EXTREMAL POINT AND EDGE SETS IN *n*-GRAPHS

N. SAUER

1. Introduction. A set of points (edges) of a graph is independent if no two distinct members of the set are adjacent. Gallai (1) observed that, if A_0 (B_0) is the minimum number of points (edges) of a finite graph covering all the edges (points) and A_1 (B_1) is the maximum number of independent points (edges), then:

$$A_0 + A_1 = B_0 + B_1 = m$$

holds, where m is the number of points of the graph.

The concepts of independence and covering are generalized in various ways for n-graphs. In this paper we establish certain connections between the corresponding extreme numbers analogous to the above result of Gallai.

Ray-Chaudhuri considered (2) independence and covering problems in *n*-graphs and determined algorithms for finding the minimal cover and some associated numbers. In the terminology of (2), this paper deals with relations between (1, 1, ..., 1)-covers and (1, 1, ..., 1)-matchings of complexes by taking also smaller faces of the simplices into account.

2. Definitions. The cardinal number of a set X is denoted by |X|. If X is a set of sets, then, as usual, $\bigcup X$ denotes the set union of all the members of X.

An *n*-graph $(n \ge 2)$ is an ordered pair of finite sets $G = (V_1, T_n)$, with $T_n \subset \{X \mid X \subset V; |X| = n\}$. Elements of V are the points of G and elements of T_n are the *n*-edges of G.

We assume throughout that: $m = |V| \ge n$, and also that G has no isolated points, i.e.: $V \subset \bigcup T_n$.

If $X \subset Y \in T_n$ and $|X| = k \ge 2$, we call X a k-edge of G. The set of all k-edges is denoted by T_k $(2 \le k \le n)$. An edge of G is a k-edge for some k $(2 \le k \le n)$.

A set of edges E is independent if whenever $X_1, Y \in E, X \neq Y$, then $X \cap Y = \emptyset$. A set of points is independent if it contains no 2-edge of G.

We write $X \in \mathscr{E}^{i}$ if X is an independent set of edges and

$$X \subset T_i \cup T_{i+1} \cup \ldots \cup T_n \qquad (2 \leq i \leq n).$$

Thus

(2.1)
$$\mathscr{E}^2 \supset \mathscr{E}^3 \supset \ldots \supset \mathscr{E}^n,$$

and we simply write $X \in \mathscr{C}^2$ if X is an independent set of edges without restriction.

Received January 19, 1968.

1069

N. SAUER

The value of an independent set of edges $E \in \mathscr{E}^2$ is defined as:

$$v(E) = |\bigcup E| - |E| = \sum_{k=2}^{n} (k-1)n_k,$$

where n_k is the number of k-edges in E.

We observe that if $E_1 \cap E_2 = \emptyset$, $E_1 \cup E_2 = E \in \mathscr{E}^2$, then

$$v(E) = v(E_1) + v(E_2)$$

Furthermore, if $e_1, e_2 \in E \in \mathscr{O}^2$, $e_1 \neq e_2$ and $e = e_1 \cup e_2 \in X \in T_n$, then

(2.2)
$$v(E') = v(E) + 1,$$

where $E' = (E - \{e_1, e_2\}) \cup \{e\}$. This follows from the fact that $\bigcup E' = \bigcup E$ and |E'| = |E| - 1.

If $E \in \mathscr{E}^2$, we define:

$$w(E) = \max\{v(X) \mid X \cap E = \emptyset; X \cup E \in \mathscr{E}^2\}.$$

In particular, w(E) = 0 if and only if E is a maximal independent set of edges. We define:

$$\alpha_i = \max\{v(E) \mid E \in \mathscr{O}^i\} \qquad (2 \leq i \leq n).$$

It follows from (1) that $\alpha_2 \ge \alpha_3 \ge \ldots \ge \alpha_n$. Note, in particular, that if $v(E) = \alpha_2$, then w(E) = 0.

If $E \subset T_2 \cup T_3 \cup \ldots \cup T_n$ and $U \subset T_n$, we write:

$$E < U$$
 or $U > E$

if $E \subset \{x \mid x \subset y \in U\}$.

The set of edges E is said to cover the set of points $V' \subset V$ if $V' \subset \bigcup E$. The least number of *n*-edges which covers all the points V is denoted by a, i.e.:

$$a = \min\{|U|| \ U \in T_n; V = \bigcup U\}.$$

If $U \subset T_n$, $V = \bigcup U$, and |U| = a, we call U a minimal cover.

If $E \in \mathscr{E}^{i}$, $v(E) = \alpha_{i}$, and if there is a minimal cover U > E, we say that i is *G*-admissible and *E* is an admissible set of edges. We will show (Theorem 1) that if i is *G*-admissible and $E \in \mathscr{E}^{i}$ is any admissible set of edges, then

 $w(E) = m - a - \alpha_i = \beta_i.$

Also (Theorem 1) we show that 2 is G-admissible and, of course $\beta_2 = 0$. Consequently, we may define the number:

$$z = \max\{i \mid 2 \le i \le n; i \text{ is } G \text{-admissible}; \beta_i = 0\}$$

which we call the covering number of G.

Let $g_j = |T_j| \ (2 \leq j \leq n)$. If $1 \leq r \leq n, 2 \leq k_1 < k_2 < \ldots < k_r \leq n$, $0 \leq h_i \leq g_{k_i}$ and $0 \leq f_i \leq k_i \ (1 \leq i \leq r)$, then we will write:

(2.3)
$$[k_{i}, h_{i}f_{i}]_{0}^{r}$$

1070

n-GRAPHS

to denote the smallest integer p for which the following statement is true:

S_p: There is $P \subset V$ such that |P| = p and there are sets $N_i \subset T_{k_i}$ $(1 \le i \le r)$ such that $|N_i| = h_i$ and

$$(2.4) |x \cap P| \ge f_i (x \in N_i; 1 \le i \le r).$$

Similarly, we denote by

(2.5)
$$[k_i, h_i f_i]_1$$

the largest integer p such that S_{p}' is true, where the statement S_{p}' is the same as S_{p} except that (2.4) is replaced by

(2.6)
$$|x \cap P| \leq f_i \qquad (x \in N_i; 1 \leq i \leq r).$$

Note that the above definitions of (2.3) and (2.5) are meaningful since S_m holds trivially (with P = V) and S_0 is true (put $p = \emptyset$).

In the special case when r = 1, $k_1 = k$, $h_1 = g_k$, $f_1 = f$, we write $[k_1f]_0$ and $[k_1f]_1$ instead of (2.3) and (2.5).

We observe that if G is a 2-graph, then $A_0 = [2, 1]_0$ and $A_1 = [2, 1]_1$, where A_0 and A_1 are defined in the introduction in order to state Gallai's theorem.

3. Results.

THEOREM 1. (i) If $2 \leq i \leq n, E \in \mathscr{E}^i, v(E) = \alpha_i$, then

$$w(E) \leq m - a - \alpha_i = \beta_i.$$

(ii) If i is G-admissible and $E \in \mathscr{E}^i$ is admissible, then

$$w(E) = m - a - \alpha_i = \beta_i.$$

(iii) 2 is G-admissible and $\beta_2 = 0$.

(iv) If *i* is G-admissible and $i \leq z$, then $\beta_i = 0$.

Note in particular from (ii) and (iv) that $a + \alpha_z = m$. This corresponds to Gallai's theorem for 2-graphs. $(B_0 + B_1 = m_1 \text{ mentioned in the introduction.})$

THEOREM 2. If
$$2 \leq k_1 < k_2 < \ldots < k_r \leq n; 0 \leq f_i \leq k_i$$
 and

$$0 \leq h_i \leq |T_{k_i}| \ (1 \leq i \leq r),$$

then

$$[k_i, h_i, f_i]_0^r + [k_i, h_i, k_i - f_i]_1^r = m.$$

Note in particular that $[2, 1]_0 + [2, 1]_1 = m$. This corresponds to $A_0 + A_1 = m$, Gallai's theorem for 2-graphs.

THEOREM 3. If $2 \leq k' \leq k \leq n$ and $0 \leq f \leq k'$, then

$$[k, k - f]_0 = [k', k' - f]_0, \qquad [k, f]_1 = [k', f]_1.$$

4. Proofs. In order to prove Theorem 1 we require two lemmas.

LEMMA 1. Let $W \subset T_n$, $2 \leq i \leq n$, and let E be a set of maximal value so that E < W, $E \in \mathscr{E}^i$. Also let M be a set of maximal value so that $E \cap M = \emptyset$, $E \cup M \in \mathscr{E}^2$ and M < W. Then there are sets $F, N \subset W$ such that:

(a) $|F| = |E|, |N| = |M|, F \cap N = \emptyset;$

(b) $\cup F = \cup E, \cup M \subset \cup N \subset \cup M \cup \cup E.$

Proof. We first show that, if $e_1, e_2 \in E \cup M, e_1 \neq e_2$, then

$$(4.1) e = e_1 \cup e_2 w \in W.$$

Suppose that this is false and $e \subset w \in W$. If $e_1, e_2 \in E$, then

$$E' = (E - \{e_1, e_2\}) \cup \{e\} < W$$

and $E' \in \mathscr{E}^{i}$ and v(E') = v(E) + 1 by (2.2). This contradicts the maximality of v(E).

If $e_1, e_2 \in M$, then

$$M' = (M - \{e_1, e_2\}) \cup \{e\} < W, \quad E \cap M' = \emptyset, \quad E \cup M \in \mathscr{O}_2,$$

and again v(M') = v(M) + 1 by (2.2). This contradicts the maximality of v(M). Finally, if we assume that $e_1 \in E$ and $e_2 \in M$, then

$$E'' = (E - \{e_1\}) \cup \{e\} < W, \quad E'' \in \mathscr{E}^i \text{ (since } E \cup M \in \mathscr{E}^2)$$

and clearly v(E'') > v(E) which again contradicts the maximality of v(E). This proves (4.1).

It follows from (4.1) and the fact that $E \cup M < W$, that there is an injection $g: E \cup M \to W$ so that:

$$(4.2) g(u) = w \Rightarrow u \subset w, \quad u \subset g(u) \in W (u \in E \cup M).$$

Put g(E) = F, g(M) = N; then (a) holds.

It follows from (4.2) that $\bigcup E \subset \bigcup F$ and $\bigcup M \subset \bigcup N$.

If there is a point $x \in \bigcup F - \bigcup E$, then there is some $e \in E$ so that $x \in g(e) - e$. Then $E' = (E - \{e\}) \cup \{e \cup \{x\}\} < W, E' \in \mathscr{E}^{i}$, and v(E') > v(E), which is impossible. This proves that

$$\bigcup F = \bigcup E$$

Similarly, if there is a point $x \in \bigcup N - \bigcup M \cup \bigcup E$, then there is $e' \in M$ so that $x \in g(E')$ and by putting $M' = (M - \{e'\}) \cup \{e' \cup \{x\}\}$, we contradict the maximality of v(M). This shows that

$$\cup N \subset \cup M \cup \cup E.$$

This completes the proof of (b) and Lemma 1.

LEMMA 2. If $E \in \mathscr{E}^{i}$ and $v(E) = \alpha_{i}$, then there is a set $U' \subset T_{n}$ which covers V such that

$$|U'| = m - w(E) - \alpha_i.$$

n-GRAPHS

Proof. Let M be a set of maximum value so that $M \cap E = \emptyset$, $M \cup E \in \mathscr{E}^2$. Then v(M) = w(E). It follows from the maximal property of v(E) that if $e \in M$, then $e \in T_2 \cup T_3 \cup \ldots \cup T_{i-1}$. Hence, if u_k is the number of k-edges in $M \cup E$, then

$$|\bigcup M \bigcup E| = \sum_{k=2}^{n} k u_k.$$

By Lemma 1 there are $F, N \subset T_n$ such that Lemma 1(a) and (b) hold. Put $P = V - \bigcup E \cup M = V - \bigcup F \cup N$. Then

$$|P| = m - \sum_{k=2}^n k u_k.$$

P is an independent set of points for, if $e \subset P$ and $e \in T_2$, then

$$E \cup M \cup \{e\} \in \mathscr{E}^2$$

and this contradicts the maximality of v(E) or v(M).

Therefore, there is an injection $\psi: P \to T_n$ so that $x \in \psi(x)$ for $x \in P$. Let $L = \psi(P)$ and put $U' = F \cup N \cup L$. Then U' covers V and

$$|U'| = |L| + |N| + |F| = \left(m - \sum_{k=2}^{n} ku_k\right) + \sum_{k=2}^{n} u_k$$

= $m - v(M) - v(E) = m - w(E) - \alpha_i$.

This proves Lemma 2.

Proof of Theorem 1. (i) If $E \in \mathscr{E}^i$ and $v(E) = \alpha_i$, then by Lemma 2 there is a set $U' \subset T_n$ such that $|U'| = m - w(E) - \alpha_i$. The result follows since $|U'| \ge a$.

(ii) Since E is admissible by hypothesis, then there is a minimal cover U such that E < U. Let M be a set of maximal value such that

$$M < U, \quad M \cap E = \emptyset, \quad M \cup E \in \mathscr{E}^2.$$

Then $v(M) \leq w(E)$ by definition of w(E). If $P = V - UM \cup E$, then there is no 2-edge $e \subset P$ such that $\{e\} < U$. Otherwise,

$$U > E \cup M \cup \{e\} \in \mathscr{O}^2,$$

and we contradict the maximality of v(M). Therefore, since U covers V, it follows that there is an injection $\psi: P \to U$ so that $x \in \psi(x)$ for $x \in P$. Put $L = \psi(P)$. Then each element of P corresponds to a unique member of L. By Lemma 1, there are $F, N \subset U$ such that Lemma 1(a) and (b) hold. Clearly, L has no member in common with $F \cup N$ and thus

$$a = |U| \ge |L| + |F| + |N| = m - |\bigcup E \cup M| + |E| + |M|$$

= m - v(M) - v(E) = m - w(E) - \alpha_i.

By Lemma 2, there is $U' \subset T_n$ such that $a \leq |U'| \leq m - w(E) - \alpha_i$. It follows that $a = m - w(E) - \alpha_i$ and this proves (ii).

N. SAUER

(iii) Let $E' \in \mathscr{E}^2$, $v(E') = \alpha_2$. As we already observed, this implies that w(E') = 0. Hence, by Lemma 2, there is a set $U' \subset T_n$ which covers V so that

$$|U'| = m - \alpha_2.$$

Let U be any minimal cover of V and let E be a set of edges of maximal value so that E < U and $E \in \mathscr{E}^2$. By Lemma 1 (with $M = N = \emptyset$), there is a set $F \subset U$ so that |F| = |E| and UF = UE. The maximal condition on v(E) ensures that the set P = V - UE contains no 2-edge n with $\{n\} < U$. Therefore, since U covers V, there is a set of 2-edges $L \subset U$ so that |L| = |P| and each element of P is a member of exactly one edge in L. Thus, the set of 2-edges $F \cup L$ covers V and, since U is minimal, $U = F \cup L$. Therefore,

$$|U| = |F| + |L| = |E| + (m - |\bigcup E|) = m - v(E) \ge m - \alpha_2 = |U'|.$$

Since U is a minimal cover, it follows that $v(E) = \alpha_2$, and hence E is an admissible set and 2 is G-admissible.

(iv) If *i* is *G*-admissible and $i \leq z$, then $\alpha_i \geq \alpha_z$ and by (ii) and the definition of *z*,

$$0 \leq \beta_i = m - a - \alpha_i \leq m - a - \alpha_z = 0,$$

i.e. $\beta_i = 0$.

Proof of Theorem 2. Let P be a set of $p = [k_i, h_i, f_i]_1^r$ points so that S_p is true, i.e. there are sets $N_i \subset T_{k_i}$ $(1 \leq i \leq r)$ so that $|N_i| = h_i$ and (2.4) holds. Let P' = V - P, then

$$|x \cap P'| \leq k_i - f_i \qquad (x \in N_i; 1 \leq i \leq r),$$

and therefore, by the definition of (2.5),

(4.3)
$$m - [k_i, h_i, f_i]_0^r = |P'| \leq [k_i, h_i, k_i - f_i]_1^r = q.$$

Now let g be a set of q points so that $S_{q'}$ is true, i.e. there are sets $N_i \subset T_{ki}$ $(1 \leq i \leq r)$ so that $|N'_i| = h_i$ and

$$|x \cap g| \leq k_i - f_i \qquad (x \in N_i'; 1 \leq i \leq r).$$

Then if g' = V - g, $|x \cap g'| \leq f_i$ $(x \in N'_i; 1 \leq i \leq r)$, and hence (4.4) $m - q = |g'| \geq [k_i, h_i, f_i]_0^r$.

The theorem follows from |A| and |B|.

Proof of Theorem 3. Let P be a set of $p = [k, k - f]_0$ points so that every k-edge of G contains at least k - f elements of P. Let x' be any k'-edge of G. Since $k' \leq k$, there is a k-edge $x \supset x'$. Then

$$|x' - P| \leq |x - P| \leq f,$$

i.e.

 $|x' \cap P| \ge k' - f.$

It now follows from the definition that

$$[k', k' - f]_0 \leq |P| = p.$$

n-GRAPHS

Now let P_1 be a set of $p_1 = [k', k' - f]_0$ points such that every k'-edge contains at least k' - f points of P_1 . Suppose that there is $x \in T_k$ so that $|x \cap P_1| < k - f$. Then there is $y \subset x - P$ so that |y| = f + 1. Since $k' \ge f + 1$, by hypothesis, it follows that there is $x' \in T_{k'}$, so that $y \subset x' \subset x$. Then $|x' \cap P| \le |x' - y| < k' - f$, a contradiction. This shows that

$$|x \cap P_1| \ge k - f \qquad (x \in T_k),$$

and hence $p \leq |P_1| = p_1$. This proves the first relation in Theorem 3. By specializing Theorem 2 we obtain:

$$[k, k - f]_0 = m - [k, f]_1, \qquad [k', k' - f]_0 = m - [k', f]_1,$$

and by inspecting the first relation in Theorem 3, we have:

$$[k,f]_1 = [k',f]_1.$$

Acknowledgement. I am greatly indebted to Professor E. Milner for his help in preparing the final version of this paper.

References

- T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 2 (1959), 133-138.
- 2. D. K. Ray-Chaudhuri, An algorithm for a minimum cover of an abstract complex, Can. J. Math. 15 (1963), 11-24.

University of Calgary, Calgary, Alberta