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1. Introduction. Let F = GF(g) be the finite field of q = pr elements, 
p arbitrary. We wish to consider the system of bilinear equations 

u u 

(1.1) ]T) dj Xj yj = a, IjbjXjy-j = b, 
j=l 3=1 

where all coefficients are from F. The number of solutions in J7 of a single 
bilinear equation may be obtained from a theorem of John H. Hodges (3, 
Theorem 3) by properly defining the matrices U, V, A, B. In 1954, L. Carlitz 
(1) obtained, as a special case of his work on quadratic forms, the number of 
simultaneous solutions in F of (1.1) when all a;- = 1 and p is odd. Carlitz 
considered the case p = 2 separately. 

In this paper we are able to remove all restrictions on the coefficients of 
(1.1). In §3 we obtain an explicit value for the number of simultaneous solutions 
in F of (1.1). It is of interest to note that no solvability criterion, such as the 
one given by E. Cohen (2), depending only on the number of variables, can 
be given here, for, if we take aj = bù = 1, 1 < j < u, a = 0, b = 1 in (1.1), 
it is easy to see that this corresponding system will be unsolvable for every 
u > 1 and every field F. 

The proof in §3 is independent of whether the characteristic of F is even or 
odd. However, in order to simplify the calculations, we rearrange the coef
ficients as follows. Let s0} . . . , sk+i be integers such that s0 + . . . + sk+i = u, 
with si > 0, 1 < i < k, and st > 0, i = 0, k + 1. Let / i , . . . , /* be distinct 
non-zero elements of F. Then we have 

(dj = 0 if 1 < j < So, 
(1.2) < i , = 0 iiso + ...+sJb<j<s0 + ...+ sk+i, 

[aj 9e 0, bj 7e 0 otherwise, 

(1.3) dj/bj = fi if so + . . . + Sz-i < j < So + . . . + su 1 < i < k, 

so that for 1 < i < k, st is the number of ratios ajbj that have the common 
value fi. We further let n = u — s0 — sk+i; thus n is the number of Xj with 
non-zero coefficients. We suppose n > 1 so that the problem is not trivial. 
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2. Notation and preliminaries. If a G F, we define 

(2.1) e(a) = exp[27TÏJ(«)/£], t{a) = a + dP + . . . + c?r~\ 

so that t{a) is an element of G¥{p). One may prove from (2.1) that 

(2.2) e(a + 0) = e(a)e(fi 

and 
= 0, (2.3) ?•«*-{£ : ̂ 0 , 

where the indicated sum in (2.3) is over all P 6 F. We denote this sum by R(a). 
Obviously, 

(2.4) E *(«0) = *(«) " E *(«&)• 
/3^j8i, . . . , j8* j = l 

For any choice of x;- and 3^ in JF, 1 < j < s0, s0 + w < j < w, let 

(2.5) 
4̂ = A (a, a;-, #,-, 3^) = a — 22 aJ XJ 3̂ > 

j=SQ+n+1 

SO 

B = 5(6, &,, x,-, y,) = 6 - X) &i *; ?*• 

If we properly define U, V, A, B (3, Theorem 3), then the number of solutions 
in F of the single bilinear equation 

on xi yi + . . . + otn xnyn = a 
is given by 

(q*-i-?-i i f a ^ O , 
^ ; V"- 1 + gn - ç""1 if a = 0. 

Finally, let \p denote the Legendre function for F\ thus \p(a) = 0, 1, — 1 , 
according as a is 0, a non-zero square, or a non-square of F. 

3. The number N(a, b, a ;, 6 ,̂ w). We now prove the following result. 

THEOREM. The number N = N(a, b, ajy bj, n) of simultaneous solutions in F 
of the system (1.1) is given by 

(3.1) N = q2^8-» + qn[N(A)N(B) - q2^] 

+ è(<r8i-%-<r*KNiq-q*') 

w/zere s = So + Sfc+i. If sk+i = 0, 2/̂ w N(A) = 1 — yp2{a); otherwise N(A) is 
the number of solutions as given by (2.6) of the bilinear equation A = 0; cf. (2.5). 
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Tf So = 0, then N(B) = 1 — yp2(b); otherwise N(B) is the number of solutions 
of the bilinear equation B = 0; cf. (2.5). If s0 = sk+i = 0, then Nt = 1 — \p2 

(a — bft), where ft is defined by (1.3), and otherwise Nt is the number of solutions 
of the bilinear equation A — Bft = 0. 

Proof. If we move the last sk+\ terms aj Xj y3- and the first s0 terms bj Xj yj 
to the right side of the corresponding equations (1.1), we obtain the equivalent 
system of equations 

so+n so+n 

(3.2) X) ajXjyj^A, £ ) bjxjyj = B, 
j=s0+l j^s Q+l 

where in (3.2) all a, ̂  0, bj ̂  0, and A} B are defined by (2.5). 
We now let Sx, Sy indicate sums in which each Xj, y3-, respectively, 

so <j < SQ + n, 

takes on all values of F independently. Then if we define 

/ so+n \ / so+n \ 

(3.3) T= SXSVq~2R[ £ a,x}y, - A)R{ £ b,x,y,-B), 
\ j=So+l / \ j^So+l ' 

we have, in view of (2.3), that the number of solutions of (3.2) is given by 

(3.4) N = £ ° T 
Xj,Vj 

where the symbol immediately to the right of the equality sign indicates a 
sum in which each xjt yj} 1 < j < s0l s0 + n < j < u takes on all values of F 
independently. Clearly, if s0 = S^+i = 0, then (3.4) reduces to N = T, with 
A = a and B = b. 

If we apply (2.3) to (3.3), we obtain 

T = Sx Syq~2^2 e)[ S ajXjyj - Ah\l2n[ J2 bj Xjyj - Bjpf. 
a \ \ j=so+l ' J j8 V \ j=So+l / / 

In view of (2.2), (2.3), and the definitions of Sx and Sy, if we multiply out the 
above expression, interchange the order of sums and products, collect terms 
involving yj and sum over yjy we obtain 

so+n 

(3.5) T = q-iY,e(-Aa-Bl3) R E R(x,[ata + b, 0]). 
<*,P j=so+l xj 

Clearly, T = 0 unless Xj[aja + bjp] = 0, for all s0 + 1 < j < s0 + n, and 
for a 7e- 0, aj a + bj 13 = 0 if and only if ft = —f£ a for some fixed 1 < i < k. 
Hence, we write T = P + Q, where 

, . (P equals the sum of terms of T corresponding to a = 0, 
\Q equals the sum of terms of T corresponding to a ̂  0. 

When a = 0, if we note (2.3) and hence break the sum over 0 in (3.5) into 
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the term with 0 = 0 and the sum over p ^ 0, a straightforward calculation 
will yield 

(3.7) P = q2n-2 - qn~2 + R{B)(f-\ 

If in (3.5), for arbitrary but fixed a ^ 0, we choose 0 = —/* a, then since 
there are exactly st ratios dj/bj = fu %j may be arbitrary for 

So + . . . + St-i < j < So + . . . + SU 

but Xj must be zero for all other j or else Q = 0. With Xj defined as above, the 
inner product in (3.5) equals 

(3.8) qn+Si. 

When a 5* 0, if we break up the sum over /? in (3.5) into the term with 
13 = —fta plus the sum over /5 ̂  — fta, 1 < i < k, and for each i use (3.8) 
as the value of the inner product, we obtain 

Q = <f 2 Z (È^elBftaUei-Aa) 

+ 2" 2 E E 11 i?(0)e(-^a - Bj3). 

In view of (2.3), (2.4), and a rearrangement of terms, the above equals 

(3.9) Q = g " - 2 É (qsi - l)[R(Bft - A) - 1] + <r2i?CB)[i?04) - 1]. 

We may now write, in view of (3.4) and (3.6), 

(3.10) N = E ° (P + Q)> 

where P is given by (3.7) and Q by (3.9). If not both s0 = 0 and Sk+i = 0, 
then as the xjy yjt 1 < j < s0, s0 + n < j < u, take on all values of F, it is 
clear that A, B will be equal to zero for some choices of xjt jj and not equal to 
zero for others. In particular, for a fixed set 

\Xiy J I, . . . , X ^ , y$Qy %sQ+n + ly ysQ+n+lj • • • t %UJ yu) i 

exactly one of the following combinations will hold: 

\A = 0, B = 0; A = 0, B ^ 0, 
( 3 , U ) \A9*0,B = 0; A ^ 0, B ^ 0. 

The terms of (3.10) that do not contain A or B are independent of the 
choices of xjt yj described above; thus as we sum over the xj} yj} 1 < j < So, 
so + n < j < u, these terms obtain a factor of <?2s where 5 = s0 + sk+i. Thus, 
if we substitute the values for P and Q into (3.10), carry out the indicated 
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summation for those terms that are independent of x}, y}, j in the above 
range, and combine the remaining terms, we have 

(3.12) N = q^^ - <z2s|V2 + q"-2it {qsi - 1)] 

+ <T2 Z° \R(A)R(B) + £ <2*' ~ DR(Bfi -A)]. 

We now break the indicated sum over Sj, jj into the four cases of (3.11) to 
evaluate the third term of (3.12). 

1. When A = 0, B = 0, then R(A) = q, R(B) = q, and R(Bft - A) = q. 
These values will be assumed N(A), N(B), and N(A)N(B) times, respectively, 
so the contribution to (3.12) from this case is 

(3.13) N(A)N(B)qn + ( f ^ (qsi - 1)N(A)N(B). 

2. When A = 0, 5 ^ 0 , then A - Bft = -Bft. Thus R(B) = 0 and 
R(A — Bfi) = 0 so the contribution to (3.12) from this case is zero. 

3. When A 9e 0, B = 0, then A — Bft = A ; hence the contribution from 
this case is likewise zero. 

4. When A j* 0, B j* 0, then R(A) = 0, R(B) = 0, and R{A - Bft) will 
equal q exactly Nt — N(A)N(B) times, since by (2) and (3) A — Bfi = 0 has 
no solution in which A = 0, B ^ 0, or A T^ 0, B = 0. Thus the contribution 
to (3.12) from the terms corresponding to this case is 

(3.14) g" - 1 ! : (g" - l)[Nt - N(A)N(B)]. 
1=1 

H So = 0 or sk+i = 0 or both, then we interpret the conditions on A and B 
as conditions on the constants a and b so that exactly one of the conditions 
(3.11) will hold for a given set of equations (1.1). The definitions of N(A), 
N(B), Ni in the theorem take this possibility into consideration. Thus, if we 
replace the third term of (3.12) by its value, which is the sum of (3.13) and 
(3.14), and rearrange terms, we obtain (3.1), so the theorem is established. 
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