
EXTREMAL POINT AND EDGE SETS IN ^-GRAPHS 

N. SAUER 

1. Introduction. A set of points (edges) of a graph is independent if no 
two distinct members of the set are adjacent. Gallai (1) observed that, if 
AQ (BO) is the minimum number of points (edges) of a finite graph covering-
all the edges (points) and Ax (Bx) is the maximum number of independent 
points (edges), then: 

AQ + Ax = Bo + Bx = m 

holds, where m is the number of points of the graph. 
The concepts of independence and covering are generalized in various ways 

for w-graphs. In this paper we establish certain connections between the 
corresponding extreme numbers analogous to the above result of Gallai. 

Ray-Chaudhuri considered (2) independence and covering problems in 
w-graphs and determined algorithms for finding the minimal cover and some 
associated numbers. In the terminology of (2), this paper deals with relations 
between ( 1 , 1 , . . . , 1)-covers and (1, 1, . . . , l)-matchings of complexes by 
taking also smaller faces of the simplices into account. 

2. Definitions. The cardinal number of a set X is denoted by \X\. If X is 
a set of sets, then, as usual, U ^ denotes the set union of all the members of X. 

An w-graph (n ^ 2) is an ordered pair of finite sets G = (V1} Tn), with 
Tn C {X\ X C V; \X\ = n\. Elements of V are the points of G and elements 
of Tn are the n-edges of G. 

We assume throughout that: m = | V\ ^ n, and also that G has no isolated 
points, i.e.: V C UTn. 

If X C Y G Tn and \X\ = k è 2, we call X a &-edge of G. The set of all 
&-edges is denoted by ^ (2 ^ k ^ n). An edge of G is a &-edge for some k 
( 2 ^ H n). 

A set of edges E is independent if whenever Xlt Y Ç E, X 9e F, then 
X Pi Y — 0. A set of points is independent if it contains no 2-edge of G. 

We write X G <f ' if X is an independent set of edges and 

X C Tt U T i + 1 U . . . U T , (2èiSn). 
Thus 

(2.1) S2 D cf3 D . . . D Sn, 

and we simply write X G <f2 if X is an independent set of edges without 
restriction. 
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The value of an independent set of edges £ € <^2 is denned as: 

v(E) = \\JE\ - |£| = £ (* - IK , 

where nk is the number of &-edges in £ . 
We observe that if £ x C\ £ 2 = 0, £1 U £ 2 = £ € <s?2, then 

w(£) = < E i ) + »(£2). 

Furthermore, if eu e2 G £ G <^2, «1 ^ 2̂ and e = ex\J e2 Ç. X ^ Tn, then 

(2.2) »(£') = v(E) + 1, 

where £ ' = (£ - {*i, e2}) U {e}. This follows from the fact that U £ ' = U £ 
and |£ ' | = |£ | - 1. 

If £ € (o2, we define: 

w(E) = mcix{v(X)\X r\E = 0 ; X U £ G (f2|. 

In particular, w(£) = 0 if and only if £ is a maximal independent set of 
edges. We define: 

at = max{y(£)| £ £ < ? ' } (2 ^ i ^ w). 

I t follows from (1) that a2 ^ «3 è . . . ^ an. Note, in particular, that if 
v(E) = a2, then w(E) = 0. 

I f £ C r 2 U r 3 U . . . U r r e a n d [ / C r B , we write: 

E < U or £7 > £ 

if £ c {x|*C:y G [/}. 
The set of edges £ is said to cover the set of points V C V if F ' C U £ . 

The least number of w-edges which covers all the points V is denoted by a, i.e.: 

a = mm{\U\\ U G Tn; V = Ut f} . 

If C/ C r», F = U 27, and | C/| = a, we call [7 a minimal cover. 
If £ G <^*, v(E) = a*, and if there is a minimal cover U > £ , we say that 

i is G-admissible and £ is an admissible set of edges. We will show (Theorem 1) 
that if i is G-admissible and £ G ^>i is any admissible set of edges, then 

w(E) = m — a — at = pt. 

Also (Theorem 1) we show that 2 is G-admissible and, of course /32 = 0. 
Consequently, we may define the number: 

z = max{i| 2 ^ i S n\ iisG-admissible; pt = 0} 

which we call the covering number of G. 
Let gj = \Tj\ (2^jSn). If 1 S r ^ ny 2 S *i < &2 < . . . < kr ^ n, 

0 ^ hi ^ gki and 0 ^ ft S kt (1 ^ i S r), then we will write: 

(2.3) [*«, W 

https://doi.org/10.4153/CJM-1969-118-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-118-3


^-GRAPHS 1071 

to denote the smallest integer p for which the following statement is true: 
Sp: There i s P C F such that \P\ = p and there are sets Nf C Tk. (1 ^ i ^ r) 

such that \Ni\ = A* and 

(2.4) | x H P | ^ / , ( x 6 i V i ; l ^ ^ r ) . 

Similarly, we denote by 

(2.5) [ki9 hjM 

the largest integer p such that Sp' is true, where the statement S / is the same 
as Sp except that (2.4) is replaced by 

(2.6) \x r\ P\ S ft (x e Nt; 1 S i ^ r). 

Note that the above definitions of (2.3) and (2.5) are meaningful since Sm 

holds trivially (with P = V) and S0 is true (put p = 0). 
In the special case when r = 1, fa = k, fa = gk,fi = / , we write [&i/]o and 

[fafh instead of (2.3) and (2.5). 
We observe that if G is a 2-graph, then Ao = [2, 1]0 and Ai = [2, l ] x , 

where A0 and Ai are defined in the introduction in order to state Gallai's 
theorem. 

3. Results. 

THEOREM 1. (i) If 2 ^ i ^ n, E e £\ v(E) = au then 

w(E) S m — a — at = fii. 

(ii) If i is G-admissible and E 6 Sl is admissible, then 

w(E) = m — a — at = 0*. 

(iii) 2 is G-admissible and /32 = 0. 
(iv) / / i is G-admissible and i ^ 2, /&£# pt = 0. 

Note in particular from (ii) and (iv) that a + a2 = m. This corresponds 
to Gallai's theorem for 2-graphs. (B0 + Bx = mi mentioned in the intro
duction.) 

THEOREM 2. If 2 S fa < fa < . . . < kr ^ n; 0 S fi è kt and 

0^ht^ |7 \ . | ( U f a r) , 
/fee» 

[*ii ^ , /*]o r + [*<, Ai, £* - / * ] i r = m. 

Note in particular that [2, 1]0 + [2, l]i = m. This corresponds to 
Ao + Ai = m, Gallai's theorem for 2-graphs. 

THEOREM 3. If 2 ^ k' ^ k ^ n and 0 ^ f ^ k', then 

[fa k - / ] „ = [*', *' - / ]o , [fa f\x = [É'./k 
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4. Proofs. In order to prove Theorem 1 we require two lemmas. 

LEMMA 1. Let W C Tn, 2 ^ i ^ n, and let E be a set of maximal value so 
that E < W, E G é>i. Also let M be a set of maximal value so that EC\M = 0 , 
EU M G S2 and M < W. Then there are sets F, N C W such that: 

(a) \F\ = \E\,\N\ = \M\}Fr\N = 0; 
(b) UF = UE, UM C UN C UM U \JE. 

Proof. We first show that, if eu e2 G E U M, ex ^ e2, then 

(4.1) e = exU e2 <t w G TF. 

Suppose that this is false and e C w G W. If £i, e2 G £ , then 

£ ' = ( £ - {*i,e2})U{e} < W 

a n d E ' G <f *andzj(E') = */(£) + 1 by (2.2). This contradicts the maximality 
oiv(E). 

lieu e2 G M, then 

M' = {M - {el9 e2}) U {e} < W, E Pi M' = 0, £ U I f G <s?2, 

and again v(Mf) = y(ikf) + 1 by (2.2). This contradicts the maximality of 
v(M). Finally, if we assume that e± G E and e2 G M, then 

E" = (£ - {ei}) U {e} < W, E" G #* (since £ U M G <s?2) 

and clearly v(E") > v(E) which again contradicts the maximality of v(E). 
This proves (4.1). 

I t follows from (4.1) and the fact that EU M < W, that there is an injec
tion g: EU M ->W so that: 

(4.2) g(u) = W=ÏUCW, u C g(«) £ W (u e EU M). 

Put g(£) = F, g(M) = iV; then (a) holds. 
I t follows from (4.2) that UE C U E a n d U M C UN. 
If there is a point x G U E — UE, then there is some e G £ so that 

x G g (e) - e .ThenE ' = (£ - {e}) U j e U {*}} < W, E' G <?', and 
v{EI) > ?;(£), which is impossible. This proves that 

UE = U£. 
Similarly, if there is a point x G UN — UM U UE , then there is e' G M 

so that x G g(£ ') and by putting M' = (M — {«'}) U [ef U {x}}, we contra
dict the maximality of z>(7kf). This shows that 

UN C U M U UE. 

This completes the proof of (b) and Lemma 1. 

LEMMA 2. If E G < *̂ #n<Z fl(£) = au then there is a set U' C Ew # i d covers 
V such that 

\JJ'\ — m — w(E) — at. 
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Proof. Let M be a set of maximum value so that M (~\E = Q, M U E £ <f2. 
Then v(M) = w(E). It follows from the maximal property of v(E) that if 
e 6 M, then e 6 r 2 U T3 U . . . U 7\-i. Hence, if #* is the number of hedges 
in M U £ , then 

By Lemma 1 there are F, N (Z Tn such that Lemma 1(a) and (b) hold. 
Put P = V - {JE\J M = V - \JF\J N. Then 

n 

\P\ = m — X *«*• 

P is an independent set of points for, if e C P and e £ T2, then 

and this contradicts the maximality of v(E) or v(M). 
Therefore, there is an injection \p: P —> Tn so that x £ \[/(x) for x £ P . Let 

L = > ( P ) and put [/' = P U iV U L. Then £/' covers V and 

|£/'| = |L| + \N\ + \F\ = (m-Z kuk) + £ ^ 

= m — v(M) — v(E) = m — w(E) — at. 

This proves Lemma 2. 

Proof of Theorem 1. (i) If E £ # ' and fl(P) = au then by Lemma 2 there 
is a set £/' C Tn such that |£/'| = m — w(E) — at. The result follows since 
\U'\ ^ a. 

(ii) Since E is admissible by hypothesis, then there is a minimal cover U 
such that E < U. Let ikf be a set of maximal value such that 

M < U, Mr\E = 0, MKJE^S2. 

Then v(M) ^ w{E) by definition of w(E). Il P = V - UM \J E, then 
there is no 2-edge e C P such that {e} < U. Otherwise, 

U> E\J M\J {e} e <?\ 

and we contradict the maximality of v(M). Therefore, since U covers V, it 
follows that there is an injection \//: P —» U so that x Ç \f/{x) for x £ P . Put 
L = \f/(P). Then each element of P corresponds to a unique member of L. 
By Lemma 1, there are F, N d U such that Lemma 1 (a) and (b) hold. Clearly, 
L has no member in common with F KJ N and thus 

a = \U\ ^ \L\ + \F\ + \N\=m- \\JEU M\ + \E\ + \M\ 

= m — v(M) — v(E) = m — w(E) — at. 

By Lemma 2, there is U' C Tn such that a S \Ur\ ^ m — w(E) — at. I t 
follows that a = m — w(E) — at and this proves (ii). 
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(iii) Let E' Ç <f2, v{E') = a2. As we already observed, this implies that 
w(E') = 0. Hence, by Lemma 2, there is a set U' C Tn which covers V so that 

\Ur\ = m — a2. 

Let £/ be any minimal cover of V and let £ be a set of edges of maximal 
value so that E < U and E g S2. By Lemma 1 (with M = JV = 0), there 
is a set F (Z U so that |F| = \E\ and t /F = £/E. The maximal condition on 
v(E) ensures that the set P = V — UE contains no 2-edge n with {n) < U. 
Therefore, since U covers V, there is a set of 2-edges L C U so that |L| = \P\ 
and each element of P is a member of exactly one edge in L. Thus, the set of 
2-edges F^J L covers V and, since U is minimal, U = FU L. Therefore, 

\U\ = \F\ + \L\ = \E\ + {m - \\JE\) = m - v(E) è m - a2 = |£/'|. 

Since £7 is a minimal cover, it follows that v(E) = a2l and hence E is an 
admissible set and 2 is G-admissible. 

(iv) If i is G-admissible and i S z, then at ^ a2 and by (ii) and the definition 
of z, 

0 ^ 0, = ra — a — ax ^ m — a — az — Q, 
i.e. 0, = 0. 

Proof of Theorem 2. Let P be a set of p = [ku hufi]iT points so that Sp is 
true, i.e. there are sets Nf C Tki (1 ^ i S r) so that |iV,| = hf and (2.4) 
holds. Let P' = F - P , then 

|* H P ' | ^ ft* - /« (x 6 iV<; 1 £ * £ r) , 

and therefore, by the definition of (2.5), 

(4.3) m - [ft*, hi9ft]0
r = |P ' | Û [ki9 ft,, ft, -fiV = q. 

Now let g be a set of q points so that S / is true, i.e. there are sets 
Nt C Tki (1 S i ^ r) so that |iV,'| = ft, and 

| * H g | £ f t , - / , (xe Nt';l ûiSr). 

Then if g' = F - g, |x C\ g'\ ^ / , (x <E iV,'; 1 ^ i ^ r), and hence 

(4.4) m - g = |g'| è [fc„ft„/«]or. 

The theorem follows from \A\ and | 5 | . 

Proof of Theorem 3. Let P be a set of p = [ft, & — / ] 0 points so that every 
ft-edge of G contains at least ft — / elements of P . Let x' be any ft'-edge of G. 
Since ft' ^ ft, there is a ft-edge x 3 #'. Then 

|*' - P\ Û \x - P\ S / , 
i.e. 

I*' r\p\^kf -f. 

It now follows from the definition that 

[*',*'-/]„£ IPI = P. 
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Now let P i be a set of pi = [k', k' — /]o points such that every kf-edge con
tains at least kr — / points of P i . Suppose that there is x G Tk so that 
|x C\Pi\ < k — f. Then there is 3/ C x — P so that \y\ = f + 1. Since 
&' è / + 1, by hypothesis, it follows that there is xf 6 Tk>, so that y <Z x' C x. 
Then \x' P\ P\ ^ |x' — y| < &' — / , a contradiction. This shows that 

| * n P i | ^k-f (x e Tk), 

and hence p ^ |Pi| = pi. This proves the first relation in Theorem 3. 
By specializing Theorem 2 we obtain: 

[*, * - / ] „ = « - [*,/]i, [*', *' - / ] o = m - WJh, 

and by inspecting the first relation in Theorem 3, we have: 

lk,f\l = [k'J]!. 
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