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Abstract

The occurrence of felt earthquakes due to gas production in Groningen has initiated numerous
studies and model attempts to understand and quantify induced seismicity in this region.
The whole bandwidth of available models spans the range from fully deterministic models
to purely empirical and stochastic models. In this article, we summarise the most important
model approaches, describing their main achievements and limitations. In addition, we discuss
remaining open questions and potential future directions of development.

Introduction

Seismicity models form the backbone of probabilistic seismic hazard assessment (PSHA) for
tectonic and induced earthquakes. They describe the frequency-magnitude distribution and
the earthquake rate in space and time. Except for the occurrence of aftershock sequences,
tectonic seismicity can be well described by a stationary process, and because of this, empirical
fits of the declustered, observed seismicity data can be used to forecast future activity. In
contrast, anthropogenic seismicity is time-dependent because it is related to activities such
as, for instance, gas production. Forecasting and modelling the expected time dependence of
future seismic activity requires an understanding of the physical processes involved in earth-
quake nucleation.

Stress changes are believed to be the main cause of seismicity. In particular, the Coulomb
failure stress (CFS) is a key parameter controlling rock failure and earthquake nucleation
(Okada, 1992; King et al., 1994). The reasons for stress changes can be manifold, such as earth-
quake-induced or poroelastic changes due to fluid injection or extraction (e.g., Geertsma, 1973;
Segall, 1989). Besides estimating the expected stress changes, models need to define the corre-
sponding seismicity response function. For this purpose, physical models use constitutive fric-
tion relations. While simple static–kinetic friction relationships predict an immediate response
after a stress change, more complex relationships such as the rate- and state-dependent friction
law (Ruina, 1983) explain delayed responses in seismicity.

Deterministic physical models based on CFS and friction laws can simulate earthquake
nucleation, rupture propagation and stress changes on pre-defined neighbouring faults
(Fig. 1a). They allow to address specific problems of earthquake patterns and to confirm or
dismiss hypotheses, for example, to analyse the conditions for a rupture front propagating into
the over- or underburden of the reservoir, which is important to estimate themaximum possible
magnitude of triggered earthquakes. Their strength at the same time constitutes their Achilles’
heal since models are highly specific, that is, adapted to individual scenarios. Thus, unknown
initial conditions, structural settings, or material properties require running a large number of
alternative scenarios to account for epistemic uncertainties and provide realistic forecasts. Due
to the high computational costs of deterministic rupture simulations, their direct use for PSHA
is very expensive.

On the other hand, more efficient, purely data-driven statistical models cannot easily account
for transient driving forces (Fig. 1b). Two representatives of such models are the temporally
stationary, spatially inhomogeneous Poisson model and the Epidemic-Type Aftershock
Sequences (ETAS)model (Ogata, 1988, 1998). The ETASmodel supplements the Poissonmodel
with aftershock activity described by empirical relationships for aftershock productivity, Omori-
type rate decay and distance decay. The standard ETASmodel explains the short-term clustering
of earthquakes but is unable to account for changing boundary conditions that lead to transient
seismicity. Similar challenges apply to machine learning (ML), a third class of data-driven
models (Jordan &Mitchell, 2015). Unlike physical modelling approaches, ML approaches learn
directly from data without explicitly reasoning about the underlying physical mechanisms
(Bergen et al., 2019) and thus avoid model biases due to incomplete process understanding.
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However, ML should not be used to extrapolate behaviour outside
the parameter range of the training dataset. Thus, its accuracy and
forecasting power are limited in the case of small training datasets,
specifically if they are derived from transient processes.

While the empirical data-driven models ignore important
physical knowledge and constraints, the model class of hybrid
models combines the understanding of physical processes and stat-
istical components and is thus most promising for seismic hazard
assessment of anthropogenic seismicity. We will provide an over-
view on seismicity models applied to the Groningen field in the
following, while more details, including a careful assessment
of the advantages and disadvantages, can be found in Dahm
et al. (2020b).

The occurrence of felt earthquakes accompanying gas produc-
tion in Groningen, the Netherlands, is of high social importance
and has initiated dense instrumentation and numerous field
studies. Many of the more recent models for explaining and quan-
tifying induced or triggered seismicity in the world have benefited
from the outstanding comprehensive datasets collected at
Groningen. This paper discusses the main categories of seismicity
models at Groningen and potential future directions.

Seismicity models applied to the Groningen field

The Groningen gas reservoir and its seismicity already was the
topic of numerous publications. For example, De Jager & Visser
(2017) give an overview on its geology, Visser & Solano Viota
(2017) and Van Oeveren et al. (2017) on the static and dynamic
reservoir model, respectively, Van Thienen-Visser & Fokker
(2017) on compaction and subsidence, Dost et al. (2017) on the
development of seismicity, monitoring network and PSHA,
Kortekaas & Jaarsma (2017) on the generation of an improved fault
model, Bommer et al. (2017) on the development of a ground
motion model, Kruiver et al. (2017) of a shear wave and

Hofman et al. (2017) of a shallow velocity model. The
Groningen field, measuring approximately 30× 30 km (Spiers
et al., 2017) and thus being one of the largest in the world, is located
in the north-east of the Netherlands at a depth of approximately
3000 m. It consists of Slochteren sandstone sealed on the top by
the Zechstein salt formation and is primarily limited in its lateral
extents by fault closures. The net reservoir thickness increases from
about 0 m to 280 m in a south-east to north-west direction (Bourne
et al., 2014), with seismic profiles showing the existence of
numerous normal faults with variable spatial density mainly
striking in NNW–SSE direction with secondary fault trends
running E–W and N–S (De Jager & Visser, 2017) mostly dipping
around 70∘ (Van Wees et al., 2018). The presence of gas in
Groningen was discovered in 1959, with production starting in
1963. The first seismic event related to gas extraction in
Groningen was detected in 1991 (Van Eck et al., 2006). Since then,
more than 350 earthquakes with magnitude ML≥ 1.5 have been
recorded. Today, with more than 100 seismic stations operated
by KNMI at an interstation distance smaller than 5 km, the
Groningen area is one of the most thoroughly instrumented sites
globally for monitoring of induced seismicity.

Over the monitoring period 1 April 1995 to 30 October 2012, it
was assessed that less than 0.1% of the induced strain in Groningen
had been accommodated by earthquakes; either aseismic deforma-
tion such as fault creep and ductile flow is dominant or induced
strain is elastic and remains available to be released by future
earthquakes (Bourne et al., 2014). Especially in case of a termina-
tion of gas production in the near future, understanding the
stress-induced seismicity is a challenge for seismicity models, since
such a future stress scenario is not covered by the previous usage
history.

Deterministic physical models

Several physical models were applied to model the seismicity of the
Groningen field. Most researchers simplified the geometry to 2-D
including only a single fault to investigate earthquake generation
and rupture processes, but a 3-D model was developed as well
to investigate the total fault slip (Sanz et al., 2015).

VanWees et al. (2014, 2017) studied the quasi-static nucleation
and rupture of earthquakes on a fault offsetting a reservoir. Model
dimensions of 6 × 6 × 6 km were considered to be representative
for major fault zones in the central area of the Groningen field.
The model explains why earthquakes occur at pre-existing faults,
since CFSs are far more pronounced on faults bounding or offset-
ting the reservoir than elsewhere. Assuming not critically stressed
faults at the onset of the depletion, the model further explains the
delayed onset of induced seismicity and the non-linear release of
seismic moment observed in Groningen (Bourne et al., 2014).
However, the overall characteristics (a Gutenberg–Richter b-value
of approximately one and a maximum observed magnitude of
Mmax � 3:6) can only be reproduced if the fault is critically stressed
from the beginning. These limitations may result from considering
only a single fault, whereas many faults with different orientations
are present in the Groningen field. In addition, Van Wees et al.
(2014, 2017) neglect the impact of absorption of stress by the salt
cap rock and energy losses through aseismic slip, which may
explain the overestimation of the seismic moment release.

For the same model set-up, Van den Bogert (2018) and Buijze
et al. (2017, 2019) explored a fully dynamic initiation and propa-
gation of ruptures in order to understand the impact of reservoir
depletion, offset and thickness on the occurrence of fault instability

Fig. 1. Sketch of two end-member model types: (a) physical model comprising
potentially highly specific model parts that can easily be adapted to model hitherto
non-existing conditions (e.g., grey coloured seismicity related to future loading
scenario at time t2); and (b) generalised statistical model, simpler to apply, but limited
to the conditions of the training datasets (e.g., forecasts at time t2 only based on
previous observations).
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and earthquakemagnitudes. The simulations showed that aseismic
slip always precedes seismic ruptures in the nucleation phase,
which accelerates to seismic slip when its size exceeds a critical
length, thus corroborating the analytical expression derived by
Uenishi & Rice (2003). The pressure drop necessary to initiate
seismic ruptures was found to be independent of the reservoir
width, but dependent on the slip-weakening relationship and
the reservoir offset. Whereas larger fault offsets promote the nucle-
ation of ruptures, they reduce the down-dip rupture size because
ruptures were more easily arrested in stable stress regions.
Propagation outside the reservoir interval is promoted by critical
in situ stress, a large stress drop and small fracture energy (Buijze
et al., 2019). Apart from the offset, the onset of fault slip is influ-
enced by the orientation of the fault relative to the background
stress field and the initial friction coefficient.

Zbinden et al. (2017) addressed the role of fluid flow in faults
offsetting a reservoir similarly to Groningen. They used a fully
coupled fluid flow and geomechanics 2-D simulator and found that
stress-dependent permeability and linear poroelasticity played a
major role in pore pressure and stress evolution within the fault.
Especially, the fault strength was significantly reduced due to flow
from the neighbouring reservoir compartment and other forma-
tions into the fault zone. In the case of well shut-in, a highly
stressed fault zone could still be reactivated several decades after
the production had ceased, although the shut-in resulted in a
reduction of seismicity in general.

So far, 3-D reservoir models are restricted to quasi-static
approaches, since stresses on faults offsetting the reservoir cannot
be calculated by analytical expressions, particularly during rupture
nucleation and propagation. Models of sufficient resolution to
study the dynamic effects of seismic events are simply not feasible
due to computational costs. An example of a 3-D fault model
applied to the Groningen field is the finite-element model of
Sanz et al. (2015), which consists of two detailed submodels with
faults being embedded in a regional model. Such models can
predict the cumulative fault slip but do not account for the nucle-
ation and propagation of individual events. Thus, they can predict
neither the radiated seismic energy and earthquake magnitude nor
the relation between seismic and aseismic slip.

Since the Groningen field has long been produced with fluctu-
ations in production rate over a range of timescales, DeDontney &
Lele (2018) studied the impact of production fluctuations on seis-
micity and seismic hazard. First, they investigated the distance
range influenced by daily and seasonal production variations using
an analytic reservoir pressure model. Employing a rate-and-state
(RS) model, they subsequently compared the seismicity rates for
fluctuating and steady production schemes. In a third approach,
the impact of such production schemes on seismic hazard was
examined using an earthquake cycle model. The first model
showed small pore pressure variations (approximately 0.1 bar)
in the vicinity of wellbores (up to 200 m); since most faults are
sufficiently far from wells, they should thus not be influenced by
local production rates. The RS simulations demonstrated that clear
seasonal seismicity rate changes are expected for the same stressing
histories, but that high seismicity rates are required to conclusively
reflect the signature of the imposed sinusoidal variation in stressing
rate. In the third model, seismicity rates varied for fluctuating
production rates and different parameters as well, but no change
in the aggregate character of the seismicity and therefore, seismic
hazard, was detected due to constant versus fluctuating produc-
tion, since neither the cumulative number of events nor their
magnitudes significantly changed over the year. However, the

choice of only a few fault dip and strike angles is not representative
of the highly heterogeneous fault system and fault interactions in
the Groningen field. The question if the catalogue of observed
earthquakes exhibits a seasonality is still debated (Nepveu et al.,
2016; Bierman et al., 2018; DeDontney & Lele, 2018; Park et al.,
2018; Park & Nevenzeel, 2018).

As mentioned above, stresses on faults offsetting the reservoir
could not be calculated by analytical expressions, restricting 3-D
reservoir models to quasi-static approaches. However, Jansen
et al. (2019) recently provided analytic expressions for a normal
fault offsetting a homogeneous reservoir of infinite extension,
which may enable computationally feasible 3-D dynamic fault
simulations in the future.

Data-driven models

In contrast to the deterministic models, data-driven models esti-
mate the relation between input (e.g., production rates) and output
(seismicity) by data fitting, either by statistical approaches fitting
parametric functions or ML approaches. The advantage of fully
data-driven approaches is that the functional relationship between
seismicity and driving mechanisms is not predetermined. Thus,
data-driven models avoid any bias related to an incomplete under-
standing of the earthquake nucleation mechanism.

Statistical approaches
For the Groningen field, statistical model approaches differ in
input data. Whereas DeDontney (2017) tested functional relations
between local compaction of the reservoir and cumulative number
of induced earthquakes, Hettema et al. (2017) and Vlek (2019)
showed that the cumulative number of induced earthquakes accel-
erates as function of the cumulative volume extracted. Based on the
fault slip model of Lele et al. (2016), DeDontney (2017) tested the
same set of relationships between seismicity rate and fault slip
instead of compaction. In areas in which a fault slip model exists,
the fault slip-based metric yielded a significantly better represen-
tation of the observed seismicity than the compaction-based
models. However, the model yielded the best results when a
threshold in time was used to suppress modelled earthquakes at
the beginning of gas production, indicating a physical inconsis-
tency of the statistical model. In addition, although various func-
tional forms fit the observed seismicity almost equally well, they
resulted in very different activity forecasts over the next 10 years.
This highlights the large epistemic uncertainty of predictions based
on empirical functions and the insufficient size of the observed
dataset.

A similar criticism can be expressed for the application of the
ETAS model to Groningen seismicity. Since the ETAS model
depends non-linearly on its model parameters, its forecasts are
highly sensitive to the parameters estimated from the data.
Thus, the input catalogue needs to include a sufficient number
of aftershocks. The percentage of activity classified as aftershocks
differs from ~ 5% (Muntendam-Bos, 2020) to 10–20% (Bourne
et al., 2018) and 18–36% (Post et al., 2021), but likely does not fulfil
this requirement.

For the model presented by Hettema et al. (2017) and Vlek
(2019), it is noteworthy that if the Groningen reservoir is
completely exploited, this model predicts a fixed number of future
events independently of the production scenario. Consequently,
lowering the annual production only postpones earthquakes.
This behaviour results from the simple empirical relationship
between the cumulative earthquake number and the cumulative
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extracted gas volume, which has the advantage that time is elim-
inated as a variable, and short-term fluctuations on the order of
months are suppressed. In combination with the empirical
Gutenberg–Richter frequency-magnitude relation, the occurrence
probabilities can be easily estimated for any magnitude range, in
particular, the maximum expected magnitude (Vlek, 2019;
Zöller & Holschneider, 2016). Nonetheless, the approach was only
tested for the entire field without spatial resolution. The first test on
different sub-regions of the Groningen field indicated that the
empirical relation is not uniform and varies significantly in space,
limiting the model’s applicability (Hettema et al., 2017).

ML approaches
Limbeck et al. (2018) and Lanz et al. (2019) applied ML to forecast
production-induced seismicity in the Groningen field. While the
model of Limbeck et al. (2018) was limited to a cumulative predic-
tion of the earthquake numbers, Lanz et al. (2019) extended the
model to predictions in time and space. TheMLmodel was trained
only with data recorded before the year 2013. The hold-out data
between 2013 and 2016 were used to test the forecast power
compared to two baseline models. The first assumed that the fore-
cast rate was proportional to the change in depletion thickness, that
is, pressure multiplied by reservoir thickness, while the other
considered a proportionality to the change in strain thickness, that
is, vertical strain multiplied by reservoir thickness.

The results of Lanz et al. (2019) demonstrated that ML models
are able to qualitatively capture the decreasing trend in seismicity
observed during the 2013–2016 hold-out period. However,
although there was a relative match in trends, the models system-
atically underestimated seismicity. The random forest algorithm
(Hastie et al., 2009) yielded the best performance and a signifi-
cantly better result than the two baseline models. In addition,
the support vector machine with kernel function (Hastie et al.,
2009) showed significant improvements. The most significant
spatial features were the topographic gradient of the reservoir,
reservoir thickness variations along major faults and compress-
ibility. Overall, however, static features had less impact than
dynamic features such as pore pressure.

In any case, if the pressure development in the long term does
not fall within the pressure range used in the training dataset, the
ML model will likely lead to erroneous forecasts. In addition,
important features are based on the results of the static and
dynamic reservoir models, which in turn rest upon reservoir flow
history matches and forecasts. Thus, the quality of the ML model
depends on the quality of these input data. Confidence bands for
the forecasts cannot be easily derived for the space-timeMLmodel,
and a separate magnitude model is required to complement the
current spatiotemporal model.

Hybrid models

Most of the seismicity models applied to the Groningen field fall
into the category of hybrid models. Due to their nature of
combining physical models with statistical components, hybrid
models differ notably in their level of sophistication.

One of the simplest approaches is the seismogenic index (SI)
model (Shapiro et al., 2010; Langenbruch & Zoback, 2016;
Broccardo et al., 2017). Although initially developed for fluid injec-
tions, it has been applied to fluid production as well (Shapiro,
2018). The SI model assumes that the earthquake rate is propor-
tional to the flow rate, where the proportionality factor quantifies
a seismogenic reaction of rocks to a unit volume fluid change. This

factor is estimated by empirical fits of fluid volumes to seismicity
rates. The assumption that the ratio between earthquake number
and fluid volume is constant relies on physical considerations. The
model is based on the Gutenberg–Richter distribution and the
application of an inhomogeneous Poisson model. The index is
temporally invariable, since it represents a characteristic of the
seismogenic state of a crustal volume independent of the anthropo-
genic perturbation. Shapiro (2018) estimated that in the
Groningen field, the dominantly normal faulting conditions are
unfavourable for seismicity induced by injection but favourable
for earthquakes induced by production. Although the model has
been demonstrated to work well for many injection sites, the
assumed constant ratio between number of earthquakes and fluid
volume contradicts the observed ratio increase with cumulative
production volume in Groningen. In addition, the hydraulic diffu-
sivity is expected to change over time due to compaction (Hettema
et al., 2017). So far, the model has not been demonstrated to fit the
(spatio-)temporal distribution of seismicity in Groningen.

Wentinck (2015) postulated that during interseismic periods,
the increase of shear stress on faults is proportional to the pressure
drop. In contrast, earthquakes are assumed to lead to shear stress
drops on faults proportional to the seismic moments of events. The
likelihood of earthquake occurrences is described in his model by a
Weibull probability distribution function. The model was applied
to six relatively small regions (circular areas with a radius of ~5 km)
within the Groningen, Annerveen and Eleveld fields. Overall, the
model fitted the observed data well for each region, but so far was
only tested assuming uniform pore pressure changes with a
constant rate, which is an oversimplification. Thus, it is unclear
whether more realistic spatiotemporal pressure data, despite
continuing using uniform stress state model parameters, would
lead to a good fit of all regions. After production shut-in, the model
predicts an almost constantly high activity, only slowly decaying
due to the stress release by the earthquakes. Therefore, the model
was not able to correctly forecast the observed decrease in seis-
micity in the region around Eleveld after 2005, when the reservoir
pressure reduction almost fully stopped. In addition, the model not
only neglects aftershocks but predicts a decreased activity level
after an earthquake.

Based on the work of Segall & Fitzgerald (1998) and Zoback
(2010), the model of Dempsey & Suckale (2017) assumes poroe-
lastic contraction as earthquake generation mechanism. An earth-
quake nucleates if a critical stress level is exceeded over a critical
slip distance resulting in a slip-weakening instability (Uenishi &
Rice, 2003). A fractal model determines the initial stress profile
on the one-dimensional faults. The rupture propagation on those
heterogeneous faults is calculated by solving the equation of
motion for two tips of an expanding crack (Eshelby, 1969;
Dempsey & Suckale, 2016). However, to reduce computational
costs, the fault system was restricted to the 325 largest faults repre-
sented as 1-D line segments. An ensemble approach was chosen to
account for unknown initial conditions by selecting a different
realisation of the initial shear stress profile for each simulation.
In contrast to the other hybrid models, the earthquake magnitudes
are directly determined by the model. Based on the best model
describing the seismicity from 1991 to 2017, forecasts of seismicity
rates and magnitudes were obtained for the period 2017 to 2024
according to three production scenarios. The key parameters were
determined by a Bayesian approach. The model forecasts a rapid
drop in seismicity rates after production reduction and results in a
widely varying range of felt earthquakes with almost the same
expected maximummagnitude for the three production scenarios.
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Advantageously, the model combines a deterministic description
of the earthquake nucleation and rupture propagation with a prob-
abilistic determination of uncertain parameters and the seismic
catalogue. However, it suffers from limitations: the sensitivity to
the selection of the faults and their orientations was not investi-
gated, only the total field seismicity rate was modelled without
any spatial resolution, and earthquake–earthquake interactions
were not considered.

Candela et al. (2019) employed a semi-analytic approach to
calculate the Coulomb stress on faults dividing the reservoir into
compartments resulting in differential compaction. The approach
takes into account 3-D faults, especially the vertical offset of the
faults (Van Wees et al., 2019), and the pressure history combined
with the Dieterich (1994) RS model to obtain the spatiotemporal
distribution of seismicity rates. The poroelastic change in CFS
along the faults was computed on a metre scale, but finally, only
the maximum Coulomb stressing rate was used for each vertical
section. Candela et al. (2019) successfully modelled the first-order
spatiotemporal distribution of observed seismicity for two sub-
areas of the Groningen gas field, the region exhibiting the highest
seismic activity within the central area and a second area to the
south-west. For some years, the number of observed earthquakes
lay outside the 95% confidence interval of the model rates, which
may be caused by aftershocks, short-period stress perturbations,
or uncertainties in the stress or seismicity model. The analysis
explained the observed differences in the seismicity response
between the two sub-areas by different fault frictional responses.
A subsequent study confirmed that spatial heterogeneity in the
fault frictional response is required even after honouring the spatial

heterogeneity in stress development across the Groningen gas
field (Candela et al., 2022). However, Candela et al. (2019, 2022)
employed the seismicity rate in 1993 as apparent background rate,
which constitutes a critical assumption since it disregards the most
intensive production period (Fig. 2a). Thus, a large part of themost
probably spatially heterogeneous pre-stressing history is not
included. In addition, the model does not account for event
magnitudes.

Heimisson et al. (2022) tested a revised RS model called the
threshold RS (TRS) model, which takes into account that seismic
sources can initially be far from instability. They applied the TRS
model to the Groningen field using the maximum Coulomb stress
estimated by Smith et al. (2021) 5 m above the top of the reservoir.
The RS and TRS models result in comparable spatial distributions
of earthquakes in good agreement with the observations, but the
TRS model’s fit to the observed time-varying seismicity rate is
superior, better reproducing its onset, peak and decline.

Richter et al. (2020) tested the RS model of Dieterich (1994) for
the Groningen field employing a simplified set-up. Instead of
detailed CFS calculations, they assumed a simple proportionality
of CFS to pore pressure changes and compaction strain and
compared the results of the RS model with those of the
Coulomb failure model. In particular, the RS formula was solved
by describing the stress history as a succession of steps (Hainzl
et al., 2010), and the stress field was based on the annual pore pres-
sure and compaction data from a 2-D model provided by NAM.
The fault distribution as defined by Dempsey & Suckale (2017)
was taken into account as fault density map, implemented as a
factor varying the background seismicity rate. The inclusion of

Fig. 2. (a) Overview of the gas production from the
Groningen field from 1960 to 2020 adapted from NAM
(2016) and gas production data from NAM (2022).
The unit is billion cubic metre per year (Bcm/y).
Vertical lines delimit the times of the seismicity
snapshots shown at the bottom. (b) and (c) Seismicity
modelled using the rate-state Coulomb model
described in Richter et al. (2020) compared to observed
seismicityM≥ 1.5 for the time periods (b) 1960–2000 and
(c) 2000–2017. Themodel fitting period is 1960–2017. The
thick black line comprises the region of the Groningen
gas field and grey lines indicate the largest faults as
given by Dempsey & Suckale (2017). The regions of
amplified seismicity rates correspond to higher fault
densities.
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the fault density improved the models significantly and explained
prominent spatial patterns of the seismicity. The best-fittingmodel
was found to be the RS model based on pore pressure (Fig. 2b and
c). In particular, the sparse seismicity before the year 2000 and the
subsequently increasing number of events, focused on the zones of
high fault density in the central part of the field, can be recognised.
The seismic density is overestimated in the southern part of the
field where more E–W striking faults are located and the homo-
geneous model assumptions are insufficient.

Figure 3 shows a fit of the models illustrated in Richter et al.
(2020) updated until summer 2021. Again, the RS model provides
the best fit to the observations, well explaining the acceleration and
decay of the activity before and after 2015. The CFS model,
assuming a proportionality between the stress and earthquake rate,
cannot explain the data, potentially because the initial stress state
was subcritical. Indeed, the subcritical CFS model (CFSsub), which
requires that a critical stress state is reached locally to initialise
earthquake nucleation, fits significantly better than the CFSmodel,
but still worse than the RS model. The corresponding information
gain (Rhoades et al., 2014) per event relative to the Poisson model
is 0.26, 1.37 and 1.50 for CFS, CFSsub and RS model, respectively.

Beside the oversimplification of the stressing history, the
models tested by Richter et al. (2020) provide no information
on event magnitudes and ignore earthquake interactions. For

demonstration purposes, we combined the models with the
ETAS approach to account for aftershock generation. To this
end, we used the calculated rates r(t) of the CFS, CFSsub and
RS model as background activity for the ETAS model (Ogata,
1988). In particular, we considered the earthquake rate as:

R tð Þ ¼ f � r tð Þ þ
X

i:ti <t

K � 10� mi�1:45ð Þ � cþ t � tið Þ�p; (1)

calculated for earthquakes with magnitudes larger than 1.45.
Here, c and p are parameters of the Omori–Utsu law (Utsu
et al., 1995), while K and α describe aftershock productivity.
The pre-factor f is needed to re-scale the background rate.
Because the earthquake number is too small to constrain the fit
of all five parameters, we assume typical parameter values,
K= 0.018, α= 0.8, c= 0.01 days and p= 1.1. The only free param-
eter is f, which was fitted by the maximum likelihood method.
The resulting model trends accounting for aftershocks are shown
in Fig. 4. The fit of the RS model has improved even more.
Especially, the years with high observed seismicity rates are
explained better. For two simplified production scenarios, we
ran 10,000 forward simulations to calculate the expected mean rate
and the confidence intervals. In the first case, production continues
in the samemanner, while in the second case, it is strongly reduced.

Fig. 3. Application of the Coulomb (CFS), subcritical
Coulomb (CFSsub) and rate-state (RS) Coulomb model
to the Groningen data. (a) Observed earthquake
sequence of M≥ 1.5 events. (b) and (c) Comparison of
modelled (lines) and observed (dots) rates. Shaded areas
correspond to 90% confidence intervals according to the
Poisson model. The vertical dashed line denotes the end
of the fitting period, and extensions to the right are based
on two different scenarios: the stressing rate in the future
is (b) 100% or (c) 10% of the last year’s value.
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In particular, we assume that the local stress changes per year
remain the same or drop to 10% of the last period. Compared
to the model forecasts disregarding aftershocks, the models
combined with ETAS forecast on average higher rates and wider
confidence intervals.

Probably, the most sophisticated seismogenic model for the
Groningen field is the NAM hybrid model (Bourne & Oates,
2017a; Bourne et al., 2018). It was introduced by Van Elk et al.
(2013) and Bourne et al. (2014) as part of a PSHA. Similar to
our examples described above (Figs. 3 and 4), the NAM model
predictions are based on ensembles of earthquake catalogues using
Monte Carlo simulations (Bourne et al., 2014, 2015). Except for the
initial version of the model, aftershock occurrence is considered
employing the ETAS approach. The model underwent a consider-
able development from an empirical basis (Bourne et al., 2014) to a
more physical and complex formulation (Bourne & Oates, 2017b;
Bourne et al., 2018). A detailed review can be found in Dahm et al.
(2020a). The initial version of the NAM model (Van Elk et al.,
2013; Bourne et al., 2014) assumed that compaction is the main
mechanism behind induced seismicity in the Groningen field
and employed an empirical relation based on strain partitioning
linking compaction strain and total seismic moment. A revision
of the model (Bourne &Oates, 2014, 2015) changed the focus from
modelling total seismic moment budget to modelling seismic

activity rate. In particular, the model was based on calculations
of the time-dependent compaction strain and the assumption of
statistically distributed pre-stress values, which led to a time-
dependent seismicity rate modelled by an inhomogeneous
Poisson model. A new framework for fault reactivation induced
by poroelastic deformation (Bourne & Oates, 2017b; Bourne
et al., 2018) provided an operational, stochastic- and physics-based
model to account for the early spatiotemporal evolution of
seismicity rates and magnitudes as a function of reservoir pore
pressure, strain and lateral geometrical changes within a hetero-
geneous, thin-sheet reservoir. In this model, elastic and geometric
reservoir heterogeneities governed the incremental Coulomb
stresses induced by pore pressure changes, and under these incre-
mental Coulomb stress loads, the weakest parts of pre-existing
geological faults could experience frictional failure resulting in
an induced earthquake. Structural heterogeneities are assumed
to localise shear stresses and seismicity where structural gradients
are greatest. These places are often associated with faults that parti-
ally offset the reservoir, and elastic heterogeneities serve to localise
induced shear stresses and seismicity within the regions of greatest
reservoir compressibility (Bourne & Oates, 2017b; Bourne et al.,
2018). The location and geometry of faults were taken from the
seismic interpretation. Faults with larger offsets were ignored
because they were supposed to be aseismic due to their contact with

Fig. 4. Comparing the Coulomb (CFS), subcritical
Coulomb (CFSsub) and rate-state (RS) Coulomb model
including the ETAS approach for aftershock generation.
For details, see Fig. 3.
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the overlying Zechstein salt formation. This involved the risk of
excluding major faults that may become activated in the future.
The elastic and geometric heterogeneities were represented by a
deterministic, smoothed, poroelastic, stress–strain tensor field,
which was derived using geodetic measurements of surface
displacements, geophysical imaging of reservoir geometry and
in-well monitoring of reservoir pore pressures (Bourne & Oates,
2017b; Bourne et al., 2018). Fault friction heterogeneities localised
seismicity within the weakest fault segments. Since these were
located in the tail of their joint probability distribution, extreme
value theory could be applied to govern the exponential-like
increase in the rate of induced seismicity and an increase in
expected magnitudes as the fraction of fault segments that are close
to failure increases (Bourne & Oates, 2017b; Bourne et al., 2018).
However, once the reservoir transitions into a steady state, the
seismic activity rates become proportional to induced strains
leading to their overestimation. Since the parameters of frictional
fault strength and initial stress heterogeneities are not directly
observable, they are represented in the model by a single invariant
probability distribution of initial fault stress and a transient
stochastic function for stress-induced earthquake nucleation due
to previous earthquakes (Bourne et al., 2018). A constant observa-
tion made throughout the development of the NAM seismogenic
model was the lack of sufficient data to constrain its parameters.
This limitation became more accentuated as the number of model
parameters increased with the model sophistication.

Recently, Smith et al. (2021) demonstrated that the lag and
exponential onset of seismicity are well reproduced assuming
either a generalised Pareto distribution of initial strength excess,
as previously considered by Bourne & Oates (2017b) as well as
Bourne et al. (2018), or a Gaussian distribution. While the former
can only represent the tail of the distribution, the latter describes
both its tail and body. The authors used this representation to test
whether the induced seismicity at Groningen has transitioned to a
steady state in which the earthquake rate is proportional to the
stressing rate but found that this is not yet the case.

All of the discussed hybrid models are based partially on stress
changes related to the reservoir model. Uncertainties from these as
well as other input data will certainly be carried forward into the
model forecasts. However, during seismic hazard computation,
Monte Carlo simulations can incorporate these uncertainties in
the final estimates due to the low computational costs. Different
branches in the logic tree can address the epistemic uncertainties
related to the reservoir model and parameter uncertainties.
In contrast, aleatoric uncertainties can be quantified by a large
number of stochastic forward simulations.

Discussion and concluding remarks

Open questions

The information on the 3-D reservoir and fault structures, pressure
depletion, reservoir compaction, and seismicity in Groningen is
comprehensive and detailed. The seismicity models for Groningen
have considered most of this unique and outstanding information
and are advanced. However, there are knowledge gaps in terms of
process understanding as well as the role of structural and dynamic
parameters controlling earthquake nucleation and rupture.

The state of stress on faults and their history is assumed to
be a key factor controlling the trigger potential of earthquakes.
Nevertheless, the magnitude and orientation of stress as a function
of space and time is often least known, since stresses cannot be

measured directly with remote sensors and are difficult to deter-
mine in situ. Another crucial point in the development of more
accurate fault models is the insight that salt intrusions within
the faults may affect dynamic ruptures significantly, because
they may introduce a rate dependency to fault movement and
change the frequency-magnitude distribution of seismic events
(Kettermann et al., 2017). Although for Groningen, there are
currently no subsurface data indicating the existence of salt-filled
faults, this may only be due to technical limitations. Using
analogue models, Kettermann et al. (2017) demonstrated that salt
from the Zechstein formation might flow down-dip into opening
faults due to gravitational flow.

In addition, Kortekaas & Jaarsma (2017) pointed out that the
permeability structure of the Groningen reservoir is complex
and highly anisotropic. Therefore, most clusters of production
wells have their specific drainage areas. Another process poten-
tially influencing pore pressure and thus Coulomb stress inside
and outside the reservoir is related to the underlying aquifer system
reacting to production and injections.

While much work has been done to estimate pressure and stress
within the reservoir layer, the stresses outside of the field and
within basement rocks have been rarely studied. Interestingly,
induced seismicity in the Groningen area only occurred after a
pore pressure reduction of ~10MPa was reached (e.g., Candela
et al., 2018), which is often taken as evidence that before produc-
tion, most regional faults were far from critical tectonic Coulomb
stresses. On the other hand, North German gas fields, placed in
similar Rotliegend formations and showing a similarly delayed
onset of seismicity, experienced significant earthquakes on faults
outside of the reservoirs (e.g., Fig. 1 in Brandes et al., 2014;
Dahm et al., 2007; Uta, 2017). As the setting and production are
comparable, and similar geomechanical fault stressing models
are in use (e.g., Haug et al., 2018), the seismicity models suggested
for Groningen can likely be used as well to study induced seismicity
in most of the North German gas fields.

A further key question concerns the partitioning of deforma-
tion between poroelastic and time-dependent inelastic compo-
nents and the heterogeneity of the remaining stored elastic
stress. The Groningen field contains only a single injection cluster
in the east of the field. However, it is unclear whether intermediate
and long-term effects from injections may impact the seismicity at
larger distances. Globally, examples of causal relationships as well
as far-reaching and strongly delayed effects on induced and trig-
gered seismicity are documented (Van der Elst et al., 2016; Galis
et al., 2017; Grigoli et al., 2018).

Seismicity models for Groningen were designed to reproduce
the historical seismicity for the given production and the
derived Coulomb stress loading. For seismic hazard assessment,
a frequency-magnitude distribution has to be assigned. Due to
the limited number of recorded events, the most simple and
conservative assumption is a Gutenberg–Richter distribution with
a constant b-value combined with load-dependent productivity.
However, newer models suggest implementing time- or stress-
dependent variations of the distribution. For instance, Bourne &
Oates (2017a) proposed the use of a stress-dependent b-value
and Bourne & Oates (2019) the use of a stress-dependent tapered
power law for larger magnitudes.

New high-precision source and rupture information combined
with highly resolved fault models provide additional physical
constraints that are not yet fully explored. The association of earth-
quake hypocentres with faults and the observed variability of
seismic source mechanisms and isotropic compaction components
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has not yet been considered in seismicity models developed for
Groningen. For example, Kortekaas & Jaarsma (2017) derived
high-resolution faults from 3-D seismic data, which seem to better
correlate with recent earthquake hypocentres than previously
mapped faults. Intersecting faults, as close to the 2018 Zeerijp event
(Wentinck, 2018b), may accumulate stress. Therefore, such fault
complexity may be related to larger induced events (see also
Candela et al., 2018). Furthermore, improved detection and loca-
tion of small magnitude events within the Groningen field can help
to improve seismicity statistics and characterise active weak zones
prior to the occurrence of large earthquakes. Such improvements
might be achieved, for example, by applying novel methodologies
as the highly scalable convolutional neural network presented
by Perol et al. (2018) for induced seismicity in Oklahoma,
USA. In general, the low number of spatially and temporally
clustered earthquakes in the Groningen field (Jagt et al., 2017;
Muntendam-Bos, 2020) is an obstacle for deriving relative event
locations. Another feature that may significantly help to improve
seismicity models is the earthquake source mechanism as analysed
for the Groningen field by Willacy et al. (2018); Willacy et al.
(2019); Kühn et al. (2020) and Dost et al. (2020). For specific
events, kinematic rupture models have been estimated (Wentinck,
2017; Wentinck, 2018a, b, c) or derived from apparent source
spectra (Ameri et al., 2020). This rupture information is not yet
considered in current seismicity models. However, estimation of
the kinematic and dynamic rupture parameters of such small earth-
quakes remains a challenge despite the monitoring network exten-
sions in 2015.

Objective assessment and comparison of different model types

For a specific case as the Groningen field, it is a challenge to objec-
tively evaluate and compare models against each other, since they
are developed for various aims and specific targets. Physicalmodels
and deterministic scenarios were mostly developed to investigate
specific aspects of the nucleation and rupture process of induced
earthquakes. They cannot be directly applied in seismic hazard
studies because of limited computational power as well as
unknown model parameters and initial conditions. Instead, they
can help to improve the process understanding and to enhance
concepts for seismicity models. However, both analytical and
deterministic approaches have clear limitations considering the
complex nature of reservoirs, subsurface and earthquake ruptures.
ML presents a possibility to bypass the problem of incomplete and
potentially biased process understanding, as it extracts relevant
patterns and information directly from available multivariate data-
sets without requiring insight into the underlying physical mech-
anisms. The drawbacks of the ML approaches are the limited
forecasting power due to the small number of earthquakes avail-
able for model training and that future stress evolution will likely
not be covered by the historical training dataset.

Empirical statistical models also avoid physical constraints
but implement – in contrast to ML – parametric relations between
observable characteristics and use basic statistical models to
account for aleatoric variability. Statistical models can be effective
for short-term forecasts, such as predicting aftershock activity by
ETAS-type models or predicting cumulative seismicity. However,
a weakness similar to ML is that purely statistical models cannot
provide reliable predictions for system states evolving outside
the range covered during the learning period.

Hybrid models combine physics-based deterministic with stat-
istical models. In particular, they are based on modelled stress

values in the seismogenic zone and a threshold criterion leading
to a forecast of the average rate. The natural variability in magni-
tude and time is accounted for by the statistical Gutenberg–Richter
and Poisson models. Hybrid models are preferential for time-
dependent hazard assessment of induced seismicity, because they
can more easily adapt to changing production scenarios. Most
hybrid models are based on reservoir models and reasonable
physical considerations, but the validity of those assumptions is
not always proven. For example, it is still debated whether to favour
the RS model assuming RS-dependent friction (Bourne & Oates,
2018; Candela et al., 2019; Richter et al., 2020; Heimisson et al.,
2022) or the CFS model assuming static–kinetic friction with
instantaneous earthquake nucleation (Bourne et al., 2018;
Richter et al., 2020; Smith et al, 2021).

Because of the large variation of parameter sets, assumptions,
input data and different forecast outputs, it is almost impossible
to compare and judge the performance of the alternative
approaches. Further, due to the complexity of most models and
the partly specific development and adaptation to the Groningen
field, it remains unclear whether or not hidden parameters were
set based on the knowledge of the full dataset without explicit
perception of the authors. Thus, for a quantitative comparison,
an independent, systematic testing approach is essential. This task
has been already recognised for a long time for natural seismicity.
To tackle it, the Collaboratory for the Study of Earthquake
Predictability (CSEP) was established (Jordan, 2006). Within the
CSEP framework, fully prospective tests of earthquake forecasts
are carried out in independent testing centres using standardised
statistical tests and authoritative datasets to assess the models’
predictive skills and to compare themobjectively. CSEP experiments
use pre-defined rules to test forecasts against observations using a
number of different evaluation metrics (Jordan, 2006; Zechar
et al., 2010; Jordan et al., 2011; Rhoades et al., 2011; Michael &
Werner, 2018; Schorlemmer & Gerstenberger, 2007; Schorlemmer
et al., 2018). In addition, these include comparative metrics to
statistically determine whether one model performs better than
another over an evaluation period. Similar efforts have not been
made so far for induced seismicity. In principle, it would be
straightforward to implement a CSEP-type testing framework
to validate, compare and rank the models developed for
Groningen. Whether or not such a test set-up is feasible and
successful depends on at least three conditions: (1) a sufficient
number of earthquakes to allow for discrimination between
models, (2) the willingness of model developers to participate
and provide software codes that run automatically and (3) a test
centre in which independent researchers run the codes.

It should be noted that although the production within the
Groningen field will be terminated in the near future as decided
by the Dutch government, the modelling of the seismicity after
a production stop is a challenge for seismicity models because
delayed processes and mechanisms can play a crucial role. For
instance, a clear seismicity decrease followed the significant
production reduction in 2014, but larger earthquakes of magni-
tudes M≥ 3.0 continued to occur.

Thus, the feasibility of fully prospective tests should be evalu-
ated carefully, since a CSEP-type testing framework may provide
important indications about the predictive power of the different
models. In particular, the test results may provide important infor-
mation on how different models should be weighted in a logic tree
approach for seismic hazard assessment in so-called ensemble
models. This approach would ensure the best usage of existing
seismogenic models.
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