EXTREMAL POINT AND EDGE SETS IN n-GRAPHS

N. SAUER

1. Introduction. A set of points (edges) of a graph is independent if no two distinct members of the set are adjacent. Gallai (1) observed that, if $A_{0}\left(B_{0}\right)$ is the minimum number of points (edges) of a finite graph covering all the edges (points) and $A_{1}\left(B_{1}\right)$ is the maximum number of independent points (edges), then:

$$
A_{0}+A_{1}=B_{0}+B_{1}=m
$$

holds, where m is the number of points of the graph.
The concepts of independence and covering are generalized in various ways for n-graphs. In this paper we establish certain connections between the corresponding extreme numbers analogous to the above result of Gallai.

Ray-Chaudhuri considered (2) independence and covering problems in n-graphs and determined algorithms for finding the minimal cover and some associated numbers. In the terminology of (2), this paper deals with relations between ($1,1, \ldots, 1$)-covers and ($1,1, \ldots, 1$)-matchings of complexes by taking also smaller faces of the simplices into account.
2. Definitions. The cardinal number of a set X is denoted by $|X|$. If X is a set of sets, then, as usual, $\cup X$ denotes the set union of all the members of X.

An n-graph ($n \geqq 2$) is an ordered pair of finite sets $G=\left(V_{1}, T_{n}\right)$, with $T_{n} \subset\{X|X \subset V ;|X|=n\}$. Elements of V are the points of G and elements of T_{n} are the n-edges of G.

We assume throughout that: $m=|V| \geqq n$, and also that G has no isolated points, i.e.: $V \subset \cup T_{n}$.
If $X \subset Y \in T_{n}$ and $|X|=k \geqq 2$, we call X a k-edge of G. The set of all k-edges is denoted by $T_{k}(2 \leqq k \leqq n)$. An edge of G is a k-edge for some k ($2 \leqq k \leqq n$).

A set of edges E is independent if whenever $X_{1}, Y \in E, X \neq Y$, then $X \cap Y=\emptyset$. A set of points is independent if it contains no 2-edge of G.

We write $X \in \mathscr{E}^{i}$ if X is an independent set of edges and

$$
X \subset T_{i} \cup T_{i+1} \cup \ldots \cup T_{n} \quad(2 \leqq i \leqq n)
$$

Thus

$$
\begin{equation*}
\mathscr{E}^{2} \supset \mathscr{E}^{3} \supset \ldots \supset \mathscr{E}^{n} \tag{2.1}
\end{equation*}
$$

and we simply write $X \in \mathscr{E}^{2}$ if X is an independent set of edges without restriction.

Received January 19, 1968.

The value of an independent set of edges $E \in \mathscr{E}^{2}$ is defined as:

$$
v(E)=|\cup E|-|E|=\sum_{k=2}^{n}(k-1) n_{k},
$$

where n_{k} is the number of k-edges in E.
We observe that if $E_{1} \cap E_{2}=\emptyset, E_{1} \cup E_{2}=E \in \mathscr{E}^{2}$, then

$$
v(E)=v\left(E_{1}\right)+v\left(E_{2}\right)
$$

Furthermore, if $e_{1}, e_{2} \in E \in \mathscr{E}^{2}, e_{1} \neq e_{2}$ and $e=e_{1} \cup e_{2} \in X \in T_{n}$, then

$$
\begin{equation*}
v\left(E^{\prime}\right)=v(E)+1 \tag{2.2}
\end{equation*}
$$

where $E^{\prime}=\left(E-\left\{e_{1}, e_{2}\right\}\right) \cup\{e\}$. This follows from the fact that $\cup E^{\prime}=\cup E$ and $\left|E^{\prime}\right|=|E|-1$.

If $E \in \mathscr{E}^{2}$, we define:

$$
w(E)=\max \left\{v(X) \mid X \cap E=\emptyset ; X \cup E \in \mathscr{E}^{2}\right\}
$$

In particular, $w(E)=0$ if and only if E is a maximal independent set of edges. We define:

$$
\alpha_{i}=\max \left\{v(E) \mid E \in \mathscr{E}^{i}\right\} \quad(2 \leqq i \leqq n) .
$$

It follows from (1) that $\alpha_{2} \geqq \alpha_{3} \geqq \ldots \geqq \alpha_{n}$. Note, in particular, that if $v(E)=\alpha_{2}$, then $w(E)=0$.

If $E \subset T_{2} \cup T_{3} \cup \ldots \cup T_{n}$ and $U \subset T_{n}$, we write:

$$
E<U \quad \text { or } \quad U>E
$$

if $E \subset\{x \mid x \subset y \in U\}$.
The set of edges E is said to cover the set of points $V^{\prime} \subset V$ if $V^{\prime} \subset \cup E$. The least number of n-edges which covers all the points V is denoted by a, i.e.:

$$
a=\min \left\{|U| \mid U \in T_{n} ; V=U U\right\}
$$

If $U \subset T_{n}, V=U U$, and $|U|=a$, we call U a minimal cover.
If $E \in \mathscr{E}^{i}, v(E)=\alpha_{i}$, and if there is a minimal cover $U>E$, we say that i is G-admissible and E is an admissible set of edges. We will show (Theorem 1) that if i is G-admissible and $E \in \mathscr{E}^{i}$ is any admissible set of edges, then

$$
w(E)=m-a-\alpha_{i}=\beta_{i} .
$$

Also (Theorem 1) we show that 2 is G-admissible and, of course $\beta_{2}=0$. Consequently, we may define the number:

$$
z=\max \left\{i \mid 2 \leqq i \leqq n ; i \text { is } G \text {-admissible } ; \beta_{i}=0\right\}
$$

which we call the covering number of G.
Let $g_{j}=\left|T_{j}\right|(2 \leqq j \leqq n)$. If $1 \leqq r \leqq n, 2 \leqq k_{1}<k_{2}<\ldots<k_{r} \leqq n$, $0 \leqq h_{i} \leqq g_{k i}$ and $0 \leqq f_{i} \leqq k_{i}(1 \leqq i \leqq r)$, then we will write:

$$
\begin{equation*}
\left[k_{i}, h_{i} f_{i}\right]_{0}{ }^{r} \tag{2.3}
\end{equation*}
$$

to denote the smallest integer p for which the following statement is true:
S_{p} : There is $P \subset V$ such that $|P|=p$ and there are sets $N_{i} \subset T_{k_{i}}(1 \leqq i \leqq r)$ such that $\left|N_{i}\right|=h_{i}$ and

$$
\begin{equation*}
|x \cap P| \geqq f_{i} \quad\left(x \in N_{i} ; 1 \leqq i \leqq r\right) . \tag{2.4}
\end{equation*}
$$

Similarly, we denote by

$$
\begin{equation*}
\left[k_{i}, h_{i} f_{i}\right]_{1}{ }^{r} \tag{2.5}
\end{equation*}
$$

the largest integer p such that $\mathrm{S}_{p}{ }^{\prime}$ is true, where the statement $\mathrm{S}_{p}{ }^{\prime}$ is the same as S_{p} except that (2.4) is replaced by

$$
\begin{equation*}
|x \cap P| \leqq f_{i} \quad\left(x \in N_{i} ; 1 \leqq i \leqq r\right) . \tag{2.6}
\end{equation*}
$$

Note that the above definitions of (2.3) and (2.5) are meaningful since S_{m} holds trivially (with $P=V$) and S_{0} is true (put $p=\emptyset$).

In the special case when $r=1, k_{1}=k, h_{1}=g_{k}, f_{1}=f$, we write $\left[k_{1} f\right]_{0}$ and [$\left.k_{1} f\right]_{1}$ instead of (2.3) and (2.5).

We observe that if G is a 2 -graph, then $A_{0}=[2,1]_{0}$ and $A_{1}=[2,1]_{1}$, where A_{0} and A_{1} are defined in the introduction in order to state Gallai's theorem.

3. Results.

Theorem 1. (i) If $2 \leqq i \leqq n, E \in \mathscr{E}^{i}, v(E)=\alpha_{i}$, then

$$
w(E) \leqq m-a-\alpha_{i}=\beta_{i} .
$$

(ii) If i is G-admissible and $E \in \mathscr{E}^{i}$ is admissible, then

$$
w(E)=m-a-\alpha_{i}=\beta_{i} .
$$

(iii) 2 is G-admissible and $\beta_{2}=0$.
(iv) If i is G-admissible and $i \leqq z$, then $\beta_{i}=0$.

Note in particular from (ii) and (iv) that $a+\alpha_{z}=m$. This corresponds to Gallai's theorem for 2 -graphs. ($B_{0}+B_{1}=m_{1}$ mentioned in the introduction.)

Theorem 2. If $2 \leqq k_{1}<k_{2}<\ldots<k_{r} \leqq n ; 0 \leqq f_{i} \leqq k_{i}$ and

$$
0 \leqq h_{i} \leqq\left|T_{k_{i}}\right| \quad(1 \leqq i \leqq r),
$$

then

$$
\left[k_{i}, h_{i}, f_{i}\right]_{0}^{\tau}+\left[k_{i}, h_{i}, k_{i}-f_{i}\right]_{1}^{\tau}=m .
$$

Note in particular that $[2,1]_{0}+[2,1]_{1}=m$. This corresponds to $A_{0}+A_{1}=m$, Gallai's theorem for 2-graphs.

Theorem 3. If $2 \leqq k^{\prime} \leqq k \leqq n$ and $0 \leqq f \leqq k^{\prime}$, then

$$
[k, k-f]_{0}=\left[k^{\prime}, k^{\prime}-f\right]_{0}, \quad[k, f]_{1}=\left[k^{\prime}, f\right]_{1}
$$

4. Proofs. In order to prove Theorem 1 we require two lemmas.

Lemma 1. Let $W \subset T_{n}, 2 \leqq i \leqq n$, and let E be a set of maximal value so that $E<W, E \in \mathscr{E}^{i}$. Also let M be a set of maximal value so that $E \cap M=\emptyset$, $E \cup M \in \mathscr{E}^{2}$ and $M<W$. Then there are sets $F, N \subset W$ such that:
(a) $|F|=|E|,|N|=|M|, F \cap N=\emptyset$;
(b) $\cup F=\cup E, \cup M \subset \cup N \subset \cup M \cup \cup E$.

Proof. We first show that, if $e_{1}, e_{2} \in E \cup M, e_{1} \neq e_{2}$, then

$$
\begin{equation*}
e=e_{1} \cup e_{2} \not \subset w \in W \tag{4.1}
\end{equation*}
$$

Suppose that this is false and $e \subset w \in W$. If $e_{1}, e_{2} \in E$, then

$$
E^{\prime}=\left(E-\left\{e_{1}, e_{2}\right\}\right) \cup\{e\}<W
$$

and $E^{\prime} \in \mathscr{E}^{i}$ and $v\left(E^{\prime}\right)=v(E)+1$ by (2.2). This contradicts the maximality of $v(E)$.

If $e_{1}, e_{2} \in M$, then

$$
M^{\prime}=\left(M-\left\{e_{1}, e_{2}\right\}\right) \cup\{e\}<W, \quad E \cap M^{\prime}=\emptyset, \quad E \cup M \in \mathscr{E}^{2}
$$

and again $v\left(M^{\prime}\right)=v(M)+1$ by (2.2). This contradicts the maximality of $v(M)$. Finally, if we assume that $e_{1} \in E$ and $e_{2} \in M$, then

$$
E^{\prime \prime}=\left(E-\left\{e_{1}\right\}\right) \cup\{e\}<W, \quad E^{\prime \prime} \in \mathscr{E}^{i} \quad\left(\text { since } E \cup M \in \mathscr{E}^{2}\right)
$$

and clearly $v\left(E^{\prime \prime}\right)>v(E)$ which again contradicts the maximality of $v(E)$. This proves (4.1).

It follows from (4.1) and the fact that $E \cup M<W$, that there is an injection $g: E \cup M \rightarrow W$ so that:

$$
\begin{equation*}
g(u)=w \Rightarrow u \subset w, \quad u \subset g(u) \in W \quad(u \in E \cup M) \tag{4.2}
\end{equation*}
$$

Put $g(E)=F, g(M)=N$; then (a) holds.
It follows from (4.2) that $\cup E \subset \cup F$ and $\cup M \subset \cup N$.
If there is a point $x \in \cup F-\cup E$, then there is some $e \in E$ so that $x \in g(e)-e$. Then $E^{\prime}=(E-\{e\}) \cup\{e \cup\{x\}\}<W, E^{\prime} \in \mathscr{E}^{i}$, and $v\left(E^{\prime}\right)>v(E)$, which is impossible. This proves that

$$
\cup F=\cup E
$$

Similarly, if there is a point $x \in \cup N-\cup M \cup \cup E$, then there is $e^{\prime} \in M$ so that $x \in g\left(E^{\prime}\right)$ and by putting $M^{\prime}=\left(M-\left\{e^{\prime}\right\}\right) \cup\left\{e^{\prime} \cup\{x\}\right\}$, we contradict the maximality of $v(M)$. This shows that

$$
\cup N \subset \cup M \cup \cup E
$$

This completes the proof of (b) and Lemma 1.
Lemma 2. If $E \in \mathscr{E}^{i}$ and $v(E)=\alpha_{i}$ then there is a set $U^{\prime} \subset T_{n}$ which covers V such that

$$
\left|U^{\prime}\right|=m-w(E)-\alpha_{i} .
$$

Proof. Let M be a set of maximum value so that $M \cap E=\emptyset, M \cup E \in \mathscr{E}^{2}$. Then $v(M)=w(E)$. It follows from the maximal property of $v(E)$ that if $e \in M$, then $e \in T_{2} \cup T_{3} \cup \ldots \cup T_{i-1}$. Hence, if u_{k} is the number of k-edges in $M \cup E$, then

$$
|\cup M \cup E|=\sum_{k=2}^{n} k u_{k}
$$

By Lemma 1 there are $F, N \subset T_{n}$ such that Lemma 1 (a) and (b) hold. Put $P=V-\cup E \cup M=V-\cup F \cup N$. Then

$$
|P|=m-\sum_{k=2}^{n} k u_{k} .
$$

P is an independent set of points for, if $e \subset P$ and $e \in T_{2}$, then

$$
E \cup M \cup\{e\} \in \mathscr{E}^{2}
$$

and this contradicts the maximality of $v(E)$ or $v(M)$.
Therefore, there is an injection $\psi: P \rightarrow T_{n}$ so that $x \in \psi(x)$ for $x \in P$. Let $L=\psi(P)$ and put $U^{\prime}=F \cup N \cup L$. Then U^{\prime} covers V and

$$
\begin{aligned}
\left|U^{\prime}\right|=|L|+|N|+|F|=\left(m-\sum_{k=2}^{n} k u_{k}\right) & +\sum_{k=2}^{n} u_{k} \\
& =m-v(M)-v(E)=m-w(E)-\alpha_{i} .
\end{aligned}
$$

This proves Lemma 2.
Proof of Theorem 1. (i) If $E \in \mathscr{E}^{i}$ and $v(E)=\alpha_{i}$, then by Lemma 2 there is a set $U^{\prime} \subset T_{n}$ such that $\left|U^{\prime}\right|=m-w(E)-\alpha_{i}$. The result follows since $\left|U^{\prime}\right| \geqq a$.
(ii) Since E is admissible by hypothesis, then there is a minimal cover U such that $E<U$. Let M be a set of maximal value such that

$$
M<U, \quad M \cap E=\emptyset, \quad M \cup E \in \mathscr{E}^{2}
$$

Then $v(M) \leqq w(E)$ by definition of $w(E)$. If $P=V-U M \cup E$, then there is no 2-edge $e \subset P$ such that $\{e\}<U$. Otherwise,

$$
U>E \cup M \cup\{e\} \in \mathscr{E}^{2}
$$

and we contradict the maximality of $v(M)$. Therefore, since U covers V, it follows that there is an injection $\psi: P \rightarrow U$ so that $x \in \psi(x)$ for $x \in P$. Put $L=\psi(P)$. Then each element of P corresponds to a unique member of L. By Lemma 1, there are $F, N \subset U$ such that Lemma 1 (a) and (b) hold. Clearly, L has no member in common with $F \cup N$ and thus

$$
\begin{aligned}
a=|U| \geqq|L|+|F|+|N|=m- & |\cup E \cup M|+|E|+|M| \\
& =m-v(M)-v(E)=m-w(E)-\alpha_{i} .
\end{aligned}
$$

By Lemma 2 , there is $U^{\prime} \subset T_{n}$ such that $a \leqq\left|U^{\prime}\right| \leqq m-w(E)-\alpha_{i}$. It follows that $a=m-w(E)-\alpha_{i}$ and this proves (ii).
(iii) Let $E^{\prime} \in \mathscr{E}^{2}, v\left(E^{\prime}\right)=\alpha_{2}$. As we already observed, this implies that $w\left(E^{\prime}\right)=0$. Hence, by Lemma 2, there is a set $U^{\prime} \subset T_{n}$ which covers V so that

$$
\left|U^{\prime}\right|=m-\alpha_{2} .
$$

Let U be any minimal cover of V and let E be a set of edges of maximal value so that $E<U$ and $E \in \mathscr{E}^{2}$. By Lemma 1 (with $M=N=\emptyset$), there is a set $F \subset U$ so that $|F|=|E|$ and $U F=U E$. The maximal condition on $v(E)$ ensures that the set $P=V-U E$ contains no 2-edge n with $\{n\}<U$. Therefore, since U covers V, there is a set of 2 -edges $L \subset U$ so that $|L|=|P|$ and each element of P is a member of exactly one edge in L. Thus, the set of 2-edges $F \cup L$ covers V and, since U is minimal, $U=F \cup L$. Therefore,

$$
|U|=|F|+|L|=|E|+(m-|\cup E|)=m-v(E) \geqq m-\alpha_{2}=\left|U^{\prime}\right|
$$

Since U is a minimal cover, it follows that $v(E)=\alpha_{2}$, and hence E is an admissible set and 2 is G-admissible.
(iv) If i is G-admissible and $i \leqq z$, then $\alpha_{i} \geqq \alpha_{z}$ and by (ii) and the definition of z,

$$
0 \leqq \beta_{i}=m-a-\alpha_{i} \leqq m-a-\alpha_{z}=0
$$

i.e. $\beta_{i}=0$.

Proof of Theorem 2. Let P be a set of $p=\left[k_{i}, h_{i}, f_{i}\right]_{1}{ }^{r}$ points so that S_{p} is true, i.e. there are sets $N_{i} \subset T_{k i}(1 \leqq i \leqq r)$ so that $\left|N_{i}\right|=h_{i}$ and (2.4) holds. Let $P^{\prime}=V-P$, then

$$
\left|x \cap P^{\prime}\right| \leqq k_{i}-f_{i} \quad\left(x \in N_{i} ; 1 \leqq i \leqq r\right)
$$

and therefore, by the definition of (2.5),

$$
\begin{equation*}
m-\left[k_{i}, h_{i}, f_{i}\right]_{0}^{\tau}=\left|P^{\prime}\right| \leqq\left[k_{i}, h_{i}, k_{i}-f_{i}\right]_{1}^{\tau}=q \tag{4.3}
\end{equation*}
$$

Now let g be a set of q points so that $\mathrm{S}_{q}{ }^{\prime}$ is true, i.e. there are sets $N_{i} \subset T_{k_{i}}(1 \leqq i \leqq r)$ so that $\left|N_{i}{ }^{\prime}\right|=h_{i}$ and

$$
|x \cap g| \leqq k_{i}-f_{i} \quad\left(x \in N_{i}^{\prime} ; 1 \leqq i \leqq r\right)
$$

Then if $g^{\prime}=V-g,\left|x \cap g^{\prime}\right| \leqq f_{i}\left(x \in N_{i}^{\prime} ; 1 \leqq i \leqq r\right)$, and hence

$$
\begin{equation*}
m-q=\left|g^{\prime}\right| \geqq\left[k_{i}, h_{i}, f_{i}\right]_{0}^{r} \tag{4.4}
\end{equation*}
$$

The theorem follows from $|A|$ and $|B|$.
Proof of Theorem 3. Let P be a set of $p=[k, k-f]_{0}$ points so that every k-edge of G contains at least $k-f$ elements of P. Let x^{\prime} be any k^{\prime}-edge of G. Since $k^{\prime} \leqq k$, there is a k-edge $x \supset x^{\prime}$. Then

$$
\left|x^{\prime}-P\right| \leqq|x-P| \leqq f
$$

i.e.

$$
\left|x^{\prime} \cap P\right| \geqq k^{\prime}-f
$$

It now follows from the definition that

$$
\left[k^{\prime}, k^{\prime}-f\right]_{0} \leqq|P|=p
$$

Now let P_{1} be a set of $p_{1}=\left[k^{\prime}, k^{\prime}-f\right]_{0}$ points such that every k^{\prime}-edge contains at least $k^{\prime}-f$ points of P_{1}. Suppose that there is $x \in T_{k}$ so that $\left|x \cap P_{1}\right|<k-f$. Then there is $y \subset x-P$ so that $|y|=f+1$. Since $k^{\prime} \geqq f+1$, by hypothesis, it follows that there is $x^{\prime} \in T_{k^{\prime}}$, so that $y \subset x^{\prime} \subset x$. Then $\left|x^{\prime} \cap P\right| \leqq\left|x^{\prime}-y\right|<k^{\prime}-f$, a contradiction. This shows that

$$
\left|x \cap P_{1}\right| \geqq k-f \quad\left(x \in T_{k}\right),
$$

and hence $p \leqq\left|P_{1}\right|=p_{1}$. This proves the first relation in Theorem 3.
By specializing Theorem 2 we obtain:

$$
[k, k-f]_{0}=m-[k, f]_{1}, \quad\left[k^{\prime}, k^{\prime}-f\right]_{0}=m-\left[k^{\prime}, f\right]_{1},
$$

and by inspecting the first relation in Theorem 3, we have:

$$
[k, f]_{1}=\left[k^{\prime}, f\right]_{1} .
$$

Acknowledgement. I am greatly indebted to Professor E. Milner for his help in preparing the final version of this paper.

References

1. T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 2 (1959), 133-138.
2. D. K. Ray-Chaudhuri, An algorithm for a minimum cover of an abstract complex, Can. J. Math. 15 (1963), 11-24.

University of Calgary, Calgary, Alberta

