Lorentz-Schatten Classes and Pointwise Domination of M atrices

Fernando Cobos and Thomas Kühn

Abstract. We investigate pointwise domination property in operator spaces generated by Lorentz sequence spaces.

0 Introduction

Let H be the (real or complex) Hilbert space $\mathrm{L}_{2}(\Omega, \mathcal{F}, \mu)$ over an arbitrary σ-finite measure space. Given two (bounded linear) operators A, B: H \rightarrow H we say that A is pointwise dominated by B, if for all $f \in H$ the inequality

$$
|\mathrm{Af}(\mathrm{x})| \leq \mathrm{B}|\mathrm{f}|(\mathrm{x}), \mu \text { a.e. }
$$

holds (see [10, p. 36]). Throughout this note we will write $|A| \leq B$ to mean that A is pointwise dominated by B. Let us give two typical examples: If $\mathrm{H}=\ell_{2}$ and $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$, $B=\left(b_{i j}\right)$ are two matrix operators in H, then

$$
|A| \leq B \text { if and only if }\left|a_{i j}\right| \leq b_{i j} \text { for all } i, j \in \mathbf{N} .
$$

If $\mathrm{H}=\mathrm{L}_{2}[0,1]$ and $\mathrm{K}:[0,1] \times[0,1] \rightarrow \mathbf{R}($ or $\mathbf{C})$ is a measurable kernel, then $\left|\mathrm{T}_{\mathrm{K}}\right| \leq$ $\mathrm{T}_{|\mathrm{K}|}$. Here T_{K} stands for the integral operator with kernel K ,

$$
T_{K} f(x)=\int_{0}^{1} K(x, y) f(y) d y,
$$

and $\mathrm{T}_{|\mathrm{K}|}$ the one with kernel $|\mathrm{K}|$.
Although pointwise domination is not stable under arbitrary orthogonal (resp. unitary) transformations, it has some stability properties. In particular, if $|\mathrm{A}| \leq \mathrm{B}$, then $\left|\mathrm{A}^{*} \mathrm{~A}\right| \leq$ $B * B$ and $|A \otimes A| \leq B \otimes B$. This fact will be useful for our later considerations.

In his lecturenotes [10], Barry Simon studied pointwise domination in connection with Schatten classes S_{p}. We will work here in the more general context of Lorentz-Schatten classes $S_{p, q}$. Let us recall their definition.

Let H be any Hilbert space and let $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ be an operator. The singular numbers of T are

$$
s_{n}(T)=\inf \{\|T-L\|: \operatorname{rank} L<n\} \quad n \in \mathbf{N} .
$$

Received by the editors August 13, 1997; revised February 25, 1998.
Both authors have been partially supported by DGICYT (PB94-0252).
AM S subject classification: 47B10.
(C) Canadian M athematical Society 1999.

The operator T is said to belong to $\mathrm{S}_{\mathrm{p}, \mathrm{q}}, 0<\mathrm{p}<\infty, 0<\mathrm{q} \leq \infty$, if

$$
\|T\|_{p, q}= \begin{cases}\left(\sum_{n=1}^{\infty}\left(n^{1 / p-1 / q} \mathrm{~s}_{n}(T)\right)^{q}\right)^{1 / q}, & q<\infty \\ \sup _{\mathrm{n} \in \mathbf{N}}\left\{n^{1 / \mathrm{p}} \mathrm{~s}_{n}(T)\right\}, & q=\infty\end{cases}
$$

is finite. The Schatten-Lorentz classes $S_{p, q}$ arequasi-Banach spaces endowed with the quasinorms $\|\cdot\|_{p, q} \cdot$ For $p=q$, we recover the Schatten classes $\left(S_{p},\|\cdot\|_{p}\right)=\left(S_{p, p},\|\cdot\|_{p, p}\right)$. For more information on these spaces, we refer to the monographs [6], [7] and [9].

Simon in [10] asked for which $0<p<\infty$ the following holds
(*)

$$
|\mathrm{A}| \leq \mathrm{B} \text { implies }\|\mathrm{A}\|_{\mathrm{p}} \leq\|\mathrm{B}\|_{\mathrm{p}} .
$$

This is clearly true for $p=2$. From this case, he derived that (*) is valid for every even integer ($\operatorname{see}[10, ~ T h m . ~ 2.13]) . ~ O n ~ t h e ~ o t h e r ~ h a n d, ~ h e ~ g a v e ~ a n ~ e x a m p l e s h o w i n g ~ t h a t ~(*) ~ f a i l s ~ s$ for $0<p \leq 1$. Subsequently, Peller [8] showed that (*) fails whenever p is not an even integer. He derived it by combining his results on Hankel operators with an example by Boas [1] on Fourier coefficients and comparison of L_{p}-norms. Later on, property (*) has been studied by several authors (see, e.g., [11] and [5]) in the finitedimensional setting, and also in the context of operator spaces generated by Orlicz sequence spaces (see [4]).

We investigate next domination property for the classes $\mathrm{S}_{\mathrm{p}, \mathrm{q}}$.

1 Pointwise Domination and Lorentz-Schatten Classes

Our aim is to determine those classes $\mathrm{S}_{\mathrm{p}, \mathrm{q}}$ having the following domination property:

$$
\left.\begin{array}{l}
|\mathrm{A}| \leq \mathrm{B} \tag{DP}\\
\mathrm{~B} \in \mathrm{~S}_{\mathrm{p}, \mathrm{q}}
\end{array}\right\} \text { implies } \mathrm{A} \in \mathrm{~S}_{\mathrm{p}, \mathrm{q}} .
$$

The underlying Hilbert space will be $\mathrm{H}=\ell_{2}$, so that the operators A, B can be always regarded as infinite matrices with entries $\left(a_{i j}\right),\left(b_{i j}\right)$, respectively. Condition $|A| \leq B$ reads then $\left|a_{i j}\right| \leq b_{i j}$ for all $i, j \in \mathbf{N}$.

The next result shows an alternative statement to condition (DP).

Lemma 1 The following are equivalent:

(i) $\mathrm{S}_{\mathrm{p}, \mathrm{q}}$ has (DP).
(ii) There is a constant $\mathrm{C} \geq 1$ such that $\|\mathrm{A}\|_{\mathrm{p}, \mathrm{q}} \leq \mathrm{C}\|\mathrm{B}\|_{\mathrm{p}, \mathrm{q}}$ whenever $|\mathrm{A}| \leq \mathrm{B}$.

Proof The implication (ii) \Rightarrow (i) is obvious. Now assume that (ii) fails. Then there are matrices A_{n} and $B_{n}, n \in \mathbf{N}$, such that

$$
\left|A_{n}\right| \leq B_{n}, \quad\left\|A_{n}\right\|_{p, q} \geq n \quad \text { and } \quad\left\|B_{n}\right\|_{p, q} \leq 2^{-n} .
$$

According to [6, Thm. III.5.2], without loss of generality we may assume that all these matrices are finite. For the block-diagonal matrices

$$
A=\sum_{n=1}^{\infty} A_{n}, B=\sum_{n=1}^{\infty} B_{n}
$$

we have $|A| \leq B$ and $\|A\|_{p, q} \geq\left\|A_{n}\right\|_{p, q} \geq n$ for all $n \in \mathbf{N}$, hence $A \notin S_{p, q}$. However, since $\|\cdot\|_{p, q}$ is equivalent to an r-norm, for some $0<r \leq 1$, we get

$$
\|B\|_{p, q}^{r} \leq c \sum_{n=1}^{\infty}\left\|B_{n}\right\|_{p, q}^{r} \leq c \sum_{n=1}^{\infty} 2^{-n r}<\infty .
$$

That is to say, $|A| \leq B, B \in S_{p, q}$ but $A \notin S_{p, q}$. This shows that (i) also fails and completes the proof.

Remark If $\mathrm{p}=\mathrm{q}$ we can take $\mathrm{C}=1$ in statement (ii). This follows by using either Simon's tensor argument (see [11]) or Pietsch's approach to tensor stability of operator ideals (see [9]). Both arguments rely on the fact that S_{p} is tensor stable, i.e.,

$$
\|A \otimes A\|_{p}=\|A\|_{p}^{2} \text { for every } A \in S_{p}
$$

Indeed, let $0<p<\infty$ and let C_{p} be the smallest possible constant in statement (ii). Suppose that $|\mathrm{A}| \leq \mathrm{B}$. Then $|\mathrm{A} \otimes \mathrm{A}| \leq \mathrm{B} \otimes \mathrm{B}$ as well. Whence $\|\mathrm{A}\|_{\mathrm{p}}^{2}=\|\mathrm{A} \otimes \mathrm{A}\|_{\mathrm{p}} \leq$ $C_{p}\|B \otimes B\|_{p}=C_{p}\|B\|_{p}^{2}$. By definition of C_{p}, we get $C_{p} \geq C_{p}^{2}$, which yields $C_{p}=1$.

Consequently, in the case of Schatten classes S_{p}, property (DP) is equivalent to Simon's condition (*) mentioned in the Introduction. In the setting of Lorentz-Schatten classes it seems however more natural to work with (DP) (i.e., allowing in (ii) a constant $\mathrm{C} \geq 1$) because $S_{p, q}, q \neq p$, is not tensor stable.

We are now ready for establishing the results on domination property and LorentzSchatten classes.

Theorem 1 The space $S_{p, q}$ fails (DP) in each of the following cases:
(i) $0<\mathrm{p}<2$ and $0<\mathrm{q} \leq \infty$.
(ii) $\mathrm{p}=2$ and $0<\mathrm{q}<2$.
(iii) $\mathrm{p}>2, \mathrm{p}$ not an even integer, and $0<\mathrm{q} \leq \infty$.

Proof In each of the cases we will find matrices A_{n} and B_{n} with $\left|A_{n}\right| \leq B_{n}$ and $\lim _{n \rightarrow \infty}\left\|B_{n}\right\|_{p, q} /\left\|A_{n}\right\|_{\mathrm{p}, \mathrm{q}}=0$. Then Lemma 1 will show the assertion.
(i) This is implicitely contained in [2]. Consider the Walsh matrices A_{n}, inductively defined as

$$
A_{0}=(1), \quad A_{n+1}=\left(\begin{array}{cc}
A_{n} & A_{n} \\
A_{n} & -A_{n}
\end{array}\right) .
$$

A_{n} is a $2^{n} \times 2^{n}$-matrix with all entries being +1 or -1 . M oreover $A_{n}^{*} A_{n}=2^{n} I_{n}$, where I_{n} is the identity map in $\ell_{2}^{2^{n}}$. Therefore $\mathrm{s}_{\mathrm{k}}\left(\mathrm{A}_{\mathrm{n}}\right)=2^{\mathrm{n} / 2}$ for $1 \leq \mathrm{k} \leq 2^{\mathrm{n}}$, and hence $\left\|\mathrm{A}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{q}} \cong$ $2^{n(1 / p+1 / 2)}$. If B_{n} is the $2^{n} \times 2^{n}$-matrix with all entries being +1 , then rank $B_{n}=1$, therefore $\left\|B_{n}\right\|_{p, q}=\left\|B_{n}\right\|_{\infty}=2^{n}$. Clearly $\left|A_{n}\right| \leq B_{n}$ and $\lim _{n \rightarrow \infty}\left\|B_{n}\right\|_{p, q} /\left\|A_{n}\right\|_{p, q}=0$, for any $0<$ $\mathrm{p}<2$ and any $0<\mathrm{q} \leq \infty$.
(ii) In this situation the result can be derived from the example of [3]. Given any sequence $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq 0$ with $\sum_{n=1}^{\infty} \alpha_{n}^{2}=1$, choose disjoint intervals $I_{n} \subseteq[0,1]$ of
length $\left|\left.\right|_{\mathrm{n}}\right|=\alpha_{n}^{2}$, and let $\nu=\sum_{\mathrm{n}=1}^{\infty} \mathrm{n} \chi_{1_{\mathrm{n}}}$, where χ_{1} is the characteristic function of the interval I. For the integral operator on $\mathrm{L}_{2}[0,1]$ with kernel

$$
K(x, y)=e^{2 \pi i(x-y) \nu(y)}
$$

onehas $s_{n}\left(T_{k}\right)=\alpha_{n}$. Starting with a sequence $\left(\alpha_{n}\right) \in \ell_{2} \backslash \ell_{2, q}$ we obtain $T_{k} \notin S_{2, q}$. On the other hand, since $|\mathrm{K}(\mathrm{x}, \mathrm{y})|=1$ for all $\mathrm{x}, \mathrm{y} \in[0,1]$, the integral operator $\mathrm{T}_{|\mathrm{K}|}$ has rank one and clearly belongs to $\mathrm{S}_{2, \mathrm{q}}$. M oreover,

$$
\left\|\mathrm{T}_{|\mathrm{K}|}\right\|_{2, \mathrm{q}}=\left\|\mathrm{T}_{|\mathrm{K}|}\right\|=1 .
$$

In order to obtain from these operators the desired matrices, we recall a well-known result on Schatten classes, which says that $\|T\|_{p, q}=\lim _{n \rightarrow \infty}\left\|P_{n} T P_{n}\right\|_{p, q}$ for every $T \in S_{p, q}$ and every sequence of monotonically increasing finitedimensional orthogonal projections P_{n} tending strongly to the identity operator (see, e.g., [6, Thm. III.5.2]). We shall apply this result with P_{n} being the orthogonal projection onto $\mathrm{H}_{\mathrm{n}}=\operatorname{span}\left\{\chi_{\mathrm{j}}: 1 \leq \mathrm{j} \leq 2^{\mathrm{n}}\right\}$, where χ_{j} stands for the characteristic function of the interval $I_{j}=\left(\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right)$. Clearly the P_{n} 's are monotonically increasing. Moreover, since the Haar system $\left\{h_{j}: j \in \mathbf{N}\right\}$ is an orthonormal basis in $L_{2}[0,1]$ and $H_{n}=\operatorname{span}\left\{h_{j}: 1 \leq j \leq 2^{n}\right\}$, the P_{n} 's tend strongly to the identity operator. Whence $\lim _{n \rightarrow \infty}\left\|P_{n} T_{k} P_{n}\right\|_{2, q}=\infty$. On the other hand, for any $n \in \mathbf{N}, P_{n} T_{|k|} P_{n}=T_{|k|}$ so $\left\|P_{n} T_{|k|} P_{n}\right\|_{2, q}=1$. The desired matrices will be the matrix representations $A_{n}=\left(a_{j \ell}\right), B_{n}=\left(b_{j \ell}\right)$ of the operators $P_{n} T_{k} P_{n}, P_{n} T{ }_{|k|} P_{n}$, respectively, with respect to the orthonormal basis $\left\{2^{n / 2} \chi_{1}, \ldots, 2^{n / 2} \chi_{2^{n}}\right\}$ of H_{n}. Indeed, we have pointwise domination $\left|A_{n}\right| \leq B_{n}$ because

$$
\left|a_{j \ell}\right|=\left|2^{n} \int_{1_{\mathrm{j}}} \int_{1_{\ell}} K(x, y) d x d y\right| \leq 2^{-n}=b_{j \ell},
$$

while

$$
\begin{gathered}
\left\|A_{n}\right\|_{2, q}=\left\|P_{n} T_{k} P_{n}\right\|_{2, q} \rightarrow \infty \text { as } n \rightarrow \infty \text { and } \\
\left\|B_{n}\right\|_{2, q}=\left\|P_{n} T_{|k|} P_{n}\right\|_{2, q} \rightarrow 1 \text { as } n \rightarrow \infty .
\end{gathered}
$$

(iii) This last case follows from [4] where for any $p>2, p$ not an even integer, finite matrices A and B have been constructed with $|A| \leq B$ and $\|A\|_{p}>1>\|B\|_{p}$. By a continuity argument there is $\epsilon>0$ such that even

$$
\mathrm{a}=\|\mathrm{A}\|_{\mathrm{p}+\epsilon}>1>\|\mathrm{B}\|_{\mathrm{p}-\epsilon}=\mathrm{b} .
$$

Put

$$
A_{n}=\underbrace{A \otimes \cdots \otimes A}_{n \text { times }}, \quad B_{n}=\underbrace{B \otimes \cdots \otimes B}_{n \text { times }} .
$$

Then we still have pointwise domination $\left|A_{n}\right| \leq B_{n}$ and $\left\|A_{n}\right\|_{p+\varepsilon}=a^{n},\left\|B_{n}\right\|_{p-\epsilon}=b^{n}$. Repeating now the construction of Lemma 1 we get for $\mathbf{A}=A \oplus A_{2} \oplus \cdots \oplus A_{n} \oplus \cdots$,
$\mathbf{B}=\mathrm{B} \oplus \mathrm{B}_{2} \oplus \cdots \oplus \mathrm{~B}_{\mathrm{n}} \oplus \cdots$ that $|\mathbf{A}| \leq \mathbf{B}, \mathbf{A} \notin \mathrm{S}_{\mathrm{p}+\epsilon}$ and $\mathbf{B} \in \mathrm{S}_{\mathrm{p}-\epsilon}$. Whence $\mathbf{A} \notin \mathrm{S}_{\mathrm{p}, \mathrm{q}}$ while $\mathbf{B} \in \mathrm{S}_{\mathrm{p}, \mathrm{q}}$.

The proof is complete.
The next theorem is the main result of this note and refers to the cases $p=2<q \leq \infty$ and $p=4<q \leq \infty$.

Theorem 2 The Lorentz-Schatten classes $\mathrm{S}_{2, \mathrm{q}}, 2<\mathrm{q} \leq \infty$, and $\mathrm{S}_{4, \mathrm{q}}, 4<\mathrm{q} \leq \infty$, fail (DP).

Proof Given any matrix M, we have that $M * M \in S_{p, q}$ if and only if $M \in S_{2 p, 2 q}$. M oreover, $|A| \leq B$ implies $\left|A^{*} A\right| \leq B^{*} B$. Hence it suffices to establish the result for $S_{4, q}$.

With this aim, let us consider the matrices

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

This is one of the examples considered in [5]. Their singular numbers are

$$
s_{1}(A)=s_{2}(A)=\sqrt{3}, s_{3}(A)=0 ; \quad s_{1}(B)=2, s_{2}(B)=s_{3}(B)=1
$$

Let $A_{n}=\underbrace{A \otimes \cdots \otimes A}_{n \text { times }}, B_{n}=\underbrace{B \otimes \cdots \otimes B}_{n \text { times }}$. Our first goal is to estimate the norm of these matrices in $\mathrm{S}_{4, \infty}$. For the singular numbers of A_{n} we have

$$
s_{k}\left(A_{n}\right)= \begin{cases}3^{n / 2} & \text { for } 1 \leq k \leq 2^{n} \\ 0 & \text { for } k>2^{n}\end{cases}
$$

whence $\left\|A_{n}\right\|_{4, \infty}=3^{n / 2} 2^{n / 4}=18^{n / 4}$. Thesingular numbers of B_{n} are all possible products $\prod_{j=1}^{n} S_{k_{j}}(B), 1 \leq k_{j} \leq 3$. We have to rearrange all these numbers in non-increasing order. Assume that exactly j of these factors are 1 and the remaining $\mathrm{n}-\mathrm{j}$ are 2. This happens $\binom{n}{j} 2^{j}$ times. Setting $N_{-1}=0$ and $N_{\ell}=\sum_{j=0}^{\ell}\binom{n}{j} 2^{j}$ for $\ell=0,1, \ldots, n$, we get

$$
s_{k}\left(B_{n}\right)= \begin{cases}2^{n-\ell} & \text { if } N_{\ell-1}<k \leq N_{\ell}, 0 \leq \ell \leq n \\ 0 & \text { if } \ell \geq N_{n}=3^{n}\end{cases}
$$

Consequently

$$
\left\|\mathrm{B}_{\mathrm{n}}\right\|_{4, \infty}^{4}=\max _{0 \leq \ell \leq \mathrm{n}} \mathrm{~N}_{\ell} 2^{4(\mathrm{n}-\ell)}
$$

For $\frac{n}{2}<\ell \leq n$, since $N_{\ell} \leq 3^{n}$, we get

$$
\max _{n / 2<\ell \leq n} N_{\ell} 2^{4(n-\ell)} \leq 3^{n} 2^{2 n}=12^{n}
$$

For $0 \leq \ell \leq \frac{n}{2}$, we estimate N_{ℓ} by

$$
N_{\ell} \leq\binom{ n}{\ell} \sum_{j=0}^{\ell} 2^{j} \leq 2^{\ell+1}\binom{n}{\ell}
$$

Hence

$$
\max _{0 \leq \ell \leq \mathrm{n} / 2} \mathrm{~N}_{\ell} 2^{4(\mathrm{n}-\ell)} \leq 2^{4 \mathrm{n}+1} \max _{0 \leq \ell \leq \mathrm{n}}\binom{\mathrm{n}}{\ell} 2^{-3 \ell}
$$

It is easily checked that the last maximum is attained at $\ell_{0}=\left[\frac{n+1}{9}\right]$. Using Stirling'sformula

$$
\lim _{N \rightarrow \infty} \frac{\left(\frac{N}{e}\right)^{N} \sqrt{2 \pi N}}{N!}=1
$$

we obtain, with some absolute constant,

$$
\binom{n}{\ell_{0}} 2^{-3 \ell_{0}} \leq c\left(\frac{9}{8}\right)^{n} n^{-1 / 2}
$$

So

$$
\max _{0 \leq \ell \leq \mathrm{n} / 2} \mathrm{~N}_{\ell} 2^{4(\mathrm{n}-\ell)} \leq 2 \mathrm{c} 18^{\mathrm{n}} \mathrm{n}^{-1 / 2}
$$

Altogether we derive

$$
\left\|B_{n}\right\|_{4, \infty} \leq \mathrm{c}_{1} 18^{\mathrm{n} / 4} \mathrm{n}^{-1 / 8}
$$

By H ölder's inequality, since $\left\|B_{n}\right\|_{4}=\|B\|_{4}^{n}=18^{n / 4}$, we finally get, for $4<q<\infty$

$$
\left\|B_{n}\right\|_{4, q} \leq\left\|B_{n}\right\|_{4}^{4 / q}\left\|B_{n}\right\|_{4, \infty}^{1-4 / q} \leq c_{2} 18^{n / 4} n^{-\alpha}
$$

where $\alpha=\frac{1}{8}-\frac{1}{2 q}>0$. This implies

$$
\lim _{n \rightarrow \infty} \frac{\left\|B_{n}\right\|_{4, q}}{\|A\|_{4, \infty}}=0
$$

whenever $4<\mathrm{q} \leq \infty$. Since $\left\|\mathrm{A}_{\mathrm{n}}\right\|_{4, \infty} \leq \mathrm{C}\left\|\mathrm{A}_{\mathrm{n}}\right\|_{4, \mathrm{q}}$, it follows from Lemma 1 that $\mathrm{S}_{4, \mathrm{q}}$ fails (DP).

The proof is complete.
Remark The proof shows that even the implication

$$
\left.\begin{array}{c}
|\mathrm{A}| \leq \mathrm{B} \\
\mathrm{~B} \in \mathrm{~S}_{4, \mathrm{q}}
\end{array}\right\} \Rightarrow \mathrm{A} \in \mathrm{~S}_{4, \infty}
$$

fails for any $4<\mathrm{q} \leq \infty$.
Whether or not $S_{p, q}$ fails (DP) for the cases not covered by Theorems 1 and 2 remains open.

References

[1] R. P. Boas, M ajorant problems for trigonometric series. J. Anal. M ath. 10(1962/63), 253-271.
[2] F. Cobos and T. Kühn, On a conjecture of Barry Simon on trace ideals. Duke M ath. J. 59(1989), 295-299.
[3] A. Córdoba, A counterexample in operator theory. Publ. M at. 37(1993), 335-338.
[4] M. Déchamps-Gondim, F. Lust-Picard and H. Queffelec, La proprieté du minorant dans C_{φ} (H). C. R. Acad. Sci. Paris, Sér. I 295(1982), 657-659.
[5] \quad On the minorant properties in $\mathrm{C}_{\mathrm{p}}(\mathrm{H})$. Pacific J. M ath. 119(1985), 89-101.
[6] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint O perators. Amer. M ath. Soc., Providence, RI, 1969.
[7] H. König, Eigenvalue Distribution of Compact Operators. Birkhaüser, Basel, 1986.
[8] V. V. Peller, Hankel operators of class S_{p} and their applications (rational approximation, Gaussian processes, the problem of majorizing operators). M ath. USSR-Sb. 41(1982), 443-479.
[9] A. Pietsch, Eigenvalues and s-numbers. Cambridge University Press, Cambridge, 1987.
[10] B. Simon, TraceIdeals and Their Applications. Cambridge University Press, Cambridge, 1979.
[11] \qquad , Pointwise domination of matrices and comparison of S_{p} norms. Pacific J. M ath. 97(1981), 471-475.

Departamento deAnálisis M atemático	M athematisches Institut
Facultad de M atemáticas	Universität Leipzig
Universidad Complutense de M adrid	Augustusplatz 10/11
E-28040 M adrid	D-04109 Leipzig
Spain	Germany
email: cobos@eucmax.sim.ucm.es	email: kuehn@mathematik.uni-leipzig.de

