Canad. Math. Bull. Vol. 42 (2), 1999 pp. 162-168

Lorentz-Schatten Classes and Pointwise Domination of Matrices

Fernando Cobos and Thomas Kühn

Abstract. We investigate pointwise domination property in operator spaces generated by Lorentz sequence spaces.

0 Introduction

Let *H* be the (real or complex) Hilbert space $L_2(\Omega, \mathcal{F}, \mu)$ over an arbitrary σ -finite measure space. Given two (bounded linear) operators $A, B: H \to H$ we say that A is pointwise dominated by *B*, if for all $f \in H$ the inequality

$$|Af(x)| \leq B|f|(x), \mu$$
 a.e.

holds (see [10, p. 36]). Throughout this note we will write $|A| \leq B$ to mean that A is pointwise dominated by B. Let us give two typical examples: If $H = \ell_2$ and $A = (a_{ij})$, $B = (b_{ij})$ are two matrix operators in H, then

$$|A| \leq B$$
 if and only if $|a_{ij}| \leq b_{ij}$ for all $i, j \in \mathbb{N}$.

If $H = L_2[0, 1]$ and $K: [0, 1] \times [0, 1] \rightarrow \mathbf{R}$ (or **C**) is a measurable kernel, then $|T_K| \le T_{|K|}$. Here T_K stands for the integral operator with kernel K,

$$T_K f(x) = \int_0^1 K(x, y) f(y) \, dy$$

and $T_{|K|}$ the one with kernel |K|.

Although pointwise domination is not stable under arbitrary orthogonal (resp. unitary) transformations, it has some stability properties. In particular, if $|A| \leq B$, then $|A^*A| \leq B^*B$ and $|A \otimes A| \leq B \otimes B$. This fact will be useful for our later considerations.

In his lecture notes [10], Barry Simon studied pointwise domination in connection with Schatten classes S_p . We will work here in the more general context of Lorentz-Schatten classes $S_{p,q}$. Let us recall their definition.

Let *H* be any Hilbert space and let $T: H \to H$ be an operator. The singular numbers of *T* are

$$s_n(T) = \inf\{ \|T - L\| : \operatorname{rank} L < n \} \quad n \in \mathbb{N}.$$

Received by the editors August 13, 1997; revised February 25, 1998.

Both authors have been partially supported by DGICYT (PB94-0252).

AMS subject classification: 47B10.

[©]Canadian Mathematical Society 1999.

The operator *T* is said to belong to $S_{p,q}$, $0 , <math>0 < q \le \infty$, if

$$\|T\|_{p,q} = \begin{cases} \left(\sum_{n=1}^{\infty} \left(n^{1/p-1/q} s_n(T)\right)^q\right)^{1/q}, & q < \infty\\ \sup_{n \in \mathbb{N}} \{n^{1/p} s_n(T)\}, & q = \infty \end{cases}$$

is finite. The Schatten-Lorentz classes $S_{p,q}$ are quasi-Banach spaces endowed with the quasinorms $\|\cdot\|_{p,q}$. For p = q, we recover the Schatten classes $(S_p, \|\cdot\|_p) = (S_{p,p}, \|\cdot\|_{p,p})$. For more information on these spaces, we refer to the monographs [6], [7] and [9].

Simon in [10] asked for which 0 the following holds

(*)
$$|A| \le B \text{ implies } ||A||_p \le ||B||_p.$$

This is clearly true for p = 2. From this case, he derived that (*) is valid for every even integer (see [10, Thm. 2.13]). On the other hand, he gave an example showing that (*) fails for 0 . Subsequently, Peller [8] showed that (*) fails whenever <math>p is not an even integer. He derived it by combining his results on Hankel operators with an example by Boas [1] on Fourier coefficients and comparison of L_p -norms. Later on, property (*) has been studied by several authors (see, *e.g.*, [11] and [5]) in the finite-dimensional setting, and also in the context of operator spaces generated by Orlicz sequence spaces (see [4]).

We investigate next domination property for the classes $S_{p,q}$.

1 Pointwise Domination and Lorentz-Schatten Classes

Our aim is to determine those classes $S_{p,q}$ having the following domination property:

The underlying Hilbert space will be $H = \ell_2$, so that the operators A, B can be always regarded as infinite matrices with entries (a_{ij}) , (b_{ij}) , respectively. Condition $|A| \leq B$ reads then $|a_{ij}| \leq b_{ij}$ for all $i, j \in \mathbb{N}$.

The next result shows an alternative statement to condition (DP).

Lemma 1 The following are equivalent:

(i)
$$S_{p,q}$$
 has (DP).

(ii) There is a constant $C \ge 1$ such that $||A||_{p,q} \le C||B||_{p,q}$ whenever $|A| \le B$.

Proof The implication (ii) \Rightarrow (i) is obvious. Now assume that (ii) fails. Then there are matrices A_n and B_n , $n \in \mathbb{N}$, such that

$$|A_n| \leq B_n$$
, $||A_n||_{p,q} \geq n$ and $||B_n||_{p,q} \leq 2^{-n}$.

According to [6, Thm. III.5.2], without loss of generality we may assume that all these matrices are finite. For the block-diagonal matrices

$$A=\sum_{n=1}^{\infty}A_n, B=\sum_{n=1}^{\infty}B_n$$

we have $|A| \leq B$ and $||A||_{p,q} \geq ||A_n||_{p,q} \geq n$ for all $n \in \mathbb{N}$, hence $A \notin S_{p,q}$. However, since $\|\cdot\|_{p,q}$ is equivalent to an *r*-norm, for some $0 < r \leq 1$, we get

$$||B||_{p,q}^r \leq c \sum_{n=1}^{\infty} ||B_n||_{p,q}^r \leq c \sum_{n=1}^{\infty} 2^{-nr} < \infty.$$

That is to say, $|A| \leq B$, $B \in S_{p,q}$ but $A \notin S_{p,q}$. This shows that (i) also fails and completes the proof.

Remark If p = q we can take C = 1 in statement (ii). This follows by using either Simon's tensor argument (see [11]) or Pietsch's approach to tensor stability of operator ideals (see [9]). Both arguments rely on the fact that S_p is tensor stable, *i.e.*,

$$||A \otimes A||_p = ||A||_p^2$$
 for every $A \in S_p$.

Indeed, let $0 and let <math>C_p$ be the smallest possible constant in statement (ii). Suppose that $|A| \leq B$. Then $|A \otimes A| \leq B \otimes B$ as well. Whence $||A||_p^2 = ||A \otimes A||_p \leq C_p ||B \otimes B||_p = C_p ||B||_p^2$. By definition of C_p , we get $C_p \geq C_p^2$, which yields $C_p = 1$. Consequently, in the case of Schatten classes S_p , property (DP) is equivalent to Simon's

Consequently, in the case of Schatten classes S_p , property (DP) is equivalent to Simon's condition (*) mentioned in the Introduction. In the setting of Lorentz-Schatten classes it seems however more natural to work with (DP) (*i.e.*, allowing in (ii) a constant $C \ge 1$) because $S_{p,q}$, $q \neq p$, is not tensor stable.

We are now ready for establishing the results on domination property and Lorentz-Schatten classes.

Theorem 1 The space $S_{p,q}$ fails (DP) in each of the following cases:

(i) $0 and <math>0 < q \le \infty$.

(ii)
$$p = 2$$
 and $0 < q < 2$.

(iii) p > 2, p not an even integer, and $0 < q \le \infty$.

Proof In each of the cases we will find matrices A_n and B_n with $|A_n| \leq B_n$ and $\lim_{n \to \infty} ||B_n||_{p,q}/||A_n||_{p,q} = 0$. Then Lemma 1 will show the assertion.

(i) This is implicitly contained in [2]. Consider the Walsh matrices A_n , inductively defined as

$$A_0 = (1), \quad A_{n+1} = \left(\begin{array}{cc} A_n & A_n \\ A_n & -A_n \end{array}
ight).$$

 A_n is a $2^n \times 2^n$ -matrix with all entries being +1 or -1. Moreover $A_n^*A_n = 2^nI_n$, where I_n is the identity map in $\ell_2^{2^n}$. Therefore $s_k(A_n) = 2^{n/2}$ for $1 \le k \le 2^n$, and hence $||A_n||_{p,q} \cong 2^{n(1/p+1/2)}$. If B_n is the $2^n \times 2^n$ -matrix with all entries being +1, then rank $B_n = 1$, therefore $||B_n||_{p,q} = ||B_n||_{\infty} = 2^n$. Clearly $|A_n| \le B_n$ and $\lim_{n\to\infty} ||B_n||_{p,q}/||A_n||_{p,q} = 0$, for any $0 and any <math>0 < q \le \infty$.

(ii) In this situation the result can be derived from the example of [3]. Given any sequence $\alpha_1 \ge \alpha_2 \ge \cdots \ge 0$ with $\sum_{n=1}^{\infty} \alpha_n^2 = 1$, choose disjoint intervals $I_n \subseteq [0,1]$ of

length $|I_n| = \alpha_n^2$, and let $\nu = \sum_{n=1}^{\infty} n \chi_{I_n}$, where χ_I is the characteristic function of the interval I. For the integral operator on $L_2[0, 1]$ with kernel

$$K(x, y) = e^{2\pi i (x-y)\nu(y)}$$

one has $s_n(T_k) = \alpha_n$. Starting with a sequence $(\alpha_n) \in \ell_2 \setminus \ell_{2,q}$ we obtain $T_K \notin S_{2,q}$. On the other hand, since |K(x, y)| = 1 for all $x, y \in [0, 1]$, the integral operator $T_{|K|}$ has rank one and clearly belongs to $S_{2,q}$. Moreover,

$$||T_{|K|}||_{2,q} = ||T_{|K|}|| = 1.$$

In order to obtain from these operators the desired matrices, we recall a well-known result on Schatten classes, which says that $||T||_{p,q} = \lim_{n \to \infty} ||P_nTP_n||_{p,q}$ for every $T \in S_{p,q}$ and every sequence of monotonically increasing finite-dimensional orthogonal projections P_n tending strongly to the identity operator (see, *e.g.*, [6, Thm. III.5.2]). We shall apply this result with P_n being the orthogonal projection onto $H_n = \operatorname{span}\{\chi_j : 1 \le j \le 2^n\}$, where χ_j stands for the characteristic function of the interval $I_j = \left(\frac{j-1}{2^n}, \frac{j}{2^n}\right)$. Clearly the P_n 's are monotonically increasing. Moreover, since the Haar system $\{h_j : j \in \mathbb{N}\}$ is an orthonormal basis in $L_2[0, 1]$ and $H_n = \operatorname{span}\{h_j : 1 \le j \le 2^n\}$, the P_n 's tend strongly to the identity operator. Whence $\lim_{n\to\infty} ||P_nT_kP_n||_{2,q} = \infty$. On the other hand, for any $n \in \mathbb{N}$, $P_nT_{|K|}P_n = T_{|K|}$ so $||P_nT_{|K|}P_n||_{2,q} = 1$. The desired matrices will be the matrix representations $A_n = (a_{j\ell})$, $B_n = (b_{j\ell})$ of the operators $P_nT_KP_n$, $P_nT_{|K|}P_n$, respectively, with respect to the orthonormal basis $\{2^{n/2}\chi_1, \ldots, 2^{n/2}\chi_{2^n}\}$ of H_n . Indeed, we have pointwise domination $|A_n| \le B_n$ because

$$|a_{j\ell}| = \left|2^n \int_{I_j} \int_{I_\ell} K(x, y) \, dx \, dy\right| \leq 2^{-n} = b_{j\ell},$$

while

$$egin{aligned} &|A_n\|_{2,q}=\|P_nT_KP_n\|_{2,q} o\infty ext{ as }n o\infty & ext{ and}\ &\|B_n\|_{2,q}=\|P_nT_{|K|}P_n\|_{2,q} o1 ext{ as }n o\infty. \end{aligned}$$

(iii) This last case follows from [4] where for any p > 2, p not an even integer, finite matrices A and *B* have been constructed with $|A| \leq B$ and $||A||_p > 1 > ||B||_p$. By a continuity argument there is $\epsilon > 0$ such that even

$$a = ||A||_{p+\epsilon} > 1 > ||B||_{p-\epsilon} = b.$$

Put

$$A_n = \underbrace{A \otimes \cdots \otimes A}_{n \text{ times}}, \quad B_n = \underbrace{B \otimes \cdots \otimes B}_{n \text{ times}}.$$

Then we still have pointwise domination $|A_n| \leq B_n$ and $||A_n||_{p+\varepsilon} = a^n$, $||B_n||_{p-\epsilon} = b^n$. Repeating now the construction of Lemma 1 we get for $\mathbf{A} = A \oplus A_2 \oplus \cdots \oplus A_n \oplus \cdots$, $\mathbf{B} = B \oplus B_2 \oplus \cdots \oplus B_n \oplus \cdots$ that $|\mathbf{A}| \leq \mathbf{B}$, $\mathbf{A} \notin S_{p+\epsilon}$ and $\mathbf{B} \in S_{p-\epsilon}$. Whence $\mathbf{A} \notin S_{p,q}$ while $\mathbf{B} \in S_{p,q}$. The proof is complete.

The next theorem is the main result of this note and refers to the cases $p = 2 < q \le \infty$ and $p = 4 < q \le \infty$.

Theorem 2 The Lorentz-Schatten classes $S_{2,q}$, $2 < q \le \infty$, and $S_{4,q}$, $4 < q \le \infty$, fail (DP).

Proof Given any matrix M, we have that $M^*M \in S_{p,q}$ if and only if $M \in S_{2p,2q}$. Moreover, $|A| \leq B$ implies $|A^*A| \leq B^*B$. Hence it suffices to establish the result for $S_{4,q}$.

With this aim, let us consider the matrices

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right) \quad \text{and} \quad B = \left(\begin{array}{rrrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

This is one of the examples considered in [5]. Their singular numbers are

$$s_1(A) = s_2(A) = \sqrt{3}, \ s_3(A) = 0; \ s_1(B) = 2, \ s_2(B) = s_3(B) = 1.$$

Let $A_n = \underbrace{A \otimes \cdots \otimes A}_{n \text{ times}}, B_n = \underbrace{B \otimes \cdots \otimes B}_{n \text{ times}}$. Our first goal is to estimate the norm of these matrices in $S_{4,\infty}$. For the singular numbers of A_n we have

 $s_k(A_n) = egin{cases} 3^{n/2} & ext{for } 1 \leq k \leq 2^n \ 0 & ext{for } k > 2^n \end{cases}$

whence $||A_n||_{4,\infty} = 3^{n/2}2^{n/4} = 18^{n/4}$. The singular numbers of B_n are all possible products $\prod_{j=1}^n s_{k_j}(B)$, $1 \le k_j \le 3$. We have to rearrange all these numbers in non-increasing order. Assume that exactly j of these factors are 1 and the remaining n - j are 2. This happens $\binom{n}{j}2^j$ times. Setting $N_{-1} = 0$ and $N_\ell = \sum_{j=0}^{\ell} \binom{n}{j}2^j$ for $\ell = 0, 1, \ldots, n$, we get

$$s_k(B_n) = egin{cases} 2^{n-\ell} & ext{if } N_{\ell-1} < k \leq N_\ell, 0 \leq \ell \leq n \ 0 & ext{if } \ell \geq N_n = 3^n. \end{cases}$$

Consequently

$$\|B_n\|_{4,\infty}^4 = \max_{0 \le \ell \le n} N_\ell 2^{4(n-\ell)}.$$

For $\frac{n}{2} < \ell \leq n$, since $N_{\ell} \leq 3^n$, we get

$$\max_{n/2 < \ell \le n} N_{\ell} 2^{4(n-\ell)} \le 3^n 2^{2n} = 12^n.$$

For $0 \leq \ell \leq rac{n}{2}$, we estimate N_ℓ by

$$N_\ell \leq inom{n}{\ell} \sum_{j=0}^\ell 2^j \leq 2^{\ell+1} inom{n}{\ell}.$$

Hence

$$\max_{0 \le \ell \le n/2} N_{\ell} 2^{4(n-\ell)} \le 2^{4n+1} \max_{0 \le \ell \le n} \binom{n}{\ell} 2^{-3\ell}.$$

It is easily checked that the last maximum is attained at $\ell_0 = \left[\frac{n+1}{9}\right]$. Using Stirling's formula

$$\lim_{N
ightarrow\infty}rac{\left(rac{N}{e}
ight)^N\sqrt{2\pi N}}{N!}=1$$

we obtain, with some absolute constant,

$$\binom{n}{\ell_0}2^{-3\ell_0}\leq c\left(\frac{9}{8}\right)^n n^{-1/2}.$$

So

$$\max_{0 \le \ell \le n/2} N_{\ell} 2^{4(n-\ell)} \le 2c 18^n n^{-1/2}$$

Altogether we derive

$$|B_n||_{4,\infty} \leq c_1 18^{n/4} n^{-1/8}.$$

By Hölder's inequality, since $\|B_n\|_4 = \|B\|_4^n = 18^{n/4}$, we finally get, for $4 < q < \infty$

$$\|B_n\|_{4,q} \leq \|B_n\|_4^{4/q} \|B_n\|_{4,\infty}^{1-4/q} \leq c_2 18^{n/4} n^{-lpha}$$

where $\alpha = \frac{1}{8} - \frac{1}{2q} > 0$. This implies

$$\lim_{n\to\infty}\frac{\|B_n\|_{4,q}}{\|A\|_{4,\infty}}=0$$

whenever $4 < q \le \infty$. Since $||A_n||_{4,\infty} \le c ||A_n||_{4,q}$, it follows from Lemma 1 that $S_{4,q}$ fails (DP).

The proof is complete.

Remark The proof shows that even the implication

$$egin{array}{c} |A| \leq B \ B \in S_{4,q} \end{array} iggl\} \Rightarrow A \in S_{4,\infty}$$

fails for any $4 < q \leq \infty$.

Whether or not $S_{p,q}$ fails (DP) for the cases not covered by Theorems 1 and 2 remains open.

167

Fernando Cobos and Thomas Kühn

References

- R. P. Boas, Majorant problems for trigonometric series. J. Anal. Math. 10(1962/63), 253-271. [1]
- [2] F. Cobos and T. Kühn, On a conjecture of Barry Simon on trace ideals. Duke Math. J. 59(1989), 295-299.
- [3] A. Córdoba, A counterexample in operator theory. Publ. Mat. 37(1993), 335-338.
- M. Déchamps-Gondim, F. Lust-Picard and H. Queffelec, La proprieté du minorant dans $C_{\varphi}(H)$. C. R. Acad. [4] Sci. Paris, Sér. I 295(1982), 657-659.
- [5]
- , On the minorant properties in $C_p(H)$. Pacific J. Math. **119**(1985), 89–101. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. [6] Soc., Providence, RI, 1969.
- H. König, Eigenvalue Distribution of Compact Operators. Birkhaüser, Basel, 1986. [7]
- V. V. Peller, Hankel operators of class S_p and their applications (rational approximation, Gaussian processes, the problem of majorizing operators). Math. USSR-Sb. **41**(1982), 443–479. [8]
- A. Pietsch, Eigenvalues and s-numbers. Cambridge University Press, Cambridge, 1987. [9]
- [10] B. Simon, *Trace Ideals and Their Applications*. Cambridge University Press, Cambridge, 1979.
 [11] ______, *Pointwise domination of matrices and comparison of S_p norms*. Pacific J. Math. 97(1981), 471–475.

Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense de Madrid E-28040 Madrid Spain email: cobos@eucmax.sim.ucm.es

Mathematisches Institut Universität Leipzig Augustusplatz 10/11 D-04109 Leipzig Germany email: kuehn@mathematik.uni-leipzig.de