BEYOND THE ENVELOPING ALGEBRA OF $s l_{3}$

DANIEL E. FLATH AND L. C. BIEDENHARN

0. Introduction. The problem which motivated the writing of this paper is that of finding structure behind the decomposition of the $s l_{3}$ representation spaces $V^{*} \otimes W=\operatorname{Hom}(V, W)$ for finite dimensional irreducible $s l_{3}$-modules V and W. For $s l_{2}$ this extends the classical Clebsch-Gordon problem. The question has been considered for $s l_{3}$ in a computational way in [5]. In this paper we build a conceptual algebraic framework going beyond the enveloping algebra of $s l_{3}$.

For each dominant integral weight α let V_{α} be an irreducible representation of $s l_{3}$ of highest weight α. It is well known that, for weights α, μ, λ, the multiplicity of V_{λ} in $\operatorname{Hom}\left(V_{\alpha}, V_{\alpha+\mu}\right)$ is bounded by the multiplicity of μ in V_{λ}, with equality for generic α. This suggests the possibility of a single construction of highest weight vectors of weight λ in $\operatorname{Hom}\left(V_{\alpha}, V_{\alpha+\mu}\right)$ which is valid for all α.

In order to realize this possibility we introduce an analogue of a Weyl algebra, an algebra \mathscr{A} of endomorphisms of $\oplus V_{\alpha}$ which is defined in Section 3 of this article. The construction referred to above amounts to the explicit decomposition of \mathscr{A} as an $s l_{3}$-module. The principal technical tool in this program is Theorem 5.5. The main result, the decomposition, is stated as Theorem 6.6.

The analysis of \mathscr{A} is facilitated by the fact that there is a generating set for \mathscr{A} as an algebra which spans a lie algebra isomorphic to $s o_{8}$. In Sections 7 and 8 of this article, we decompose \mathscr{A} as an $s o_{8}$-representation and use the result to show that \mathscr{A} has no nonzero proper two-sided ideal.

1. Representations of $s l_{3}$. Let g denote $s l_{3}$, the lie algebra of 3×3 traceless complex matrices, and denote by \mathfrak{h} the subspace of diagonal matrices.

The group P of weights of \mathfrak{g} will be identified with $\mathbf{Z}^{3} /\langle(1,1,1)\rangle$ as follows: For $\lambda=\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1} a_{2} a_{3}\right) \in P$ and $H=b_{1} E_{11}+b_{2} E_{22}+$ $b_{3} E_{33} \in \mathfrak{h}$, define

$$
\lambda(H)=\sum a_{i} b_{i} .
$$

The group \mathscr{S}_{3} of permutations on three letters acts on P through the formula:

Received April 25, 1983. This work was supported in part by the National Science Foundation.

$$
\sigma\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{\sigma}^{-1_{(1)}}, a_{\sigma^{-1}(2)}, a_{\sigma^{-1}(3)}\right) .
$$

A weight λ is positive if

$$
2 a_{1}-a_{2}-a_{3} \geqq 0 \quad \text { and } \quad a_{1}+a_{2}-2 a_{3} \geqq 0 ;
$$

and it is dominant if $a_{1} \geqq a_{2} \geqq a_{3}$. We say $\lambda_{1} \geqq \lambda_{2}$ of two weights if $\lambda_{1}-\lambda_{2}$ is positive.

An element w of a \mathfrak{g}-module W is a λ vector of W for $\lambda \in \mathfrak{h}^{*}$ if $H w=\lambda(H) w$ for all $H \in \mathfrak{h}$. We say that λ is a weight of W if there is a nonzero λ vector. If W is finite dimensional, this is only possible for $\lambda \in P$, and W is spanned by its weight vectors. The dimension of the space of λ vectors, the multiplicity of λ, will be denoted mult $\mathrm{t}_{\lambda}(W)$. If W is finite dimensional,

$$
\operatorname{mult}_{\sigma \lambda}(W)=\operatorname{mult}_{\lambda}(W) \text { for all } \sigma \in \mathscr{S}_{3} .
$$

Every finite dimensional irreducible representation of \mathfrak{g} has a unique highest weight. That weight is dominant and of multiplicity one; it determines the isomorphism class of the representation. Every dominant weight is the highest weight of a finite dimensional irreducible representation. The highest weight vectors in a simple g-module are those elements which are annihilated by both E_{12} and E_{23}. We shall write π_{λ} to denote an irreducible representation of highest weight λ.

For $\lambda=(p q 0)$ dominant,

$$
\operatorname{dim} \pi_{\lambda}=\frac{1}{2}(p-q+1)(p+2)(q+1)
$$

Lemma 1.1. Let λ, α, β be dominant weights. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\pi_{\lambda}, \operatorname{Hom}_{\mathbf{C}}\left(\pi_{\alpha}, \pi_{\beta}\right)\right) \leqq \operatorname{mult}_{\beta-\alpha}\left(\pi_{\lambda}\right),
$$

with equality if $\alpha+(210)+\sigma \lambda$ is dominant for all $\sigma \in \mathscr{S}_{3}$.
Proof. This is a bit of folklore. One reference is [1]. For convenience, we quickly sketch a proof here.

We prove first the inequality.
Let u be a nonzero α vector of π_{α}, and let v^{*} be a nonzero $(-\beta)$ vector of π_{β}^{*}, the representation of g contragredient to π_{β}. Let $\mathbf{C}(\beta-\alpha)$ be the one dimensional representation of \mathfrak{h} on \mathbf{C} defined by the formula

$$
H z=(\beta-\alpha)(H) z
$$

for $H \in \mathfrak{h}$ and $z \in \mathbf{C}$.
Define a linear map f as follows:

$$
\begin{aligned}
& f: \operatorname{Hom}_{\mathfrak{g}}\left(\pi_{\lambda}, \operatorname{Hom}_{\mathbf{C}}\left(\pi_{\alpha}, \pi_{\beta}\right)\right) \rightarrow \operatorname{Hom}_{\mathfrak{h}}\left(\pi_{\lambda}, \mathbf{C}(\beta-\alpha)\right) \\
& A \mapsto f(A): w \mapsto\left\langle(A w) u, v^{*}\right\rangle .
\end{aligned}
$$

By using the fact that v^{*} is a vector of lowest weight in π_{β}^{*} one easily shows that f is injective, which gives the desired inequality.

We can use a multiplicity formula to establish the equality clause of the lemma.
First note that $\operatorname{dim} \operatorname{Hom}_{g}\left(\pi_{\lambda}, \operatorname{Hom}_{\mathbf{C}}\left(\pi_{\alpha}, \pi_{\beta}\right)\right)$ equals the multiplicity of π_{β} as a subrepresentation of $\pi_{\lambda} \otimes \pi_{\alpha}$. Let $m(\beta)$ denote this multiplicity.

Let Q be the set of weights γ of π_{λ} for which there is $\sigma_{\gamma} \in \mathscr{S}_{3}$ (necessarily unique) such that

$$
\sigma_{\gamma}(\alpha+(210)+\gamma)=\beta+(210)
$$

In $[\mathbf{1}, 4]$ the following formula is proved.

$$
m(\beta)=\sum_{\gamma \in Q} \operatorname{sgn}\left(\sigma_{\gamma}\right) \operatorname{mult}_{\gamma}\left(\pi_{\lambda}\right)
$$

The hypothesis of Lemma 1.1 is equivalent to the assertion that $\alpha+$ (210) $+\gamma$ is dominant for all weights γ of π_{λ}. In that case, $Q=\{\beta-\alpha\}$ and $\sigma_{\beta-\alpha}$ is the identity.

If μ is a weight of π_{λ}, then $\lambda-\mu$ is in the subgroup of weights generated by $(1,-1,0)$ and $(0,1,-1)$, the roots. Thus every weight of $\pi_{(p q 0)}$ can be written uniquely in the form ($a b c$) with $a+b+c=p+q$.

Lemma 1.2. The weight (abc) with $a+b+c=p+q$ is a weight of $\pi_{(p q 0)}$ if and only if there exists a partition $a+b=b_{1}+b_{2}$ such that $b_{1} \geqq a \geqq b_{2}$ and $p \geqq b_{1} \geqq q \geqq b_{2} \geqq 0$. Moreover, the multiplicity of (abc) in $\pi_{(p q 0)}$ equals the number of such partitions of $a+b$.

Proof. This is essentially equivalent to the branching law of [6].
The combinatorial meaning of the inequalities of the previous lemma is uncovered by arranging the various integers in a Gel'fand-Weyl pattern $[3,7]$ as follows:

$$
\left(\begin{array}{ccccc}
& & a & & \\
& b_{1} & & b_{2} & \\
p & & q & & 0
\end{array}\right)
$$

Lemma 1.3. Let ($a b c$) with $a+b+c=p+q$ be a dominant weight of $\pi_{(p q 0)}$. Then its multiplicity is $1+\inf \{p-a, c, p-q, q\}$.
2. Construction of the representation V. Let

$$
W=\mathbf{C}\left[a_{1}, a_{2}, a_{3}, a_{12}, a_{23}, a_{31}\right]
$$

a polynomial ring in six independent commuting variables.
Let g act on W as a lie algebra of derivations through the following formulas:

$$
\begin{align*}
& E_{12}=a_{1} \partial_{a_{2}}-a_{31} \partial_{a_{23}} \tag{2.1a}\\
& E_{23}=a_{2} \partial_{a_{3}}-a_{12} \partial_{a_{31}} \tag{2.1b}\\
& E_{13}=a_{1} \partial_{a_{3}}-a_{12} \partial_{a_{23}} \\
& E_{21}=a_{2} \partial_{a_{1}}-a_{23} \partial_{a_{31}} \\
& E_{32}=a_{3} \partial_{a_{2}}-a_{31} \partial_{a_{12}} \\
& E_{31}=a_{3} \partial_{a_{1}}-a_{23} \partial_{a_{12}} \\
& E_{11}-E_{22}=a_{1} \partial_{a_{1}}-a_{2} \partial_{a_{2}}+a_{31} \partial_{a_{31}}-a_{23} \partial_{a_{23}} \\
& E_{22}-E_{33}=a_{2} \partial_{a_{2}}-a_{3} \partial_{a_{3}}+a_{12} \partial_{a_{12}}-a_{31} \partial_{a_{31}} .
\end{align*}
$$

Notice that a_{1}, a_{2}, a_{3} span a space isomorphic to the defining representation of g (highest weight (100)), and that a_{12}, a_{23}, a_{31} span a space isomorphic to its antisymmetric square (highest weight (110)): $a_{i j}=a_{i} \wedge a_{j}$.

Define three linear transformations M_{+}, M_{-}, M_{0} on W :

$$
\begin{align*}
M_{+} & =-\left(\partial_{a_{1}} \partial_{a_{23}}+\partial_{a_{2}} \partial_{a_{31}}+\partial_{a_{3}} \partial_{a_{12}}\right) \tag{2.2a}\\
M_{-} & =a_{1} a_{23}+a_{2} a_{31}+a_{3} a_{12} \tag{2.2b}\\
M_{0} & =-\left(a_{1} \partial_{a_{1}}+a_{2} \partial_{a_{2}}+a_{3} \partial_{a_{3}}+a_{12} \partial_{a_{12}}\right. \\
& \left.+a_{23} \partial_{a_{23}}+a_{31} \partial_{a_{31}}+3\right) .
\end{align*}
$$

Let V be the kernel of M_{+}.
Each of M_{+}, M_{-}, M_{0} commutes with g above; because M_{+}does so, V is itself a representation of g . Our next task is to decompose this representation.

For nonnegative integers j, let P^{j} be the space of homogeneous polynomials of degree j in W. Let H^{j} be the kernel of M_{+}in P^{j}.

Lemma 2.3. $P^{j}=H^{j} \oplus M_{-} P^{j-2}$.
Proof. By induction on j. The statement is trivial for $j=0,1$. Suppose it is true for integers $j \leqq k$. To establish its validity for $j=k+2$ it will suffice to show that M_{+}maps $M_{-} P^{k}$ isomorphically onto P^{k}.

The inductive hypothesis implies that

$$
P^{k}={ }_{0 \leqq p} \bigoplus_{\equiv k / 2} M_{-}^{p} H^{k-2 p} .
$$

Thus all follows from
Lemma 2.4. $M_{+} M_{-}$acts as scalar multiplication by

$$
(p+1)(p-k-3) \neq 0 \quad \text { on } M_{-}^{p} H^{k-2 p} .
$$

Proof. Calculation shows that M_{+}, M_{-}, M_{0} span a lie algebra isomorphic to $s l_{2}$:

$$
\left[M_{+}, M_{-}\right]=M_{0} \quad\left[M_{0}, M_{+}\right]=2 M_{+} \quad\left[M_{0}, M_{-}\right]=-2 M_{-}
$$

Now establish by induction that for positive integers l,

$$
M_{+} M_{-}^{l}=l M_{-}^{l-1}\left(M_{0}-l+1\right)+M_{-}^{l} M_{+}
$$

Theorem 2.5. $H^{j} \simeq \oplus_{i=0}^{j} \pi_{(j i 0)}$.
Proof. H^{j} contains a g -subrepresentation isomorphic to $\pi_{(j i 0)}$, the one with highest weight vector $a_{1}{ }^{j-i} a_{12}{ }^{i}$. To show that these subrepresentations span H^{j}, we must check that

$$
\sum_{i=0}^{j} \operatorname{dim} \pi_{(j i 0)}=\operatorname{dim} H^{j}
$$

By Lemma 2.3,

$$
\operatorname{dim} H^{j}=\operatorname{dim} P^{j}-\operatorname{dim} P^{j-2}
$$

The space of homogeneous polynomials of degree j in n variables has dimension $\binom{j+n-1}{j}$. Thus the formula we want is an easy induction:

$$
\sum_{i=0}^{j} \frac{1}{2}(j-i+1)(j+2)(i+1)=\binom{j+5}{j}-\binom{j+3}{j-2}
$$

Corollary 2.6. The g -representation V is a multiplicity free sum of all finite dimensional irreducible representations of \mathfrak{g}.

The algebra of operators on V generated by g is isomorphic to the universal enveloping algebra of g .

Proof. Only the second assertion needs proof. It foilows from the existence for every $x \neq 0$ in the enveloping algebra of a finite dimensional irreducible representation π of \mathfrak{g} such that $\pi(x) \neq 0$.

We will denote by V_{λ} the subspace of V which is isomorphic to π_{λ}. A ($j i 0$)-vector in $V_{(j i 0)}$ is a $a_{1}{ }^{j-i} a_{12}{ }^{i}$. If λ is not dominant, write $V_{\lambda}=(0)$.

Let \mathscr{S}_{6} be the group of permutations on the six symbols $1,2,3$, $12,23,31$. It acts linearly as ring automorphisms on the space W by $\sigma\left(a_{k}\right)=a_{\sigma(k)}$.

Let τ be the action of \mathscr{S}_{6} on $\operatorname{End}_{\mathbf{C}}(W)$ given by

$$
\tau(\sigma) T=\sigma \circ T \circ \sigma^{-1} \quad \text { for } T \in \operatorname{End}_{\mathbf{C}}(W) .
$$

In particular,

$$
\tau(\sigma) a_{k}=a_{\sigma(k)} \quad \text { and } \quad \tau(\sigma) \partial_{a_{k}}=\partial_{a_{\sigma(k)}} .
$$

Define subgroups K^{\prime}, K, and L of \mathscr{S}_{6} by listing generators:

$$
K^{\prime}=\left\langle\binom{ 1}{23}(231),\left(\begin{array}{l}
1 \tag{2.7a}
\end{array} 23\right)(312)\right\rangle
$$

(2.7b) $\quad K=\left\langle K^{\prime},\left(\begin{array}{ll}1 & 23\end{array}\right)\right\rangle$.
(2.7c) $\quad L=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}23 & 31\end{array} 12\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}23 & 12\end{array}\right)\right\rangle$.

The isomorphism classes of these groups are easily determined:

$$
K^{\prime} \simeq \mathbf{Z}_{2} \times \mathbf{Z}_{2}, K \simeq \mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{2}, L \simeq \mathscr{S}_{3}
$$

Because L normalizes K^{\prime} and K, we can define subgroups G^{\prime} and G of \mathscr{S}_{6} as follows:

$$
\begin{equation*}
G^{\prime}=K^{\prime} L \quad G=K L . \tag{2.8}
\end{equation*}
$$

It is not hard to see that $G^{\prime} \simeq \mathscr{S}_{4}$ and that

$$
G=G^{\prime} \times\left\langle\left(\begin{array}{ll}
1 & 23
\end{array}\right)(231)\left(\begin{array}{ll}
3 & 12
\end{array}\right)\right\rangle
$$

Lemma 2.9. For each $\sigma \in G, \sigma(V)=V$ and $\sigma\left(H^{j}\right)=H^{j}$.
Proof. Because $\tau(\sigma) M_{+}=M_{+}$. In fact, G is the stabilizer in \mathscr{S}_{6} of M_{+}.

We will henceforth use τ to denote the action of G on $\operatorname{End}_{\mathbf{C}}(V)$ given by

$$
\tau(\sigma) T=\sigma \circ T \circ \sigma^{-1}
$$

3. Construction of the algebra \mathscr{A}. Define six operators on W by the formulas below.
(3.1a) $\binom{100}{100}=2 a_{1}+a_{1}^{2} \partial_{a_{1}}+a_{1} a_{2} \partial_{a_{2}}+a_{1} a_{3} \partial_{a_{3}}+a_{1} a_{12} \partial_{a_{12}}$

$$
+a_{1} a_{31} \partial_{a_{31}}-a_{2} a_{31} \partial_{a_{23}}-a_{3} a_{12} \partial_{a_{23}}
$$

(3.1b) $\quad\binom{010}{100}=a_{12} \partial_{a_{2}}-a_{31} \partial_{a_{3}}$
(3.1c) $\binom{001}{100}=\partial_{a_{23}}$

$$
\begin{align*}
\binom{110}{110} & =2 a_{12}+a_{12}^{2} \partial_{a_{12}}+a_{12} a_{23} \partial_{a_{23}}+a_{12} a_{31} \partial_{a_{31}}+a_{1} a_{12} \partial_{a_{1}} \tag{3.1~d}\\
& +a_{2} a_{12} \partial_{a_{2}}-a_{1} a_{23} \partial_{a_{3}}-a_{2} a_{31} \partial_{a_{3}}
\end{align*}
$$

(3.1e) $\quad\binom{101}{110}=-a_{1} \partial_{a_{31}}+a_{2} \partial_{a_{23}}$
(3.1f) $\binom{011}{110}=\partial_{a_{3}}$.

Calculations show that each of these operators carries the subspace V into itself. Henceforth they will be viewed as linear transformations on V, not W. The auxiliary space W will appear no more in this paper.

Define twelve more operators on V.
For $e=100,010,001$:

$$
\begin{equation*}
\binom{e}{010}=\left[E_{21},\binom{e}{100}\right],\binom{e}{001}=\left[E_{32},\binom{e}{010}\right] . \tag{3.2a}
\end{equation*}
$$

For $f=110,101,011$:

$$
\begin{equation*}
\binom{f}{101}=-\left[E_{32},\binom{f}{110}\right],\binom{f}{011}=-\left[E_{21},\binom{f}{101}\right] . \tag{3.2b}
\end{equation*}
$$

The algebra of operators on V generated by the nine $\binom{e}{e^{\prime}}$ and the nine $\binom{f}{f^{\prime}}$ will be denoted \mathscr{A}.

Observe that \mathscr{A} contains g and hence also the enveloping algebra of g.

$$
\begin{align*}
E_{12} & =\left[\binom{101}{101},\binom{010}{100}\right] \quad E_{21}=\left[\binom{101}{011},\binom{010}{010}\right] \tag{3.3}\\
E_{23} & =\left[\binom{101}{110},\binom{010}{010}\right] \quad E_{32}=\left[\binom{101}{101},\binom{010}{001}\right] .
\end{align*}
$$

We can therefore view \mathscr{A} as the space of a \mathfrak{g}-representation ρ through the formula

$$
\rho(x) a=[x, a] \text { for } x \in g, a \in \mathscr{A} .
$$

The analysis of the g -representation \mathscr{A} is the principal object of this paper.

Each of the eighteen generators of \mathscr{A} is written in the form $\binom{h}{h^{\prime}}$. We refer to h and h^{\prime} as the upper and lower labels. These labels are interpreted as \mathfrak{g}-weights and have the following significance. The operator $\binom{h}{h^{\prime}}$ is an h^{\prime}-vector in the g-representation ρ on \mathscr{A}. For each irreducible subrepresentation V_{λ} of V,

$$
\binom{h}{h^{\prime}}\left(V_{\lambda}\right) \subset V_{\lambda+h} .
$$

The next important proposition assures us that \mathscr{A} is large enough for the study of all spaces $\operatorname{Hom}_{\mathbf{C}}\left(V_{\mu}, V_{\lambda}\right)$.

Proposition 3.4. Let U be a finite dimensional vector subspace of V and let $T \in \operatorname{End}_{\mathbf{C}}(U)$. Then there exists an element of \mathscr{A} whose restriction to U equals T.

Proof. By enlarging U we may assume that U is a sum of V_{λ}. Choose a basis B of U compatible with the decomposition $U=\oplus V_{\lambda}$, and choose v, $w \in B$, say

$$
v \in V_{(j i 0)} \text { and } \quad w \in V_{(l k 0)}
$$

We show that there is $a \in \mathscr{A}$ such that $a v=w$ and $a v^{\prime}=0$ for all $v^{\prime} \neq v \in B$.

Indeed, given endomorphisms T_{λ} of V_{λ} there is an S in the enveloping algebra of g such that S agrees with T_{λ} on each of the (finitely many) V_{λ}. So there exists $S \in \mathscr{A}$ such that

$$
S v=a_{1}^{j-i} a_{12}^{i} \quad \text { and } \quad S v^{\prime}=0 \text { for } v^{\prime} \neq v \in B
$$

Now

$$
R=\binom{110}{110}^{k}\binom{100}{100}^{1-k}\binom{001}{001}^{i}\binom{011}{011}^{j-i}
$$

maps $a_{1}{ }^{j-i} a_{12}{ }^{i}$ to a nonzero multiple of $a_{1}{ }^{l-k} a_{12}{ }^{k}$. Finally there is Q in the enveloping algebra of \mathfrak{g} such that $Q R S v=w$. We take $a=Q R S$.

Corollary 3.5. i) If $T \in \operatorname{End}_{\mathbf{C}}(V)$ commutes with \mathscr{A} then T is a scalar multiplication.
ii) The center of \mathscr{A} is \mathbf{C}, the scalar multiplications.
iii) V is a simple \mathscr{A}-module.
4. $s o_{8}$. Calculation with the eighteen generators of \mathscr{A} shows that the following three useful and easily remembered rules hold.
4.1.) The three operators with a given upper label commute.
4.2.) The three operators with a given lower label commute.
4.3a.) The three $\binom{001}{\ldots}$ commute with the three $\binom{011}{\ldots}$ and the three $\binom{101}{\ldots}$.
b.) The three $\binom{010}{\ldots}$ commute with the three $\binom{011}{\ldots}$ and the three $\binom{110}{\ldots}$.
c.) The three $\binom{100}{\ldots}$ commute with the three $\binom{101}{\ldots}$ and the three $\binom{110}{\cdots}$.
Define six more elements of \mathscr{A}.

$$
\begin{align*}
& H_{1}=-1-a_{2} \partial_{a_{2}}-a_{3} \partial_{a_{3}}-a_{23} \partial_{a_{23}} \tag{4.4a}\\
& H_{2}=-1-a_{1} \partial_{a_{1}}-a_{3} \partial_{a_{3}}-a_{31} \partial_{a_{31}} \tag{4.4b}
\end{align*}
$$

$$
\begin{align*}
& H_{3}=-1-a_{1} \partial_{a_{1}}-a_{2} \partial_{a_{2}}-a_{12} \partial_{a_{12}} \tag{4.4c}\\
& H_{4}=-1-a_{12} \partial_{a_{12}}-a_{23} \partial_{a_{23}}-a_{31} \partial_{a_{31}} \tag{4.4d}\\
& X=1+a_{1} \partial_{a_{1}}+a_{2} \partial_{a_{2}}+a_{3} \partial_{a_{3}} \tag{4.4e}\\
& Y=-H_{4} . \tag{4.4f}
\end{align*}
$$

Notice that X and Y commute with g . On the subspace $V_{(j i 0)}$ of V, X acts as scalar multiplication by $j-i+1$ and Y as scalar multiplication by $i+1$.

The following important theorem summarizes many commutation calculations.

Theorem 4.5. The eighteen generators of $\mathscr{A}, \mathfrak{g}, X$, and Y span a twenty-eight dimensional lie algebra isomorphic to so $_{8}$.

Corollary 4.6. \mathscr{A} is isomorphic to a quotient of the universal enveloping algebra of so_{8}.

Corollary 4.7. V may be viewed as an irreducible representation of so $_{8}$.

We want to give explicitly the isomorphism with $s o_{8}$.
Let $J=\left(\delta_{i, 9-i}\right)$ be the 8×8 matrix all of whose entries are zero except those on the second diagonal which are equal to one. We will take for s_{8} the lie algebra of 8×8 complex matrices A such that

$$
{ }^{t} A J+J A=0
$$

These are precisely the 8×8 matrices which are antisymmetric with respect to the second diagonal.

The identification of matrices in ${s o_{8}}$ with elements of \mathscr{A} is given in Table 1, where $F_{i j}$ is the 8×8 matrix of all of whose entries are zero except the $i j^{\text {th }}$ which is one.

One can now ask about subalgebras of $s o_{8}$. Here is an easy result.
Proposition 4.8. The three $\binom{010}{\cdots}$, the three $\binom{101}{\cdots}$, g, and $X-Y$ span a fifteen dimensional lie algebra isomorphic to sl_{4}.

Each of the subspaces H^{j} of V is irreducible as a representation of this $s l_{4}$.

We want next to show that the τ-action of G on $\operatorname{End}_{\mathbf{C}}(V)$ restricts to an action on the algebra \mathscr{A}.

Let f denote the subspace of diagonal matrices of $s o_{8}$. We continue to identify so_{8} and its isomorphic lie algebra in \mathscr{A}, so that \mathfrak{f} is spanned by the four H_{i}.

Proposition 4.9. For each $\sigma \in G, \tau(\sigma)$ preserves \mathfrak{f}, $s l_{4}$, and $s o_{8} . G$ acts Through τ as a group of automorphisms of \mathscr{A}.

Table 1
\mathscr{A} and $s o_{8}$

$$
\begin{aligned}
& E_{12}=F_{12}-F_{78} \\
& E_{13}=F_{13}-F_{68} \\
& E_{23}=F_{23}-F_{67} \\
& \binom{010}{100}=F_{14}-F_{58} \\
& \binom{010}{010}=F_{24}-F_{57} \\
& \binom{010}{001}=F_{34}-F_{56} \\
& \binom{001}{100}=F_{15}-F_{48} \\
& \binom{001}{010}=F_{25}-F_{47} \\
& \binom{001}{001}=F_{35}-F_{46} \\
& \binom{100}{100}=F_{62}-F_{73} \\
& \binom{100}{010}=F_{83}-F_{61} \\
& \binom{100}{001}=F_{71}-F_{82} \\
& H_{i}=F_{i i}-F_{9-i, 9-i}
\end{aligned}
$$

$$
\begin{aligned}
& E_{21}=F_{21}-F_{87} \\
& E_{31}=F_{31}-F_{86} \\
& E_{32}=F_{32}-F_{76} \\
& \binom{101}{011}=-F_{41}+F_{85} \\
& \binom{101}{101}=-F_{42}+F_{75} \\
& \binom{101}{110}=-F_{43}+F_{65} \\
& \binom{110}{011}=-F_{51}+F_{84} \\
& \binom{110}{101}=-F_{52}+F_{74} \\
& \binom{110}{110}=-F_{53}+F_{64} \\
& \binom{011}{011}=-F_{26}+F_{37} \\
& \binom{011}{101}=-F_{38}+F_{16} \\
& \binom{011}{110}=-F_{17}+F_{28} \\
& i=1,2,3,4 .
\end{aligned}
$$

Proof. One must check the first assertion explicitly for generators σ of G. The last assertion follows because $s o_{8}$ generates \mathscr{A}.

The actions of G on f and on $\mathfrak{f} \cap s l_{4}$ are faithful. Indeed, the subgroup G^{\prime} acts as the full permutation group of the set of H_{i}, and the element $(123)(231)(312) \in G$ acts as scalar multiplication by -1 on $\mathfrak{f} \cap s l_{4}$.

Denote by R the root system of $s l_{4}$ associated to the cartan subalgebra $\mathfrak{f} \cap \mathrm{sl}_{4}$.

Denote by $\operatorname{Aut}(R)$ the automorphism group of R, a finite subgroup of linear automorphisms of $\left(\mathfrak{q} \cap s l_{4}\right)^{*}$. Let $W(R)$ be the Weyl group of R, a subgroup of index 2 in $\operatorname{Aut}(R)$.

For $\sigma \in G$, let $\epsilon(\sigma)$ be the contragredient of the restriction of $\tau(\sigma)$ to $\mathfrak{f} \cap s l_{4}$. The previous proposition shows that $\epsilon(\sigma) \in \operatorname{Aut}(R)$.

Proposition 4.10. i) The map $\epsilon: G \rightarrow \operatorname{Aut}(R)$ is an isomorphism.
ii) $\epsilon\left(G^{\prime}\right)=W(R)$.

Proof. See the explicit description of $W(R)$ in [2].
5. The commutant \mathscr{B} of $\left\{E_{12}, E_{23}\right\}$ in \mathscr{A}. We want to decompose the representation ρ of g on \mathscr{A}. Because \mathscr{A} is a sum of finite dimensional representations, this amounts to the determination of the space of a in \mathscr{A} such that

$$
\rho\left(E_{12}\right) a=\rho\left(E_{23}\right) a=0 .
$$

This is precisely the commutant of E_{12}, E_{23} in \mathscr{A}.
It is easily verified that the commutant of E_{12}, E_{23} in $s o_{8}$ is the nine dimensional lie subalgebra spanned by the following:

$$
\begin{equation*}
X, Y, E_{13},\binom{110}{110},\binom{101}{110},\binom{011}{110},\binom{100}{100},\binom{010}{100},\binom{001}{100} . \tag{5.1}
\end{equation*}
$$

Let \mathscr{B} be the subalgebra of \mathscr{A} generated by the nine operators above.
The nine generators of \mathscr{B} are not independent. We note two relations in addition to the commutation rules.
(5.2a) $\quad\binom{011}{110}\binom{100}{100}-\binom{101}{110}\binom{010}{100}-X E_{13}=0$
(5.2b) $\quad\binom{101}{110}\binom{010}{100}-\binom{110}{110}\binom{001}{100}-Y E_{13}=0$.

Lemma 5.3. The vector space \mathscr{B} is spanned by elements of the form $S X^{e} Y^{f}$ where

$$
\begin{align*}
& S=E_{13}{ }^{a}\binom{101}{110}^{b_{1}}\binom{010}{100}^{b_{2}}\binom{110}{110}^{c_{1}}\binom{001}{100}^{c_{2}}\binom{011}{110}^{d_{1}}\binom{100}{100}^{d_{2}}, \tag{5.4}\\
& \text { with } c_{1} c_{2}=d_{1} d_{2}=0 .
\end{align*}
$$

Proof. Use the relations.
Theorem 5.5. \mathscr{B} is the commutant of $\left\{E_{12}, E_{23}\right\}$ in \mathscr{A}.
Proof. Let U be the \mathfrak{g}-module generated by \mathscr{B}. The theorem is equivalent to the equality: $U=\mathscr{A}$. Because X and Y commute with \mathfrak{g}, we have $U X$, $U Y \subset U$.

Let $\sigma=\left(\begin{array}{ll}1 & 12)(231)(323) \in G \text {. Because } \sigma(\mathscr{B})=\mathscr{B} \text { and } \sigma(\mathfrak{g})=\mathfrak{g} \text {, we }, ~(2)\end{array}\right.$ have that $\sigma(U)=U$.

Lemma 5.6. $\mathscr{B} \cdot\binom{001}{001}, \mathscr{B} \cdot\binom{100}{001} \subset U$.
Proof. The proof consists of tedious calculations, mainly consisting of finding enough relations in \mathscr{A} amongst the elements of s_{8}. Only an outline will be given.

We list three equalities in \mathscr{A}.

$$
\begin{align*}
& E_{23}\binom{001}{100}=E_{13}\binom{001}{010}+\binom{011}{110}\binom{101}{110} \tag{5.7a}\\
& \binom{010}{010}\binom{001}{100}=\binom{010}{100}\binom{001}{010}+(Y-1)\binom{011}{110}
\end{align*}
$$

(5.7c) $\quad\binom{100}{010}\binom{001}{100}=\binom{100}{100}\binom{001}{010}+(X+Y-1)\binom{101}{110}$.

Using these relations one shows that

$$
\left[E_{21}, S\binom{001}{100}\right] \in\left(a+b_{2}+c_{2}+d_{2}+1\right) S\binom{001}{010}+\mathscr{B}
$$

whence

$$
\mathscr{B} \cdot\binom{001}{010} \subset U .
$$

Quite similarly, one proves that

$$
\mathscr{B} \cdot\binom{010}{010}, \mathscr{B} \cdot\binom{100}{010}, \mathscr{B} \cdot E_{23} \subset U .
$$

By applying σ, one deduces that also

$$
\mathscr{B} \cdot\binom{011}{101}, \mathscr{B} \cdot\binom{101}{101}, \mathscr{B} \cdot\binom{110}{101}, \mathscr{B} \cdot E_{12} \subset U .
$$

Next by considering both $\left[E_{21}, S E_{12}\right]$ and $\left[E_{21}, S E_{12}\right]+\left[E_{31}, S E_{13}\right]+$ [$E_{32}, S E_{23}$] one shows that

$$
\mathscr{B} \cdot H_{1}, \mathscr{B} \cdot H_{2}, \mathscr{B} \cdot H_{3} \subset U .
$$

Finally, consideration of $\left[E_{31}, S\binom{001}{100}\right]+\left[E_{32}, S\binom{001}{010}\right]$ establishes the inclusion

$$
\mathscr{B} \cdot\binom{001}{001} \subset U
$$

and consideration of $\left[E_{31}, S\binom{100}{100}\right]+\left[E_{32}, S\binom{100}{010}\right]$ establishes

$$
\mathscr{B} \cdot\binom{100}{001} \subset U .
$$

The lemma is proved.
We now quickly prove the theorem.
By applying σ,

$$
\mathscr{B} \cdot\binom{011}{011}, \mathscr{B} \cdot\binom{110}{011} \subset U .
$$

Because E_{21}, E_{32} commute with $\binom{\cdots}{001}$ and $\binom{\cdots}{011}$, and since

$$
U=\rho(\mathscr{E}) \cdot B
$$

where \mathscr{E} is the enveloping algebra of $\operatorname{span}\left\{E_{21}, E_{32}, E_{31}\right\}$, we conclude that

$$
U \cdot\binom{001}{001}, U \cdot\binom{100}{001}, U \cdot\binom{011}{011}, U \cdot\binom{110}{011} \subset U
$$

Next, apply E_{13}, E_{12}, E_{23} to these last inclusions to show that $U \cdot \mathscr{C} \subset U$ where \mathscr{C} is the subalgebra of \mathscr{A} generated by the twelve operators $\binom{100}{\ldots}$, $\binom{001}{\ldots},\binom{110}{\ldots},\binom{011}{\ldots}$.
It remains but to observe that $\mathscr{C}=\mathscr{A}$.
Define \mathscr{A}° to be the algebra of all T in \mathscr{A} such that $T\left(V_{\lambda}\right) \subset V_{\lambda}$ for all dominant weights λ.

Lemma 5.8. $\mathscr{A}^{\circ} \cap \mathscr{B}$ is generated as an algebra by X, Y, E_{13}, $\binom{101}{110}\binom{010}{100},\binom{010}{100}\binom{001}{100}\binom{100}{100}$, and $\binom{101}{110}\binom{110}{110}\binom{011}{110}$.

Proof. The condition on a member of the spanning set (5.4) of \mathscr{B} to be in \mathscr{A}° is that

$$
b_{1}+c_{1}+d_{2}=b_{2}+c_{1}+d_{1}=b_{1}+c_{2}+d_{1} .
$$

Consideration of the four cases arising from the condition $c_{1} c_{2}=d_{1} d_{2}=0$ shows that the elements meeting this condition can be written in terms of the six operators given in the lemma and the elements

$$
T_{n}=\binom{101}{110}^{n}\binom{010}{100}^{n}
$$

That the T_{n} are unnecessary is shown by the calculation:

$$
T_{n}=T_{n-1}\left((n-1) E_{13}+\binom{101}{110}\binom{010}{100}\right) .
$$

Proposition 5.9. \mathscr{A}° is the subalgebra of \mathscr{A} generated by \mathfrak{g}, X, and Y.
Proof. \mathscr{A}° is the g -module generated by $\mathscr{A}^{\circ} \cap \mathscr{B}$. To show that \mathscr{A}° is contained within the algebra generated by \mathfrak{g}, X, and Y we need only show that $\mathscr{A}^{\circ} \cap \mathscr{B}$ is so contained. Combine Lemma (5.8) and the following identities.

$$
\begin{align*}
& \binom{101}{110}\binom{010}{100}=E_{12} E_{23}+\frac{1}{2}\left(H_{1}-H_{2}+H_{3}-H_{4}\right) E_{13} \tag{5.10a}\\
& \binom{010}{100}\binom{001}{100}\binom{100}{100}=E_{23} E_{12}^{2}-E_{32} E_{13}^{2}-\left(H_{2}-H_{3}\right) E_{12} E_{13} \tag{5.10b}\\
& \binom{101}{110}\binom{110}{110}\binom{011}{110}=E_{12} E_{23}^{2}-E_{21} E_{13}^{2}+\left(H_{1}-H_{2}\right) E_{23} E_{13} \tag{5.10c}
\end{align*}
$$

6. Structure of \mathscr{B}. For weights λ, μ of g, define $\mathscr{B}\binom{\mu}{\lambda}$ to be the set of $T \in \mathscr{B}$ such that the following two conditions are satisfied:
6.1a) T is a λ vector of the g-representation ρ on \mathscr{A}.
6.1b) $T\left(V_{\alpha}\right) \subset V_{\alpha+\mu}$ for all dominant weights α of g.

Because the generators of \mathscr{B} are all dominant weight vectors, unless λ is dominant, $\mathscr{B}\binom{\mu}{\lambda}=(0)$.

One has a grading of \mathscr{B} :

$$
\mathscr{B}=\oplus \mathscr{B}\binom{\mu}{\lambda} \quad \text { and } \quad \mathscr{B}\binom{\mu}{\lambda} \cdot \mathscr{B}\binom{\mu^{\prime}}{\lambda^{\prime}} \subset \mathscr{B}\binom{\mu+\mu^{\prime}}{\lambda+\lambda^{\prime}}
$$

Proposition 6.2. $\mathscr{B}\binom{0}{0}=\mathbf{C}[X, Y]$.
Proof. The algebra $\mathscr{B}\binom{0}{0}$ is spanned by those monomials in the six generators from Lemma 5.8 of $\mathscr{A}^{\circ} \cap \mathscr{B}$ which actually lie in $\mathscr{B}\binom{0}{0}$. Thus it is spanned by monomials in X and Y.
For weights μ and λ and dominant weight α of \mathfrak{g} denote by $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$ the space of all $T \in \operatorname{Hom}_{\mathbf{C}}\left(V_{\alpha}, V_{\alpha+\mu}\right)$ which are restrictions of elements of $\mathscr{B}\binom{\mu}{\lambda}$.

Lemma 6.3. (i) For μ, λ, α weights of \mathfrak{g} with λ and α dominant,

$$
\operatorname{dim} \mathscr{B}\binom{\mu}{\lambda}(\alpha)=\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(\pi_{\lambda}, \operatorname{Hom}_{\mathbf{C}}\left(\pi_{\alpha}, \pi_{\alpha+\mu}\right)\right)
$$

(ii) The space $\mathscr{B}\binom{\mu}{\lambda}$ is nonzero if and only if λ is dominant and μ is a weight of π_{λ}.
Proof. (i) The elements of $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$ are λ vectors of the g-representation $\operatorname{Hom}_{\mathbf{C}}\left(V_{\alpha}, V_{\alpha+\mu}\right)$ which are highest weight vectors. By Proposition 3.4 we find all such in $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$.
(ii) This is a trivial consequence of (i) and Lemma 1.1.

Let Φ be the set of S in \mathscr{B} as in (5.4).
Let $\Phi\binom{\mu}{\lambda}$ equal $\Phi \cap \mathscr{B}\binom{\mu}{\lambda}$.
For dominant weights α, denote by $\Phi\binom{\mu}{\lambda}(\alpha)$ the set of restrictions to
V_{α} of the elements of $\Phi\binom{\mu}{\lambda}$.
Lemma 6.4. The set $\Phi\binom{\mu}{\lambda}(\alpha)$ is a basis of $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$ for each dominant weight α such that $\alpha+(210)+\sigma \lambda$ is dominant for every $\sigma \in \mathscr{S}_{3}$.

Proof. By Lemma 5.3 it is seen that the set $\Phi\binom{\mu}{\lambda}(\alpha)$ spans $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$ for all α.

To establish linear independence we must show that the cardinality of $\Phi\binom{\mu}{\lambda}$ equals $\operatorname{dim} \mathscr{B}\binom{\mu}{\lambda}(\alpha)$ for α as in the lemma.

Let

$$
\binom{\mu}{\lambda}=\left(\begin{array}{lll}
a & b & c \\
p & q & 0
\end{array}\right)
$$

with $(p q 0)$ dominant, $(a b c)$ a weight of $\pi_{(p q 0)}$, and $a+b+c=p+q$.
An easy calculation enumerates the elements of $\Phi\binom{\mu}{\lambda}$:

$$
\begin{align*}
& \Phi\binom{\mu}{\lambda}=\left\{E_{13}^{d}\binom{101}{110}^{\delta-d}\binom{010}{100}^{\delta+b-q-d}\binom{001}{100}^{c-q}\right. \tag{6.5}\\
&\left.\times\binom{ 100}{100}^{a-q}\right\}_{0 \leqq d \leqq \inf \{\delta, \delta+b-q\}}
\end{align*}
$$

where: i) For $n \geqq 0$ we have written $\binom{100}{100}^{-n}$ for $\binom{011}{110}^{n}$ and $\binom{001}{100}^{-n}$ for $\binom{110}{110}^{n}$.
ii) We compute δ from the table below:

δ	$q \geqq a$	$q \leqq a$
$q \geqq c$	$p-b$	c
$q \leqq c$	a	q

On the other hand, the dimension of $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$, which equals mult ${ }_{\mu}\left(\pi_{\lambda}\right)$ by Lemmas 1.1 and 6.3 for α as above, can also be computed explicitly. Choose $\sigma \in \mathscr{S}_{3}$ such that $\sigma \mu$ is dominant. Then $\operatorname{mult}_{\mu}\left(\pi_{\lambda}\right)$ equals mult $_{\sigma \mu}\left(\pi_{\lambda}\right)$, and the latter is given by Lemma 1.3.

It is now a simple matter to conclude the proof by showing the two numbers card $\Phi\binom{\mu}{\lambda}$ and $\operatorname{dim} \mathscr{B}\binom{\mu}{\lambda}(\alpha)$ to be equal.

Theorem 6.6. $\mathscr{B}\binom{\mu}{\lambda}$ is a free $\mathbf{C}[X, Y]$-module of rank equal to mult ${ }_{\mu}\left(\pi_{\lambda}\right)$. The set $\Phi\binom{\mu}{\lambda}$ is a basis.

Proof. By Lemma 5.3, the set $\Phi\binom{\mu}{\lambda}$ generates $\mathscr{B}\binom{\mu}{\lambda}$ as a $\mathbf{C}[X, Y]-$ module.

Let the elements of $\Phi\binom{\mu}{\lambda}$ be denoted S_{i}.
Suppose given polynomials $f_{i}(X, Y)$ in $\mathbf{C}[X, Y]$ such that

$$
\sum S_{i} f_{i}(X, Y)=0
$$

Recall that $f_{i}(X, Y)$ acts as scalar multiplication by $f_{i}(r-s+1, s+1)$ on $V_{(r s 0)}$.

A dominant weight $\alpha=(r s 0)$ satisfies the condition of Lemma 6.4 with $\lambda=(p q 0)$ if $s+1 \geqq p$ and $r-s+1 \geqq p$. The restriction of $S_{i} f_{i}(X, Y)$ to V_{α} for such α must be zero, and hence also each $f_{i}(r-s+1, s+1)$ must equal zero. This implies that each f_{i} is zero.

Corollary 6.7. Let \mathscr{U} be the universal enveloping algebra of the nine dimensional lie algebra spanned by the nine generators of \mathscr{B}. Let $\phi: \mathscr{U} \rightarrow \mathscr{B}$ be the canonical surjection.

The kernel of ϕ is the ideal I of \mathscr{U} generated by the two elements below:

$$
\begin{aligned}
& \binom{011}{110}\binom{100}{100}-\binom{101}{110}\binom{010}{100}-X E_{13} \\
& \binom{101}{110}\binom{010}{100}-\binom{110}{110}\binom{001}{100}-Y E_{13} .
\end{aligned}
$$

Proof. By Theorem 6.6 the elements $S X^{e} Y^{f}$ of Lemma 5.3 which span \mathscr{U} / I are linearly independent in \mathscr{B}.
As an illustration of what can be done with Theorem 6.6, we find explicitly a basis for the space of (210) vectors in the $\pi_{(210)}$-isotypic subrepresentation of each \mathfrak{g}-module $\operatorname{Hom}_{C}\left(V_{\alpha}, V_{\alpha}\right)$.

Observe that

$$
\Phi\binom{111}{210}=\left\{E_{13},\binom{101}{110}\binom{010}{100}\right\}
$$

The conditions of Lemma 6.4 are met for $\alpha=\left(\begin{array}{rl}(r 0)\end{array}\right)$ if $r>s>0$. For such $\alpha, \Phi\binom{111}{210}$ is the sought for basis.

Next notice that $V_{(r 00)}$ is the space of homogeneous polynomials of degree r in the variables a_{1}, a_{2}, a_{3} and that $V_{(r 0)}$ is the space of homogeneous polynomials of degree r in a_{12}, a_{23}, a_{31}.

On $V_{(000)}$, both E_{13} and $\binom{101}{110}\binom{010}{100}$ vanish and so $\operatorname{Hom}_{\mathbf{C}}\left(V_{(000)}, V_{(000)}\right)$ contains no subrepresentation isomorphic to $\pi_{(210)}$.

Calculations show that E_{13} is nonzero on $V_{(r 00)}$ and on $V_{(r r 0)}$ if $r>0$, and that on each of these spaces $\binom{101}{110}\binom{010}{100}$ is linearly dependent upon E_{13}. Thus for $r>0, E_{13}$ is a highest weight vector in the unique irreducible subrepresentation of $\operatorname{Hom}_{\mathbf{C}}\left(V_{(r 00)}, V_{(r 00)}\right)$ or of $\operatorname{Hom}_{\mathbf{C}}\left(V_{(r r 0)}, V_{(r r 0)}\right)$ which is isomorphic to $\pi_{(210)}$.
7. The s_{8}-representation \mathscr{A}. The action ρ of g on \mathscr{A} extends to an action, also denoted ρ, of so_{8} on \mathscr{A} :

$$
\rho(x) a=[x, a] \quad \text { for } x \in s o_{8}, a \in \mathscr{A} .
$$

We want to decompose explicitly the representation ρ of $s o_{8}$.
The group of weights of $s o_{8}$ will be identified with $\mathbf{Z}^{4}+\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \mathbf{Z}$ as follows: For $\eta=\left(p_{1} p_{2} p_{3} p_{4}\right)$ a weight and $H=\sum b_{i} H_{i} \in \mathfrak{f}$, define

$$
\eta(H)=\sum p_{i} b_{i} .
$$

A weight η is dominant if

$$
p_{1} \geqq p_{2} \geqq p_{3} \geqq\left|p_{4}\right| .
$$

An element w of an s_{8}-module is an η vector if

$$
H w=\eta(H) w \quad \text { for all } H \in \mathfrak{f}
$$

We say that η is a weight of a representation if there is a nonzero η vector and refer to the dimension of the space of η vectors as the multiplicity of η.

Every finite dimensional irreducible representation of $s o_{8}$ has a unique weight η, called its highest weight, for which there is a nonzero η vector annihilated by $E_{12}, E_{23},\binom{010}{001}$, and $\binom{001}{001}$. It is a dominant weight and of multiplicity one; it determines the isomorphism class of the representation. We shall write π_{η} to denote an irreducible representation of highest weight η.

Theorem 7.1. i) $\mathbf{C}\left[\binom{011}{110}\right]$ is the commutant of $\left\{E_{12}, E_{23},\binom{010}{001}\right.$, $\left.\binom{001}{001}\right\}$ in \mathscr{A}.
ii) There is an isomorphism of so $_{8}$-representations:

$$
\rho \simeq \bigoplus_{p=0}^{\infty} \pi_{(p p 00)}
$$

Proof. The commutant is surely contained within \mathscr{B}, the commutant of E_{12} and E_{23} in \mathscr{A}.

We list the nine generators of \mathscr{B} and their s_{8} weights.

X	$(0,0,0,0)$	$\binom{110}{110}(0,0,-1,-1)$
Y	$(0,0,0,0)$	$\binom{001}{100}(1,0,0,1)$
E_{13}	$(1,0,-1,0)$	$\binom{011}{110}(1,1,0,0)$
$\binom{101}{110}$	$(0,0,-1,1)$	$\binom{100}{100}(0,-1,-1,0)$
$\binom{010}{100}$	$(1,0,0,-1)$	

An eigenvector of \mathfrak{f} in the commutant of $E_{12}, E_{23},\binom{010}{001}$ and $\binom{001}{001}$ must be a dominant weight vector. The list above shows that it can be written in the form

$$
\binom{010}{100}^{a}\binom{001}{100}^{a}\binom{011}{110}^{b} f(X, Y)
$$

where a, b, and the polynomial f are uniquely determined.
To facilitate computations we will change variables. Let $W=X+Y-$ 2 , and let $Z=Y-1$. A dominant weight vector is uniquely expressible in the form:

$$
\begin{equation*}
T=\binom{010}{100}^{a}\binom{001}{100}^{a}\binom{011}{110}^{b} g(W, Z) \tag{7.3}
\end{equation*}
$$

We first show that a must be zero. This follows from explicit calculation, for all $\alpha, \gamma \geqq a$, of both sides of the equality (7.4). The right hand side is always zero.

$$
\begin{equation*}
\binom{001}{001} T \cdot a_{2}^{\alpha} a_{3}^{b} a_{23}{ }^{\gamma}=T\binom{001}{001} \cdot a_{2}{ }^{\alpha} a_{3}{ }^{b} a_{23}{ }^{\gamma} . \tag{7.4}
\end{equation*}
$$

We next show that the polynomial $g(W, Z)$ must be independent of Z. This can be done by calculating explicitly, for all $\alpha \geqq b$ and $\beta \geqq 0$, both sides of the equality (7.5).

$$
\begin{equation*}
\binom{010}{001} T \cdot a_{1} a_{3}^{\alpha} a_{31}^{\beta}=T\binom{010}{001} \cdot a_{1} a_{3}^{\alpha} a_{31}^{\beta} . \tag{7.5}
\end{equation*}
$$

At last, calculations for all $\alpha \geqq b$ of (7.6) shows that $g(W)$ is constant.

$$
\begin{equation*}
\binom{001}{001} T \cdot\left(a_{12} a_{3}^{\alpha}-\alpha a_{3}^{\alpha-1} a_{2} a_{31}\right) \tag{7.6}
\end{equation*}
$$

$$
=T\binom{001}{001} \cdot\left(a_{12} a_{3}^{\alpha}-\alpha a_{3}^{\alpha-1} a_{2} a_{31}\right) .
$$

8. Simplicity of \mathscr{A}.

Theorem 8.1. The algebra \mathscr{A} contains no nonzero proper two-sided ideal.

Proof. Let $\mathscr{A}(p)$ denote the irreducible so $_{8}$-submodule of \mathscr{A} with highest weight ($p p 00$) and highest weight vector $\binom{011}{110}^{p}$.

A two-sided ideal J is an s_{8}-submodule of \mathscr{A}, hence must be a sum of $\mathscr{A}(p)$. If $\mathscr{A}(p)$ is contained in J, then $\binom{011}{110}^{n}$ is contained in J for all $n \geqq p$. Thus

$$
J=\bigoplus_{p \geqq N} \mathscr{A}(p),
$$

where N is the smallest integer for which $\mathscr{A}(N) \subset J$. We see thus that the nontrivial two-sided ideals, if any, form a chain and that each is of finite codimension in \mathscr{A}.

Let J be a nontrivial ideal of \mathscr{A}.
The quotient algebra \mathscr{A} / J, being a finite dimensional quotient of $\mathscr{U}\left(\mathrm{so}_{8}\right)$, the universal enveloping algebra of $s o_{8}$, is semisimple; that is, it is isomorphic to a finite product of full matrix algebras. Since the ideals in \mathscr{A} / J form a chain, there can be at most one factor in the product. We deduce that J is maximal.

Let I be the inverse image of J in $\mathscr{U}\left(s o_{8}\right)$. There is a finite dimensional irreducible representation π_{η} of $s o_{8}$ such that I equals the kernel of π_{η} in $\mathscr{U}\left(s_{8}\right)$.

Let Z be the center of $\mathscr{U}\left(s o_{8}\right)$, and let $\chi_{\eta}: Z \rightarrow \mathbf{C}$ be the central character of π_{η}. Let $\chi: Z \rightarrow \mathbf{C}$ be the central character of the representation of $s o_{8}$ on V.

It is clear that $\chi=\chi_{\eta}$. We will show that this equality leads to a contradiction.

The representation of $s o_{8}$ on V is irreducible with highest weight (-1 , $-1,-1,-1)$. Indeed the element $1 \in V$ is a $(-1,-1,-1,-1)$-vector which is annihilated by $E_{12}, E_{23},\binom{010}{001}$, and $\binom{001}{001}$.

The equality $\chi=\chi_{\eta}$ implies the existence of an element w in the Weyl group of \mathfrak{f} such that

$$
\eta+(3,2,1,0)=w((-1,-1,-1,-1)+(3,2,1,0))
$$

But this is impossible for a dominant weight η.

References

1. G. E. Baird and L. C. Biedenharn. On the representations of the semi-simple lie groups IV. A canonical classification for tensor operators in SU_{3}, J. Math. Phys. 5 (1964), 1730-1747.
2. N. Bourbaki, Groupes et algebres de lie, Chap. VI Section 4.7 (Hermann, Paris, 1968).
3. I. M. Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk. SSSR 71 (1950), 825-828.
4. A. U. Klimyk, Decomposition of a tensor product of irreducible representations of a semisimple lie algebra into a direct sum of irreducible representations, Amer. Math Soc. Translations (Amer. Math. Soc., Providence, 1968).
5. J. D. Louck and L. C. Biedenharn, Canonical unit adjoint tensor operators in $U(n)$, J. Math. Phys. 11 (1970), 2368-2414.
6. H. Weyl, The theory of groups and quantum mechanics (Methuen and Co., London, 1931).
7. -The structure and representation of continuous groups, Lectures at the Institute for Advanced Study (1934-1935) (notes by Richard Brauer, reprinted 1955).

Duke University,
Durham, North Carolina

