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POINTED BLASCHKE MANIFOLDS AND
GEODESIC NORMAL SECTIONS

D O N G - S O O KIM, YOUNG H O KIM AND EUN KYOUNG L E E

We study complete submanifolds of Euclidean space where every geodesic passing
through a fixed point is the normal section along it. We prove that all such geodesies
are independent of the direction at the point and such submanifolds are pointed
Blaschke manifolds or diffeomorphic to a Euclidean space.

1. INTRODUCTION

It is interesting to study Riemannian manifolds by examining the behaviour of their
geodesies. When a geodesic of a submanifold M of a Riemannian manifold M is viewed as
a curve in M, we may use the theory of submanifolds. A submanifold M in a Riemannian
manifold M is called planar geodesic if every geodesic of M is contained in a 2-dimensional
totally geodesic subamniofold of M and helical if every geodesic of M regarded as a curve
of M has constant Frenet curvatures independent of the choice of geodesic ([1, 5, 9, 11,
12, 13, 14]). As a matter of fact, a helical submanifold in a space form is classified as one
of compact rank one symmetric spaces or a Euclidean space ([12, 13]). Also, Chen and
Verheyen studied submanifolds of Euclidean space with geodesic normal sections. They
proved such submanifolds are in fact helical ([3]) and later Verheyen showed that the
converse is also true ([15]). It is well known that helical submanifolds of Euclidean space
are isometric to either a Blaschke manifold or a manifold diffeomorphic to a Euclidean
space ([12]).

On the other hand, one of the authors studied the so-called pointed helical subman-
ifolds of Euclidean which admit a point o such that all the geodesies passing through
o have the same constant curvatures ([6, 7, 8]). Recently, he proved that the pointed
planar geodesic submanifolds of Euclidean space are geodesically symmetric with respect
to a point ([8]). In 1998, Fueki ([4]) extended the notion of pointed helical submanifolds
of Euclidean space to the pseudo-Riemannian version of it.

In the present paper we study a submanifold M of Euclidean space Em, which admits
a fixed point o of M such that every geodesic 7 of M passing through o is a normal section
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along 7, which will be called pointed geodesic normal sections. We prove such a manifold
is a Blaschke manifold at o or a manifold diffeomorphic to a Euclidean space.

Therefore, the so-called submanifolds with geodesic normal sections in a Euclidean
space or the helical submanifolds in a Euclidean space are obtained from this notion of
pointed geodesic normal sections ([3, 12]) and we have a simple and direct classification
theorem for those submanifolds.

2. PRELIMINARIES

Let x : M -> Em be an isometric immersion of an n-dimensional Riemannian man-
ifold M into a Euclidean m-space Em. Let (•, •) be the standard Euclidean metric ten-
sor of Em. Then M has the induced metric from that of Em that is denoted by the
same notation (•, •) unless we have confusion. We denote by V the Levi-Civita connec-
tion on Em and V the induced connection on M. Then, we have the Gauss equation
VXY — VXY + h(X, Y), where X and Y denote vector fields on M and h is the second
fundamental form. The equation of Weingarten is also given by Vx£ = — AfX + V^£,
where A^ is the Weingarten map associated with a normal vector field £ to M and Vx the
normal connection in the normal bundle TLM. As is well known, the Weingarten map
A(_ and the second fundamental form h are related by (A$X, Y) — (h(X,Y),£) for all
vector fields X and V on M and £ normal to M. We now define the covariant derivative
of h on the direct sum of the tangent bundle and the normal bundle TM © TLM of M
as

(Vxh)(Y, Z) = Vxh(Y, Z) - h(VxY, Z) - h(Y, VXZ)

for all vector fields X, Y and Z on M ([2]). We denote (Vxh){Y,Z) by (Vh)(X,Y,Z)
which is a tensor field of type (1,3). We can also define the higher order covariant
derivatives of the second fundamental form h: For a positive integer k, we define

(Vkh)(XuX2,..., Xk+2) = VXl ((Vk~Xh)(X2,..., Xk+2))

fc+2

— j [v h)(X2, A 3 , . . . , VXlXi, • • •,Xk+2).
t=2

We simply denote (Vkh){X,X,...,X) = (V*/i)(Xfc+2) and (V°/i)(A,X) = h(X,X) for

any vector field X on M.

Let R be the curvature tensor of M. The Gauss equation is then given by

(R{X, Y)Z, W) - (h(X, W), h(Y, Z)) - (h(Y, W), h(X, Z))

for vector fields X, Y, Z and W on M. We also obtain the Codazzi equation
(V/i) (X, Y, Z) - (Vh)(Y, X, Z) = 0 for all vector fields X, Y, Z on M. The submanifold M

in a Euclidean space Em is said to be isotropic at p € M if the normal curvature of curves
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passing through p is independent of the choice of the curve, that is, (h(t, t), h(t, £)) does
not depend on the choice of the unit vector t tangent to M at p. By O'Neill ([10]), M is
isotropic at p if and only if (h(t, t), h(t, t-1)) = 0 for all unit vectors t and t1- perpendicular
to t.

For a point p e M and a unit vector t tangent to M at p, the vector t and the
normal space T^-M of M at p form an (m — n+ l)-dimensional affine space E(p; t) in Em

through p. The intersection of M with E(p\ t) gives rise to a curve in a neighbourhood
of p which is called the normal section at p in the direction t. A submanifold M in a
Euclidean space E m is said to have geodesic normal sections if all the geodesies of M are
normal sections ([3]).

A submanifold M of a Euclidean space E m is called pointed planar geodesic at a
point o if every geodesic of M through o is a plane curve regarded as a curve in E m .

We now introduce the Frenet curvatures and the Frenet frame of a unit speed
curve 7 : / —> E m where / is an open interval. Let j'(s) = Ti(s) and put
ztj = HV^Till. If /ci = | | V T I 7 I | | is identically zero on / , then j is said to be of or-
der 1. If K\ = yVj-jTiH is not identically zero, then one can define a unit vector field
T2 by VTlTi = KXT2 on h = {s € / | «i(s) ^ 0} . Set /c2 = | |VT lT2 + KiTi||. If «2

is identically zero on 7i, then j is said to be of order 2. Inductively, we can define Ti
and Kd = ||Vr,7d + «d-i7d_i|| and if Kd — 0 identically on Jd_i = {s € / | Kd-\ ^ 0},
then 7 is said to be of order d. If 7 is of order d, then we have a matrix equation
V r , (Ti, T 2 , . . . , Td) = (Ti, T 2 , . . . , Td)A on /,*_!, where A i s a d x d-matrix given by

/ 0 - K J 0 0 \
i 0 -K2 0 . . . 0

A = 0 K2 0 0

\ 0 0 . . . Kd-i 0 /

The matrix A, {Ti,T2,. . . , Td} and K\, . . . , Kd_x are called the Frenet formula, the Frenet
frame and the Frenet curvatures of 7 respectively.

We also call M pointed helical at o if every geodesic through o has constant Frenet
curvatures that are independent of the choice of geodesic through o ([7, 8]). By a simple

curve 7 in a Euclidean space, we mean all of the Frenet curvatures of 7 are constant
along 7 ([1]). ^

Next, we consider the notion of Blaschke manifold. Let M be a complete Riemannian
manifold and p and q points of M. We denote by UPM the unit tangent space of M at
the point p. Then, the link A(p, q) from p to q is defined as

A(p,«) = {7'(<7) € UqM I 7 e Seg(p><7)},

where 7 is assumed to be parametrised by the arc length and Seg(p, q) denotes the set
of minimal geodesies joining p to q. A compact Riemannian manifold M is called a
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Blaschke manifold at p if for every point q in Cut(p) the link A(p, q) is a great sphere of
UQM, where Cut(p) denotes the cut locus of p. The manifold M is said to be a Blaschke
manifold if it is a Blaschke manifold at every point of M. A Blaschke manifold at a point
p is characterised by the spherical cut locus at p, that is, the cut value is independent of
the choice of geodesic emanating from p (see [1]).

3 . SUBMANIFOLDS WITH POINTED GEODESIC NORMAL SECTIONS

Let M be an n-dimensional submanifold of an m-dimensional Euclidean space Em.
A submanifold M in a Euclidean space is said to have pointed geodesic normal sections
if there is a point o in M through which all the geodesies are the normal sections along
each of geodesies.

Let 7 be a geodesic of M passing through o. Without loss of generality, we may
assume 7 is parametrised by the arc length s. From now on, all the geodesies through 0
are assumed to be parametrised by the arc length unless stated otherwise.

PROPOSITION 3 . 1 . Let M be an n-dimensional submanifold of an m-
dimensional Euclidean space Em with pointed geodesic normal sections at o. Then,

M is isdtropic at o.

PROOF: Choose a geodesic 7 passing through o. Let 7(0) = o and y'(s)
— T(s). Since 7 is a normal section along the geodesic 7, the tangential part of jW(s) is
proportional to y'{s) for every s and every positive integer k, where 7^' denotes the k-th
derivative of 7 in Em. Thus, V"(0) = -Ah{t,t)t + (Vh)(t3) yields Ah(u)t At = 0, where
t = T(0) and (Vh)(t3) = (Vh)(t,t,t). It follows that

(h(t,t),h(t,tL))=O

for all t1- orthogonal to t. Therefore, M is isotropic at o. 0

In order to prove our main theorem, we need the following two lemmas.

LEMMA 3 . 2 . Let M be a submanifold of a Euclidean space Em with pointed

geodesic normal sections at o. Let 7 be a geodesic of M passing through o. Then,

<(V(*"2)/i)(T*),/i(T,T±)) = 0 and <(V(*"2)ft)(r-L
ir*-1))/i(r>T)> = 0 hold, where

T(s) — 7'(s), TL is a vector Geld along 7 orthogonal to T and k is any positive in-

teger > 2.

PROOF: Let 7 be a geodesic of M passing through o. If we put T = 7', then we
have 7" = h(T, T) and 7'" = -Ah{TiT)T + (Vh)(T3). Since 7 is a normal section along 7,

Ah(T,T)T A T = 0.

Thus, we may put
7'" = K\T + (Vh)(T3)
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where KX is the first curvature of 7 in E m given by (h(T, T) , h(T, T)> = /cf. Differentiating
7'" along 7 gives

7<
4> = ~{TK\)T - K2MT, T) -

which gives

where Tx denotes the vector field along 7 orthogonal to T. Similarly, we see that

V ' ' ! 1 ' i lC l ) A T — 0 which implies

for all vector field Tx orthogonal to T, where k is a positive integer ^ 2 . D

LEMMA 3 . 3 . Under the same assumption as is stated in Lemma 3.2, we have

((V(*"2)/i)(Tfc)1(V
<'"2)/l)(T('-1),T-L)) = 0

for a geodesic 7 of M passing through o and all integers k, I ^ 2, where T — 7' and T1-
is a vector Reid on 7 orthogonal to T.

PROOF: By Lemma 3.2, we see that ((V{h~2)h)(Tk),h(T,T-L)) = 0 holds for a
geodesic 7 passing through o, where T(s) = 7'(s) and fc is any positive integer ^ 2. We
shall prove it by the mathematical induction on / ^ 2. Differentiating the above equation
along 7, we have

0 = T({¥k~2)h)(Tk), h(T, Tx))

Applying Lemma 3.2, we see that the first and third terms vanish. Thus, we get

<(V(*"2)/i)(T*), (V/iXT2,^)) - 0.

for all k ^ 2.
We now suppose ({V{k~2)h){Tk), (VP/i)(T(p+1),TJ-)> = 0 for 3 s$ p sj I - 2 and all

fc > 2. Then we have

0 = T((V(*"2)/i)(Tfc), (Vf70(T<!'+1\T-L))

,^)) + ((¥h~2)h)(Tk), (V0H"1)ft)(T'+2
>T-L)>

+ ((V(A:"2)/i)(Tfc), ( ^ ^ ( T ^ 1 ' , VrT1)).

Applying Lemma 3.2 and the induction assumption, we have ((V h)(Tk), (V P h)
(Tp+2, T1)) = 0. Thus, Lemma 3.3 is proved. D
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Let 7 be a geodesic of M of order d passing through o in Em and 7' = T. Since
the curvatures KX, /c2, • • • , Kd of 7 can be expressed in terms of h(T,T), (V/i)(T3), . . . ,
(V h)(Tk) for some positive integer k, Lemma 3.2 and 3.3 imply

PROPOSITION 3 . 4 . Let M be a complete submanifold of a Euclidean space
Em with pointed geodesic normal sections at o. Then, the curvatures of every geodesic
7 passing through o are independent of the choice of geodesic. They depend only on the
arc length.

Now, we are ready to prove our main theorem.

Let M be a complete submanifold of a Euclidean space Em with pointed geodesic
normal sections at o. Choose a geodesic 7 of M passing through o and let 7' = T.
Suppose 7' A 7" A • • • A 7W ^ 0 and 7' A 7" A • • • A 7(*+1) = 0, that is, 7 is of order k
in E m . Then, the geodesies passing through o near by 7 are of order kfe 1) by conti-
nuity. Therefore, if we consider the geodesic polar coordinate system (s, 6\, 62,..., 8n-\)
about the point o, then we may express 0 = x(0,8\, 92,. • •, 9n-i) for all 9X, 92, •..,#n-i
and 7 as x(s,9i,92, • • • ,9n-i) for some fixed (0\,02,---,0n-i), where x is the isomet-

ric immersion of M into E"\ Since all geodesies passing through o near by 7 are of
idx d2x dkx\ n~l

order fc, ^ — A — A • • • A - ^ - J (s, 9{) + 0 for all 9U ..., 0n_i € f ] (au A) contain-
ing (9i,92, • • • ,#n- i) for some on, ft € R such that (a*,/?,) is the connected compo-

n- l
nent of domflj (i = 1 , . . . ,n — 1). Let 0 = Yl (Qt>/3t). Suppose there is a limit point

i=l
— ~ ~ (dx d2x dkx\ ~ ~

(0i ,02, . . . ,0B- i ) of 0 such that ^— A — A ••• A -^)(so,0u92,... ,0n-i) = 0 for
some s0- Without loss of generality, we may assume the (k - l)-st curvature Kk_i of the
geodesic x(s,0i,02,. ..,0n-i) vanishes at (so,8i,92,.. . ,0n_i) . By Proposition 3.4, the
Frenet curvatures are independent of the choice of direction, which depend only on the
parameter s. Thus, Kk-i(s0,0i, 02, • • •, 0n-i) = 0 for some {9\,B2, • • •, 9n-i) G 0 , which is
a contradiction. Therefore, the subset 0 is closed and thus the Frenet curvatures of the
geodesies passing through o depend not on the direction but on the parameter s only.
Hence, the geodesies passing through o are independent of the choice of the direction at
o, that is, M is geodesically symmetric with respect to o. Since M is complete, M is
either a Blaschke manifold at o because the cut locus of o is spherical if it has a cut point
or a manifold diffeomorphic to a Euclidean space E" otherwise. Thus, we have

THEOREM 3 . 5 . Let M be a complete submanifold of a Euclidean space Em

with pointed geodesic normal sections at 0. Then, M is either a Blaschke manifold at o

or a manifold diffeomorphic to En . In particular, all of geodesies passing through o are

congruent.

COROLLARY 3 . 6 . Let M be a complete submanifold of a Euclidean space Em

with pointed geodesic normal sections at 0. If one of geodesies is simple, then M is

pointed helical at o.
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Suppose tha t a submanifold M in Em with pointed geodesic normal sections at o for

every point o of M , t ha t is, the submanifold has geodesic normal sections in the sense of

[3]. If we use Lemma 3.2 and Lemma 3.3, it is not difficult to show tha t all curvatures

of geodesies of M are constant independent of the choice of geodesic. In other words,

M is helical or, equivalently M has geodesic normal sections in a Euclidean space Em.

Combining the results of [3, 12 , 15], we have the classification theorem

THEOREM 3 . 7 . Let M be a complete submanifold of a Euclidean space with
geodesic normal sections. Then, M is either a Blaschke manifold or a totally geodesic
submanifold.
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