60
12 Ronald Reagan 8 8 0.3642375 32733.25

The summaryBy() function returns the result of the aggregation as a
new data frame. This is useful if we want to continue working with this
result; for example, we may want to order the entries in the aggregation
table temporally by the time of each president’s term. We can do this
by adding the year as an aggregation variable, and the minimum as an
aggregation function. This way, for each president, we obtain the first
year this president shows up in our dataset, and can use this for ordering
our aggregated data frame. You will see that by adding more variables
and aggregation functions, the result of the aggregation becomes rather

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

84 6 Basic Data Management in R

difficult to work with. This is because the summaryBy() function applies
each of the aggregation functions to each of the aggregation variables,
even though this is not what we want. This is why we simply drop the
aggregated columns we do not need, to avoid confusion. In later chapters,
I will present better ways for doing this.

data_term <- summaryBy(gdppc + p90p100 + year ˜ president,
data = data_annual,
FUN = c(length, mean, min)

)
data_term <- subset(data_term,
select = c(
president,
gdppc.mean,
p90p100.mean,
year.length,
year.min

)
)
data_term <- data_term[order(data_term$year.min),]
print(data_term[1:3,])

president gdppc.mean p90p100.mean year.length year.min
7 Harry S. Truman 15103.67 0.3792667 6 1947
3 Dwight D. Eisenhower 17377.50 0.3586750 8 1953
9 John F. Kennedy 18722.50 0.3596000 2 1961

6.5 results: inequality and economic
performance in the us

In the plot in Figure 6.1, we see the development of economic perfor-
mance and inequality by presidency. Overall, economic performance has
been steadily increasing over time in the US, and there are no partic-
ular differences observable by presidency. At the same time, inequality
does not seem to be tracking this trend closely, until we get to Jimmy
Carter’s presidency in the late 1970s. This time is seen as the beginning
of the American deindustrialization, where inequality and poverty rose
due to the increased off-shoring of jobs primarily in the manufacturing
sector (Strong, 2021). Since then, inequality in the US has been increasing
steadily, until it reached a level that is about 50% higher as compared to
the first time periods in our sample. During Barack Obama’s presidency,
according to our statistics, almost half of the pre-tax national income
went to the top 10% of earners.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

6.6 Summary and Outlook 85

20

30

40

50

0.34

0.36

0.38

0.40

0.42

0.44

0.46

H
ar

ry
 S

. T
ru

m
an

D
w
ig
ht

 D
. E

is
en

ho
w
er

Jo
hn

 F
. K

en
ne

dy

Ly
nd

on
 B

. J
oh

ns
on

R
ic
ha

rd
 M

. N
ix
on

G
er

al
d

R
. F

or
d

Ji
m

m
y
C
ar

te
r

R
on

al
d

R
ea

ga
n

G
eo

rg
e

Bus
h

Bill
C
lin

to
n

G
eo

rg
e

W
. B

us
h

Bar
ac

k
O
ba

m
a

G
D

P
 p

.c
.

In
e
q
u
a
lit

y

figure 6.1. US GDP per capita (in 1,000 USD) and inequality by presidency.

6.6 summary and outlook

In this chapter, we processed data from three sources to analyze trends
in inequality and economic performance in the US across different
presidencies.We did this using R’s core functionality (with one exception:
the doBy package). In particular, we imported data from text files such that
they are available as data frames in R. This requires some caution, since
data in text files may not be formatted according to standard conventions,
and import errors can occur. Also, many standard text file formats do
not explicitly specify the type of variables contained in a table, which is
why R can only infer them (and this can go wrong). We merged our three
datasets using R’s merge() function, but also encountered the limitations
of this process when dealing with more complex merges. The process of
first creating the Cartesian product of the two tables, and then retaining
the desired combinations is one way to bypass these limitations. Finally,
we aggregated the data in R, applying a set of aggregation functions over
groups of data.
Data processing using CSV files, data frames, and the functions I have

presented so far is the standard workflow in R, and something you need
to be familiar with. What we covered in this chapter is already a great
improvement beyond a spreadsheet-based workflow: In R, you specify
all your data operations in code. This way, you can correct, amend, and

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

86 6 Basic Data Management in R

re-run this code, but also share it with others. Still, R’s basic data process-
ing features do not necessarily constitute the optimal and most intuitive
way to handle data in R. We therefore discuss an easier and, in several
ways, better way to process your data in the next chapter: the tidyverse.
Still, there are several lessons you should remember from this chapter:

• Knowing base R is important: Even though there are now several
extensions of R’s core data wrangling features (the tidyverse being
the most prominent one), you still need to know your way around base
R. Many important packages are not compatible with the tidyverse,
and you often will have to work with R’s core data structures.

• Data frames as R’s main tabular data structure: For us as social scien-
tists who mainly work with tables, it is essential to know the features
and pitfalls of data frames. The syntax to extract rows or columns
may often seem strange, but it corresponds to R’s vector-based pro-
gramming approach. As we saw in the chapter, R does maintain types
for the columns in a data frame, but they can change dynamically as
you add new data. This is something to watch out for, and it can make
explicit type conversions (casts) necessary.

• Make sure that imports work correctly: Due to the implicit type con-
versions that can occur in data frames, it is necessary to check imported
data carefully. Most text-based data files such as CSV do not preserve
the column types of your data, which is why they must be inferred (or
explicitly specified) during the import.

• A few simple packages add standard data manipulation features: Base
R can do most basic operations on tabular data, but for some tasks, it
is necessary to rely on external packages. In this chapter, we used the
doBy package, which is one way to run basic aggregation operations on
tabular data.

https://doi.org/10.1017/9781108990424.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.009

