doi:10.1017/etds 2020.86

CORRIGENDUM

Strongly ergodic equivalence relations: spectral gap and type III invariants – CORRIGENDUM

CYRIL HOUDAYER, AMINE MARRAKCHI, PETER VERRAEDT

doi:10.1017/etds.2017.108, Published by Cambridge University Press, 27 November 2017.

1. Introduction

There is a gap in the proof of [HMV17, Theorem 4.1] which was noticed by Stefaan Vaes. The gap is in the very last line of the proof: we apply [HMV17, Proposition 4.3] to conclude that $\mathcal{R} \times_{\Omega} G$ is strongly ergodic, but in order to do this, we have first to check that $\mathcal{R} \times_{\Omega} G$ is ergodic. Let us explain how the proof can be corrected.

2. Correction of the proof of [HMV17, Theorem 4.1] First, we generalize slightly [HMV17, Proposition 4.3] in the following form.

LEMMA 2.1. Let \mathcal{R} be an equivalence relation on a standard measure space X. Let $\Gamma \curvearrowright X$ be a non-singular action of an amenable countable discrete group by automorphisms of \mathcal{R} . If the equivalence relation generated by \mathcal{R} and $\mathcal{R}(\Gamma \curvearrowright X)$ is strongly ergodic, then there exists some \mathcal{R} -invariant subset $\emptyset \neq Y \subset X$ such that \mathcal{R}_Y is strongly ergodic.

Proof. We reduce to the case where \mathcal{R} is ergodic, which was already proved in the original version. Since the equivalence relation generated by \mathcal{R} and $\mathcal{R}(\Gamma \cap X)$ is strongly ergodic, the action of Γ on $L^{\infty}(X)^{\mathcal{R}}$ must be strongly ergodic. But since Γ is amenable, this is only possible if the action of Γ on $L^{\infty}(X)^{\mathcal{R}}$ is transitive, i.e. $L^{\infty}(X)^{\mathcal{R}}$ is Γ -equivariantly isomorphic to $\ell^{\infty}(\Gamma/H)$ for some subgroup $H < \Gamma$. Take an H-invariant and \mathcal{R} -invariant subset $\emptyset \neq Y \subset X$ corresponding to an *H*-invariant atom of $L^{\infty}(X)^{\mathcal{R}}$. Then \mathcal{R}_Y is ergodic and the equivalence relation generated by \mathcal{R}_Y and $\mathcal{R}(H \curvearrowright Y)$ must be strongly ergodic. By the ergodic case which is already known, we conclude that \mathcal{R}_Y is strongly ergodic.

We also need to use the notion of Mackey range of a cocycle. Let R be an equivalence relation on a standard measure space X, G a locally compact second countable abelian group and $\Omega \in \mathbb{Z}^1(\mathcal{R}, G)$ a 1-cocycle. Then the translation action of G on $X \times G$ preserves the skew-product equivalence relation $\mathcal{R} \times_{\Omega} G$. In particular, it induces an action η_{Ω} : $G \cap L^{\infty}(X \times G)^{\mathcal{R} \times_{\Omega} G}$. This action η_{Ω} is called the *Mackey range* of Ω . It is ergodic if and only if \mathcal{R} is ergodic.

We sketch the proof of the following well-known observation which relates the kernel of $[\widehat{\Omega}]$ to the kernel of the Mackey range η_{Ω} of the cocycle Ω . Recall that a *G*-action is *transitive* if it is conjugate to $G \curvearrowright G/H$ for some closed subgroup H < G.

PROPOSITION 2.2. Let \mathcal{R} be an ergodic equivalence relation on a standard measure space X. Let $\Omega \in Z^1(\mathcal{R}, G)$ be a measurable 1-cocycle with values in a second countable locally compact abelian group G. Let $\eta_\Omega : G \curvearrowright L^\infty(X \times G)^{\mathcal{R} \times_\Omega G}$ be its Mackey range. Then we have

$$\ker[\widehat{\Omega}] \subset (\ker \eta_{\Omega})^{\perp} = \{ p \in \widehat{G} \mid \langle p, g \rangle = 1 \text{ for all } g \in \ker \eta_{\Omega} \}$$

and the equality $\ker[\widehat{\Omega}] = (\ker \eta_{\Omega})^{\perp}$ holds if η_{Ω} is transitive.

Proof. Take $p \in \ker[\widehat{\Omega}]$. Then $\widehat{\Omega}(p) = \partial u$ for some $u \in L^0(X, \mathbf{T})$. By definition of the skew-product construction, we get the relation $\partial(1 \otimes p) = \partial(u \otimes 1)$, where we view $1 \otimes p$ as an element of $L^0(X \times G, \mathbf{T})$. Therefore, we have $\partial(1 \otimes p) = \partial(u \otimes 1)$. This means that $u^* \otimes p$ is $\mathcal{R} \times_{\Omega} G$ -invariant. Since $\eta_{\Omega}(g)(u^* \otimes p) = \overline{\langle p, g \rangle}(u^* \otimes p)$ for all $g \in G$, we conclude that $\langle p, g \rangle = 1$ for all $g \in \ker \eta_{\Omega}$.

Now suppose that η_{Ω} is transitive. Then η_{Ω} is conjugate to $G \cap G/H$ where $H = \ker \eta_{\Omega}$. Take $p \in H^{\perp}$. Since we can identify $L^{\infty}(X \times G)^{\mathcal{R} \times_{\Omega} G}$ with $L^{\infty}(G/H)$ in a G-equivariant way, we can find some $\mathcal{R} \times_{\Omega} G$ -invariant function f on $X \times G$ such that $g \cdot f = \overline{\langle p, g \rangle} f$ for all $g \in G$. This forces f to be of the form $f = u^* \otimes p$ where we view p as a function on G. Then, as above, we get $\widehat{\Omega}(p) = \partial u$ and hence $p \in \ker[\widehat{\Omega}]$.

We can finally correct the end of the proof of [HMV17, Theorem 4.1].

Proof. (...) Moreover, \mathcal{Q} is generated by $\mathcal{R} \times_{\Omega} G$ and the orbit equivalence relation $\mathcal{R}(H \curvearrowright X \times G)$ of the translation action $H \curvearrowright X \times G$ on the second coordinate. By Lemma 2.1, we conclude that $(\mathcal{R} \times_{\Omega} G)_Y$ is strongly ergodic for some $\mathcal{R} \times_{\Omega} G$ -invariant subset $\emptyset \neq Y \subset X \times G$. In particular, this implies that $L^{\infty}(X \times G)^{\mathcal{R} \times_{\Omega} G}$ is atomic, and hence that η_{Ω} is transitive. Since $[\widehat{\Omega}]$ is injective, Proposition 2.2 implies that $\mathcal{R} \times_{\Omega} G$ is ergodic. We conclude that Y = X and we are done.

Acknowledgements. We are grateful to Stefaan Vaes for pointing out the gap in the proof of [HMV17, Theorem 4.1]. CH is supported by Institut Universitaire de France and FY2019 JSPS Invitational Fellowship for Research in Japan (long term).

REFERENCES

[HMV17] C. Houdayer, A. Marrakchi and P. Verraedt. Strongly ergodic equivalence relations: spectral gap and type III invariants. *Ergod. Th. & Dynam. Sys.* **39** (2019), 1904–1935.