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Bag film breakup of droplets in uniform airflows
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We present novel numerical simulations investigating the bag breakup of liquid droplets.
We first examine the viscous effect on the early-time drop deformation, comparing
with theory and experiment. Next, a bag film forms at late time and is susceptible to
spurious mesh-induced breakup in numerical simulations, which has prevented previous
studies from reaching grid convergence of fragment statistics. We therefore adopt the
manifold death (MD) algorithm which artificially perforates thin films once they reach
a prescribed critical thickness independent of the grid size, controlled by a numerical
parameter Lsig. We show grid convergence of fragment statistics when utilising the MD
algorithm, and analyse the fragment behaviour and bag film disintegration mechanisms
including ligament breakup, node detachment and rim destabilisation. Our choice of the
critical thickness parameter Lsig is limited by numerical constraints and thus has not
been matched to experiment or theory; consequently, the current simulations yield critical
bag film perforation thicknesses larger than experimentally observed. The influence of
the MD algorithm configuration on the bag breakup phenomena and statistics will be
investigated in future work. We also study the effects of moderate liquid Ohnesorge
number (0.005 � Oh � 0.05) on the bag breakup process and fragment statistics, where a
non-monotonic dependency of the average diameter of bag film fragments on Oh is found.
These results highlight the utility of the MD algorithm in multiphase simulations involving
topological changes, and pave the way for physics-based numerical investigations into
spume generation at the air–sea interface.

Key words: aerosols/atomization, breakup/coalescence, air/sea interactions

1. Introduction

Liquid atomisation refers to the process where a bulk volume of liquid disintegrates into
fragments featuring various sizes and shapes (Guildenbecher, López-Rivera & Sojka 2009;
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Pairetti et al. 2018). The fragments generated are described as sprays, which are involved
in many natural and industrial processes, including ocean–atmosphere interactions (Veron
2015; Erinin et al. 2019), precipitation and rain-drop dynamics (Villermaux & Bossa 2009;
Jalaal & Mehravaran 2012; Veron 2015), combustion of liquid propellant in aerospace
applications (Young 1995), pharmaceutical spray generation (Mehta et al. 2017) and
pathogen transmission (Bourouiba 2021; Kant et al. 2022), etc. More specifically, it
has recently been found that the atomisation of small-scale sea surface perturbations
dominates ocean spume generation under extreme wind conditions, producing large
droplets with typical sizes of 102 ∼ 103 μm (Troitskaya et al. 2017, 2018). In this size range
the currently available sea-spray generation functions (SSGFs), crucial for calculations of
air–sea momentum and heat exchange in Earth-system modelling, show a large range of
scatter (Veron 2015). However, since the physics governing the fragmentation of bag films
have not yet been firmly established, their influences on SSGFs have been difficult to
quantify. Improving this understanding is the primary motivation of the present work.

Two stages of liquid atomisation have been identified within literature, namely the
primary and secondary atomisation. Sheets, ligaments and droplets are stripped from a
bulk fluid during primary atomisation, which further decompose until stabilising capillary
effects take over during secondary atomisation (Pairetti et al. 2018). Secondary atomisation
is typically modelled by the droplet aerobreakup problem characterised by the interaction
between an initially spherical droplet with density ρl, viscosity μl and diameter d0, and an
ambient gas flow with density ρa, viscosity μa and uniform velocity U0 (Guildenbecher
et al. 2009). Based on these physical properties, together with surface tension σ at the
liquid–gas interface, four non-dimensional controlling parameters have been proposed
using Buckingham’s Pi theorem (see e.g. table 1 in Jalaal & Mehravaran 2014)

We ≡ ρaU2
0d0

σ
, Oh ≡ μl√

ρld0σ
, ρ∗ ≡ ρl

ρa
, μ∗ ≡ μl

μa
. (1.1a–d)

Among these, We and Oh are respectively the Weber and Ohnesorge number quantifying
the ratio of inertial to capillary and viscous to capillary forces, and ρ∗ and μ∗ are
respectively the density and viscosity ratios of the liquid and gas phases.

Within the literature, various droplet aerobreakup regimes have been observed where
the droplet shows different deformation patterns, and the transition thresholds between
these regimes have traditionally been delineated using We and Oh (Yang et al. 2017;
Zotova et al. 2019; Marcotte & Zaleski 2019), although some recent works have shown
that the density ratio ρ∗ may also play an important role (Yang et al. 2016; Jain et al.
2019; Marcotte & Zaleski 2019). The value of Oh has been reported to influence the
transition thresholds only when exceeding a critical value of 0.1 (Hsiang & Faeth 1995);
and as We increases, the breakup becomes more violent and vibrational, bag, multi-mode
(bag-stamen), sheet-thinning and catastrophic breakup regimes are observed in succession
(Jalaal & Mehravaran 2014; Kékesi, Amberg & Wittberg 2014). Alternatively, based on
the governing hydrodynamic instability involved in the process, the four breakup regimes
mentioned above can be re-grouped into two major categories: Rayleigh–Taylor piercing
and shear-induced entrainment (SIE) (Theofanous 2011). However, despite the extensive
amount of related work, the underlying physics governing the transient drop deformation
in each regime are still largely unclear. Furthermore, the empirical transition criteria
proposed so far are often contradictory (Theofanous 2011; Yang et al. 2017), with the
notable exception of a consensus that the critical Weber number beyond which bag breakup
initiates is Wec = 11 ± 2 when Oh < 0.1 (Guildenbecher et al. 2009; Yang et al. 2017).
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In the bag breakup regime, the initially spherical droplet first flattens and forms a disc,
whose centre is then blown downstream and inflates into a hollow bag attached to a toroidal
rim. The time it takes for the drop to reach breakup �td typically falls within the range of
τ � �td � 2τ , where τ ≡ √

ρl/ρad0/U0 is the characteristic deformation time proposed
by Nicholls & Ranger (1969). The swollen bag first ruptures near its centre, triggering
expansion of holes on the surface of the bag and eventually bursting into a large number of
fragments, which is then followed by the breakup of the remnant toroidal rim into smaller
numbers of fragments (Chou & Faeth 1998; Guildenbecher et al. 2009; Opfer et al. 2014).
Droplet bag breakup and its associated fragment size and velocity distribution functions
are of specific interest as they bear a strong resemblance to the previously mentioned
bag-mediated fragmentation of small-scale sea surface perturbations under extreme wind
conditions (Troitskaya et al. 2017, 2018).

Droplet aerobreakup involves a complex interplay of aerodynamic, capillary and
viscous effects that is still poorly understood (Jain et al. 2015). The prevalent theoretical
understanding is that hydrodynamic instabilities, particularly Kelvin–Helmholtz (KH)
and Rayleigh–Taylor (RT) instability, play an important role in the aerobreakup process
(Guildenbecher et al. 2009; Theofanous 2011; Theofanous et al. 2012; Jackiw & Ashgriz
2021). The KH instability occurs at the interface between two different streams of fluid
with different velocities and densities (Kundu, Cohen & Dowling 2012). In the context of
large-We droplet aerobreakup, it governs the SIE breakup category (Theofanous 2011), and
is typically found near the drop periphery where the relative velocity between the liquid
and gas phases is the largest (Gorokhovski & Herrmann 2008; Jalaal & Mehravaran 2014).
However, due to strong capillary effects, KH instability is unable to influence droplet
deformation in the bag breakup regime (Theofanous et al. 2012; Jalaal & Mehravaran
2014). The RT instability occurs when a corrugated interface separating fluids with
different densities undergoes constant acceleration (Zhou et al. 2021), and is hypothesised
to cause interfacial perturbation growth on the windward surface of the droplet. The
wavenumber of such perturbations determines whether the droplet undergoes oscillatory
deformation, bag breakup or multi-mode breakup (Yang et al. 2017). However, instability
theories have difficulty in accounting for the viscous effects (Jalaal & Mehravaran 2014),
flow dynamics prior to drop flattening and finite thickness and peripheral boundary of the
flattened disc (Jackiw & Ashgriz 2021). Alternatively, some works highlight the influence
of the internal flow within the droplets on the deformation process (Guildenbecher et al.
2009; Villermaux & Bossa 2009; Jackiw & Ashgriz 2021; Obenauf & Sojka 2021;
Ling & Mahmood 2023). The internal flow model compensates for the drawback of the
RT instability model in predicting early-time drop deformation; however, this approach
is somewhat simplified and cannot account for the complex interaction between wake
vortices and drop surface (Marcotte & Zaleski 2019). The late-time breakup behaviour,
on the other hand, is delineated into a bag film rupturing event, and the fragmentation of
the remnant rim at a later time. The bag film rupture occurs more rapidly and produces
much smaller fragments compared with the remnant rim breakup, and is thus more difficult
to capture (Guildenbecher et al. 2009). It has only recently been clarified experimentally
(Jackiw & Ashgriz 2022) that the major pathways leading to bag fragmentation are the
destabilisation and collision of hole rims as they recede over the curved bag and experience
centripetal acceleration, which is also observed in the numerical simulations of Ling &
Mahmood (2023), where they investigated in detail the morphological changes of the
droplet in the moderate We regime, and benchmarked them against existing theoretical
and experimental results, based on which they improved the internal flow model of Jackiw
& Ashgriz (2021) for prediction of drop deformation. Nevertheless, ensemble-averaged
size and velocity statistics of aerobreakup fragments are still scarce (Zhao et al. 2011)
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and, given the large span in time and length scales, the understanding of what types of
physical mechanisms are involved in the bag film breakup process and how each of them
contributes to the statistics of fragments and dictates their subsequent behaviour remains
unsatisfactory. Furthermore, the effects of the Oh value on the bag breakup phenomena
still remain largely unexplored (Jackiw & Ashgriz 2022).

The earliest research on droplet aerobreakup is mostly experimental, where the droplet
breakup behaviour is recorded and analysed using shadowgraphs, high-speed cameras
and particle image velocimetry (Hsiang & Faeth 1992; Guildenbecher et al. 2009; Jalaal
& Mehravaran 2012; Radhakrishna et al. 2021). Thanks to the recent development of
computational power, numerical studies have provided a way to investigate atomisation
phenomena and gain insight into fundamental mechanisms that are otherwise difficult
to achieve experimentally (Gorokhovski & Herrmann 2008; Ling, Zaleski & Scardovelli
2015). However, serious challenges are also present for computational studies on droplet
aerobreakup, including reaching numerical convergence at large density ratio ρ∗ (Marcotte
& Zaleski 2019; Zotova et al. 2019) and the high computational cost of fully resolving
small-scale fragmentation processes in two-phase turbulence simulations at high We
values (Gorokhovski & Herrmann 2008; Jalaal & Mehravaran 2014; Shinjo 2018), where
the smallest droplet size may be much less than the Kolmogorov scale (Shinjo 2018). There
is also potential need of ensemble averaging when fragments produced from an individual
realisation are not sufficient for obtaining statistically meaningful results (Mostert, Popinet
& Deike 2022). In particular, as the Navier–Stokes equations do not describe the physical
mechanisms that control topological changes at phase boundaries, thin films are subject
to uncontrolled numerical perforation when their thickness approaches the minimum
grid size (Chirco et al. 2022). As a result, the fragment statistics are dependent on grid
sizes (Jackiw & Ashgriz 2022), and numerical convergence with respect to bag fragment
statistics has not previously been obtained to our knowledge. It is therefore of paramount
importance to improve the grid resolution level and make the onset of breakup independent
of the grid size, even though the exact physical mechanism initiating the breakup events
remains elusive (Kant et al. 2022). A few attempts have been made to improve the
numerical resolution of fragmentation or coalescence phenomena. Among these, Coyajee
& Boersma (2009) first proposed a modified volume-of-fluid (VOF) scheme that utilises
multiple marker functions for different fluid interfaces to minimise spurious coalescence
on coarse meshes. Afterwards, Zhang, Chen & Ni (2019) built a topology-based numerical
scheme which automatically refines grid cells containing the liquid film bordered by
two adjacent bubble interfaces. Finally, Chirco et al. (2022) developed an algorithm
that randomly perforates thin films once their thickness reduces to a prescribed critical
value independent of the grid size. This algorithm is controllable via a set of tuning
parameters and has been shown to improve grid convergence behaviour for various
two-phase problems including droplet aerobreakup.

We present results of novel multiphase direct numerical simulation of droplet
bag breakup using both axisymmetric and fully three-dimensional configurations. We
conduct axisymmetric simulations to study pre-breakup deformation dynamics, and
three-dimensional studies coupled with the manifold death (MD) algorithm of Chirco
et al. (2022) to shed light on the breakup dynamics of bag films and acquire statistics
of bag film fragments for further analysis of their behaviour, while leaving the validation
of the MD algorithm with appropriately tuned parameters for the aerobreakup problem to
future work.

Our study is structured as follows. We present in § 2.1 the configuration of our problem
and the parameter space we explore, and then introduce the numerical method in § 2.2.
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Figure 1. Sketches showing the initial configurations of axisymmetric (a) and three-dimensional (b) droplet
aerobreakup simulations. The axis of symmetry is located at the bottom in (a).

We analyse the axisymmetric simulation results in § 3 and compare them with previous
theoretical predictions, focusing on the early-time deformation period where Jackiw &
Ashgriz (2021) predicted a constant spanwise growth rate (§3.1), and the film-thinning
period immediately before bag breakup where an exponential decay model of film
thickness is available (Villermaux & Bossa 2009) (§ 3.2). We then investigate the breakup
of the bag film based on the three-dimensional simulation results, where we first show grid
convergence of fragment statistics using the MD algorithm (Chirco et al. 2022) (§4.1). We
then analyse the size and velocity distributions, and provide an overview of the breakup
mechanisms leading to bag disintegration in § 4.2. Afterwards, we track and reconstruct
the evolution of individual fragments, and study the dependence of their ejection velocity,
lifetime and oscillation patterns in § 4.3. Finally, we investigate the influence of Oh values
on the breakup of bag films (§ 4.4). We provide a summary for the numerical convergence
of bag fragment statistics in § 5, and conclude the study in § 6 with some remarks on future
work.

2. Formulation and methodology

2.1. Problem description
The flow configurations for axisymmetric and three-dimensional simulations are shown
in figures 1(a) and 1(b), respectively. For both axisymmetric and three-dimensional
simulations, a stationary liquid droplet with diameter d0, density ρl and viscosity μl is
placed close to the left boundary, surrounded by an initially quiescent gas phase with
density ρa and viscosity μa. The domain width D is set as 10d0 and 15d0 for axisymmetric
and three-dimensional simulations, respectively, so as to eliminate the influence of finite
domain size on the aerobreakup process. A zero-gradient velocity boundary condition is
applied at the right boundary and a uniform incoming velocity U0 is imposed on the left
boundary, while no-penetration conditions are applied at the other domain boundaries.
This velocity initialisation results in an impulsive acceleration of the droplet at the first
time step, and induces a flow field satisfying both the incompressible constraint and the
conservation of linear momentum (Jalaal & Mehravaran 2014; Marcotte & Zaleski 2019).

As discussed in § 1, the problem is defined by four non-dimensional parameters, namely
the Weber number We, the Ohnesorge number Oh, the density ratio ρ∗ and the viscosity
ratio μ∗. Since we are interested in air–water systems, ρ∗ and μ∗ are set as 830 and 55,
respectively, following the earlier work of Pairetti et al. (2018). We vary We between 12
and 25 in our axisymmetric simulations, while in our current three-dimensional (3-D)
simulations we fix it at 15. In the meantime, Oh is varied between 10−4 and 0.075, which
allows for a comprehensive investigation of viscous effects on bag breakup.
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2.2. Numerical method
We use the open-source Basilisk numerical library (Popinet 2019) to solve the
Navier–Stokes equations for two-phase incompressible, immiscible and isothermal flows,
which are written in the following variable-density form:

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ ·
[
μ(∇u + ∇uT)

]
+ σκδsn. (2.2)

Equations (2.1) and (2.2) are respectively the continuity and momentum equation, where p
is the fluid pressure. Surface-tension effects are incorporated in the volumetric form σκδsn
within (2.2), where σ is the surface-tension coefficient, and κ and n are respectively the
local curvature and normal vector on the interface. The Dirac delta δs is non-zero only on
the interface, indicating the local concentration of surface-tension effects (Popinet 2009,
2018).

The geometric VOF method is applied in Basilisk to reconstruct the interface and
minimise the parasitic currents induced by surface tension (Popinet 2018), which solves
the following advective equation:

∂f
∂t

+ u · ∇f = 0, (2.3)

where f is the VOF function that distinguishes the liquid and gaseous phases, taking the
value of 1 and 0 in the former and latter respectively. For modelling of surface-tension
effects, δsn in (2.2) is approximated as the gradient of the VOF function ∇f using
an adaptation of Brackbill’s method (Brackbill, Kothe & Zemach 1992; Popinet 2009),
and the curvature κ is calculated by taking the finite-difference discretisation of the
derivatives of interface height functions (Popinet 2009). The quad/octree-based adaptive
mesh refinement (AMR) scheme based on the estimation of local discretisation errors
of the VOF function gradient ∇f and flow velocity u is adopted so as to reduce the
computational cost at high resolution levels L, which is defined using the minimum grid
size

Δ = D
2L . (2.4)

As Δ is the smallest length scale at which necks of thinning filaments can be represented,
L sets the length scale at which liquid filament breakup occurs.

In the bag breakup regime, the onset of fragmentation is preceded by the inflation
of bag structure whose thickness reduces considerably over time. While the mechanism
responsible for the puncture of the bag film has been extensively discussed (Lhuissier
& Villermaux 2012; Chirco et al. 2022; Kant et al. 2022), in VOF simulations this
is initiated when the local thickness of the bag decreases to the finest grid size (Ling
et al. 2017), causing the initiation time of breakup and the size of the finest fragments
to be grid dependent. To circumvent this unphysical and numerically uncontrolled
phenomenon, we adopt the MD algorithm recently developed by Chirco et al. (2022),
which artificially perforates thin films once their thickness decreases to a prescribed
critical value independent of the grid size. This enables grid convergence to be reached
in the fragment size distributions and related quantities (Chirco et al. 2022). This is
realised in the Basilisk framework by first computing quadratic moments of the VOF
colour function f on grid cells with a given signature level Lsig � L, which defines the
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critical thickness hc ≡ 3D/2Lsig , the smallest length scale at which liquid films can be
presented as below it they will be artificially perforated by the MD algorithm. The signs
of the computed quadratic moments indicate the local shape of the interface. If a film with
thickness not larger than hc is detected, the algorithm randomly creates cubic cavities on
the ligament by directly setting the value of f to that of the other phase with a probability
pperf . While the total fluid mass is changed when holes are created on thin films, the
MD algorithm is able to minimise this side effect by creating cavities with minimum
sizes that allow for Taylor–Culick expansion, and limiting the maximum number of holes
perforated at every iteration. Further discussion, and details of the parameters used for the
MD algorithm in our study are supplied in § 4.1.

Before the formation of thin bag films and their subsequent breakup, the smallest length
scale in the aerobreakup problem is the thickness of the viscous air boundary layer δ

around the droplet, through which momentum diffuses from the surrounding airflow into
the droplet and drives its deformation. Batchelor’s estimation with the defining length
scale of the droplet d0 yields δ ∼ d0/

√
Re, where Re ≡ ρaU0d0/μa is the free-stream

Reynolds number. For a typical droplet in the bag breakup regime, characterised by Weber
and Ohnesorge numbers We = 15, Oh = 10−3, this corresponds to δ ∼ 1.2 × 10−2d0. The
recommended criteria of δ/Δ � 2 (Mostert & Deike 2020) then requires that the grid
resolution level satisfies L � 12 for simulations with domain size D = 15d0. The highest
grid resolution level we set in our present simulations is L = 14, at which the droplet
contour in our axisymmetric simulations has reached grid independence. The numerical
convergence of fragment statistics will be discussed in detail in § 4.1.

Finally, the droplet diameter d0, incoming flow velocity U0, dynamic flow pressure
p0 ≡ ρlU2

0 and the characteristic deformation time τ introduced in § 1 provide the natural
reference scales for the length, mass and time quantities that appear in (2.1) and (2.2), and
will be used to non-dimensionalise the numerical results in the remainder of this study
unless otherwise specified.

3. Pre-breakup deformation dynamics

Before the onset of bag breakup, the shape of the deforming droplet remains
largely axisymmetric, although the wake region may have become fully turbulent and
three-dimensional. Many previous numerical aerobreakup studies therefore conducted
axisymmetric simulations for a parametric study (Yang et al. 2017; Jain et al. 2019;
Marcotte & Zaleski 2019). In this section, we present our axisymmetric results to
provide an overview of the pre-breakup deformation characteristics of the droplet, while
also verifying our simulation results by comparing with available analytic models and
experimental results.

3.1. Early-time deformation
We first discuss the initiation period of aerobreakup, defined by Jackiw & Ashgriz
(2021) as 0 � t � Ti, where Ti is the time when the droplet reaches its minimal
streamwise thickness. To provide an overview of the early-time droplet deformation
process characterised by spanwise flattening, we first present in figure 2 the droplet
contours extracted from our axisymmetric simulations at various instants within 0 �
t/τ � 0.8 for two different Ohnesorge numbers Oh of 10−3 and 10−2, while the same
Weber number We = 15 is set for both cases. The radial profile is shown with y = 0 as the
axis of symmetry. It is found that during the early deformation stage, the windward surface
of the droplet continues moving downstream and pushing liquid to the drop periphery,
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Figure 2. Early-time development of droplet contours for axisymmetric simulations with Ohnesorge number
Oh = 10−3 (a) and 10−2 (b), while the Weber number We = 15. The axis of symmetry is at y = 0.

leading to the gradual spanwise flattening of the droplet. In the meantime, a dimple
develops on the windward surface that moves downwards and eventually evolves into a
crater on the axis of symmetry for Oh = 10−3, as shown in figure 2(a). The leeward side
of the droplet remains relatively stationary after an initial movement to the left. In contrast,
figure 2(b) shows that the increase of Oh to 10−2 postpones the dimple formation on the
windward surface significantly, which only begins to appear at t/τ = 0.8. Previous works
have attributed the spanwise flattening of the drop to the aerodynamic pressure difference
between the frontal stagnation point and the equatorial periphery (Jackiw & Ashgriz
2021), which drives the internal flow within the droplet against the restoring effects of
surface tension (Marcotte & Zaleski 2019). The airflow quickly separates from the leeward
surface, creating a re-circulation region with low pressure which induces little movement
at the leeward interface (Jain et al. 2015). Formation of similar dimple structures on the
windward surface can also be observed in figure 1 of Marcotte & Zaleski (2019) within the
Weber number range of 11.3 � We � 24 corresponding to bag and bag-stamen breakup.

We briefly examine whether the dimple is a result of RT instability developing on the
windward surface due to wind acceleration. Li, Zhang & Kang (2019) predicted a critical
instantaneous Bond number Boc ≡ ρlαd2

0/4σ = 11.2, beyond which the windward surface
is destabilised. Here, α is the instantaneous acceleration of the liquid droplet. For a droplet
with We = 15, Oh = 10−3, our results show Bo = 0.57 at t/τ = 0.4 when the dimple is
first observed in figure 2(a), much smaller than the threshold value of 11.2 predicted by Li
et al. (2019). Taking into account that the liquid is being primarily pushed from the frontal
stagnation point to the windward side of the periphery around the time of dimple formation
(t/τ ∼ 0.4 in figure 2a), together with the We range where it is observed in Marcotte
& Zaleski (2019), it is more likely that the dimple formation is caused by the capillary
pinching effects against fluid influx, and should therefore be viewed as a precursor of later
rim formation.

For validation of our numerical results, we present in figure 3 the evolution of the
maximum spanwise radius of the drop Rm and the streamwise length of the bag Lbag
measured from our axisymmetric and 3-D numerical simulations at We = 15, Oh =
2.5 × 10−3, and compare them with the available experimental results of Jackiw &
Ashgriz (2021) and Flock et al. (2012). It can first be seen that the axisymmetric and
3-D numerical results agree excellently until t ≈ 1.5τ , when the axisymmetric simulation
shows a smaller bag length in figure 3(b). This late-time deviation most likely arises from
the lack of 3-D flow instability development in axisymmetric simulations (Marcotte &
Zaleski 2019), which may break the symmetry of the bag and limits its streamwise growth.
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Figure 3. Comparison of our axisymmetric and 3-D simulation results for the evolution of bag length (a) and
width (b) at We = 15, Oh = 2.5 × 10−3 with the experimental data of Jackiw & Ashgriz (2021) and Flock
et al. (2012). The breakup lengths and widths for various Oh values are included as scattered points, and the
balance time Tbal = 0.125τ proposed by Jackiw & Ashgriz (2021) is also plotted for reference.

Both our axisymmetric and 3-D simulation results agree well with the experimental data of
Jackiw & Ashgriz (2021) up to t/τ = 1, after which the experimental results show faster
growth in both Rm and Lbag. This may be due to the sensitivity of the flattened drop to
difference in the ambient flow conditions, as in our numerical simulations the air-phase
flow remains laminar, whereas the experimental configuration of Flock et al. (2012) and
Jackiw & Ashgriz (2021) in fact produces air-phase turbulence, which has been shown by
Zhao et al. (2019) to be capable of increasing the height and width of bags at late time
(see e.g. their figure 6). More specifically, Jackiw & Ashgriz (2021) used a 5 gauge air
needle (whose diameter Dn is only 2.48 times of the droplet diameter d0) to generate air
jets with centreline Reynolds number Rea of 5.2 × 103 ∼ 2.5 × 104, apart from needles
for suspending the drop within such air jets. In the case of Flock et al. (2012), air jets
are produced through a nozzle with diameter Dn ≈ 11d0, but the airflow is also turbulent
with Rea = 1.8 × 104. The results of Jackiw & Ashgriz (2022) are obtained from single
experimental runs without being ensemble averaged, which may lead to larger variations
in their results, as also noted in the comparison of numerical results by Ling & Mahmood
(2023). Additionally, note that in figure 3(a), the experimental results of Jackiw & Ashgriz
(2021) and Flock et al. (2012) show some mutual disagreement in the spanwise radius
values within the range of t/τ � 1.5.

The bag lengths and widths recorded at various Oh values at the point of breakup are
also included as scattered points in figure 3, which we will return to in § 4.4. It can be
seen that our bags approach breakup within the time range of 1.74 � t/τ � 1.91, earlier
than the experimental results of Jackiw & Ashgriz (2021) (t = 2.2τ for We = 15.3). On
the other hand, Flock et al. (2012) did not report the exact time at which bag breakup is
initiated. This earlier breakup time is associated with the limit of grid resolution, and hence
Lsig on the critical thickness at which the bag film is perforated by the MD algorithm, as
at Lsig = 13, the critical thickness is 3D/2Lsig = 5.5 × 10−3d0, which is a few times larger
than the experimental value of h/d0 = 1.2 × 10−3 as found by Jackiw & Ashgriz (2022),
and 5 × 10−5 � h/d0 � 5 × 10−4 by Opfer et al. (2014). This is a limitation present in all
numerical simulations of droplet aerobreakup, as is also noted in the recent work of Ling
& Mahmood (2023).

Furthermore, Jackiw & Ashgriz (2021) found experimentally that there exists an early
period featuring constant growth rate of the maximum spanwise radius of the droplet Rm,
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and proposed the following model for its prediction

Ṙ = d0Tbal

8τ 2

(
a2 − 128

We

)
, (3.1)

where a is the axial stretching rate near the frontal stagnation point and approximated
as a � 6; τ is the characteristic deformation time introduced in § 1; and Tbal is the time
when a constant streamwise deformation rate is reached, taken as 0.125τ according to
the experimental results (Jackiw & Ashgriz 2021). We note that this model is derived
assuming ellipsoidal or cylindrical droplet shape and a balance between aerodynamic and
capillary forces during deformation, which leads to a purely radial internal velocity profile
that cancels out the viscous effects.

We now investigate (3.1) using our axisymmetric numerical results. Figures 4(a) and
4(b) show respectively the influence of We and Oh on the measured instantaneous spanwise
growth rate ˜̇R, where the tilde indicates normalisation by the theoretical value (3.1).
We also include the growth rate evolution obtained by numerically differentiating the
experimental data presented in figure 28 of Jackiw & Ashgriz (2021) for comparison.
For the small Oh value of 10−3, figure 4(a) indicates that the spanwise growth rate ˜̇R
reaches a plateau with relatively small variations around t = 0.3τ , where the prediction
of (3.1) matches qualitatively with the measured ˜̇R values. We note that while Jackiw &
Ashgriz (2021) set Tbal = 0.125τ as an a posteriori estimation based on the evolution
of Rm rather than ˜̇Rm when analysing their figure 17(b), our results agree well with the
spanwise growth rate computed from their experimental data up to t = 0.74τ , with their
data also reaching a plateau around t = 0.3τ . The growth rate of Jackiw & Ashgriz (2021)
becomes much larger than ours for t > 0.74τ , corresponding to the larger Rm values
observed in figure 3(a), which is possibly a result of air-phase turbulence as previously
discussed. For cases at Oh = 10−3, this period of constant ˜̇R ends around t = 0.55τ ,
after which ˜̇R reaches a peak around t = 0.6τ and then decreases, indicating a deviation
from model (3.1) absent in the analyses of Jackiw & Ashgriz (2021). On the other hand,
figure 4(b) suggests that as Oh increases beyond 2.5 × 10−3, the late-time peaking of ˜̇R
gradually attenuates, while the match with (3.1) is improved and maintained for longer
periods of time, which is particularly interesting as (3.1) is derived based on inviscid flow
assumptions and cannot account for viscous influences. Note that Jackiw & Ashgriz (2021)
tested droplets for which Oh = 2.7 × 10−3; our numerical results are therefore consistent
with their experiment.

Returning to figure 2(a) suggests that, during the period 0.3τ � t � 0.55τ when

the constant growth rate ˜̇R is observed, the liquid is being pushed from the frontal
surface to the windward side of the periphery, where the maximum spanwise radius
is reached. However, at t = 0.6τ , when the peaking behaviour is observed, a bulge
appears downstream and causes a location shift where the maximum spanwise radius R
is reached. This bulging behaviour is also present in the growth rate evolution computed
from the experimental data of Jackiw & Ashgriz (2021) at Oh = 2.7 × 10−3, but virtually
absent when Oh = 10−2 in our numerical simulations, as shown in figure 2(b), where the
periphery of the droplet contour only flattens over time.

To provide insights into physical mechanisms governing the peak in the spanwise growth
rate observed for low Oh values in figure 4, we plot in figure 5 the pressure distribution

and streamlines near the drop periphery, when the peaks in the spanwise growth rate ˜̇R are
reached in figure 4(b) for We = 20, Oh = 10−3 and We = 15, Oh = 10−2. It can be seen
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Figure 4. Measured droplet spanwise growth rate compared with the experimental data of Jackiw & Ashgriz
(2021). Evolution of instantaneous spanwise growth rate ˜̇R at various We and Oh = 10−3 (a) and various Oh
with We = 15 (b) are plotted; and the results are normalised using (3.1).
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Figure 5. Flow fields near the tip of a droplet with We = 20, Oh = 10−3 (a) and We = 15, Oh = 10−2

(b) when the peaks in Ṙ are reached. The non-dimensional times at which (a,b) are taken are respectively
t/τ = 0.62 and 0.66.

that the surrounding gas flow separates from the droplet surface at the windward side of the
periphery, creating attached recirculating vortices in its wake with low pressure and slow
fluid motion (Jain et al. 2019; Marcotte & Zaleski 2019), where the bulges are located. The
pressure difference in the surrounding flow between the frontal stagnation point and the
recirculating region drives the internal flow within the droplet from the windward surface
to the periphery. Furthermore, the peaks in ˜̇R observed when Oh � 0.005 are associated
with the formation of a high-pressure region at the bulge on the droplet periphery, as can
be seen in figure 5(a), which is caused by surface tension and decelerates the flow into
the bulge. Further development of the bulge leads to an increase in the local capillary
pressure, which causes the decrease in ˜̇R after the peak. Notably, the droplet contour in
figure 5(b) at Oh = 10−2 lacks craters at the axis of symmetry and bulges at the periphery,
and therefore more closely resembles the cylindrical shape of the deforming drop assumed
in the derivations of (Jackiw & Ashgriz 2021), which may explain why the match with the
inviscid model (3.1) is improved as Oh is increased.

We further investigate the distribution patterns of flow pressure and velocity in
the vicinity of the droplet, and their association with prediction (3.1) of Jackiw &
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Figure 6. (a) Evolution of air (pa, solid lines) and liquid pressures (pw, dotted lines) on either side of the
droplet interface as functions of the interfacial arc length l; (b) axial airflow velocity uz on the axis of symmetry
as a function of the distance to the windward stagnation point of the droplet z. The values of We and Oh are
respectively 15 and 10−3.

Ashgriz (2021). Figure 6(a) shows the air- and liquid-phase pressure on either side of
the drop surface as functions of the arclength l traversing along the axisymmetric droplet
contour in the clockwise direction. It can be seen that at very early time (t/τ = 5 × 10−2),
the air-phase pressure profile closely follows the sinusoidal potential-flow solution for
l/d0 � 0.6, which corresponds to the windward face of the drop; whereas the profile at
l/d0 > 0.6 deviates from the potential-flow solution due to flow separation, characterised
by a second minimum around l/d0 = 1.2. We also note that at t/τ = 5 × 10−2 the shape of
the liquid-phase pressure profile bears strong resemblance to its air-phase counterpart, with
a nearly uniform upshift due to the constant capillary pressure difference 4σ/d0. As the
droplet flattens over time, the air-phase pressure profile on the windward surface increases
and the first minimum moves upstream, deviating from the potential-flow solution. In the
meantime, the change in liquid-phase pressure for l/d0 � 0.37 is relatively small, and the
air- and liquid-phase pressure profiles cross over each other at l/d0 = 0.37 and t/τ = 0.4,
signalling the dimple formation on the windward surface as the local radius of curvature
reaches infinity. It is also noted that the minimum of the liquid-phase pressure profile
around l/d0 = 0.85 observed at t/τ = 0.4 becomes a maximum at t/τ = 0.6, which
corresponds to the bulge formation observed in figure 5(a) that leads to the deviation from
(3.1) (Jackiw & Ashgriz 2021).

Figure 6(b) shows the air-phase axial velocity ux measured on the axis of symmetry
as a function of the distance to the windward stagnation point of the drop z/d0, where
the slope of the curves corresponds to the axial stretching rate a used in model (3.1). It
is first observed that the axial velocity value at z/d0 = 0 increases gradually over time,
which is because the measuring point is located in the air-phase boundary layer attached
to the accelerating droplet. The axial stretching rate a is found to gradually decrease from
6 and approach 4/π, the extreme values corresponding to spherical and pancake drop
shapes as noted in Jackiw & Ashgriz (2021); crossing over the intermediate value of 2

√
2

proposed by Kulkarni & Sojka (2014). The decrease of a corresponds to the air-phase
pressure increase on the windward surface as observed in figure 6(a) via the following
equation:

pg(r) − pg(0) = −ρg
a2U2

0

8d2
0

r2. (3.2)
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Figure 7. (a) Evolution of axisymmetric droplet contours with We = 15 and Oh = 10−3, where the axis of
symmetry is at y = 0. (b) Droplet contours at t/τ = 1.73 with various Oh values and We = 15.

Consequently, we conclude that our numerical results reproduce the prediction (3.1)
of Jackiw & Ashgriz (2021) that there exists a period characterised by a constant
spanwise radius growth rate ˜̇R. Furthermore, we find that the later deviation from (3.1)
is characterised by a peak in ˜̇R, which is caused by the capillary deceleration of liquid
influx into the drop periphery that causes bulge formation at low Oh values. The increase
in Oh eliminates the bulge and the frontal crater on the droplet surface, and the droplet
acquires a nearly cylindrical shape which is one of the underlying assumptions by Jackiw
& Ashgriz (2021) when deriving (3.1), hence the better match with their model.

3.2. Film drainage and onset of bag breakup
When the droplet deforms into a disc at the end of the early-time deformation period,
corrugations develop on their frontal surfaces which have generally been considered as RT
perturbation waves (Yang et al. 2017). This appears in figure 7(a) at t/τ = 0.95, We = 15,
in the form of waves on the windward surface of the droplet. Later on, thick rims are
observed to form at the drop periphery due to capillary pinching effects, which extract
liquid from the drop centre and contribute to the formation of bag films near the axis
of symmetry. Subject to the aerodynamic pressure difference between their frontal and
leeward surfaces, these films further bulge out from the rim (Jackiw & Ashgriz 2021) and
cause exponential growth of streamwise bag length before breakup.

Figure 7(a) shows non-uniform profiles of the bag thickness h, featuring a neck where
a local minimum in h is reached and the film breakup eventually occurs. The neck moves
outwards radially at We = 15, leaving a thickening remnant stamen structure developing
at the axis of symmetry (Marcotte & Zaleski 2019). Figure 7(b), on the other hand, shows
the deformed drop contours at t/τ = 1.73 for various Oh values; and it can be seen that
as Oh increases, the neck becomes less obvious as the distribution of bag film thickness
becomes more uniform.

It has been argued that the breakup of bag films is due to an RT instability peculiar to
thin films rather than a finite-time singularity of the Navier–Stokes equations (Villermaux
& Bossa 2009). Assuming inviscid flow and uniform bag thickness, Villermaux & Bossa
(2009) derived the following exponential decay model for the film thickness h:

h(t) ∼ d0e−λt, (3.3)
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Figure 8. The evolution of film thickness h for tb − 0.87τ � t � tb, measured from simulations with various
We with Oh = 10−3 (a) and various Oh with We = 15 (b). For a droplet with We = 15, Oh = 0.001, the breakup
time is tb/τ = 1.84, and tb − 0.87τ = 0.97τ . As figure 7(a) shows, over this period a bag is blown out from
the centre of the flattened disc. Villermaux and Bossa’s prediction (3.3) is also plotted for comparison.

where the exponential decay rate λ is given as 4/τ . We compare our numerical results with
the predictions of model (3.3) in figure 8. The film thickness h is calculated by measuring
the minimum distance between the windward and leeward surfaces of the deformed drop
contour over a time period of tb − 0.87τ � t � tb, where tb is the time when film breakup
is detected. Logarithmic scale is used for the y axis to facilitate comparison of the decay
rate λ.

It can be seen that, for the We and Oh range presented in figure 8, the exponential decay
rate λ is initially close to the prediction of (3.3). This phase, which features a constant
thickness decay rate, roughly corresponds to the period of rim development prior to the
‘bulging’ of bag films, which is shown in figure 7. However, the decay rate increases as the
film continues thinning and approaches breakup, similar to the result of Kant et al. (2022),
which becomes more significant as We and Oh decrease. Most notably, at We = 12 the
thinning rate continuously increases close to the onset of breakup, which suggests that an
exponential decay law in the form of (3.3) does not fully capture the underlying physics
for film drainage with strong surface tension.

Developing new theoretical models in place of (3.3) whose predictions match better
with the late-time neck drainage behaviour observed within the We and Oh range of
interest is out of the scope of the current work. We note briefly that the drainage
behaviour of bag films under the influence of aerodynamic pressure difference observed
here bears resemblance to the drainage of liquid films between a free air–water surface
and a buoyancy-driven air bubble (Pigeonneau & Sellier 2011; Kočárková, Rouyer &
Pigeonneau 2013; Guémas, Sellier & Pigeonneau 2015), where film drainage models are
developed based on lubrication assumptions (see § 4.2 of Magnaudet & Mercier (2020)
and references therein for more detailed discussions). More specifically, Pigeonneau &
Sellier (2011) also showed a deviation from exponential decay of bubble film thickness
under asymptotically large surface tension, which is ascribed to a finite-time singularity
and contrasts with the thin-film RT instability mechanism proposed by Villermaux &
Bossa (2009). However, the major difference between the bag and the bubble film drainage
problem lies in the location of the neck. For the drainage of bag films, the neck can
be formed some distance away from the axis of symmetry due to a competition of
inertia between the outer rim and the inner stamen (Marcotte & Zaleski 2019), which
complicates theoretical modelling due to additional difficulties in predicting time-varying
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neck locations. In contrast, bubble film drainage always occurs on the axis of symmetry,
as the thin bubble film is connected to an infinitely large and quiescent liquid domain.

4. Breakup of bag films

In this section, we analyse our 3-D simulation results during the period when the bag film
undergoes disintegration to form small fragments, and the axisymmetric flow assumption
completely breaks down. It is noted that the late stage of aerobreakup is not covered
when the receding remnant bag collides with the surrounding main rim and triggers the
fragmentation of the latter (Jackiw & Ashgriz 2022), which will be reserved for future
work.

4.1. Grid convergence for fragment statistics
While the physical mechanisms responsible for the onset of liquid film breakup in general
remain an active research topic, with various candidates proposed including chemical or
thermal inhomogeneities (Kant et al. 2022), Marangoni effects (Lhuissier & Villermaux
2012) or presence of surface contamination (Néel & Villermaux 2018), it has been argued
that for bag films under normal acceleration, thickness modulations arise across the film
due to the RT instability, resulting in perforation when the perturbation amplitude becomes
comparable to the film thickness h (Villermaux & Bossa 2009; Jackiw & Ashgriz 2021).

Numerically, the perforation and subsequent fragmentation of thin films in droplet
breakup problems has historically been challenging to represent in a physically consistent
manner. Given that perforation involves a topological change in the air–water interface,
numerical studies have usually employed interface-capturing techniques such as the
geometric VOF approach employed here (Jain et al. 2015, 2019; Tang et al. 2021);
such methods can represent interfacial topological change without a need for extensive
special treatment. However, such techniques also tend to suffer from an unphysical
and numerically uncontrolled perforation and fragmentation mode in thin films, which
moreover compromises numerical convergence of the statistics of the resulting fragment
populations (Chirco et al. 2022). In this phenomenon, when the film thickness approaches
the local mesh size, it begins to destabilise, generating a large number of small fragments
without a well-defined fragmentation mechanism; figure 9(a) shows a qualitative
illustration of this phenomenon in our own simulations. This phenomenon also appears
in images of droplet breakup in Jain et al. (2015); unfortunately, information on numerical
convergence of fragment statistics is not supplied in that study.

The MD algorithm constructed and implemented by Chirco et al. (2022) into Basilisk
aims to bypass this spurious mode of fragmentation. This algorithm detects and artificially
perforates thin films periodically by removing liquid mass once their thickness decreases
to a prescribed critical value. The key point is that VOF breakup is circumvented because
the film is perforated at a thickness greater than what is required for VOF breakup to
occur. A limitation of the MD method is that it removes mass from the droplet in order to
generate the hole, which disturbs the momentum and mass conservation properties of the
VOF scheme as implemented in Basilisk. We find in practice that the parameters of the MD
algorithm can be adjusted so that sufficiently few holes are formed in these simulations
and this mass loss becomes insignificant (see below).

The holes created by the MD perforation mechanism resemble those appearing in
experiments (such as Lhuissier & Villermaux 2013; Jackiw & Ashgriz 2022; Kant et al.
2022) – see figure 9(b). The algorithm also affords considerable user control over the
frequency and location, for example, of the perforations. In the present study, we control
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(b)(a) (c)

Figure 9. Effect of the MD algorithm on the bag breakup behaviour at grid level L = 12 and 13 for We = 15,
Oh = 10−3. (a–c) Simulation snapshots showing fragmenting bag films at t/τ = 1.909 without (a) and with
artificial perforation (b,c). The grid resolution level is L = 12 for (a,b) and 13 for (c), while the MD signature
level for (b,c) is Lsig = 12.

perforation frequency using a probabilistic approach which is scaled to be independent of
parallelisation, resolution and the calling interval of the algorithm, in order to minimise
the number of free parameters governing the perforation problem. The appropriate choice
of probability to match the efficiency of hole generation in experimental studies, such as
those seen in Lhuissier & Villermaux (2012) and Vledouts et al. (2016), is a complicated
problem which is left for future work. Our aim in this study is instead to establish
numerical convergence and verify various aspects of the resulting fragmentation process
with experiment and theory, which in our knowledge has not been established in previous
numerical studies.

All grid convergence test cases we conduct in this section are reloaded from a single
3-D simulation snapshot with an intact bag at We = 15, Oh = 10−3 and the perforation
probability and calling interval for the MD algorithm are set as pperf = 5.7 × 10−5 and
�tc = 0.5d0/U0, with grid level L = 12, 13, 14 and signature level Lsig = 11, 12, 13 (see
§ 2 for their definition). The fragment statistics are collected and output at fixed time
intervals until the bags have fully disintegrated, and then post-processed to obtain time-
and/or ensemble-averaged data. It is noted that as the test cases run without using the
MD algorithm are deterministic in the sense that VOF breakup appears repeatably in the
same locations of the thin film, while producing a large number of very small fragments,
only one realisation is completed at each L value; whereas the MD algorithm introduces
randomness in the perforation location and subsequent fragment formation, while also
reducing the number of fragments, and therefore multiple realisations are completed for
a given set of L and Lsig to generate sufficient total number of fragments for ensemble
averaging. A full list for the configurations of the 3-D numerical simulations is available
in table 1.

We first demonstrate the effects of the MD algorithm on the breakup behaviour of the
bag film in figure 9. The film rupture behaviour is qualitatively different with and without
application of the MD algorithm. Figure 9(a) is a snapshot for a simulation case run
without using the MD algorithm, featuring numerous small-scale irregular corrugations
and ligament breaking on the bag, which reflect the uncontrolled nature of VOF breakup.
Figures 9(b) and 9(c) show that the MD algorithm is able to create holes on the bag film in
a controlled manner, and reduce the influence of VOF breakup on the bag dynamics. These
holes created by the MD algorithm feature well-defined bordering rims that recede over
the bag and create surface capillary waves ahead of them, and these may collide with one
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We Oh L Lsig Realisation No. Category

15 10−3 12 N/A 1 Convergence – VOF
15 10−3 13 N/A 1 Convergence – VOF
15 10−3 14 N/A 1 Convergence – VOF
15 10−3 13 11 10 Convergence – MD
15 10−3 13 12 5 Convergence – MD
15 10−3 13 13 3 Convergence – MD
15 10−3 14 13 7 Convergence – MD
15 10−3 14 13 3 Oh Study
15 10−4 14 13 2 Oh Study
15 5 × 10−4 14 13 1 Oh Study
15 10−3 14 13 3 Oh Study
15 5 × 10−3 14 13 3 Oh Study
15 10−2 14 13 3 Oh Study
15 2.5 × 10−2 14 13 3 Oh Study
15 5 × 10−2 14 13 3 Oh Study
15 7.5 × 10−2 14 13 1 Oh Study

Table 1. List of ensemble realisations for 3-D numerical simulations carried out in this work, where the drop
Weber and Ohnesorge numbers We and Oh, the grid and signature levels L and Lsig, the number of individual
realisations and the purpose for using the ensemble data (the grid convergence study for §§ 4.1 and 4.2, or the
Oh effect study in § 4.4) are indicated.

another and form a few long stretching liquid bridges (Agbaglah 2021), which are distinct
from the numerous short and irregular bridges observed with VOF breakup. Note that
figure 9(b) still shows some VOF breakup behaviour which is absent in figure 9(c). This
reflects the fact that, even though the film is perforated when the film thickness reaches the
order of 3Δsig, the perforation probability and the rate of hole expansion are sufficiently
low such that there are regions of the film that continue to thin down to the order of Δ,
where VOF breakup begins. In figure 9(b), Δ = Δsig, so that VOF-induced fragmentation
still appears, but this can be further minimised by choosing L > Lsig, such as in figure 9(c).

Figure 10 further compares the grid convergence behaviour for the size and velocity
distribution of bag fragments without and with the MD algorithm applied. The fragment
data are sampled at different times throughout the bag film breakup period, and then
collected and binned based on the equivalent fragment diameter d to produce the
size and velocity distribution functions. While the distribution functions presented in
figures 10(a)–10(d) are for single realisations, those in figures 10(e)–10( f ) are ensemble
averaged for each bin over different realisations; and we have verified that the total
number of bins does not significantly influence the shape of size and velocity distributions.
Figure 10(a) shows the fragment size distribution functions obtained from individual
simulations without application of the MD algorithm. It can be seen that, while the
distributions have similar shapes at various grid levels L, i.e. featuring large number
densities of small fragments near the minimum grid size, followed by a fall off at large
fragment sizes, there is no clear indication of the distribution functions reaching grid
convergence. In particular, it is observed that, as L increases, the entire size distribution
shifts to smaller sizes. In contrast, figure 10(c) presents the fragment size distribution
functions obtained from individual realisations within the range of 13 � L � 14 and 11 �
Lsig � 13 when the MD algorithm is used. While more scatters in the size distribution
functions are seen when compared with figure 10(a) due to smaller amounts of fragments
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produced, we no longer observe the shift to small fragment sizes for the distribution tail
with d � 8Δsig, which is the range for well-resolved fragments as observed by Chirco
et al. (2022); and size distributions at different grid and signature levels appear to overlap
for d � 8Δsig despite these scatters. Figure 10(e) further presents the ensemble-averaged
size distribution functions obtained with the MD algorithm applied, which features much
smaller range of scatter, as indicated by the confidence bounds represented by the grey
shade at L = 14, Lsig = 13, showing clearly that the distributions of fragment statistics
overlap for d � 8Δsig at different values of L and Lsig. From this we conclude that the
ensemble-averaged data are grid converged for d � 8Δsig and 13 � L � 14, L > Lsig.
Moreover, together figures 10(a), 10(c) and 10(e) establish that the lack of grid convergence
in the no-MD case (figure 10a) is attributable not to the scatter of individual realisations,
but specifically to numerically uncontrolled VOF breakup.

We also include the experimental data of Guildenbecher et al. (2017) obtained with
We = 13.8 and Oh = 5.43 × 10−3 in figure 11, together with exponential and log-normal
models fitted to their data. Guildenbecher et al. (2017) noted the difference between the
size distributions obtained using two experimental techniques with different resolution
levels, and expressed most confidence in the upper tail of the distributions satisfying
d � 0.01d0. Within this size range, the tails of our size distribution and those of
Guildenbecher et al. (2017) show excellent agreement, which further validates our
numerical results within the size range of d � 8Δsig. While we leave for future work the
detailed investigation of possible differences in fragmentation mechanisms between our
present results and the experiments of Guildenbecher et al. (2017) and Jackiw & Ashgriz
(2021, 2022), the present remarkable agreement with experimental data at larger fragment
sizes suggests that the upper tails of the size distribution do not depend on whatever these
differences may be. Both the exponential and the log-normal model are found to match
well with the current size distribution functions for d � 8Δ, while both differ from the
current results within the range of d < 8Δ, which may suggest that no single function can
represent the complete spectrum of the current size distribution of bag fragments.

It is noted that, in figure 10(e), the fragment statistics are not fully converged for
d � 8Δsig, where compared with its counterparts at L = 13, the size distribution at L = 14
shows more fragments satisfying Δ � d � Δsig, and fewer fragments with Δsig � d �
8Δsig. This is probably because the fragments within this range are primarily formed
due to the breakup of liquid ligaments, especially the smallest fragments near the grid
size, which are most likely the satellite drops produced from the capillary breakup of
corrugated slender ligaments (Pal et al. 2021). These are controlled by the grid level L
rather than the signature level Lsig, as the geometry-specific MD algorithm only targets
thin liquid films in 3-D simulations and does not act in the stretch-induced breakup of
liquid ligaments. Our numerical results for d � 8Δsig also deviate from the log-normal
function fit of Guildenbecher et al. (2017), which may be due to multiple factors including
the difference in We, the presence of additional flow perturbations in experiments, and
possibly resolution limits in experimental equipment, as exemplified by a comparison
performed in figure 9 of Guildenbecher et al. (2017). On the other hand, the size
distribution function of very large fragments satisfying d � 0.1d0 show relatively larger
range of scatter compared with their smaller counterparts around 8Δsig, which likely arises
from the smaller number of these fragments produced in each ensemble realisation and can
be further reduced by increasing the ensemble size. Finally, we remark that the influence
of MD on mass conservation is minimal as the loss of liquid mass incurred by the MD
algorithm does not exceed 0.023 % for t/τ � 2.18 at L = 13 and 14.

Figures 10(b), 10(d) and 10( f ) show the average speed v̄ of fragments as functions
of the fragment diameter d obtained from simulations without and with the MD
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Figure 10. Time- and ensemble-averaged size (a,c,e) and speed (b,d, f ) probability distribution functions of
aerobreakup fragments obtained from simulations without using the MD algorithm (a,b), from an individual
realisation (c,d) and from ensemble-averaged data across various realisations with the MD algorithm applied
(e, f ) at various grid resolution and signature levels. Confidence bounds for each bin are computed across
different ensemble realisations at L = 14, Lsig = 13 using the bootstrapping method, and plotted in (e, f ) using
shaded area. For all test cases, We = 15 and Oh = 10−3.

algorithm applied. Similar to the size distribution functions, the shapes of the distribution
of v̄ clearly indicate grid convergence for the tail constituted by the well-resolved
fragments with d � 8Δsig in figure 10( f ), which is not observed in figure 10(b) where
large scatters across various grid levels are present. Interestingly, in figure 10( f ), fragments
with diameter d � 8Δsig show little variation in the average speed, which appears to be a
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Figure 11. Fragment size distribution function measured from our L = 14, Lsig = 13 simulations, compared
with the experimental data of Guildenbecher et al. (2017) measured at two different apparatus resolutions. A
zoom-in view is provided as an inset to facilitate comparison of different size distribution functions within
the size range of 0.01 � d/d0 � 0.1. Exponential and log-normal functions fitted to the experimental size
distribution function are also included.

constant independent of the values of L and Lsig; whereas a peak can be observed within
the range of Δsig � d � 8Δsig which is grid dependent, along with the large increase of
the speed of tiny fragments close to Δsig which approaches the free-stream velocity U0.
While it is clear therefore that the production mechanisms of droplets satisfying d � 8Δsig
may not be grid converged, the resulting dynamics of these small droplets turns out to be
well resolved; more detailed analysis establishing this will follow in § 4.2.

In summary, our results in this section demonstrate that the application of the MD
algorithm helps to establish grid convergence of fragment size and speed statistics for
well-resolved fragments with diameter d � 8Δsig, which is not achieved when VOF
breakup is dominant. Based on these results, all following 3-D studies of bag film breakup
are conducted at L = 14 and Lsig = 13.

4.2. Mechanisms leading to bag fragmentation
In this section, we further analyse the fragment statistics obtained from our grid
convergence tests run at L = 14 and Lsig = 13, to provide insight into the shapes of the
size and distribution functions observed in § 4.1, and the physical mechanisms governing
the formation of fragments and their subsequent evolution patterns. These choices of
L and Lsig, together with the MD parameters specified in § 4.1, allow the creation of
only a few holes on the bag film, which is not only enough to avoid the onset of VOF
breakup, but also preserves abundant film breakup phenomena including rim recession,
collision and destabilisation behaviour that would otherwise be hard to recover with more
holes created, where rim collision would dominate (Vledouts et al. 2016). As is noted in
§ 3.1, our film is thicker and breaks up earlier compared with experimental results due to
the limit of grid resolution. This leads to smaller Taylor–Culick velocity values, which
reduces the probability of destabilisation of receding liquid rims (Jackiw & Ashgriz 2022)
and production of fine drops (Néel & Villermaux 2018); but our results show that many
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Figure 12. Ensemble-averaged instantaneous size distribution functions (a), and probability distribution
functions of axial (b) and radial (c) speed of aerobreakup fragments calculated at L = 14 and Lsig = 13.
Ensemble- and time-averaged fragment size distribution function is also plotted in (a) for reference.

interesting breakup mechanisms can already be captured with this choice of Lsig, which
we will present further below.

We first show in figure 12 the time evolution of the instantaneous distributions of the
size, axial and radial speed distributions of the fragments produced from bag breakup.
Figure 12(a) indicates that, immediately after the onset of bag breakup (t/τ = 1.96), only
small fragments close to the minimum grid size are produced, and well-resolved larger
fragments satisfying d � 8Δsig only come into existence as time elapses, and are always
fewer compared with small fragments near the grid size. The shape of the size distribution
function gradually stabilises, and reaches a steady state by t/τ = 2.11 that is very close
to the ensemble- and time-averaged size distribution function. These findings suggest that
the smaller and larger fragments are produced through different physical mechanisms that
arise at different stages of bag breakup, and eventually these fragmentation mechanisms
die out as the bag approaches full disintegration and the fragment size distribution is well
represented by time-averaged results. The remaining rim will then disintegrate at still later
times, whose investigation we leave for future work.
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Figures 12(b) and 12(c) show the instantaneous distribution of fragment axial and
radial speeds ux and ur ≡

√
u2

y + u2
z as functions of their sizes, with the ensemble-wide

variations of velocity components in each averaging bin shown in error bars. It can be
seen that the speed of well-resolved fragments satisfying d � 8Δsig remains close to a
constant value without significant variations. While the statistics of smaller fragments with
d � 8Δsig are not fully numerically converged, they do show considerably larger variation
around the binned average value in qualitative agreement with the experimental results
of Guildenbecher et al. (2017). Interestingly, we observe peaks around d/d0 = 5 × 10−3

in the distributions of both ux and ur, whose location does not appear to vary with
time. Moreover, despite the presence of velocity variations, figure 12(b) suggests that the
average axial speed ux of smaller fragments with d � 8Δsig increases over time, whereas
the radial speed ur does not show similar increasing trend in figure 12(c). This is most
likely because the smaller fragments are generated earlier and therefore are exposed to the
airflow for much longer periods of time compared with larger fragments; together with
their smaller mass, this means that they are much more easily accelerated by the axial
velocity component of the airflow, hence the continuous increase in their ux values. On
the other hand, ur does not increase significantly over time, likely because the airflow in
the wake region does not have a large radial velocity component that can accelerate bag
fragments as they migrate downstream.

We will hereafter discuss qualitatively several mechanisms through which the bag
film undergoes fragmentation and form small droplets, which can be identified by
inspecting typical simulation snapshots taken from our L = 14, Lsig = 13 simulations.
Firstly, figure 13 shows the breakup of a stretched long ligament neighbouring two
enlarging holes into a series of small drops. As the ligament is itself connected to the main
drop, there is a significant size difference between the parent and child drops produced
from its breakup, which is an example of non-local breakup events (see (4.3) in § 4.3
for a definition of non-local breakup). It can be seen from figure 13(a) that significant
cross-sectional diameter variations have developed on the ligament before the onset of
its breakup, which can be viewed as the result of the nonlinear development of the RP
instability (Pal et al. 2021). Afterwards, the ligament shrinks to form sharp tips and
then breaks up on multiple sites, as shown in figure 13(b), and forms a primary drop
which continues to undergo periodic prolate–oblate shape oscillations resembling droplets
produced by breaking Rayleigh jets (Hu et al. 2021), as highlighted in the red boxes in
figures 13(b)–13(h). This is because the pinch-off of the stretching ligament induces an
inner velocity field within the detaching droplet that drives it in the oblate direction (see
e.g. figure 7(b) in Hu et al. 2021), matching the perturbation shape of the second Rayleigh
mode, which then excites oscillation modulated by capillary effects. In the meantime, the
other parts of the ligament do not pinch off to form a series of fragments at once, but first
break up into several elongated debris, and then split into large primary and small satellite
drops via the well-known end-pinching mechanism (Castrejón-Pita, Castrejón-Pita &
Hutchings 2012; Pal et al. 2021), which is an example of local breakup events as the parent
(the elongated debris) and child (satellite drops) do not differ significantly in their sizes.
Under certain circumstances, the primary and satellite drops might coalesce and form
a larger fragment as highlighted in the blue boxes, resembling the ‘immediate satellite
merge’ mechanism discussed by Vassallo & Ashgriz (1991).

Figure 14 first shows an example of short ligament breakup and its eventual contraction
into a single droplet, as highlighted in the blue boxes. Compared with the breakup of long
ligaments demonstrated in figure 13, this type of short ligament breakup bears stronger
resemblance to the breakup phenomena of liquid bridges studied by Agbaglah (2021),
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(e) (g) (h)

(b)(a) (c) (d )

( f )

Figure 13. Snapshots showing the non-local breakup of a long ligament into multiple fragments during bag
film fragmentation with We = 15 and Oh = 10−3. The red boxes show formation of a single fragment through
non-local end pinching and its subsequent oscillation, and the blue boxes show the formation of two fragments
through a local breakup event and their subsequent coalescence.

where fragments produced from the same liquid bridge do not feature significant size
variations. This is most likely because the initial holes are placed very close to each other
in Agbaglah (2021), and the receding rim does not have enough time to grow in size and
momentum before their impact.

Another type of fragmentation mechanism can also be identified in figure 14; as
highlighted in the red boxes, three adjacent holes have merged with each other, and
their three bordering rims converge on a common ‘node’ as they are stretched, which
is also observed in the breakup of ligament webs formed on Savart sheets by Lhuissier &
Villermaux (2013). Compared with the ligament pinch-off mechanism discussed earlier,
the surface evolution of this ‘node’ shows much more complicated corrugation patterns as
the rims it was connected to are gradually detached, and therefore is not dominated by the
second Rayleigh mode alone. The ‘node’ drop that eventually forms in this case also has
a much larger size compared with its counterparts formed from ligament pinch-off events.
However, different from an earlier study by Vledouts et al. (2016), our choice of L = 14
and Lsig = 13 does not produce holes on the bag film with as high a number density,
and therefore we are not able to directly measure the wavelength of the RT instability
responsible for the film fragmentation from the average distance between the centres of
adjacent holes. The relatively smaller number density of holes formed also means that the
larger ‘node’ drops formed due to the merging of three or more adjacent and similarly sized
holes are relatively rare compared with generally smaller fragments formed from ligament
breakup, which require the collision of only two adjacent liquid rims. Furthermore, no less
than three holes should fully expand and arrive at the same region on the bag film where
the node is located, and each of the connecting rims need to break off successively before
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(e) (g) (h)

(b)(a) (c) (d )

( f )

Figure 14. Snapshots showing the detachment of a liquid node from ligament webs (highlighted in the red
box) and the evolution of a short ligament into a single drop (highlighted in the blue box) during bag film
fragmentation with We = 15 and Oh = 10−3.

the node can be treated as a separate fragment by the fragment counting algorithm. These
factors help explain the tail of the size distribution function of aerobreakup fragments
taking shape at much later time as we observed in figure 12(a); namely, that larger droplets
are relatively few, and produced at generally later times during the fragmentation process.

We also note that, while we often observe the formation, oscillation and subsequent
corrugation development of liquid ligaments after the impact of receding rims, as shown
on the ligament to the left of the red box in figure 14, destabilisation of such structure due
to the RT instability and its subsequent evolution into fully developed transverse ‘fingers’
and ‘fine drops’ are only occasionally observed in our current simulations. According to
Néel, Lhuissier & Villermaux (2020), these two regimes are separated by a critical local
Weber number for rim collision Wec ≡ ρl(2vTC)2dl/σ = 66, where dl is the rim diameter.
Neglecting the curved geometry of the bag film, liquid mass conservation further yields
Wec = 8

√
Dc/πh, where Dc and h are respectively the distance between the centre of two

neighbouring holes and the film thickness. Taking h = 3D/2Lsig = 3D/213, we find that
Wec = 66 corresponds to Dc = 1.2d0, which we expect might be reached for some pairs
of sufficiently separated holes, as the bag diameter df before the onset of fragmentation
typically approaches 2d0, as shown in both our numerical results and the experimental
data of Jackiw & Ashgriz (2021) (see e.g. their figure 30). Figure 15 highlights two such
examples in red boxes, where we observe the transverse growth of the lamella and the
growth of finger-shaped corrugations on its edges; however, before the fingers fully develop
and detach as ‘fine’ drops, holes are observed to form on the thinning lamella, which then
expand and collide with the fingering lamella edges, turning them into isolated breaking
ligaments. Similar phenomena of lamellae rupture and their edges forming corrugated
ligaments can also be observed in figure 14 of Vledouts et al. (2016), although in that
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(b)(a) (c) (d )

Figure 15. Snapshots showing the evolution of ‘fingering’ liquid lamellae during bag film fragmentation with
We = 15 and Oh = 10−3.

(b)(a) (c) (d )

Figure 16. Snapshots showing the receding liquid rim destabilisation during bag film fragmentation with
We = 15 and Oh = 10−3. The sites where the rim is detached from its base is highlighted in red boxes.

case the lamellae appear to remain within the plane of the film surface, and do not
experience transverse growth; and VOF breakup may play a role in the present examples.
Nevertheless, the liquid ligaments found in the current simulations have already displayed
a variety of well-documented physical phenomena that collectively contribute to the large
span of fragment sizes found in our fragment distribution functions.

Lastly, we observed a few examples showing the destabilisation of receding liquid rims,
as demonstrated in figure 16. These destabilisation phenomena are absent in the recent
work of Agbaglah (2021) where holes expand over a flat liquid film, and are therefore
most likely linked with the influence of centrifugal acceleration caused by the curved bag
film (Lhuissier & Villermaux 2012; Jackiw & Ashgriz 2022). While we are not yet able to
measure the wavelength or the linear growth rate of the instability, and therefore have not
identified the type of hydrodynamic instability involved here; we observe in figure 16(d)
regular-spaced holes highlighted in the red boxes forming at the foot of the rim bordering
the hole on the left. These are not attributable to VOF breakup because they are not
observed to appear elsewhere on the bag at the same time; while the rim bordering the
larger hole on the right is seen to develop regular corrugation patterns, which might be
an indication that the receding liquid rim is experiencing the RP instability. Any further
development of the instability is interrupted by the eventual collision between adjacent
rims (not shown in figure 16). The readers are referred to Jackiw & Ashgriz (2022)
for a more comprehensive discussion on rim destabilisation. There a few candidates are
proposed, including the RT instability mechanism governing the ‘fingering’ behaviour
on bursting surface bubbles (Lhuissier & Villermaux 2012); and it is concluded that the
centrifugal acceleration does not govern the instability of the rim directly, but instead
regulates the thickness of the rim via a local-Bond-number criterion (Wang et al. 2018),
with the rim in turn susceptible to the RP instability. With the present methodology, these
rim instabilities can be investigated in more detail with higher signature levels Lsig, and
concomitantly higher L. Given the large computational expense of such simulations, it is
not feasible to include such an analysis in the present study.
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4.3. Behaviour of bag fragments
In the following, we move away from considering the dynamics and numerical
characteristics of the production mechanisms of fragments to examine instead those of the
fragments themselves. To provide further insight into the evolution of individual fragments
rather than their collective behaviour, we utilise the droplet tracking algorithm proposed
by Chan et al. (2021a) in post-processing to reconstruct their breakup lineage. This toolbox
assumes breakup and coalescing events to be binary (i.e. at most two parent droplets may
collide and form one large child droplet, or two child droplets may be produced from the
breakup of one parent droplet in a single breakup/coalescing event), and is capable of
identifying all coalesce/breakup events and differentiate between the new drops produced
from these events and those which do not undergo such changes. It requires only the
instantaneous fragment size, location and velocity output from the simulation at given
time intervals, instead of knowledge of the entire flow field at successive simulation time
steps, and therefore incur only limited computational cost (Chan et al. 2021a).

As the fragments produced from bag breakup are much smaller compared with the
parent drop, and therefore have a much smaller Weber number, it is highly unlikely
that they will undergo another bag breakup event. However, they may still experience
secondary breakup to form smaller fragments as they evolve over time. It is therefore of
interest to determine the lifetime of breaking parent fragments Tp using the toolbox of
Chan et al. (2021a), defined as the interval between their birth and death in two successive
breakup events (Rivière et al. 2022). Figure 17(a) shows Tp as a function of the diameter
dp of parent fragments, with the bin-averaged values of Tp shown in grey squares. The
solid dots plotted in the background represent recorded individual breakup events, and
are colour coded by the logarithm value of the minimum child/parent diameter ratio
dc/dp, highlighting a broad distribution of parent fragment lifetime. For comparison, the
characteristic capillary time of fragments tcap is also plotted in figure 17(a) as a function
of dp, which is defined as follows:

tcap(dp) =
√

ρld3
p

8σ
. (4.1)

It can first be seen from the scattered original data that most of the bag film fragments that
undergo a secondary breakup fall within the range of dp � 8Δsig, which corresponds to
the ‘well resolved’ fragments discussed in § 4.1. Furthermore, the lifetime of fragments
Tp satisfying dp � 0.05d0 shows a dependency on rp that roughly scales with the
characteristic capillary time, but this trend breaks down for even larger fragments with
dp � 0.05d0. It is noted that the capillary time defined in (4.1) is proportional to the
oscillation period of droplet spherical harmonic modes (4.4). Therefore, the scaling of
Tp with tcap for dp � 0.05d0 may suggest that the fragmentation of these fragments
is primarily due to large-amplitude nonlinear oscillations which can trigger a capillary
breakup (Lalanne, Masbernat & Risso 2019). This also explains the large scatters we
observe in the lifetime of parent fragments within this size range, as when nonlinearity
becomes dominant, the surface oscillations cannot be represented by a single mode, and
different modes of perturbation with different oscillation periods might trigger breakup
depending on specific fragments. As for even larger fragments with dp � 0.05d0, their
lifetime Tp appears to scatter around an average value of 10tcap(hc), where tcap(hc) is
the characteristic capillary time based on the critical film thickness hc = 3D/2Lsig . Here,
10tcap(hc) is an estimation of the inertial time scale leading to the capillary breakup of
stretching liquid ligaments, which are formed due to hole collision (Agbaglah 2021).
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Figure 17. (a) The lifetime of the parent fragments Tp as a function of their diameter dp, where We = 15 and
Oh = 10−3. The bin-averaged results are shown in grey hollow squares, and the original data are shown as
solid dots, whose colour represents the value of the child/parent diameter ratio. It is noted that this plot does
not include the main drop as a parent which features dp/d0 ≈ 1. (b) Velocity difference between parent and
child fragments Δu as a function of the child/parent diameter ratio dc/dp is shown in the main plot, whereas
the inset plot shows �u as a function of the diameter of child fragments dc.

This suggests that this type of non-local breakup is only dependent on the topological
evolution of the stretching liquid ligament, rather than that of the entire parent drop from
which the child fragments are torn off; but this remains to be verified in future work.

We were also able to compute the magnitude of the velocity differences �u between
fragment parents and their children at two successive instants when the fragment statistics
are collected, and plot them in figure 17(b) as a function of the ratio between the child
and parent diameter dc/dp. It is found that, for breakup events where a small child/parent
size ratio (dc/dp � 0.22) are detected, the velocity difference Δu appears to show little
dependence on dc/dp, despite significant scatter. Based on our findings in figure 17(a),
these breakup events with dc/dp � 0.22 mostly feature small children with large parents.
On the other hand, breakup events satisfying dc/dp � 0.22 are dominated by small parents
and children, and their �u decreases with increasing values of dc/dp, roughly following
a power-law scaling �u ∝ (dc/dp)

−1.2. We further note that the �u values of breakup
events satisfying dc/dp � 0.22 roughly coincides with the inviscid Taylor–Culick velocity
vTC, with an estimation for the bag film thickness h based on the signature level Lsig

vTC ≡
√

2σ

ρlh
=

√
2Lsig+1σ

3ρlD
≈ 0.17U0. (4.2)

This agrees with the recent confirmation by Néel & Deike (2022) that the speed of film
drops produced from bubble bursting can be estimated by vTC to an order of magnitude. An
explanation for this approximate agreement is as follows. Prior and up to collision between
adjacent hole rims, each rim travels at the Taylor–Culick velocity. The colliding rims of
these holes then form liquid ligaments, which exhibit an axial stretching rate comparable
to the pre-collision rim speed (i.e. the Taylor–Culick velocity). This stretching rate in turn
sets the relative speed of sufficiently small fragments ejected from the parent ligament.
The parent ligaments may constitute part of the parent drop, or may themselves have
separated from it. Therefore, for a given child droplet size produced by this mechanism,
the ratio dc/dp may see considerable variation. Consequently, we observe the large range
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of dc/dp � 10−2 where the parent/child velocity difference remains close to vTC. The
inset of figure 17(b) further shows the velocity difference in breakup events as a function
of the child diameter dc alone; and this time we find that it is the small fragments
satisfying dc � 8Δsig that appear to approach vTC, agreeing with our analysis that it is
the fragments produced from liquid ligament breakup that are represented within the
range of dc/dp � 0.22. Note, however, that, in the inset of figure 17(b), Δu continues
to increase beyond vTC with decreasing dc, and does not scatter around vTC as in the
main plot. This is most likely because the droplet tracking algorithm has a finite fragment
detection frequency (Chan et al. 2021a), and the smallest fragments may be generated and
accelerated by the ambient airflow between two successive instants when this algorithm is
called for their detection. The nominal velocity difference �u for the smallest fragments
therefore includes contributions from both the initial ejection velocity (primarily in the
radial direction) and the increment due to airflow acceleration (primarily in the axial
direction), which causes �u to increase steadily beyond uTC. As these smallest fragments
are scattered in different averaging bins according to the child/parent diameter ratio of the
breakup events, the contribution of airflow acceleration to �u becomes less obvious.

Based on our findings in figure 17(b), we introduce the following criteria for determining
‘non-local’ breakup and coalescing events, respectively:

max
(

dc,i

dp

)
� 0.22, max

(
dc

dp,i

)
� 4.64, i = 1, 2. (4.3)

Otherwise we term the breakup or coalescing events ‘local’. Here, the critical child/parent
diameter ratio of 0.22 for fragment breakup (and analogously 4.64 for coalescence)
separates the two breakup regimes found in figure 17(b), where the velocity difference
�u either scatters around vTC or scales with dc/dp. Note that the term ‘local’ here does
not mean the parent and child fragments are close to each other in terms of their locations
in the physical space, which all such events satisfy, but rather in the sense of the parent
and its two children being close in their respective sizes (Chan, Johnson & Moin 2021b).

We further plot in figure 18 the ensemble-averaged number density of breakup and
coalescing events detected during the bag fragmentation period. It is found that both
breakup and coalescing events occur most frequently around t/τ = 2.10. This is most
likely when the receding rims fully absorb the bag film and collide with each other,
which then triggers a series of corrugated ligament breakup and fragment coalescing
events. After this the breakup and coalescing behaviour become less frequent, as the
corrugated ligaments gradually disintegrate without liquid mass input from the bag film.
While there exist ‘multistep’ breakup events in our aerobreakup simulation outputs, our
results in figure 18 suggest that the fragmentation process involved in the aerobreakup
problem cannot be well described by a breakup cascade model (Garrett, Li & Farmer 2000;
Chan et al. 2021b), as non-local breakup and coalescing events producing children with
sizes drastically different from their parents are found to dominate this problem, which is
different from the entrained air bubble breakup scenario in breaking wave studies (Garrett
et al. 2000; Deane & Stokes 2002; Deike, Melville & Popinet 2016; Chan et al. 2021b;
Mostert et al. 2022) where the prevalence of local breakup events leads to a well-defined
bubble-mass flux supporting breakup cascade models. It is also noted that breakup events
occur much more frequently than coalescing events for bag films, which is expected as the
latter requires two adjacent fragments to cross paths at the same time, which only happen
for a small portion of neighbouring fragments with specific initial position and velocity
configurations.
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Figure 18. Ensemble-averaged evolution of number of breakup (a) and coalesce (b) events during the breakup
of bag films produced from an initial droplet with We = 15 and Oh = 10−3. All ensemble realisations are run
at L = 14, Lsig = 13.

Apart from identifying all breakup and coalescing events in the spray formed due
to aerobreakup, the toolbox developed by Chan et al. (2021a) also enables us to track
the evolution of properties of individual fragments during their lifetime. For example,
figure 19(a) shows the evolution of surface energy Es of individual small fragments
recorded from simulations run at L = 14 and Lsig = 13, with the records of only a few
representative fragments highlighted for clarity. The steady-state values of surface energy
is also computed based on the volume of corresponding fragments, and plotted in grey
dashed lines for reference. It is seen that the oscillation frequency and amplitude vary
for each fragment, but all of them clearly demonstrate decaying oscillation behaviour,
with their oscillation frequency generally increasing with decreasing fragment radius r
(hence decreasing steady-state surface energy values). We further extract the frequency of
the dominant oscillation mode of these small fragments at two different grid resolution
configurations (L = 14, Lsig = 13 and L = 13, Lsig = 11), and plot them against the
fragment radius in figure 19(b), where an excellent agreement is found for small fragments
within the diameter range of 0.01d0 � d � 0.1d0 with the theoretical predictions of
Prosperetti (1980) for the second Rayleigh mode, which is given as follows for an inviscid
droplet with density ρl and radius R∗ at equilibrium:

ωn,0 =
√

(n − 1)n(n + 2)
σ

ρlR∗ , (4.4)

where n is the spherical harmonic mode number at which the interface of the droplet is
perturbed. The second Rayleigh mode corresponds with n = 2, and this mode number is
associated with the oblate–prolate shape perturbations which we observed in figure 13.
Both the viscous and inviscid theoretical model of Prosperetti (1980) are plotted in
figure 19, which almost completely overlap except for small fragments below 8Δ13, where
the viscous model shows a slightly better match with the numerical results. This is because
the Oh value of 10−3 at which simulations discussed in this section are run is very low,
and viscous effects become non-trivial only for very small fragments. Furthermore, for
results at both resolution levels shown in figure 19(b), the agreement between numerical
and theoretical results reaches into their corresponding range of small fragments with
d � 8Δsig, although the fragment size and velocity distributions within this range have
not reached grid convergence. Overall, these results demonstrate that fragments satisfying
d � 8Δsig are governed by well-documented physical mechanisms, e.g. rim retraction at
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Figure 19. Oscillatory behaviour of very small aerobreakup fragments produced from an initial droplet with
We = 15 and Oh = 10−3, with the simulation run at L = 14 and Lsig = 13. (a) Surface energy evolution of
individual fragments (blue curves) with their steady-state surface energy values plotted (dashed lines) for
reference, with the records of only a few representative fragments highlighted for clarity; (b) frequency of
the dominant fragment oscillation mode as a function of the fragment radius.

the Taylor–Culick velocity and the Rayleigh oscillation theory (Prosperetti 1980), even
though full grid independence in terms of fragment size and velocity statistics is still to
be established. This suggests that it is the droplet production mechanism through ligament
fragmentation which remains somewhat grid dependent, while the droplets resulting from
these production events are themselves well resolved. Nevertheless, we highlight that the
film fragmentation process is well resolved in our numerical simulations with the aid of
the MD algorithm (Chirco et al. 2022).

4.4. Viscous effects on bag breakup
Having provided an overview of the physical mechanisms governing bag breakup and the
subsequent evolution patterns of the fragments at a specific low Oh value of 10−3 in § 4.2,
in this section we increase Oh up to 0.05, and examine its influence on the bag breakup
phenomena. This has not been examined in depth in currently available aerobreakup
studies as most research efforts have been carried out in the limit of very low Oh values
(Guildenbecher et al. 2017; Jackiw & Ashgriz 2022; Kant et al. 2022).

We first provide in figure 20 simulation snapshots showing the bag breakup process for
Oh = 10−4, 10−3, 10−2 and 5 × 10−2 for a qualitative analysis, with We = 15 for all cases.
It is first seen that as Oh increases from very low (Oh � 0.005) to moderate (0.005 �
Oh � 0.05) values, the bag becomes more ‘flattened’ and its surface area becomes smaller,
and correspondingly the surrounding rim around the bag becomes more prominent. This
implies that the inviscid model proposed by Jackiw & Ashgriz (2021) predicting the
volume of the bag film and rim may need to be extended for a generalisation to the
moderate-Oh regime. Furthermore, it is observed that the ligament breakup behaviour
changes significantly as the Oh value increases. While at Oh = 10−4 the receding liquid
rims generate capillary waves propagating through the entire bag (Savva & Bush 2009),
and undergo destabilisation patterns similar to what we observed in figure 16, these are
not found at higher Oh values, which suggests that these phenomena are highly sensitive
to viscous damping effects, and their contribution to fragment statistics becomes negligible
with increasing Oh. At Oh = 10−3, liquid ligaments typically show long periods of radial
oscillation after their formation out of colliding hole rims, and then break up into ‘primary’
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and ‘satellite’ drops that differ significantly in their sizes. When Oh increases to the
moderate value of 10−2, it is found that far fewer satellite drops are produced from ligament
breakup, and the ‘end-pinching’ breakup mechanism comes to dominate as the ligaments
now tend to break up on one end repeatedly and form small drops. This may be because the
ligaments can be stretched longer and thinner with a higher Oh, and the smaller ligament
radius impedes the formation of satellite drops. According to Vassallo & Ashgriz (1991),
smaller radius of ligaments induces a larger pressure difference that pushes their free ends
back in the axial direction much quicker, hence preventing capillary pinch-off in the radial
direction that produces the satellite drops. Further increasing Oh to 5 × 10−2 causes the
ligaments to be stretched even thinner and produce smaller fragments once they break
up, which is because increased viscosity smooths out the variation of the axial velocity
along the ligament that drive the pinch-off events (Hu et al. 2021). Another side effect
appearing at Oh = 5 × 10−2 is that fewer node fragments are observed, which is because
the decreased bag area leaves smaller room for generation and mutual collision of more
than three holes which produce node fragments. Savva & Bush (2009) suggest that at even
higher Oh values the liquid rims will disappear, and the thickness of the entire bag film
will correspondingly increase as the holes enlarge, although we do not reach this limit in
our current numerical simulations.

Figure 21 further shows the evolution of the number of fragments satisfying d � Δsig,
the dependence of bag length and width at the onset of bag breakup on the Oh values,
and the time- and ensemble-averaged size and speed distribution functions for the three
specific Oh values selected in figure 20. Figure 21(a) shows that as the Oh value increases,
the number of fragments Nfrag reached when the bag fully disintegrates decreases, which
is because the total area of the bag film decreases, leaving less of the liquid that feeds the
film breakup process. While Nfrag generally increases over time despite small-scale local
oscillations, which most likely arise from relatively rare coalescing events, long periods
of time where Nfrag remains nearly constant can be clearly seen for Oh = 5 × 10−2, as the
highly viscous liquid ligaments can now be sustained for much longer under stretching, and
it is their intermittent breakup events that contribute to the isolated sharp growth events
in Nfrag. The length Lbag and width dbag of the bags just before their breakup for different
Oh values are measured and shown in figure 21(b) (which were also presented in figure 3
as scattered points for validation of our numerical results), where it can be seen that our
bags are ‘flattened’ in shape (satisfying dbag > Lbag), and that for Oh � 5 × 10−4, both
Lbag and dbag decrease with increasing Oh, suggesting that the bag area indeed becomes
smaller as Oh increases.

Figure 21(c) shows that the fragment size distribution functions for 10−4 � Oh � 10−2

remain very close to each other. When Oh is further increased to 5 × 10−2, it is observed
that the size distribution function for d � Δsig becomes much more convex shaped, with
more ‘intermediate’ fragments produced within the range of Δsig � d � 8Δsig, and fewer
large fragments with d � 8Δsig. This arises from the coupled effects of reduction of
bag film area (hence smaller chance for formation of ‘node’ fragments, as observed in
figure 20l) and breakup of long viscous ligaments into smaller fragments, and implies a
reduction in the average fragment size which will be discussed in more details further
below. Finally, figure 21(d) suggests that increasing the Oh value causes the fragment
speed to become more evenly distributed across different fragment sizes, which is probably
due to the combined effects of viscous damping of the internal axial velocity distributions
of pre-breakup ligaments (Hu et al. 2021), and the ambient airflow becoming much less
turbulent as its viscosity also increases under a fixed viscosity ratio μ∗.

We now analyse the influence of Oh on the ensemble-averaged breakup time <

Bar > t < /Bar >b (defined as the time when the first hole is generated on the film
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(e)

(b)(a) (c)

(d ) ( f )

(h)(g) (i)

(k)( j) (l)

Figure 20. Simulation snapshots showing the bag breakup process at different Oh values (10−4, 10−3, 10−2

and 5 × 10−2 from the top to the bottom row), where We is fixed as 15. For all cases, L = 14 and Lsig = 13.

by the MD algorithm) and the ensemble-averaged instantaneous diameter of fragments
d̄frag in figure 22. It should be noted that, due to the significant runtime required on
supercomputers, the results at a few Oh values in figure 22 are obtained from only one
realisation instead of being ensemble averaged, and these results are differentiated from
the others by a cross mark. Nevertheless, from figure 22(a), it is seen that t̄b first remains
almost independent of Oh as the latter increases from the low value of 10−4 to the moderate
value of 10−2, which is likely because the wake flow remains separated from the drop
surface, and the thinning process of the bag before the onset of its breakup is determined
by capillary and inertial effects, as discussed in § 3.2. When Oh exceeds the moderate
value of 10−2, t̄b is found to increase exponentially with Oh as shown by the fitted model,
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Figure 21. (a) Time evolution of the total number of film fragments after the onset of bag breakup for one
ensemble realisation with different Oh values. (b) The bag length Lbag and width dbag just before the breakup
of bag films as functions of the Oh values. (c,d) Time- and ensemble-averaged size (c) and speed (d) probability
distribution functions of aerobreakup fragments with We = 15 and various Oh values.

which may be the consequence of both the transition of the wake region from a turbulent
to a laminar status (hence smaller fore–aft pressure difference on the deforming drop
that pushes out the bag), and the bag thinning process coming under the domination of
a capillary–viscous balance. The hypothesis of the influence of wake region on the growth
of tb is further supported by examining the free-stream Reynolds number Re

Re ≡ ρaU0d0

μa
= μ∗√We√

ρ∗Oh
= 7.381

Oh
, (4.5)

where the critical Oh value of 10−2 corresponds to Re = 7.38 × 102, which agrees with
the order of magnitude of previously reported Re values at which the wake regions behind
a sphere transits to turbulence and vortex shedding is initiated (Rodriguez et al. 2011).
Overall, this sharp increase of the breakup time t̄b with increasing Oh beyond 10−2 agrees
with the early findings that the Oh values do not have significant influence over breakup
regimes when they are below 0.1 (Hsiang & Faeth 1992).

Finally, we compute the instantaneous average diameter d̄frag at the end of film breakup.
The averaging is completed for fragments satisfying d � 8Δsig over different individual
realisations with the same Oh value, which enables us to acquire sufficient amounts
of numerically converged statistics to produce meaningful results. In figure 22(b), d̄frag
shows a non-monotonic dependence on the film Ohnesorge number, defined as Ohfilm ≡
μl/

√
ρlσhf . While the bag films continues thinning as they undergo fragmentation, we
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Figure 22. The breakup onset time tb (a) and the instantaneous average diameter d̄ of fragments satisfying
d � 8Δsig (b) as functions of the Oh values, with an exponential model fit for (a). The non-dimensionalised
experimental data of Kant et al. (2022) are included in (b) for comparison. Squares mean the results have
been ensemble-averaged over three individual realisations, and crosses mean data from only one realisation are
available. For all cases We = 15.

select a constant characteristic film thickness value hf = D/2Lsig so that our computed
average fragment diameters, non-dimensionalised by hf , match the order of magnitude of
the thin-film fragment statistics studied by Kant et al. (2022), which are also included in
figure 22(b) for comparison. Namely, as Ohfilm increases from 1.65 × 10−3 to 0.826, d̄frag
first remains close to 25hf , followed by an abrupt decrease as it approaches Ohfilm = 0.4,
which corresponds to the drop Oh value exceeding the moderate value of 0.01. This
non-monotonic dependency on Oh is also observed in the results of Kant et al. (2022),
where an initial increase of d̄frag to 29.2hf is followed by an abrupt decrease to 14.2hf
when Ohfilm increases beyond unity. Based on our analysis of figures 20 and 21, we ascribe
the abrupt decrease of d̄frag with increasing Oh values to the formation of much fewer large
‘node’ fragments due to the decrease of bag area, and the breakup of ligaments that are
stretched much thinner under high viscosity.

5. Summary of numerical convergence considerations

Here, we provide a brief summary for the influence of the MD algorithm (Chirco et al.
2022) on the numerical convergence behaviour of bag film fragment statistics, which is
of reference value for future works on two-phase flows involving topological changes. It is
noted that in the aerobreakup simulations, fragments are produced following a sequence of
film perforation, hole expansion, rim collision and ligament breakup, regardless of whether
the MD algorithm is applied. However, the MD algorithm controls hole formation through
a signature level Lsig, thereby perforating thin films at a controlled thickness independent
of the mesh resolution. Typically, holes are initially isolated and grow for some time
before their bordering rims collide with each other. When they do, ligaments form and
break up to produce droplets, including primary and satellite drops directly formed out
of breaking ligaments (figure 13) and liquid nodes when their neighbouring ligaments
break down completely (figure 14). The independence of the critical film thickness from
mesh resolution opens up the possible formation of fragments whose sizes are also grid
independent. In the absence of the MD algorithm, the films undergo ‘VOF breakup’, where
they are perforated spontaneously upon reaching the mesh resolution, leading to many
adjacent holes which immediately collide, forming small ligaments which in turn rapidly
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break up into tiny fragments. With only the mesh size as the governing length scale, none
of the resulting droplets are grid converged.

It is observed that when the MD algorithm is applied, droplets greater than 8Δsig
show grid-converged size statistics; while those smaller than 8Δsig do not. Apart from
the present results and Chirco et al. (2022), empirical lower bounds for grid convergence
in the form of 8Δ have also been proposed in other works involving two-phase breakup
phenomena (see e.g. Rivière et al. 2021). However, to the knowledge of the authors, there
has been no underlying physical mechanism proposed for this lower bound. We suggest
a possible explanation as follows. As can be seen in figures 13 and 14, bag fragments
originate from the breakup of liquid ligaments formed from colliding hole rims. When the
MD algorithm (Chirco et al. 2022) is applied, regions on the bag film with thickness
around the critical value of 3Δsig are perforated, and the diameters of the hole rims
gradually increase as they recede over the bag film (Agbaglah 2021). Consequently, the
diameters of colliding rims should satisfy drim � 3Δsig. Conservation of liquid volume
then yields dlig = √

2drim, where dlig is the diameter of the fused ligament produced
from colliding liquid rims. Further assuming that the fused ligament does not generate
transverse liquid lamellae which pinch off into ‘fine’ drops (as seen in Néel et al. 2020),
but instead break up under the Rayleigh–Plateau (RP) instability, the size of the primary
fragments should then satisfy (Pal et al. 2021)

dRP = 1.9dlig � 8.0Δsig, (5.1)

which leads to the lower bound of 8Δsig observed in figures 10(c) and 10(e).
On the other hand, the statistics of the smallest droplets are still grid dependent when

the MD algorithm is applied, which is also noted by Chirco et al. (2022). These small
droplets are most likely satellite drops produced from ligament breakup and not directly
controlled by the MD algorithm, whose typical size and number have a strong dependence
on the initial perturbations present on the ligament (Pal et al. 2021) which are under
mesh-regularised effects. However, even though their production mechanism is not well
resolved, these droplets themselves are sufficiently large to have a well-resolved dynamics
captured by the numerical mesh (as discussed in § 4.3, see especially figure 19).

6. Conclusions

We have presented in this study the results of both axisymmetric and 3-D numerical
simulations of droplet aerobreakup. For the axisymmetric simulations, our results were
validated by a good agreement with the experimental results of Jackiw & Ashgriz (2021),
and we were able to explain deviation from their theoretical model (3.1) based on the
interaction between the drop surface and the wake vortices. We were also able to look
into the thinning of bag films before the onset of bag breakup, and found that at small Oh
values capillary effects will cause the thinning rate to exceed that predicted by Villermaux
& Bossa (2009).

For the 3-D aerobreakup simulations, we utilised the MD algorithm (Chirco et al. 2022)
for artificial perforation of thin films, which enabled us to minimise pollution of fragment
statistics by spurious numerical breakup, and establish grid convergence of fragment
statistics for aerobreakup studies for the first time. Afterwards, we analysed the output
fragment statistics, and were able to reconstruct the breakup lineage and evolution of
individual fragment properties using the postprocessing toolbox proposed by Chan et al.
(2021a). It is found that smaller fragments with their diameters satisfying d � 8Δsig are
most likely satellite drops produced from ligament breakup and tend to undergo decaying
surface oscillations dominated by the second Rayleigh mode, with their ejection velocity
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set by the colliding liquid rims receding at the Taylor–Culick velocity, while larger
fragments satisfying 8Δsig � d � 0.05d0 are most likely primary drops produced from
ligament breakup or detached liquid ‘nodes’ bordering three or more holes, and tend to
experience secondary local breakup events due to large-amplitude nonlinear oscillations.
Destabilisation of receding rims is also found in some individual realisations, although
they do not contribute significantly to fragment production under current simulation
configurations.

We find in particular that the bag breakup problems feature subtle numerical
convergence properties:

i Without the MD algorithm, numerical convergence cannot be achieved for thin-film
fragmentation owing to the VOF-breakup phenomenon.

ii With the MD algorithm, the production of fragments through thin-film
fragmentation shows grid convergence for droplet children with diameter d > 8Δsig.

iii With or without the MD algorithm, the production of small droplets close to
the resolution limit resulting from ligament fragmentation occurs independent of
VOF- or MD-induced breakup, and numerical convergence for these production
mechanisms is yet to be established in the present study.

iv However, once they are produced, the subsequent evolution of small fragments is
well resolved in the present simulations, even for small fragments approaching the
grid resolution.

Finally, we investigated the influence of drop Oh on bag film breakup, and it is found
that increasing Oh within the moderate range of 0.005 � Oh � 0.05 causes the bag area
to decrease and the liquid ligaments to be stretched much thinner, which generally lead to
production of fewer fragments with smaller average diameters.

Overall, these results show the utility of the MD algorithm in improving the grid
convergence behaviour of fragment statistics and helping to recover previously unresolved
fluid physics in two-phase numerical simulations involving breakup of thin films (Kant
et al. 2022), and also shed light on the effect of moderate viscosity on bag breakup which
has not been discussed in detail in previous aerobreakup studies (Jackiw & Ashgriz 2022).
They also pave the way for future studies investigating the later development of the remnant
rim and the effects of air-phase turbulence and initial perturbations on the deformation and
breakup of droplets, while also serving as a stepping stone towards a full-scale numerical
study of spume drop generation on the air–sea interface under high wind conditions.
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