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TOPOLOGICAL EXTENSION PROPERTIES AND 
PROJECTIVE COVERS 

HARUTO OHTA 

Introduction. All spaces considered in this paper are assumed to be 
(Hausdorff) completely regular, and all maps are continuous. Let & be 
a topological property of spaces. We shall identify SP with the class of 
spaces having £P. A space having & is called a SP-space, and a subspace 
of a ^-space is called a SP-regular space. The class of ^-regular spaces is 
denoted by R(SP). Following [37], we call a closed hereditary, productive, 
topological property SP such that each «^-regular space has a ^-regular 
compactification a topological extension property, or simply, an extension 
property. In this paper, we restrict our attention to extension properties SP 
satisfying the following axioms: 

(Ai) The two-point discrete space has SP. 
(A2) If each ^-regular space of nonmeasurable cardinal has &, then 

SP = R(SP). 
The existence of an extension property which fails to satisfy (A2) is 
equivalent to the existence of measurable cardinal (see 5.4). If £P is an 
extension property, then each ^-regular space X is a dense subspace of 
a ^-space &X such that every map from X to a ^-space admits a 
continuous extension over SPX (cf. [14]). The space &X is called the 
maximal &-extension of X. For example, if &P is compactness or real-
compactness, then 0* is an extension property and &X is the Stone-Cech 
compactification or the Hewitt realcompactification, respectively. A space 
is called extremally disconnected if the closure of every open set is open. It is 
known ([17], [32]) that for each space X there exist an extremally discon
nected space EX and a perfect irreducible map (i.e., a perfect map which 
takes proper closed subsets onto proper subsets) kx from EX onto X. 
The space EX is unique up to homeomorphism, and is called the pro
jective cover (or the absolute) of X. 

In this paper, we consider the problem under what conditions, both 
on 0> and on X, SP {EX) = E{0>X). This problem was raised by Woods 
in [38], and the special case when 0 is realcompactness has been settled 
by Hardy and Woods in [12]. We obtain, for all extension properties SP 
contained in the class stf£% of almost realcompact spaces, several common 
necessary and sufficient conditions on X for the equality to hold, and also 
prove that the equality holds for every ^-regular space X if and only if 
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either every ^-space is compact or SP is hereditary. Here, an almost 
realcompact space is a space which is the image of a realcompact space 
under a perfect map (cf. [10]). Some of our results are generalizations of 
Hardy and Woods's one. 

In Section 1, we review known results and define some symbols. Section 
2 is devoted to a study of extension properties contained in s$£%. Main 
theorems are proved in Section 3. In particular, we give ten conditions 
on a «^-regular space X each of which is equivalent to the equality 
gP{EX) = E{0>X) provided that <g9 ^ & Cst?@, where # \ is the 
class of ^-regular compact spaces. It is also shown that, conversely, if 
those conditions and the equality are equivalent to each other, then either 
<g9 ?± 0> CstfSft oxSP = R{&). Our theory is closely related to various 
interesting problems about extension properties; for example, the preser
vation of properties of the maximal ^-extension under maps, the problem 
of when £P (X X Y) = SPX X & Y for ^-regular spaces X and F, and 
a classification of extension properties. These applications are discussed 
in Section 4. Section 5 contains a sequence of examples to which preceding 
sections refer. For details and examples of extension properties see [37], 
[13] and [14], and for projective covers see [38], [17] and [32]. The ter
minology and notation will be used as in [8]. 

1. Prel iminaries . Let 0 be an extension property such that 0-
regularity is complete regularity and £P an extension property. Then 

0 & denotes the class of ^-regular ^-space, 
sé^P denotes the class of ^-regular spaces that are the images under a 

perfect map of some ^-space, 
$ 0* denotes the class of extremally disconnected ^-spaces, 
^*denotestheclassof ^-regularspacesXforwhich SP (EX) = E(SPX). 

Both 0& and S$SP are known ([37]) to be extension properties. We 
always use *$ and 3% to denote compactness and realcompactness, 
respectively. Following [11] and [37], we use /3X, /3^X and vX for &X, 
&\X and SiX, respectively. A subspace F of a space X is said to be 
&-embedded in X if each map from F to a ^-space admits a continuous 
extension over X. The maximal ^-extension SPX of a ^-regular space X 
is the unique ^-space in which X is dense and ^-embedded ([14]), and 
the continuous extension over SPX of a map / : X —> F with F £ & is 
denoted by 0f: 0X -> F. In case ^ = ^ ( ^ = ^ ) , w e use 0/ (fof) 
for 3Pf. We list basic facts about extension properties; (a) and (b) are 
simple generalizations of results in [14] and appear in [37]. 

1.1. THEOREM. Let SP be an extension property and X <E R(SP). 
(a) SPX is the intersection of all subspaces of fi&X that contain X and 

have0, so X C &X C foX ([37,1.3]). 
(b) Iff is a perfect map from X onto a &-space F, then X has & ([37, 

1.2]). 
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(c) Each O-ditnensional space is &-regular ([37, 1.4]). 
(d) Either SP is contained in the class of countably compact spaces or the 

countable discrete space has & ([37, 2.9]). 
(e) SséSP = g& ([37,3.4]). 
(f ) The discrete space of cardinality m has SP if and only if every topo

logical sum of m many SP-spaces hasSP ([13, 7.18]). 

It is known that O-dimensionality is an extension property (cf. [2]). By 
(a) and (c), O-dimensional compactness is the smallest extension property. 
If X is an extremally disconnected space, then so is fiX, and hence it 
follows from (c) that (3X = fi@X for each extension property &. There
fore we use 13 (EX) for /3p(EX), omitting 0; a similar remark applies to 
/3&f. By an extension of a space X we mean a space that contains X as a 
dense subspace. The following properties of projective covers and per
fect maps are well known. 

1.2. THEOREM. Let SP be an extension property and X G R(0P). 
(a) 0(EX) = E(foX) and(3kx = k^x (cf. [38, p. 328]). 
(b) EX C^(EX) C E(&X) C &(EX) andE(0X) = {pkx)-

l[0>X] 
(cf. [38, p. 346]). 

(c) If f: X —•» Y is a perfect onto map, then there exists a perfect map h 
from E Y onto a closed subspace of X such that kY = / o h (cf. [32, p. 309]). 

(d) A map f: X —* Y is perfect if and only if, whenever S and T are 
extensions of X and Y, respectively, and F: S —> T is a continuous extension 
off, then F[S- X]CT- Y (cf. [8, 3.7.16]). 

(e) If the composition f o g of maps f: X —> Y and g: Y —+ Z is perfect, 
theng\f[X] and fare perfect (cf. [8, 3.7.10]). 

Recall from [37] that two extension properties 0* and «a are coregular 
if R(0P) = R(£). For such extension properties & and â , let & ® «g 
denote the class of all ^-regular spaces X such that £PX = SIX. 

1.3. THEOREM. LetSP and i2 be coregular extension properties. 
(a) stfSP = sé& if and only if 3SP = <sf â . 
(b) If& C£ands/0 =sé&,then£P* = £* H (0> ® &). 

Proof, (a) Assume that S0 = <fQ. If X G sé@, then it follows from 
1.1(b), 1.1(e) and our assumption that EX G <$stfgP = £0 = <f j2, 
so X G j / c â . The proof that st 21 C ^2P is quite similar, and hence 
stfgP = stfQ. Conversely, \lst& = stf &, then by 1.1 (e), S" 2P = SstfgP = 

(b) L e t X G ^ * . By (a), ££P = <f .2, so0(EX) = £(EX). Since 
2P C «S, &X C ^ ^ by 1.1(a). These facts and 1.2(b) imply that 
2P(EX) = cS(£Z) C £ ( â X ) C £ ( ^ J f ) = &(EX), s o l ç â * and 
£ ( ^ X ) = E(@X), and hence it follows from 1.2(b) that 2PX = &X. 
Conversely, if X G ^ * H ( ^ ® ^ ) , t h e n ^ ( £ J f ) = â ( £ X ) = E(@X) 
= E{SPX) by our assumption, and hence X G ^ * . 
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1.4. COROLLARY. For an extension property &, 

@>* = {st&yC\ (0> ®s/&) and 0> =s/0> C\0>*. 

Proof. Since & C stf@ and j / ^ = séstf@, the first equality follows 
from 1.3(b). Taking intersections oisé^ with both sides of the first 
equality, we have 

The inclusion 0* C <2 does not imply ^ * C <S* in general. In fact, 
<5f C 9t and # * = R(<#) by 1.2(a), but £ ( # ) = R{@) <Z @* (cf. 
[38, p. 344]). The second equality of 1.4 tells us that if / is a perfect map 
from a ^-space X onto a ^-regular space F, then F has «^ if and only if 
&(EY) = E(0>Y). 

2. Extension propert ies conta ined in s/3$. Recall from [9] that, 
for a given space E, a space X is E-compact if X is homeomorphic to a 
closed subspace of Em for some cardinal m. The class of £-compact spaces 
is denoted by (E). The following theorem was proved by Mrôwka in 
[25, 4.10]. 

2.1. THEOREM. Let E be a space. An (E)-regular space X is E-compact 
if and only if, given an (E )-regular extension T of X and a point p Ç T — X, 
there exists a mapf: X —» E that cannot be continuously extended to I U \p). 

Let I and N denote the closed unit interval of the real line and the space 
of non-negative integers, respectively. 

2.2. Definition. A space X is ultrarealcompact if it is (/ X TV)-compact. 

Some properties of (7 X N) -compact spaces have been studied by 
Broverman in [3] and [4]. Let % denote the class of ultrarealcompact 
spaces. Then % is an extension property such that the ^-regularity is 
just complete regularity, and clearly ^ C *% C S%- We assume famili
arity with the theory of z-filters (cf. [11]). 

2.3. THEOREM. Let & be an extension property and X Ç R(éP). Then the 
following conditions are equivalent: 

(a) X is ultrarealcompact. 
(b) Every free z-ultrafilter on X contains a countable decreasing sequence 

of open-and-closed sets with empty intersection. 
(c) For each p 6 f$&X — X, there is a countable disjoint open cover U 

of X such that p & c\ppXU for each [ /ÇU. 
(d) X is homeomorphic to a closed subspace of the product of a &-regular 

compact space with an N-compact space. 
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Proof, (a) -» (b). Let g be a free z-ultrafilter on X, and let (I X N) U 
{oo } be the one-point compactification of / X N. There is p Ç /3X — X 
such that \p) = Pi {c\(}XF\Fe g}. Since 1 6 ^ / and (3X is ^-regular, it 
follows from 2.1 that there exists a map/ : X —> I X N such that (0/) (p) 
= oo. For each n 6 N, let 

G» = / - ' [ / X {k\k*n}]. 

Then Gn is open-and-closed in X, Gn € g a n d f^Gn = 0. 
(b) - • (c). Let p Ç foX - X; then there is a z-ultrafilter g on X 

such that {£} = r\{c\$pXF\F £ g}. By (b), g contains a decreasing 
sequence [Gn\n 6 iV} of open-and-closed sets with empty intersection. 
Setting Uo = X — G0 and [/»+i = Gw — Gn+i for each w Ç N, we have the 
desired open cover { [/»} of X. 

(c) -> (d). Let 2f = jŜ AT, and note that R((K X N)) = R(&). 
To show that X is (K X N) -compact, let T be a &-regular extension of 
X and £ 6 T — X. The embedding / of X in T extends to a map ft?/: 
0 * * - » for. Pick 

g € ( f o / ) - 1 ^ ) . 

Then by (c) there is a countable disjoint open cover {Un\n G N} oî X 
such that g § c\^xUn for each w Ç N. Define a map g from X into 
i£ X N by setting for each x £ X, g(x) = (x, w) if x 6 C/n. Assume that 
g extends to a map G: X \J \p) -+ K X N; then G(£) 6 K X {n} for 
some n € N. Set 

7 = J r 1 ! * X {n}] - dfi,xUn, 

where A = G o ((fo/) | (X U {g})). Then, since 

(gof)-*[K X{n}] = Un, 

F is a neighborhood of q in X U {g} with F n i = 0, which is impossible. 
Thus g admits no continuous extension over I U [p], so it follows from 
2.1 that l i s ^ X iV)-compact. Since (K X N)m = Km X iVmand # m 

is 0*-regular compact, we have (d). 
(d) —> (a). This follows from TychonofFs embedding theorem. Hence 

the proof is complete. 

We denote the class of spaces each of whose countably compact sub-
spaces has compact closure by ÏS. It follows from [7, 1.2] and [8, 3.11.1] 
that stfSft C «5 .̂ We are interested in ultrarealcompactness because, 
roughly speaking, it is the smallest non-compact extension property 
contained i n ^ : 

2.4. THEOREM. If 0* is an extension property contained inSf \ then either 
0 = <5f,or«r, C ^ . 
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Proof. Assume that °il9 (jL &, and choose X 6 °U'& not in 0. Then 
by 2.3, X is homeomorphic to a closed subspace of the product of a 
^-regular compact space K with an iV-compact space. Since K 6 SP, 
if iV € SP, then X must have ^ , a contradiction. Thus N £ 0. It follows 
from 1.1 (d) that SP is contained in the class of countably compact spaces. 

since & ^y,g? = <g9. 

2.5. COROLLARY. A space X is N-compact if and only if X is ^-dimen
sional ultrarealcompact. 

Proof. If we denote the class of TV-compact spaces byJV, then the class 
of 0-dimensional ultrarealcompact spaces is °tt jf, because ̂ - regular i ty is 
O-dimensionality. Since 9 V ^JV C 5^, it follows from 2.4 that <% # C_JV. 
Since JV C fyjr, ^ = ^ 

2.6. Remarks, (i) Herrlich and Kim-Peu Chew proved essentially the 
same results as 2.5 in [13, 6.2] and [5, Theorem C], respectively. 

(ii) In [23], Terada defined a space X to be P2(Ki)-compact if for each 
p Ç fiX — X there exists a countable disjoint cover 3 of X, consisting of 
zero-sets, such that p g cl&rZ for each Z Ç 3 . a n d he showed that 
Pz(Xi)-compactness is an extension property contained in a?. By 2.3 
(or 2.4), every ultrarealcompact space is P2(Xi)-compact, but the con
verse is false (see 5.1). The relationship of these extension properties to 
more familiar ones is summarized as follows: 

0-dimensional compact —> compact 

i 4 
iV-compact —> ultrarealcompact 

i i 
0-dimensional P2(Xi)-compact —> P2(Xi)-compact 

4 4 
0-dimensional realcompact -> realcompact 

4 
almost realcompact 

realcompact 

4 
almost realcompact 

The next lemma follows from [24, (iv„), p. 598] and [7, 1.2]. 

2.7. LEMMA. An extremally disconnected, almost realcompact space is 
N-compact, and hence it is ultrarealcompact. 

Following [36], we denote the maximal S$S%- (resp. ($#£%)&-) extension 
of X by aX (resp. a#X). 

2.8. THEOREM. Let SP be an extension property for which ^@ ^ 0* C 
s/dlandXe R(0).Then: 

(a)s/& = (stfS%,)&, and hence, if 0 = stfSP, then 0 = (sé&)&. 
(b) 0>(EX) = E{0X) if and only if 0X = a9X anda^(EX) = E(a&X). 
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Proof. Note that & and 0t 9 are coregular. By 2.4, <% 9 C ^ \ so it 
follows from 2.7 that <sf^ = «f ( ^ * ) . If F 6 ( f l ^ ) * , then by 1.1(b) 
and 2.1 EY £ &&} so F G J / ( ^ ) . Since (<s/^% D ^ ( ^ ) , this shows 
that ($t0t)9 = s/(@g). Thus both (a) and (b) follow from 1.3. 

3. Main theorems. Recall from [20], [30] and [31] that a map/ ; X -> Y 
is (countably) bi-quotient if, whenever y £ F and U is a (countable) cover 
°f f~l(y) by open sets in X, then finitely many/ ( [ / ) , with £/ G U, cover 
a neighborhood of y in F. All open and all perfect maps are bi-quotient, 
and all countably bi-quotient maps are quotient maps. A space X is 
called bi-sequential if it is the bi-quotient image of a metric space (cf. [21]), 
and X is called strongly ^-dimensional if /3X is 0-dimensional (cf. [8]). In 
this section, we consider the following conditions (1) through (10) on a 
^-regular space F, where & is an extension property. 

( l ) ^ ( E F ) = E{&Y). 
(2) £PkY: 0>(EY) ->^Y is perfect onto. 
(3) For each perfect irreducible m a p / from a &-regular space X onto 

F, ^ / : SPX - + < ^ F is perfect onto. 
(4) For each perfect map / from a «^-regular space X onto F, there 

exists a closed subset X0 of ^ Z such that {SPf) \X0: X0 -+&Y is perfect 
onto. 

(5) ^kY\ 0>(EY) -*& Y is bi-quotient onto. 
(6) SPkY\ ^{EY) - > ^ F is countably bi-quotient onto. 
(7) Every locally finite family, of nonmeasurable cardinal, of open 

sets in F is locally finite in & F. 
(8) Every countable, locally finite family of open sets in F is locally 

finite in SP F. 
(9) Y XT is ^-embedded in & Y X T for each bi-sequential space T. 

(10) F X i f is ^-embedded in & Y X M for each strongly 0-dimen-
sional metric space M. 

Conditions (7) and (8) are formal generalizations of the necessary and 
sufficient condition, due to Hardy and Woods [12], for v(EY) = E(vY) 
to hold. Let (A3) denote the following axiom: There exist a ^-space E 
and a fixed pair of distinct points e0 and ex such that for every «^-regular 
space X, every closed subset F of X and every x (E X — F, there is a map 
/ : X —» £ such that/(x) = e0 and f(F) = {ei}. If ^-regularity is complete 
regularity or O-dimensionality, then £P satisfies (A3). We begin by 
dividing conditions (1)—(10) into two groups. 

3.1. THEOREM. Conditions (1)—(10) are related as follows: (1) <=± (2) <=± 
(3) <=> (4) - • (5) -> (6) and (7) <=> (8) -> (9) T± (10). Moreover, if SP 
satisfies (A3), /ftew (9) —> (8) is valid. 

To prove 3.1 and subsequent results, we need the following lemmas. 
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3.2 is due to Michael [20], and the proof of 3.3 is left to the reader, since 
it is proved quite similarly to [28, 2.2]. 

3.2. LEMMA. / / / : X —•> Y and g: S —> T are bi-qiwtient onto maps, then 
the product map f X gisbi-quotient. 

3.3. LEMMA. Let Ft: Xt —» Yt (i = 1, 2) be onto maps such that Fi X ^2 
is a quotient map, and let St (resp. Tt = Ft(Si)) be a dense &-embedded 
subspace of Xt (resp. Fz). If Si X S2 is &-embedded in X\ X X2, then 
Ti X TiiséP-embedded in Yx X F2. 

Proof of Theorem 3.1. (1) -> (2). \iSP(EY) = E(0>Y), then SPkY = 
k&Y by 1.2 (b), so SPkY\ & (E Y) -+&Y is perfect onto. 

(2) —» (3). Let / : X —•> F be the map hypothesized in (3). S ince /o kx 

is perfect irreducible, EX = EY by the uniqueness of E F . Thus &F = 
/ o kx, so ^ & F = 0>f o SPkx. We show that 0>kx: SP (EX) -> gPX is 
onto. If there is 

p e ^ x - (SPkx)\SP(EX)\ 

then£ - (Pkx)(q) for some g G /3(£X) - ^(EX). Since 13kY = fcf o pkx 

and (fl*f)\0>X = ^ / , 

(0*y)(«) = (£»/)(£) G ^ F , 

which contradicts (2) because of 1.2 (d). Hence it follows from (2) and 
1.2(e) that 0>f: SPX ->0>Yis perfect onto. 

(3) —» (4). L e t / be a perfect map from a ^-regular space X onto F. 
By 1.2(c), there is a map /* from £ F onto a closed subset Xi of X such 
that &r = / o h. Let X0 = c\^xX\. Since X0 (i &, h extends continuously 
to &h: SP(EY) —> X0. The same argument as used in (2) —• (3) to show 
that ^ & x is onto shows that ( ^ ) [ ^ ( E F ) ] = X0. Since<^&F = ^fo^h 
and ^ & r is perfect onto by (3), it follows from 1.2(e) that (^f)\X0: X0 

—> ^ F is perfect onto. 
(4) -» (1). By (4), there is a closed subset X0 of & (EY) such that 

(^& r) |X0 : X0 —> ^ F is perfect onto. Since kY is irreducible, E F is con
tained in XQ, SO XO = ^(EY), and hence <^&F is perfect onto. Thus 
&>(EY) = £ ( ^ F ) by 1.2(b). 

(4) -> (5) -> (6) and (7) -> (8). These are obvious. 
(8) -> (7). Let ® = {Ga\a G A] be a locally finite family, of non-

measurable cardinal, of open sets in F. Suppose that there is y0 G & Y — 
Y at which © is not locally finite. Then by (8) y0 d c\^YGa for all but 
finitely many a G A. Let 

JB = {a G 4|y„ S cWG«}, 

and let U be a neighborhood system of y0 in &Y. For each f/ G U, let 

Bv = {j8 G B\ur\Gp ^ 0 } ; 
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then {Bv\ U G 11} is a filter base with r\Bv = 0, so it is contained in some 
ultrafilter % on B. To show that % has the countable intersection property, 
let {Fn\n € N) be a decreasing sequence of members of g, and set 

Then { Vn\n G TV} is a decreasing sequence of open sets in F, and y0 £ 
n c U F r For, if y0 & d^YVn, then there is UeVL with £7 H Fw = 0; but 
then JBI; H Fn = 0, a contradiction. Thus { Fw} is not locally finite in & F, 
and hence it follows from (8) that C\dYVn ^ 0. Pick 3/ G C\c\YVn. For 
each w £ N, since © is locally finite, we can find (3n 6 Fn with y G clYGpn. 
Again using local finiteness of @, we have that {/3n\n £ N} is a finite set. 
As {Fn} is decreasing, this shows that C\Fn 9^ 0, and hence 5 has the 
countable intersection property. Since % is free (i.e., C\% = 0), by [11, 
12.2], this contradicts the fact that the cardinality of B is nonmeasurable. 

(8) —•> (10). Let M be a strongly 0-dimensional metric space, and let 
X = SPY X M. Note that M is ^-regular by 1.1(c). Since F X M is 
^-embedded in ^ ( F X M), it suffices to prove that X C SP{Y X M). 
First, to show that X C J M F X M), le t / : F X M -> i£ be a map with 
K Ç ^^» and let Et(i = 1, 2) be disjoint closed sets in K. We showr that 

dxFx C\ c\xF2 = 0, 

where F, = tl[Ei}. Let (y0, *o) 6 -X" - ( F X M). Then there is a map 
g : ^ F - > i £ s u c h t h a t 

g(j) = /((y, h)) for each y £ F. 

Since £1 and £ 2 are disjoint, we may assume that g(yo) & E2. Choose an 
open set U in K such that 

£1 U {g(yo)\ CUC c\KU CK- E2, 

and let { Vn\n £ iV} be a neighborhood base of t0 in i f with Fn D Fn+i. 
For each n £ N, set 

#„ = U { # | # is an open set in F such that H X Vn Ctl[U}}. 

Then (c\YHn X 7») H F2 = 0 and g-i[[/] H F = UiJn . Setting 

G»= G r W l H F) - c l F # „ 

for each n £ N,we have a decreasing sequence {GJ of open sets in F with 
r\c\YGn = 0. Since \Gn) is locally finite in F, it is locally finite in 0* Y by 
(8), so y0 S c\^YGm for some w. Let 

W = g~i[U] - c\pYGm. 

Then FF X Fm is a neighborhood of (y0, t0) in X such that (W X Fm) C\ 
F2 = 0, because W C\ Y C clF#m . Thus (3/0, /o) € clxft; thus g(y0) £ E2 
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implies (y0, to) G c\xF2, and hence 

c\xF1 H c\xF2 = 0. 

If follows from [8, 3.2.1] t h a t / admits a continuous extension over X, 
which implies that 

X CP&X = P&(Y X M). 

Next, suppose that X (J_ SP\Y X M)\ then there is (yu h) £ X -
SP{Y X M). If we set 

r = | y ç ^r|0Mi) G xn&(Y x M)}, 
then F C F ' £ ^ F and F ' G <^\ because it is homeomorphic to 
SP{Y X Af) H {SPY X Ui}). This contradicts 1.1(a), and hence 
X C ^ ( F X M). 

(10) —* (9). Let T be a bi-sequential space; then, by the proof of 
[21, 3.D.2], there exist a strongly 0-dimensional, metric space M and a 
bi-quotient onto m a p / : M —» T. By 3.2, id^y X / is a bi-quotient map 
from SPY X M onto ^ F X T, where id^>F is the identity of SPY. 
Since F X M is ^-embedded i n ^ F X Af, it follows from 3.3 that 
F X r i s ^-embedded in SP Y X T. 

(9) -> (10). This is clear. 
Finally, assuming (A3) we prove that (9) —> (8). Let £ , e0 and #i be 

a ^-space and its points as described in (A3), and let {Gn\n £ TV} be 
a countable, locally finite family of open sets in F. Suppose on the 
contrary that \Gn) is not locally finite at 3/0 G SPY ~ F. Set T = ( F X A) 
W {00 } and define a topology on T as follows: Each point of F X A is 
isolated and {Wn\n Ç A}, where 

Wn = ( F X {i|t > »}) U {00} 

is a neighborhood base of co. Then T is a metric space. For each n £ A 
and each y £ Gn, there is a map/n y : Y -^ E such that 

/n»(y) = e0 and /n„[F - Gn] = {ex). 

Define a function / : F X T —> E by 

f//A/ AN _ //»y(y') if ^ = (?»«) 6 G» X fw}, 
.ney,*;; - \ e i o t h e r w i s e . 

To show t h a t / is continuous, let po = (y, t) £ Y X T. If / 3̂  00, then 
there is nothing to prove since {t} is open. If t = co , then f(po) = ex. 
Since {Gn} is locally finite, there exist/ £ A7" and a neighborhood J/ of y 
in F such that U r\ Gn = 0 for each w > / . For each n G A, 

(£/ X ^ ) n (Gn X (Gn X {n})) = 0, 
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so f[U X Wj] = {tfi}, and hence / i s continuous. It remains to prove that 
/admits no continuous extension over 0* Y X T. To do this, let V X Wk 

be a basic neighborhood of (yo, oo ) in SP Y X T. Since V meets infinitely 
many Gn} we can find m > k and y G V P\ Gm. Then both £1 = (y, (y, m)) 
and p2 = (y, oo ) belong to V X Wk and / (p i ) = /OTy(y) = e0, while 
/(P2) = ^i- This shows t h a t / d o e s not extend continuously to (y0, 00). 
Hence the proof is complete. 

3.4. THEOREM. Condition (5) ((6)) is true if and only if for each perfect 
map f from a 0-regular space X onto Y, SPf: SPX -> SPY is {countably) 
bi-quotient onto. 

Proof. The "if" part is obvious. To prove the converse, l e t / : X —» Y 
be a perfect onto map with X G R{SP). It is easily checked that if the 
composition g o h of two maps is (countably) bi-quotient onto, then so is g 
(even if h is not onto). By 1.2 (c), there is a map hîrom EYtoX such that 
kY = f o h. Since ^ & F = SPf oSPh and ^ & F is (countably) bi-quotient 
onto by (5) ((6)), it follows that &>f: 0X -> ^ F is (countably) bi-
quotient onto. 

3.5. Remarks, (i) The author does not know if in 3.1 the implications 
(6) —» (5) —» (4) are true or not, in general, and if (9) —> (8) can be 
proved without assuming axiom (A3). 

(ii) Let (2') denote the following condition: For each perfect m a p / 
from a ^-regular space X onto F, £Pf\ 0X —> SPY is perfect onto. In 
contrast to 3.4, the reader might ask if (2) implies (2'). In 5.2, we give 
a negative answer to this question. 

Next, we connect conditions (4) and (6) with (7). 

3.6. THEOREM. For an extension property SP\ the following conditions are 
equivalent: 

(a) For each SP -regular space F, (6) implies (7). 
(b) SP is not contained in the class of countably compact spaces {or 

equivalently, N G SP). 
(c) <%9 C SP. 
(d) <f m c $SP. 

Proof, (a) -> (b). It suffices to show that N G SP. By (a) and (c) of 
1.1, N is SP-regular and (3&N = (3N, so SPN is extremally disconnected. 
Since SP{EN) = SPN = E{0N)} N satisfies (7) by (a), and thus 
{{w}|w G N] is locally finite at any point of SPN. This implies that 
N = SPN G SP. 

(b) —> (c). Let X G ̂ V By 2.3, X is embedded as a closed subspace 
of the product of a ^-regular compact space K with an iV-compact 
space. Since K G ̂  and N G ̂ , X G ̂ , and thus ^ C ^ . 
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(c) -> (d). This follows from 2.7 and 1.1 (c). 
(d) —» (a). Let F be a ^-regular space satisfying (6). To show that 

F satisfies (8), let \Gn\n 6 N} be a countable, locally finite family of open 
sets in F and y Ç 0* Y — F. We may assume that G0 = F. For each 
n € N, set 

#n = cUr i r " 1 ^»] and 

Dn = Hn- U{Ht\i > »}. 

Then [Dn\ is a countable disjoint open cover of EY. By (d), N G <^\ 
and hence it follows from 1.1(f) that 

&{EY) = ® {0Dn\n 6 N], 

where © means the topological sum. Since 0kY is now countably bi-
quotient onto, there exist a neighborhood U of y in £P Y and m Ç TV 
such that 

Since 

0 = (SJ{&D,\j g m}) H (U{fiMi > m}) 

D QJi&DM g m}) H ( ^ M - H ^ f G . K > m}], 

[/ H (U{G<|i > m}) = 0. Thus {Gn} is locally finite in SPY. Since (8) 
always implies (7), the proof is complete. 

3.7. THEOREM. For an extension property SP, the following conditions are 
equivalent: 

(a) For each &-regular space F, (7) implies (4). 
(b) For each &-regular space F, (7) implies (6). 
(c) & = R(0>) or0> Cs/01. 
(d) ^ = R(0>) or <?0> C &9t. 

Proof, (a) —> (b). This follows from 3.1. 
(b) -> (c). Suppose on the contrary that ^ ^ R{&) and ^ <£ J / # . 

Then by axiom (A2) there exist a ^-regular space 5 of nonmeasurable 
cardinal not in & and a ^-space Z' not \VLS$8%. Since 5 is homeomorphic 
to the diagonal of 

I I { 0 , S - { s } | s € / ^ S - S } , 

0^5 - {s*} g ^ for some s* 6 /3^5 - S. For i = 1, 2, let IC, be the copy 
of fi&S and s* the point of Kt corresponding to 5*. Let K = K\ ® K2} 

and let L be the quotient space obtained from K by identifying $i and s2. 
Then L f ^ ^ , because it is homeomorphic to the closed subspace 

({5!} XKt)V{K! X {s2}) 
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of Ki X K2. Let <t>: K —> L be the quotient map, and set L t = <t>(Kt) and 
Z = EZf. Then by 1.1 (b) Z G <f ̂ \ but Z g £ Let us set 

X = (K X uZ) - (({5!} U # 2 ) X (uZ - Z)) and 

F = ( L X ^ Z ) - (L2 X (vZ - Z)). 

Since vZ is extremally disconnected, it follows from 1.1(c) that both X 
and F are ^-regular. Note that uZ £ <?/<? by 2.7. Pick z0 6 vZ - Z, 
and set £0 = (50, Zo), where s0 = tf>(si) (= #($2)). 

Claim 1. 

^ X = (X, X vZ) © C£2 X Z) and £0 6 ^ F C L X uZ. 

To prove the first equality, let 

Xx = (Kx X uZ) - ({*!} X (vZ - Z)) and X2 = K2 X Z; 

then by axiom (Ai) and 1.1 (f), 0>X = &XX ® 0>X2. Clearly ^ X 2 = X2. 
Since -KTi is a compact space of nonmeasurable cardinal, it follows from 
[6, 5.3] that v(Kx X Z) = Kx X i/Z, so uZx = ^ X uZ. Since #1 X 
vZ € <2f,, #1 X vZ = ^ X i . We distinguish two cases. U N € &, then 
<%<> C ^ by 3.6, so ^ X ! C ^ ^ I i . If N G&, then it follows from 
1.1 (d) that Z is countably compact. Since vZ is then compact by [8,3.11.1 ], 
K\ X uZ = j3^Xi. Thus, in any case, &XX C.KX X vZ. For each z 6 uZ — 
Z, since (2£i — {51}) X \z\ is homeomorphic to f}<?S — {5*}, it is not 
closed in &Xi. This shows that (sXl 0) must be contained in &X\, so 
&Xi = X i X i/Z, and hence 

0>X = ( id X i/Z) © (K2 X Z). 

The second inequality can be proved similarly. 
Claim 2. F satisfies (7). 
Since (8) implies (7), we prove that F satisfies (8). Let {Gn\n Ç N\ be 

a countable, locally finite family of open sets in F. If we set 

Un = U { G < n (L XZ)\i è n}, 

then f/n D Un+U c\YUn D Gn and ndrUn = 0. Let Hn = clZ7r[[/n], 
where ?r is the projection from L X Z to Z; then if* is open-and-closed 
in Z. Since 7r is perfect, C\Hn = 0, and so r\ç[vZHn = 0 by [11, 8.7]. 
Note that 0>Y CL XvZby claim 1. Since 

c\pYUn C c\LXvzUn C L X c\vZHn, 

we have r\c\&YUn = 0. Consequently {Gn} is locally finite in 0* F. 
C/azw 3. F does not satisfy (6). 
To prove this, let 

/ = (* Xidu Z) |Z. 
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Then / is a perfect map from X onto F, and 

SPf = (<t> X idu Z ) |^X. 

Since {^f)~l{po) = {(si, Zo)}, i£i X vZ is an open neighborhood of 
(^/)_1(Po) i n ^ Z , but (^f)[Ki X vZ] (= Li X uZ) contains no neigh
borhood of po in ^ F. This shows that &f is not countably bi-quotient, 
and thus, by 3.4, F does not satisfy (6). Hence we have (c). 

(c) -> (d). If & C_srfS%, then by 1.1 (e) &0> C £sf9l = « ? ^ . 
(d) —> (a). Let F be a ^-regular space satisfying (7). It suffices to 

prove that F satisfies (2). If & = 12(^) , then F clearly satisfies (2), 
so suppose that <?<^ C $£%• and 

^ f c r : ^ ( £ F ) - ^ ^ F 

is not perfect onto. Then by 1.2(d) there is p G P(EY) — 0>(EY) such 
that (0fey)(p) 6 ^ F . Since #&> C #@, v(EY) C^(EY), and hence 
by [8, 3.11.10], there is a map h: ${EY) -> J such that h(p) = 0 and 
ft(y) > 0 for each 3> £ E F. For each n G iV, let 

where 

^ « = ( ^ EY\h(y) < 1/n). 

Then, kY being perfect irreducible, {Gn\ is a locally finite family of open 
sets in F and 

clrGn = kY[cl EYHn]. 

Since/? £ c l ^ n ^ for each n £ IV, 

(PkY)(p) € n c l ^ y G n , 

and so /^cl^yGn ^ 0. This contradicts (7). Hence the proof is complete. 

3.8 THEOREM. For an extension property &, the following conditions are 
equivalent: 

(a) For each &-regular space F, conditions (1) through (8) are equivalent. 
(b) & = R(0>) or<€e^0> Cs#m. 
(c) & = R(0>) or £$P = < ? ^ . 

Furthermore, if & satisfies (A3), /feew we caw replace "(1) through (8)" 6;y 
" ( l ) ^ r o ^ ( 1 0 ) n w ( a ) . 

Proof. This is a consequence of 3.1, 3.6 and 3.7. 

3.9. THEOREM. L e / ^ fo aw extension property. ThenSP* = i?(«^) i/ana7 

only if either SP = R(&>) or 0> = ^ . 

Proo/. If ^ = i ? ( ^ ) , then by 1.1(c) ^ ( £ F ) = £ F = £ ( ^ F ) for 
each F 6 JR(^) f and t h u s ^ * = R{&). If & = ^ , then it follows from 
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1.2 (a) that ^ * = R{0>). To prove the converse, assume that 0>* = 
R{0>). Then, since each ^-regular space Y satisfies (6), it follows from 
3.7 that either & = R(&) or & Ç_s/£%. Let X be the space constructed 
in [19, Example, p. 240]. In [36, p. 206], Woods essentially proved that 
a(EX) 9* E(aX) and aX is 0-dimensional. By 1.1(c), X G R(&) and 

a*(EX) = a{EX) ^ E{aX) = E{a#X). 

If <€ & y* SP C se St, then it follows from 2.8(b) that SP {EX) * E(0>X), 
s o l ? ^ * . This contradicts^* = R(0>), and hence, if & Ç_stfSt, then 
& = <g9. 

3.10. Remark. Axiom (A2) is useful only for the implication (b) —» (c) 
in 3.7 (and hence, also for 3.8 and 3.9). The author does not know if 3.7 
can be proved without assuming (A2). We note that, by 5.4 below, the 
following are equivalent: 

(a) Every cardinal is nonmeasurable. 
(b) Every extension property satisfies (A2). 

3.11. Remarks, (i) A space is called Dieudonnê complete if it is homeo-
morphic to a closed subspace in a product of metric spaces (cf. [8, 8.5.13]). 
If we denote the class of Dieudonnê complete spaces by^7", then J?7" is an 
extension property such that theJ^-regularity is just complete regularity. 
Let *V denote the class of spaces which are homeomorphic to a closed 
subspace in a product of a compact space with discrete spaces, and let 
(70 denote the following condition on a ^-regular space Y: Every 
locally finite family of open sets in Y is locally finite in &Y. By 2.3 
^ C ^ , and (7') implies (7). If we use [8, 8.5.13(b)], then the following 
results, concerning an extension property 0, will be proved analogously 
to 3.6 and 3.7: 

(3.11.1) For each &-regular space Y (5) implies (70 if and only if 
*V & C & {or equivalently, every discrete space has &). 

(3.11.2) For each 0*-regular space Y (70 implies (4) if and only if 
either @> = R(&) orSP Cstf^. 

For internal characterizations of members of sé^~, see [27]. 

(ii) For a space X^X is usually denoted by \xX, and pX denotes the 
largest subspace 5 of fiX containing X such that X X T is C*-embedded 
in S X T for each paracompact £-space T, where a paracompact p-space 
(= a paracompact Af-space in the sense of Morita [22]) is a perfect 
preimage of a metric space (cf. [1]). Recently, in [29], Przymusinski 
proved that for a space X of nonmeasurable cardinal \xX = pX is equi
valent to n{EX) = E{nX), and he asked whether this equivalence holds 
for every space X. In 5.6 below, we show that if there exists a measurable 
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cardinal, then there exists a space X such that i*X = pX but y.(EX) 9^ 
E(nX). Hence his question is equivalent to the set theoretic question: 
Is every cardinal nonmeasurable? His result quoted above follows also 
from 3.8 and [26, 19.1] since \iX = vX if the cardinality of X is non-
measurable (cf. [11.20]). 

4, Applications. Let us call a property of spaces a strongly fitting 
property if it is preserved by closed subspaces and perfect images. There 
are several classes of spaces which are determined by a strongly fitting 
property of the maximal ^-extensions; for example, an M'-space in the 
sense of Isiwata [18] is characterized as a space X whose Dieudonne 
completion pX is a paracompact JW-space (cf. [18] and [23]). Condition 
(4) considered in the preceding section concerns the preservation of such 
classes under perfect maps. The following theorem follows immediately 
from 3.1. 

4.1. THEOREM. Let 0 be an extension property, and let $ be a perfect map 
from a &-regular space X onto Y with Y Ç 0*. / / 0X has a strongly 
fitting property, then 0 Y has the same properly. 

4.2. COROLLARY. Suppose thatf: X —-> Y is a perfect onto map and vX is 
locally compact. Then vY is locally compact if and only if v(EY) = E(vY). 

Proof. Since local compactness is a strongly fitting property, the neces
sity follows from 4.1. The sufficiency is due to Woods [35, 2.10]. 

Conditions (5), (6), (9) and (10) concern the problem of when the 
relation 0(X X Y) = 0X X 0 Y is valid. 

4.3. THEOREM. Let 0 be an extension property, satisfying (A3), such that 
*$ & T̂  0 C séSft, and let Y be a 0-regular space of nonmeasurable 
cardinal. Then the following conditions on Y are equivalent: 

(a)0(EY) = E{0Y). 
(b) For each perfect onto map f: X —» Y with X £ R(0) and each 

Z G R(0)10(Y X Z) = 0Y X 0Z whenever 0{X X Z) = 0X X 
0Z. 

(c) For each perfect onto mapf: X —» Y with X £ R(0) and each perfect 
onto map g: S -» T with S <E R(0) and with T Ç 0*, 0{Y X T) = 
0Y X 0T whenever 0(X X S) = 0X X 0S. 

(d) 0{Y X T) = 0Y X 0Tfor each bi-sequential0'-space T. 
(e) 0{Y X M) = 0Y X 0Mfor each strongly ^-dimensional, metric 

space M of nonmeasurable cardinal. 

Proof, (a) —> (b). By 3.1 and 3.4, 0f is bi-quotient onto, so it follows 
from 3.2 that 0f X id&z is bi-quotient onto. Hence (b) follows from 3.3. 

(b) ->(c).By (b),0(Y XS) = 0Y X 0S. Smce0(ET) = E(0T) 
and (a) implies (b) as proved above, 0(Y X T) = 0Y X 0T. 
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(c) —> (d). Let T be a bi-sequential ^-space. Then T £ ^ * since 
9 C ^ * . Let X = EY,f = kY, S = T and g = id*. Then 0>(EX) = 
«^X = E(&X), because X and ^ X are extremally disconnected. Since 
^9 * & C ^ / ^ , it follows from 3.8 that X X 5 is ^-embedded in 
0>X X 5, so«^(X X S ) = » X S . Since/: X -* F and g: S -> T are 
perfect onto, ^ ( F X T) = ^ F X r (= &Y X ^ r ) by (c). 

(d) —> (e). Note that a strongly O-dimensional, metric space of non-
measurable cardinal is iV-compact (cf. [24, (iva), p. 598] and [11, 15.20]). 
Since ^ ^ 0> C stf@, it follows from 2.4 that M is a e s p a c e . Thus 
(d) implies (e). 

(e) —» (a). Observe that the space T constructed in the proof that 
(9) —> (8) in 3.1 is a strongly O-dimensional, metric space whose cardi
nality is equal to that of F. From 3.8 and this fact we have (a). Hence 
the proof is complete. 

The next theorem improves [28, 3.4], and shows that T f ^ * " in 
4.3(c) cannot be replaced by "T 6 !£(&)" even when & = & (see 5.3). 

4.4. THEOREM. The following conditions on a space Y of nonmeasurable 
cardinal are equivalent: 

(a) v Y is locally compact. 
(b) For each perfect onto map f: X —> F and each quotient onto map 

g: S -> T, v(Y X T) = vY X vT whenever v(X X S) = vX X vS. 
(c) ^Isiw (b) with "perfect" instead of "quotient". 

Proof, (a) -> (b). By [35, 2.10], v(EY) = £(vF) , so it follows from 4.3 
that v(Y X 5) = vY X vS. Thus v(F X T) = vY X vF by [28, 3.4]. 
The implication (b) —•> (c) is obvious, and (c) —» (a) is a special case of 
[28, 3.4]. 

If & zA S%, then a theorem analogous to 4.4 is not necessary true. 
In fact, if 3P is ultrarealcompactness, T is the real line and 5 = ET, 
then T is the image of S under a perfect map and by 2.7 &{I X S) = 
J X S (= &I X ^ 5 ) , but it follows from 2.3 and Glicksberg's theorem 
(cf. [8, p. 298]) that 

&<j XT) = 0(1 XT) 9* pi XpT = 0>I X &T. 

For an extension property 0*, the class of &-regular spaces X for which 
0>X = $9X is denoted by &'. In [37, 2.10], Woods proved that if ^ -
regularity is O-dimensionality, then either & = & & or &' does not 
properly contain the class of pseudocompact ^-regular spaces, and 
Broverman remarked in [3] that this result is not valid for arbitrary 
extension properties. If we denote the class of ^-regular spaces X for 
which 0>(EX) = j8(£X) by ^ " , then we have the following theorem. 

4.5 THEOREM. Let 0 he an extension property. Then: 
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(a) &" = &' C\ 0>*. 
(b) Either & = *$& or &" does not properly contain the class of pseudo-

compact &-regular spaces. 

Proof, (a) Let X £ 0>n. Then, since 

SPX D (&kx)[&{EX)] = (0>kx)\0(EX)], 

SPX is compact, s o l G SP'. From this fact and 1.2 (a), 

gP{EX) = 0(EX) = EffipX) = E(0>X), 

and hence X € ^ * . Conversely, if X 6 &' C\ £?*, then it follows from 
1.2(a) that 

0>(EX) = E(&X) = E(p&X) = 0(EX), 

i.e., X Ç ^ " . 
(b) Assume that SP ^ ^ ^ , and choose a <^-space X not in ^ ^ . 

li N & &, then X is pseudocompact by 1.1(d), but X £ &" since 
&>(EX) = EX 9* ${EX). UN £&, then <f ̂  C < ^ by 3.6, and hence 
it follows from [11, 8A4] that each space in SP" is pseudocompact. In 
any case, 0>n does not properly contain the class of pseudocompact 
^-regular spaces. 

5. Examples and questions. 

5.1. Example. There exists a P2(Xi)-compact space but not ultra-
realcompact. 

Proof. Let X = \J{In\J Sn\n £ N\, where In and Sn are subspaces of 
the Euclidean plane as follows: 

h = {(x,y)\x = l / » , 0 ^3> ^ 1}, 
Sn = {(x, y)\x2 + y2 = 1/w2, and x ^ 0 or y ^ 0 } . 

Then, each In KJ Sn being a compact zero-set, X is P«(Ki)-compact. Since 
X is connected but not compact, it is not ultrarealcompact. 

5.2. Example. Condition (2) does not imply (2') even when 3P = 3?. 

Proof. Let F be the Tychonoff Plank (cf. [11, 8.20]), and let £ = {a>i} 
X N be the right edge of F. Since F is pseudocompact, it follows from 3.7 
that Y satisfies (2) for St. Let X = F 0 E, and l e t / : X -> F be the 
natural map. Then / is perfect onto, but 3%f\ vX —•> u F is not even a 
closed map, because i>X = vY © £ . 

5.3. Example. There exists a space F such that u(£F) = E(vY) but 
uF is not locally compact. 

Proof. Let IF be the space of all countable ordinals with the order 
topology and Q the space of rational numbers. Set Y = W X Q. Then a 
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similar argument to that of [11, 8.20] shows that vY = (3W X Q, so uFis 
not locally compact. Since the projection from Y to Q is a closed map with 
countably compact fibers, it is easily checked that Y satisfies (8) for ^ , 
and hence it follows from 3.8 (or [12, 2.4]) that v(EY) = E(vY). 

5.4. Example. If there exists a measurable cardinal, then there exists 
an extension property which fails to satisfy (A2). 

Proof. L e t ^ be the class of spaces which are embedded as a closed 
subspace in a product of spaces of nonmeasurable cardinal. T h e n ^ is 
an extension property and, by TychonofFs theorem, ̂ -regulari ty is just 
complete regularity. Clearly, every space of nonmeasurable cardinal has 
^ . Let D be the discrete space of measurable cardinal; then D (? 3% 
by [11, 12.2]. If D is a closed subspace in a product of spaces of non-
measurable cardinal, then D remains homeomorphic and closed if one 
changes the topology of each factor to the discrete topology, so D must 
be realcompact by [11, 12.2]. This contradiction shows that D is an 
^-regular space not in~#, and h e n c e ^ d o e s not satisfy (A2). 

5.5. Question. Does every almost realcompact space have ^^? This 
question is closely related to the questions asked by Husek in [16, p. 43]. 

5.6. Example. If there exists a measurable cardinal, then there exists 
a space X such that ixX = pX but n(EX) ^ E(nX). 

Proof. Let W* be the space of all ordinals less than or equal to the first 
uncountable ordinal coi with the order topology and let coN = N U {oo } 
be the one-point compactification of N. Let K be the quotient space 
obtained from W* © coN by identifying cox and oo and let yp: W* © uN —> 
K be the quotient map. Let D be the discrete space of measurable cardi
nal; then D = nD 5* VD. Let 

X = (K X vD) - McoiV] X (vD - D)). 

Then it follows from [6, 5.3] that 

vX = v(K X D) = K XvD, and 

yX = vX - &[N] X (vD - D)) 

since it is the smallest Dieudonné complete subspace of vX containing X. 
Following [29], let mX denote the largest subspace 5 of fiX containing X 
such that X X M is C*-embedded in S X M for each metric space M. 
Since K X Dis paracompact, it follows from [28, 3.5 (1)] that m(K X D) 
= v(K X D), so mX = vX, and hence pX = mX Pi pX = \iX by [29, 
Corollary 1]. If we set 

u = mm x {d}\deD\, 
then U is a locally finite family of open sets in X, but it is not locally finite 
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at any point of pX — X. Hence it follows from 3.11.1 that n(EX) ^ 
E(nX). 

A continuous image of I containing two distinct points is called a 
non-trivial arc. Let & be the class of compact spaces containing no 
non-trivial arcs. Then R{&) is known to be the largest extension property 
whose regularity is not complete regularity (cf. [15, p. 329]). We conclude 
this paper by asking a question about this property. 

5.7. Question. Does every space containing no non-trivial arcs belong 
to R(^)? In other words, does every space containing no non-trivial arcs 
have a compactification possessing the same property? 

The referee kindly informed me that /3R+ — R+, where R+ is the space 
of non-negative real numbers, is an example of a compact connected space 
containing no non-trivial arcs. The author wishes to thank the referee for 
his helpful suggestions. 
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