BEYOND THE ENVELOPING ALGEBRA OF sl₃

DANIEL E. FLATH AND L. C. BIEDENHARN

0. Introduction. The problem which motivated the writing of this paper is that of finding structure behind the decomposition of the sl_3 representation spaces $V^* \otimes W = \text{Hom}(V, W)$ for finite dimensional irreducible sl_3 -modules V and W. For sl_2 this extends the classical Clebsch-Gordon problem. The question has been considered for sl_3 in a computational way in [5]. In this paper we build a conceptual algebraic framework going beyond the enveloping algebra of sl_3 .

For each dominant integral weight α let V_{α} be an irreducible representation of sl_3 of highest weight α . It is well known that, for weights α , μ , λ , the multiplicity of V_{λ} in Hom $(V_{\alpha}, V_{\alpha+\mu})$ is bounded by the multiplicity of μ in V_{λ} , with equality for generic α . This suggests the possibility of a single construction of highest weight vectors of weight λ in Hom $(V_{\alpha}, V_{\alpha+\mu})$ which is valid for all α .

In order to realize this possibility we introduce an analogue of a Weyl algebra, an algebra \mathscr{A} of endomorphisms of $\oplus V_{\alpha}$ which is defined in Section 3 of this article. The construction referred to above amounts to the explicit decomposition of \mathscr{A} as an sl_3 -module. The principal technical tool in this program is Theorem 5.5. The main result, the decomposition, is stated as Theorem 6.6.

The analysis of \mathscr{A} is facilitated by the fact that there is a generating set for \mathscr{A} as an algebra which spans a lie algebra isomorphic to so_8 . In Sections 7 and 8 of this article, we decompose \mathscr{A} as an so_8 -representation and use the result to show that \mathscr{A} has no nonzero proper two-sided ideal.

1. Representations of sl_3 . Let g denote sl_3 , the lie algebra of 3×3 traceless complex matrices, and denote by h the subspace of diagonal matrices.

The group P of weights of g will be identified with $\mathbb{Z}^3 / \langle (1, 1, 1) \rangle$ as follows: For $\lambda = (a_1, a_2, a_3) = (a_1 a_2 a_3) \in P$ and $H = b_1 E_{11} + b_2 E_{22} + b_3 E_{33} \in \mathfrak{h}$, define

$$\lambda(H) = \sum a_i b_i.$$

The group \mathscr{S}_3 of permutations on three letters acts on P through the formula:

Received April 25, 1983. This work was supported in part by the National Science Foundation.

$$\sigma(a_1, a_2, a_3) = (a_{\sigma^{-1}(1)}, a_{\sigma^{-1}(2)}, a_{\sigma^{-1}(3)}).$$

A weight λ is *positive* if

$$2a_1 - a_2 - a_3 \ge 0$$
 and $a_1 + a_2 - 2a_3 \ge 0$;

and it is *dominant* if $a_1 \ge a_2 \ge a_3$. We say $\lambda_1 \ge \lambda_2$ of two weights if $\lambda_1 - \lambda_2$ is positive.

An element w of a g-module W is a λ vector of W for $\lambda \in \mathfrak{h}^*$ if $Hw = \lambda(H)w$ for all $H \in \mathfrak{h}$. We say that λ is a weight of W if there is a nonzero λ vector. If W is finite dimensional, this is only possible for $\lambda \in P$, and W is spanned by its weight vectors. The dimension of the space of λ vectors, the multiplicity of λ , will be denoted mult_{λ}(W). If W is finite dimensional,

$$\operatorname{mult}_{\sigma\lambda}(W) = \operatorname{mult}_{\lambda}(W)$$
 for all $\sigma \in \mathscr{S}_3$.

Every finite dimensional irreducible representation of g has a unique highest weight. That weight is dominant and of multiplicity one; it determines the isomorphism class of the representation. Every dominant weight is the highest weight of a finite dimensional irreducible representation. The highest weight vectors in a simple g-module are those elements which are annihilated by both E_{12} and E_{23} . We shall write π_{λ} to denote an irreducible representation of highest weight λ .

For $\lambda = (pq0)$ dominant,

dim
$$\pi_{\lambda} = \frac{1}{2}(p - q + 1)(p + 2)(q + 1).$$

LEMMA 1.1. Let λ , α , β be dominant weights. Then

dim Hom_a(π_{λ} , Hom_C(π_{α} , π_{β})) \leq mult_{$\beta-\alpha$}(π_{λ}),

with equality if $\alpha + (210) + \sigma \lambda$ is dominant for all $\sigma \in \mathscr{G}_3$.

Proof. This is a bit of folklore. One reference is [1]. For convenience, we quickly sketch a proof here.

We prove first the inequality.

Let u be a nonzero α vector of π_{α} , and let v^* be a nonzero $(-\beta)$ vector of π_{β}^* , the representation of g contragredient to π_{β} . Let $C(\beta - \alpha)$ be the one dimensional representation of \mathfrak{h} on C defined by the formula

$$Hz = (\beta - \alpha)(H)z$$

for $H \in \mathfrak{h}$ and $z \in \mathbb{C}$.

Define a linear map f as follows:

$$f: \operatorname{Hom}_{\mathfrak{g}}(\pi_{\lambda}, \operatorname{Hom}_{\mathbb{C}}(\pi_{\alpha}, \pi_{\beta})) \to \operatorname{Hom}_{\mathfrak{h}}(\pi_{\lambda}, \mathbb{C}(\beta - \alpha))$$

$$A \mapsto f(A): w \mapsto \langle (Aw)u, v^* \rangle.$$

By using the fact that v^* is a vector of lowest weight in π^*_β one easily shows that f is injective, which gives the desired inequality.

We can use a multiplicity formula to establish the equality clause of the lemma.

First note that dim $\operatorname{Hom}_{\mathfrak{g}}(\pi_{\lambda}, \operatorname{Hom}_{\mathbb{C}}(\pi_{\alpha}, \pi_{\beta}))$ equals the multiplicity of π_{β} as a subrepresentation of $\pi_{\lambda} \otimes \pi_{\alpha}$. Let $m(\beta)$ denote this multiplicity.

Let Q be the set of weights γ of π_{λ} for which there is $\sigma_{\gamma} \in \mathscr{S}_3$ (necessarily unique) such that

$$\sigma_{\nu}(\alpha + (210) + \gamma) = \beta + (210).$$

In [1, 4] the following formula is proved.

$$m(\beta) = \sum_{\gamma \in Q} \operatorname{sgn}(\sigma_{\gamma}) \operatorname{mult}_{\gamma}(\pi_{\lambda}).$$

The hypothesis of Lemma 1.1 is equivalent to the assertion that α + (210) + γ is dominant for all weights γ of π_{λ} . In that case, $Q = \{\beta - \alpha\}$ and $\sigma_{\beta-\alpha}$ is the identity.

If μ is a weight of π_{λ} , then $\lambda - \mu$ is in the subgroup of weights generated by (1, -1, 0) and (0, 1, -1), the roots. Thus every weight of $\pi_{(pq0)}$ can be written uniquely in the form (abc) with a + b + c = p + q.

LEMMA 1.2. The weight (abc) with a + b + c = p + q is a weight of $\pi_{(pq0)}$ if and only if there exists a partition $a + b = b_1 + b_2$ such that $b_1 \ge a \ge b_2$ and $p \ge b_1 \ge q \ge b_2 \ge 0$. Moreover, the multiplicity of (abc) in $\pi_{(pq0)}$ equals the number of such partitions of a + b.

Proof. This is essentially equivalent to the branching law of [6].

The combinatorial meaning of the inequalities of the previous lemma is uncovered by arranging the various integers in a Gel'fand-Weyl pattern [3, 7] as follows:

$$\begin{pmatrix} & a & \\ & b_1 & b_2 & \\ p & q & 0 \end{pmatrix}.$$

LEMMA 1.3. Let (abc) with a + b + c = p + q be a dominant weight of $\pi_{(pd0)}$. Then its multiplicity is $1 + \inf\{p - a, c, p - q, q\}$.

2. Construction of the representation V. Let

 $W = \mathbf{C}[a_1, a_2, a_3, a_{12}, a_{23}, a_{31}],$

a polynomial ring in six independent commuting variables.

Let g act on W as a lie algebra of derivations through the following formulas:

- (2.1a) $E_{12} = a_1 \partial_{a_2} a_{31} \partial_{a_{23}}$
- (2.1b) $E_{23} = a_2 \partial_{a_3} a_{12} \partial_{a_{31}}$
- (2.1c) $E_{13} = a_1 \partial_{a_3} a_{12} \partial_{a_{23}}$
- (2.1d) $E_{21} = a_2 \partial_{a_1} a_{23} \partial_{a_{31}}$ (2.1e) $E_{22} = a_2 \partial_{a_1} - a_2 \partial_{a_{31}}$

$$(2.16) \quad E_{32} = u_{3} o_{a_2} = u_{31} o_{a_{12}}$$

$$(2.1f) E_{31} = a_3 d_{a_1} - a_{23} d_{a_{12}}$$

(2.1g)
$$E_{11} - E_{22} = a_1 \partial_{a_1} - a_2 \partial_{a_2} + a_{31} \partial_{a_{31}} - a_{23} \partial_{a_{23}}$$

(2.1h)
$$E_{22} - E_{33} = a_2 \partial_{a_2} - a_3 \partial_{a_3} + a_{12} \partial_{a_{12}} - a_{31} \partial_{a_{31}}$$

Notice that a_1 , a_2 , a_3 span a space isomorphic to the defining representation of g (highest weight (100)), and that a_{12} , a_{23} , a_{31} span a space isomorphic to its antisymmetric square (highest weight (110)): $a_{ij} = a_i \wedge a_j$.

Define three linear transformations M_+ , M_- , M_0 on W:

(2.2a)
$$M_+ = -(\partial_{a_1}\partial_{a_{23}} + \partial_{a_2}\partial_{a_{31}} + \partial_{a_3}\partial_{a_{12}})$$

$$(2.2b) \quad M_{-} = a_1 a_{23} + a_2 a_{31} + a_3 a_{12}$$

(2.2c)
$$M_0 = -(a_1\partial_{a_1} + a_2\partial_{a_2} + a_3\partial_{a_3} + a_{12}\partial_{a_{12}} + a_{23}\partial_{a_{23}} + a_{31}\partial_{a_{31}} + 3).$$

Let V be the kernel of M_+ .

Each of M_+ , M_- , M_0 commutes with g above; because M_+ does so, V is itself a representation of g. Our next task is to decompose this representation.

For nonnegative integers j, let P^j be the space of homogeneous polynomials of degree j in W. Let H^j be the kernel of M_+ in P^j .

LEMMA 2.3. $P^{j} = H^{j} \oplus M_{-}P^{j-2}$.

Proof. By induction on *j*. The statement is trivial for j = 0, 1. Suppose it is true for integers $j \leq k$. To establish its validity for j = k + 2 it will suffice to show that M_+ maps M_-P^k isomorphically onto P^k .

The inductive hypothesis implies that

$$P^k = \bigoplus_{0 \le p \le k/2} M_-^p H^{k-2p}.$$

Thus all follows from

LEMMA 2.4. M_+M_- acts as scalar multiplication by

$$(p + 1)(p - k - 3) \neq 0$$
 on $M_{-}^{p}H^{k-2p}$.

Proof. Calculation shows that M_+ , M_- , M_0 span a lie algebra isomorphic to sl_2 :

$$[M_+, M_-] = M_0 \quad [M_0, M_+] = 2M_+ \quad [M_0, M_-] = -2M_-.$$

Now establish by induction that for positive integers l,

$$M_{+}M_{-}^{l} = lM_{-}^{l-1}(M_{0} - l + 1) + M_{-}^{l}M_{+}$$

THEOREM 2.5. $H^j \simeq \bigoplus_{i=0}^j \pi_{(ji0)}$.

Proof. H^{j} contains a g-subrepresentation isomorphic to $\pi_{(ji0)}$, the one with highest weight vector $a_1^{j-i}a_{12}^{i}$. To show that these subrepresentations span H^{j} , we must check that

$$\sum_{i=0}^{j} \dim \pi_{(ji0)} = \dim H^{j}.$$

By Lemma 2.3,

 $\dim H^j = \dim P^j - \dim P^{j-2}.$

The space of homogeneous polynomials of degree j in n variables has dimension $\binom{j+n-1}{j}$. Thus the formula we want is an easy induction:

$$\sum_{i=0}^{j} \frac{1}{2}(j - i + 1)(j + 2)(i + 1) = {\binom{j+5}{j}} - {\binom{j+3}{j-2}}.$$

COROLLARY 2.6. The g-representation V is a multiplicity free sum of all finite dimensional irreducible representations of g.

The algebra of operators on V generated by g is isomorphic to the universal enveloping algebra of g.

Proof. Only the second assertion needs proof. It follows from the existence for every $x \neq 0$ in the enveloping algebra of a finite dimensional irreducible representation π of g such that $\pi(x) \neq 0$.

We will denote by V_{λ} the subspace of V which is isomorphic to π_{λ} . A (*ji*0)-vector in $V_{(ji0)}$ is a $a_1^{j-i}a_{12}^{j}$. If λ is not dominant, write $V_{\lambda} = (0)$.

Let \mathscr{S}_6 be the group of permutations on the six symbols 1, 2, 3, 12, 23, 31. It acts linearly as ring automorphisms on the space W by $\sigma(a_k) = a_{\sigma(k)}$.

Let τ be the action of \mathscr{S}_6 on $\operatorname{End}_{\mathbb{C}}(W)$ given by

$$\tau(\sigma)T = \sigma \circ T \circ \sigma^{-1} \quad \text{for } T \in \text{End}_{\mathbb{C}}(W).$$

In particular,

$$\tau(\sigma)a_k = a_{\sigma(k)}$$
 and $\tau(\sigma)\partial_{a_k} = \partial_{a_{\sigma(k)}}$

Define subgroups K', K, and L of \mathcal{S}_6 by listing generators:

(2.7a) $K' = \langle (1 \ 23)(2 \ 31), (1 \ 23)(3 \ 12) \rangle.$

(2.7b) $K = \langle K', (1 \ 23) \rangle.$

$$(2.7c) L = \langle (1 \ 2 \ 3)(23 \ 31 \ 12), (1 \ 3)(23 \ 12) \rangle.$$

The isomorphism classes of these groups are easily determined:

$$K' \simeq \mathbf{Z}_2 \times \mathbf{Z}_2, K \simeq \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2, L \simeq \mathscr{S}_3.$$

Because L normalizes K' and K, we can define subgroups G' and G of \mathscr{S}_6 as follows:

 $(2.8) \qquad G' = K'L \qquad G = KL.$

It is not hard to see that $G' \simeq \mathscr{S}_4$ and that

 $G = G' \times \langle (1 \ 23)(2 \ 31)(3 \ 12) \rangle.$

LEMMA 2.9. For each $\sigma \in G$, $\sigma(V) = V$ and $\sigma(H^j) = H^j$.

Proof. Because $\tau(\sigma)M_+ = M_+$. In fact, G is the stabilizer in \mathscr{S}_6 of M_+ .

We will henceforth use τ to denote the action of G on $\operatorname{End}_{\mathbb{C}}(V)$ given by

 $\tau(\sigma)T = \sigma \circ T \circ \sigma^{-1}.$

3. Construction of the algebra \mathcal{A} . Define six operators on W by the formulas below.

(3.1a)
$$\binom{100}{100} = 2a_1 + a_1^2 \partial_{a_1} + a_1 a_2 \partial_{a_2} + a_1 a_3 \partial_{a_3} + a_1 a_{12} \partial_{a_{12}} + a_1 a_{31} \partial_{a_{31}} - a_2 a_{31} \partial_{a_{23}} - a_3 a_{12} \partial_{a_{23}}$$

(3.1b)
$$\begin{pmatrix} 010\\ 100 \end{pmatrix} = a_{12}\partial_{a_2} - a_{31}\partial_{a_3}$$

$$(3.1c) \quad \begin{pmatrix} 001\\100 \end{pmatrix} = \partial_{a_{23}}$$

(3.1d)
$$\binom{110}{110} = 2a_{12} + a_{12}^2 \partial_{a_{12}} + a_{12} a_{23} \partial_{a_{23}} + a_{12} a_{31} \partial_{a_{31}} + a_{1} a_{12} \partial_{a_{1}} + a_{2} a_{12} \partial_{a_{2}} - a_{1} a_{23} \partial_{a_{3}} - a_{2} a_{31} \partial_{a_{3}}$$

(3.1e)
$$\binom{101}{110} = -a_1 \partial_{a_{31}} + a_2 \partial_{a_{23}}$$

(3.1f) $\binom{011}{110} = \partial_{a_3}$.

Calculations show that each of these operators carries the subspace V into itself. Henceforth they will be viewed as linear transformations on V, not W. The auxiliary space W will appear no more in this paper.

Define twelve more operators on V.

For e = 100, 010, 001:

(3.2a)
$$\begin{pmatrix} e \\ 010 \end{pmatrix} = \begin{bmatrix} E_{21}, \begin{pmatrix} e \\ 100 \end{pmatrix} \end{bmatrix}, \begin{pmatrix} e \\ 001 \end{pmatrix} = \begin{bmatrix} E_{32}, \begin{pmatrix} e \\ 010 \end{pmatrix} \end{bmatrix}.$$

For f = 110, 101, 011:

(3.2b)
$$\begin{pmatrix} f \\ 101 \end{pmatrix} = - \begin{bmatrix} E_{32}, \begin{pmatrix} f \\ 110 \end{pmatrix} \end{bmatrix}, \begin{pmatrix} f \\ 011 \end{pmatrix} = - \begin{bmatrix} E_{21}, \begin{pmatrix} f \\ 101 \end{pmatrix} \end{bmatrix}.$$

The algebra of operators on V generated by the nine $\begin{pmatrix} e \\ e' \end{pmatrix}$ and the nine $\begin{pmatrix} f \\ f' \end{pmatrix}$ will be denoted \mathscr{A} .

Observe that \mathscr{A} contains g and hence also the enveloping algebra of g.

(3.3)
$$E_{12} = \left[\begin{pmatrix} 101\\ 101 \end{pmatrix}, \begin{pmatrix} 010\\ 100 \end{pmatrix} \right] \quad E_{21} = \left[\begin{pmatrix} 101\\ 011 \end{pmatrix}, \begin{pmatrix} 010\\ 010 \end{pmatrix} \right] \\ E_{23} = \left[\begin{pmatrix} 101\\ 110 \end{pmatrix}, \begin{pmatrix} 010\\ 010 \end{pmatrix} \right] \quad E_{32} = \left[\begin{pmatrix} 101\\ 101 \end{pmatrix}, \begin{pmatrix} 010\\ 001 \end{pmatrix} \right].$$

We can therefore view \mathscr{A} as the space of a g-representation ρ through the formula

 $\rho(x)a = [x, a]$ for $x \in g, a \in \mathscr{A}$.

The analysis of the g-representation \mathscr{A} is the principal object of this paper.

Each of the eighteen generators of \mathscr{A} is written in the form $\binom{h}{h'}$. We refer to h and h' as the *upper* and *lower labels*. These labels are interpreted as g-weights and have the following significance. The operator $\binom{h}{h'}$ is an h'-vector in the g-representation ρ on \mathscr{A} . For each irreducible subrepresentation V_{λ} of V,

$$\binom{h}{h'}(V_{\lambda}) \subset V_{\lambda+h}$$

The next important proposition assures us that \mathscr{A} is large enough for the study of all spaces $\operatorname{Hom}_{\mathbb{C}}(V_{\mu}, V_{\lambda})$.

PROPOSITION 3.4. Let U be a finite dimensional vector subspace of V and let $T \in \text{End}_{\mathbb{C}}(U)$. Then there exists an element of \mathscr{A} whose restriction to U equals T.

Proof. By enlarging U we may assume that U is a sum of V_{λ} . Choose a basis B of U compatible with the decomposition $U = \bigoplus V_{\lambda}$, and choose v, $w \in B$, say

$$v \in V_{(ii0)}$$
 and $w \in V_{(lk0)}$.

We show that there is $a \in \mathscr{A}$ such that av = w and av' = 0 for all $v' \neq v \in B$.

Indeed, given endomorphisms T_{λ} of V_{λ} there is an S in the enveloping algebra of g such that S agrees with T_{λ} on each of the (finitely many) V_{λ} . So there exists $S \in \mathscr{A}$ such that

$$Sv = a_1^{j-i}a_{12}^{i}$$
 and $Sv' = 0$ for $v' \neq v \in B$.

Now

$$R = \begin{pmatrix} 110\\110 \end{pmatrix}^k \begin{pmatrix} 100\\100 \end{pmatrix}^{l-k} \begin{pmatrix} 001\\001 \end{pmatrix}^i \begin{pmatrix} 011\\011 \end{pmatrix}^{j-i}$$

maps $a_1^{j-i}a_{12}^{i}$ to a nonzero multiple of $a_1^{l-k}a_{12}^{k}$. Finally there is Q in the enveloping algebra of g such that QRSv = w. We take a = QRS.

COROLLARY 3.5. i) If $T \in \text{End}_{\mathbb{C}}(V)$ commutes with \mathscr{A} then T is a scalar multiplication.

ii) The center of \mathcal{A} is C, the scalar multiplications.

iii) V is a simple A-module.

4. so_8 . Calculation with the eighteen generators of \mathscr{A} shows that the following three useful and easily remembered rules hold.

4.1.) The three operators with a given upper label commute.

4.2.) The three operators with a given lower label commute.

4.3a.) The three $\begin{pmatrix} 001\\ \cdots \end{pmatrix}$ commute with the three $\begin{pmatrix} 011\\ \cdots \end{pmatrix}$ and the three $\begin{pmatrix} 101\\ \cdots \end{pmatrix}$.

b.) The three $\begin{pmatrix} 010\\ \cdots \end{pmatrix}$ commute with the three $\begin{pmatrix} 011\\ \cdots \end{pmatrix}$ and the three $\begin{pmatrix} 110\\ \cdots \end{pmatrix}$.

c.) The three $\begin{pmatrix} 100\\ \cdots \end{pmatrix}$ commute with the three $\begin{pmatrix} 101\\ \cdots \end{pmatrix}$ and the three $\begin{pmatrix} 110\\ \cdots \end{pmatrix}$.

Define six more elements of \mathscr{A} .

(4.4a)
$$H_1 = -1 - a_2 \partial_{a_2} - a_3 \partial_{a_3} - a_{23} \partial_{a_{23}}$$

(4.4b) $H_2 = -1 - a_1 \partial_{a_1} - a_3 \partial_{a_3} - a_{31} \partial_{a_{31}}$

- (4.4c) $H_3 = -1 a_1 \partial_{a_1} a_2 \partial_{a_2} a_{12} \partial_{a_{12}}$
- (4.4d) $H_4 = -1 a_{12}\partial_{a_{12}} a_{23}\partial_{a_{23}} a_{31}\partial_{a_{31}}$
- (4.4e) $X = 1 + a_1 \partial_{a_1} + a_2 \partial_{a_2} + a_3 \partial_{a_3}$
- $(4.4f) \qquad Y = -H_4.$

Notice that X and Y commute with g. On the subspace $V_{(ji0)}$ of V, X acts as scalar multiplication by j - i + 1 and Y as scalar multiplication by i + 1.

The following important theorem summarizes many commutation calculations.

THEOREM 4.5. The eighteen generators of \mathcal{A} , \mathfrak{g} , X, and Y span a twenty-eight dimensional lie algebra isomorphic to so_8 .

COROLLARY 4.6. \mathscr{A} is isomorphic to a quotient of the universal enveloping algebra of so₈.

COROLLARY 4.7. V may be viewed as an irreducible representation of so_8 .

We want to give explicitly the isomorphism with so_8 .

Let $J = (\delta_{i,9-i})$ be the 8 × 8 matrix all of whose entries are zero except those on the second diagonal which are equal to one. We will take for so_8 the lie algebra of 8 × 8 complex matrices A such that

 ${}^{t}\!AJ + JA = 0.$

These are precisely the 8×8 matrices which are antisymmetric with respect to the second diagonal.

The identification of matrices in so_8 with elements of \mathscr{A} is given in Table 1, where F_{ij} is the 8 \times 8 matrix of all of whose entries are zero except the ij^{th} which is one.

One can now ask about subalgebras of so_8 . Here is an easy result.

PROPOSITION 4.8. The three $\begin{pmatrix} 010\\ \cdots \end{pmatrix}$, the three $\begin{pmatrix} 101\\ \cdots \end{pmatrix}$, g, and X - Y

span a fifteen dimensional lie algebra isomorphic to sl_4 .

Each of the subspaces H^j of V is irreducible as a representation of this sl_4 .

We want next to show that the τ -action of G on $\operatorname{End}_{\mathbb{C}}(V)$ restricts to an action on the algebra \mathscr{A} .

Let f denote the subspace of diagonal matrices of so_8 . We continue to identify so_8 and its isomorphic lie algebra in \mathcal{A} , so that f is spanned by the four H_i .

PROPOSITION 4.9. For each $\sigma \in G$, $\tau(\sigma)$ preserves \mathfrak{k} , \mathfrak{sl}_4 , and \mathfrak{so}_8 . G acts Through τ as a group of automorphisms of \mathscr{A} .

718

Table 1

A and so8

$E_{12} = F_{12} - F_{78}$	$E_{21} = F_{21} - F_{87}$
$E_{13} = F_{13} - F_{68}$	$E_{31} = F_{31} - F_{86}$
$E_{23} = F_{23} - F_{67}$	$E_{32} = F_{32} - F_{76}$
$\binom{010}{100} = F_{14} - F_{58}$	$\binom{101}{011} = -F_{41} + F_{85}$
$\binom{010}{010} = F_{24} - F_{57}$	$\binom{101}{101} = -F_{42} + F_{75}$
$\binom{010}{001} = F_{34} - F_{56}$	$\binom{101}{110} = -F_{43} + F_{65}$
$\begin{pmatrix} 001\\ 100 \end{pmatrix} = F_{15} - F_{48}$	$\binom{110}{011} = -F_{51} + F_{84}$
$\begin{pmatrix} 001\\010 \end{pmatrix} = F_{25} - F_{47}$	$\binom{110}{101} = -F_{52} + F_{74}$
$\binom{001}{001} = F_{35} - F_{46}$	$\binom{110}{110} = -F_{53} + F_{64}$
$\binom{100}{100} = F_{62} - F_{73}$	$\begin{pmatrix} 011\\ 011 \end{pmatrix} = -F_{26} + F_{37}$
$\binom{100}{010} = F_{83} - F_{61}$	$\binom{011}{101} = -F_{38} + F_{16}$
$\binom{100}{001} = F_{71} - F_{82}$	$\binom{011}{110} = -F_{17} + F_{28}$
$H_i = F_{ii} - F_{9-i,9-i}$	i = 1, 2, 3, 4.

Proof. One must check the first assertion explicitly for generators σ of G. The last assertion follows because so_8 generates \mathscr{A} .

The actions of G on f and on $f \cap sl_4$ are faithful. Indeed, the subgroup G' acts as the full permutation group of the set of H_i , and the element $(1\ 23)(2\ 31)(3\ 12) \in G$ acts as scalar multiplication by -1 on $f \cap sl_4$.

Denote by R the root system of sl_4 associated to the cartan subalgebra $\mathfrak{k} \cap sl_4$.

Denote by Aut(R) the automorphism group of R, a finite subgroup of linear automorphisms of $(\mathfrak{k} \cap \mathfrak{sl}_4)^*$. Let W(R) be the Weyl group of R, a subgroup of index 2 in Aut(R).

For $\sigma \in G$, let $\epsilon(\sigma)$ be the contragredient of the restriction of $\tau(\sigma)$ to $\mathfrak{k} \cap \mathfrak{sl}_4$. The previous proposition shows that $\epsilon(\sigma) \in \operatorname{Aut}(R)$.

PROPOSITION 4.10. i) The map $\epsilon: G \to \operatorname{Aut}(R)$ is an isomorphism. ii) $\epsilon(G') = W(R)$.

Proof. See the explicit description of W(R) in [2].

5. The commutant \mathscr{B} of $\{E_{12}, E_{23}\}$ in \mathscr{A} . We want to decompose the representation ρ of g on \mathscr{A} . Because \mathscr{A} is a sum of finite dimensional representations, this amounts to the determination of the space of a in \mathscr{A} such that

$$\rho(E_{12})a = \rho(E_{23})a = 0.$$

This is precisely the commutant of E_{12} , E_{23} in \mathscr{A} .

It is easily verified that the commutant of E_{12} , E_{23} in so_8 is the nine dimensional lie subalgebra spanned by the following:

(5.1) X, Y,
$$E_{13}$$
, $\begin{pmatrix} 110\\110 \end{pmatrix}$, $\begin{pmatrix} 101\\110 \end{pmatrix}$, $\begin{pmatrix} 011\\110 \end{pmatrix}$, $\begin{pmatrix} 100\\100 \end{pmatrix}$, $\begin{pmatrix} 010\\100 \end{pmatrix}$, $\begin{pmatrix} 001\\100 \end{pmatrix}$.

Let \mathscr{B} be the subalgebra of \mathscr{A} generated by the nine operators above.

The nine generators of \mathcal{B} are not independent. We note two relations in addition to the commutation rules.

(5.2a)
$$\binom{011}{110}\binom{100}{100} - \binom{101}{110}\binom{010}{100} - XE_{13} = 0$$

(5.2b)
$$\binom{101}{110}\binom{010}{100} - \binom{110}{110}\binom{001}{100} - YE_{13} = 0.$$

LEMMA 5.3. The vector space \mathscr{B} is spanned by elements of the form SX^eY^j where

(5.4)
$$S = E_{13}^{a} {\binom{101}{100}}^{b_1} {\binom{010}{100}}^{b_2} {\binom{110}{110}}^{c_1} {\binom{001}{100}}^{c_2} {\binom{011}{110}}^{d_1} {\binom{100}{100}}^{d_2},$$

with $c_1c_2 = d_1d_2 = 0$.

Proof. Use the relations.

THEOREM 5.5. \mathcal{B} is the commutant of $\{E_{12}, E_{23}\}$ in \mathcal{A} .

Proof. Let U be the g-module generated by \mathscr{R} . The theorem is equivalent to the equality: $U = \mathscr{A}$. Because X and Y commute with g, we have UX, $UY \subset U$.

Let $\sigma = (1 \ 12)(2 \ 31)(3 \ 23) \in G$. Because $\sigma(\mathscr{B}) = \mathscr{B}$ and $\sigma(g) = g$, we have that $\sigma(U) = U$.

Lemma 5.6.
$$\mathscr{B} \cdot \begin{pmatrix} 001\\001 \end{pmatrix}, \mathscr{B} \cdot \begin{pmatrix} 100\\001 \end{pmatrix} \subset U.$$

Proof. The proof consists of tedious calculations, mainly consisting of finding enough relations in \mathscr{A} amongst the elements of so_8 . Only an outline will be given.

We list three equalities in \mathcal{A} .

(5.7a)
$$E_{23}\begin{pmatrix}001\\100\end{pmatrix} = E_{13}\begin{pmatrix}001\\010\end{pmatrix} + \begin{pmatrix}011\\110\end{pmatrix}\begin{pmatrix}101\\110\end{pmatrix}$$

(5.7b) $\begin{pmatrix}010\\010\end{pmatrix}\begin{pmatrix}001\\100\end{pmatrix} = \begin{pmatrix}010\\100\end{pmatrix}\begin{pmatrix}001\\010\end{pmatrix} + (Y-1)\begin{pmatrix}011\\110\end{pmatrix}$

(5.7c)
$$\binom{100}{010}\binom{001}{100} = \binom{100}{100}\binom{001}{010} + (X + Y - 1)\binom{101}{110}.$$

Using these relations one shows that

$$\left[E_{21}, S\binom{001}{100}\right] \in (a + b_2 + c_2 + d_2 + 1)S\binom{001}{010} + \mathscr{B},$$

whence

$$\mathscr{B} \cdot \begin{pmatrix} 001\\010 \end{pmatrix} \subset U.$$

Quite similarly, one proves that

$$\mathscr{B} \cdot \begin{pmatrix} 010\\010 \end{pmatrix}, \mathscr{B} \cdot \begin{pmatrix} 100\\010 \end{pmatrix}, \mathscr{B} \cdot E_{23} \subset U.$$

By applying σ , one deduces that also

$$\mathscr{B} \cdot \begin{pmatrix} 011\\ 101 \end{pmatrix}, \mathscr{B} \cdot \begin{pmatrix} 101\\ 101 \end{pmatrix}, \mathscr{B} \cdot \begin{pmatrix} 110\\ 101 \end{pmatrix}, \mathscr{B} \cdot E_{12} \subset U.$$

Next by considering both $[E_{21}, SE_{12}]$ and $[E_{21}, SE_{12}] + [E_{31}, SE_{13}] + [E_{32}, SE_{23}]$ one shows that

 $\mathscr{B} \cdot H_1, \mathscr{B} \cdot H_2, \mathscr{B} \cdot H_3 \subset U.$

Finally, consideration of $\begin{bmatrix} E_{31}, S\begin{pmatrix} 001\\ 100 \end{bmatrix} + \begin{bmatrix} E_{32}, S\begin{pmatrix} 001\\ 010 \end{bmatrix} \end{bmatrix}$ establishes the inclusion

$$\mathscr{B} \cdot \begin{pmatrix} 001\\ 001 \end{pmatrix} \subset U,$$

and consideration of $\begin{bmatrix} E_{31}, S\begin{pmatrix} 100\\ 100 \end{bmatrix} + \begin{bmatrix} E_{32}, S\begin{pmatrix} 100\\ 010 \end{pmatrix} \end{bmatrix}$ establishes

$$\mathscr{B} \cdot \begin{pmatrix} 100\\001 \end{pmatrix} \subset U.$$

The lemma is proved.

We now quickly prove the theorem. By applying σ ,

$$\mathscr{B} \cdot \begin{pmatrix} 011\\011 \end{pmatrix}, \mathscr{B} \cdot \begin{pmatrix} 110\\011 \end{pmatrix} \subset U.$$

Because E_{21} , E_{32} commute with $\begin{pmatrix} \cdots \\ 001 \end{pmatrix}$ and $\begin{pmatrix} \cdots \\ 011 \end{pmatrix}$, and since

$$U = \rho(\mathscr{E}) \cdot B$$

where \mathscr{E} is the enveloping algebra of span{ E_{21} , E_{32} , E_{31} }, we conclude that

$$U \cdot \begin{pmatrix} 001\\001 \end{pmatrix}, U \cdot \begin{pmatrix} 100\\001 \end{pmatrix}, U \cdot \begin{pmatrix} 011\\011 \end{pmatrix}, U \cdot \begin{pmatrix} 110\\011 \end{pmatrix} \subset U$$

Next, apply E_{13} , E_{12} , E_{23} to these last inclusions to show that $U \cdot \mathscr{C} \subset U$ where \mathscr{C} is the subalgebra of \mathscr{A} generated by the twelve operators $\begin{pmatrix} 100 \\ \cdots \end{pmatrix}$, $\begin{pmatrix} 001 \\ \cdots \end{pmatrix}$, $\begin{pmatrix} 011 \\ \cdots \end{pmatrix}$, $\begin{pmatrix} 011 \\ \cdots \end{pmatrix}$.

It remains but to observe that $\mathscr{C} = \mathscr{A}$.

Define \mathscr{A}° to be the algebra of all T in \mathscr{A} such that $T(V_{\lambda}) \subset V_{\lambda}$ for all dominant weights λ .

LEMMA 5.8. $\mathscr{A}^{\circ} \cap \mathscr{B}$ is generated as an algebra by X, Y, E_{13} , $\binom{101}{110}\binom{010}{100}, \binom{010}{100}\binom{001}{100}\binom{100}{100}$, and $\binom{101}{110}\binom{110}{110}\binom{011}{110}$.

Proof. The condition on a member of the spanning set (5.4) of \mathscr{B} to be in \mathscr{A}° is that

$$b_1 + c_1 + d_2 = b_2 + c_1 + d_1 = b_1 + c_2 + d_1.$$

Consideration of the four cases arising from the condition $c_1c_2 = d_1d_2 = 0$ shows that the elements meeting this condition can be written in terms of the six operators given in the lemma and the elements

$$T_n = {\binom{101}{110}}^n {\binom{010}{100}}^n.$$

That the T_n are unnecessary is shown by the calculation:

$$T_n = T_{n-1} \Big((n-1)E_{13} + {\binom{101}{110}} {\binom{010}{100}} \Big).$$

PROPOSITION 5.9. \mathscr{A}° is the subalgebra of \mathscr{A} generated by \mathfrak{g} , X, and Y.

Proof. \mathscr{A}° is the g-module generated by $\mathscr{A}^{\circ} \cap \mathscr{B}$. To show that \mathscr{A}° is contained within the algebra generated by g, X, and Y we need only show that $\mathscr{A}^{\circ} \cap \mathscr{B}$ is so contained. Combine Lemma (5.8) and the following identities.

$$(5.10a) \ \begin{pmatrix} 101\\ 110 \end{pmatrix} \begin{pmatrix} 010\\ 100 \end{pmatrix} = E_{12}E_{23} + \frac{1}{2}(H_1 - H_2 + H_3 - H_4)E_{13}$$

(5.10b)
$$\binom{010}{100}\binom{001}{100}\binom{100}{100} = E_{23}E_{12}^2 - E_{32}E_{13}^2 - (H_2 - H_3)E_{12}E_{13}$$

(5.10c)
$$\binom{101}{110}\binom{110}{110}\binom{011}{110} = E_{12}E_{23}^2 - E_{21}E_{13}^2 + (H_1 - H_2)E_{23}E_{13}.$$

6. Structure of \mathscr{B} . For weights λ , μ of \mathfrak{g} , define $\mathscr{B}\begin{pmatrix} \mu \\ \lambda \end{pmatrix}$ to be the set of

 $T \in \mathscr{B}$ such that the following two conditions are satisfied:

6.1a) T is a λ vector of the g-representation ρ on \mathscr{A} .

6.1b) $T(V_{\alpha}) \subset V_{\alpha+\mu}$ for all dominant weights α of \mathfrak{g} . Because the generators of \mathscr{B} are all dominant weight vectors, unless λ is dominant, $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix} = (0).$

One has a grading of *B*:

$$\mathscr{B} = \bigoplus \mathscr{B} \begin{pmatrix} \mu \\ \lambda \end{pmatrix}$$
 and $\mathscr{B} \begin{pmatrix} \mu \\ \lambda \end{pmatrix} \cdot \mathscr{B} \begin{pmatrix} \mu' \\ \lambda' \end{pmatrix} \subset \mathscr{B} \begin{pmatrix} \mu + \mu' \\ \lambda + \lambda' \end{pmatrix}$

PROPOSITION 6.2. $\mathscr{B}\begin{pmatrix} 0\\ 0 \end{pmatrix} = \mathbf{C}[X, Y].$

Proof. The algebra $\mathscr{B}\begin{pmatrix}0\\0\end{pmatrix}$ is spanned by those monomials in the six generators from Lemma 5.8 of $\mathscr{A}^{\circ} \cap \mathscr{B}$ which actually lie in $\mathscr{B}\begin{pmatrix} 0\\ 0 \end{pmatrix}$. Thus it is spanned by monomials in X and Y.

For weights μ and λ and dominant weight α of g denote by $\mathscr{B}\begin{pmatrix} \mu \\ \lambda \end{pmatrix}(\alpha)$ the space of all $T \in \text{Hom}_{\mathbb{C}}(V_{\alpha}, V_{\alpha+\mu})$ which are restrictions of elements of $\mathscr{B}\left(\begin{array}{c} \mu \\ \lambda \end{array} \right).$

LEMMA 6.3. (i) For μ , λ , α weights of g with λ and α dominant,

 $\dim \mathscr{B}\binom{\mu}{\lambda}(\alpha) = \dim \operatorname{Hom}_{\mathfrak{g}}(\pi_{\lambda}, \operatorname{Hom}_{\mathbb{C}}(\pi_{\alpha}, \pi_{\alpha+\mu})).$

(ii) The space $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ is nonzero if and only if λ is dominant and μ is a weight of π_{λ} .

Proof. (i) The elements of $\mathscr{B}\binom{\mu}{\lambda}(\alpha)$ are λ vectors of the g-representation Hom_C(V_{α} , $V_{\alpha+\mu}$) which are highest weight vectors. By Proposition 3.4 we find all such in $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$.

(ii) This is a trivial consequence of (i) and Lemma 1.1.

Let Φ be the set of S in \mathscr{B} as in (5.4). Let $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ equal $\Phi \cap \mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}$.

For dominant weights α , denote by $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ the set of restrictions to

 V_{α} of the elements of $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$.

LEMMA 6.4. The set $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ is a basis of $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ for each dominant weight α such that $\alpha + (210) + \sigma\lambda$ is dominant for every $\sigma \in \mathscr{S}_3$.

Proof. By Lemma 5.3 it is seen that the set $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ spans $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ for all α .

To establish linear independence we must show that the cardinality of $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ equals dim $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ for α as in the lemma. Let

$$\begin{pmatrix} \mu \\ \lambda \end{pmatrix} = \begin{pmatrix} a \ b \ c \\ p \ q \ 0 \end{pmatrix}$$

with $(p \ q \ 0)$ dominant, $(a \ b \ c)$ a weight of $\pi_{(pq0)}$, and a + b + c = p + q. An easy calculation enumerates the elements of $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$:

(6.5)
$$\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix} = \left\{ E_{13}^{d} \binom{101}{110}^{\delta-d} \binom{010}{100}^{\delta+b-q-d} \binom{001}{100}^{c-q} \\ \times \left(\frac{100}{100}\right)^{a-q} \right\}_{0 \le d \le \inf\{\delta, \delta+b-q\}}$$

where: i) For $n \ge 0$ we have written $\binom{100}{100}^{-n}$ for $\binom{011}{110}^n$ and $\binom{001}{100}^{-n}$ for $\binom{110}{110}^n$.

ii) We compute δ from the table below:

$$\begin{array}{c|c} \delta & q \ge a & q \le a \\ \hline q \ge c & p - b & c \\ \hline q \le c & a & q \end{array}$$

On the other hand, the dimension of $\mathscr{B}\begin{pmatrix} \mu \\ \lambda \end{pmatrix}(\alpha)$, which equals $\operatorname{mult}_{\mu}(\pi_{\lambda})$ by Lemmas 1.1 and 6.3 for α as above, can also be computed explicitly. Choose $\sigma \in \mathscr{S}_3$ such that $\sigma\mu$ is dominant. Then $\operatorname{mult}_{\mu}(\pi_{\lambda})$ equals $\operatorname{mult}_{\sigma\mu}(\pi_{\lambda})$, and the latter is given by Lemma 1.3.

It is now a simple matter to conclude the proof by showing the two numbers card $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ and dim $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}(\alpha)$ to be equal.

THEOREM 6.6. $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ is a free $\mathbb{C}[X, Y]$ -module of rank equal to $\mathrm{mult}_{\mu}(\pi_{\lambda})$. The set $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ is a basis.

Proof. By Lemma 5.3, the set $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ generates $\mathscr{B}\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ as a C[X, Y]-module.

Let the elements of $\Phi\begin{pmatrix}\mu\\\lambda\end{pmatrix}$ be denoted S_i .

Suppose given polynomials $f_i(X, Y)$ in $\mathbb{C}[X, Y]$ such that

$$\sum S_i f_i(X, Y) = 0.$$

Recall that $f_i(X, Y)$ acts as scalar multiplication by $f_i(r - s + 1, s + 1)$ on $V_{(rs0)}$.

A dominant weight $\alpha = (r \ s \ 0)$ satisfies the condition of Lemma 6.4 with $\lambda = (p \ q \ 0)$ if $s + 1 \ge p$ and $r - s + 1 \ge p$. The restriction of $S_i f_i(X, Y)$ to V_{α} for such α must be zero, and hence also each $f_i(r - s + 1, s + 1)$ must equal zero. This implies that each f_i is zero.

COROLLARY 6.7. Let \mathscr{U} be the universal enveloping algebra of the nine dimensional lie algebra spanned by the nine generators of \mathscr{B} . Let $\phi: \mathscr{U} \to \mathscr{B}$ be the canonical surjection.

The kernel of ϕ is the ideal I of \mathcal{U} generated by the two elements below:

$$\binom{011}{110} \binom{100}{100} - \binom{101}{110} \binom{010}{100} - XE_{13}$$
$$\binom{101}{110} \binom{010}{100} - \binom{110}{110} \binom{001}{100} - YE_{13}.$$

Proof. By Theorem 6.6 the elements SX^eY^f of Lemma 5.3 which span \mathcal{U}/I are linearly independent in \mathcal{B} .

As an illustration of what can be done with Theorem 6.6, we find explicitly a basis for the space of (210) vectors in the $\pi_{(210)}$ -isotypic subrepresentation of each g-module Hom_C(V_{α} , V_{α}).

Observe that

$$\Phi\begin{pmatrix}111\\210\end{pmatrix} = \left\{ E_{13}, \begin{pmatrix}101\\110\end{pmatrix}\begin{pmatrix}010\\100\end{pmatrix} \right\}.$$

The conditions of Lemma 6.4 are met for $\alpha = (r \ s \ 0)$ if r > s > 0. For such α , $\Phi\begin{pmatrix}111\\210\end{pmatrix}$ is the sought for basis.

Next notice that $V_{(r00)}$ is the space of homogeneous polynomials of degree r in the variables a_1 , a_2 , a_3 and that $V_{(rr0)}$ is the space of homogeneous polynomials of degree r in a_{12} , a_{23} , a_{31} .

On $V_{(000)}$, both E_{13} and $\binom{101}{110}\binom{010}{100}$ vanish and so $\text{Hom}_{\mathbb{C}}(V_{(000)}, V_{(000)})$ contains no subrepresentation isomorphic to $\pi_{(210)}$.

Calculations show that E_{13} is nonzero on $V_{(r00)}$ and on $V_{(rr0)}$ if r > 0, and that on each of these spaces $\binom{101}{110}\binom{010}{100}$ is linearly dependent upon E_{13} . Thus for r > 0, E_{13} is a highest weight vector in the unique irreducible subrepresentation of $\text{Hom}_{\mathbb{C}}(V_{(r00)}, V_{(r00)})$ or of $\text{Hom}_{\mathbb{C}}(V_{(rr0)}, V_{(rr0)})$ which is isomorphic to $\pi_{(210)}$.

7. The so_8 -representation \mathscr{A} . The action ρ of \mathfrak{g} on \mathscr{A} extends to an action, also denoted ρ , of so_8 on \mathscr{A} :

$$\rho(x)a = [x, a] \text{ for } x \in so_8, a \in \mathscr{A}.$$

We want to decompose explicitly the representation ρ of so_8 .

The group of weights of so_8 will be identified with $\mathbf{Z}^4 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})\mathbf{Z}$ as follows: For $\eta = (p_1p_2p_3p_4)$ a weight and $H = \sum b_i H_i \in \mathfrak{f}$, define

$$\eta(H) = \sum p_i b_i$$

A weight η is *dominant* if

 $p_1 \geqq p_2 \geqq p_3 \geqq |p_4|.$

An element w of an so_8 -module is an η vector if

 $Hw = \eta(H)w$ for all $H \in \mathfrak{k}$.

We say that η is a *weight* of a representation if there is a nonzero η vector and refer to the dimension of the space of η vectors as the *multiplicity* of η .

Every finite dimensional irreducible representation of so_8 has a unique weight η , called its *highest weight*, for which there is a nonzero η vector annihilated by E_{12} , E_{23} , $\begin{pmatrix} 010\\001 \end{pmatrix}$, and $\begin{pmatrix} 001\\001 \end{pmatrix}$. It is a dominant weight and of multiplicity one; it determines the isomorphism class of the representation. We shall write π_{η} to denote an irreducible representation of highest weight η .

THEOREM 7.1. i) $C\left[\begin{pmatrix}011\\110\end{pmatrix}\right]$ is the commutant of $\begin{cases}E_{12}, E_{23}, \begin{pmatrix}010\\001\end{pmatrix}, \\ \begin{pmatrix}001\\001\end{pmatrix}\end{cases}$ in \mathscr{A} . ii) There is an isomorphism of so₈-representations:

$$\rho \simeq \bigoplus_{p=0}^{\infty} \pi_{(pp00)}.$$

Proof. The commutant is surely contained within \mathscr{B} , the commutant of E_{12} and E_{23} in \mathscr{A} .

We list the nine generators of \mathscr{B} and their so_8 weights.

X	(0, 0, 0, 0)	$\begin{pmatrix} 110\\ 110 \end{pmatrix} (0, 0, -1, -1)$
Y	(0, 0, 0, 0)	$ \begin{pmatrix} 110 \\ 001 \\ 100 \end{pmatrix} (1, 0, 0, 1) $
E_{13}	(1, 0, -1, 0)	$\begin{pmatrix} 011\\ 110 \end{pmatrix} (1, 1, 0, 0)$
$\left(101\right)$	(0, 0, -1, 1)	$\begin{pmatrix} 110\\ 100\\ 100 \end{pmatrix}$ (0, -1, -1, 0)
		(100)
$\binom{010}{100}$	(1, 0, 0, -1)	

An eigenvector of f in the commutant of E_{12} , E_{23} , $\begin{pmatrix} 010\\001 \end{pmatrix}$ and $\begin{pmatrix} 001\\001 \end{pmatrix}$ must be a dominant weight vector. The list above shows that it can be written in the form

 $\binom{010}{100}^{a} \binom{001}{100}^{a} \binom{011}{110}^{b} f(X, Y),$

where a, b, and the polynomial f are uniquely determined.

To facilitate computations we will change variables. Let W = X + Y - 2, and let Z = Y - 1. A dominant weight vector is uniquely expressible in the form:

(7.3)
$$T = \begin{pmatrix} 010\\100 \end{pmatrix}^a \begin{pmatrix} 001\\100 \end{pmatrix}^a \begin{pmatrix} 011\\110 \end{pmatrix}^b g(W, Z).$$

We first show that a must be zero. This follows from explicit calculation, for all α , $\gamma \ge a$, of both sides of the equality (7.4). The right hand side is always zero.

(7.4)
$$\begin{pmatrix} 001\\001 \end{pmatrix} T \cdot a_2^{\ \alpha} a_3^{\ b} a_{23}^{\ \gamma} = T \begin{pmatrix} 001\\001 \end{pmatrix} \cdot a_2^{\ \alpha} a_3^{\ b} a_{23}^{\ \gamma}.$$

We next show that the polynomial g(W, Z) must be independent of Z. This can be done by calculating explicitly, for all $\alpha \ge b$ and $\beta \ge 0$, both sides of the equality (7.5).

(7.5)
$$\binom{010}{001}T \cdot a_1 a_3^{\alpha} a_{31}^{\beta} = T\binom{010}{001} \cdot a_1 a_3^{\alpha} a_{31}^{\beta}.$$

At last, calculations for all $\alpha \ge b$ of (7.6) shows that g(W) is constant.

(7.6)
$$\binom{001}{001}T \cdot (a_{12}a_3^{\alpha} - \alpha a_3^{\alpha-1}a_2a_{31})$$

$$= T \binom{001}{001} \cdot (a_{12}a_3^{\alpha} - \alpha a_3^{\alpha-1}a_2a_{31}).$$

8. Simplicity of A.

THEOREM 8.1. The algebra \mathscr{A} contains no nonzero proper two-sided ideal.

Proof. Let $\mathscr{A}(p)$ denote the irreducible so_8 -submodule of \mathscr{A} with highest weight (*pp*00) and highest weight vector $\begin{pmatrix} 011\\110 \end{pmatrix}^p$.

A two-sided ideal J is an so_8 -submodule of \mathscr{A} , hence must be a sum of $\mathscr{A}(p)$. If $\mathscr{A}(p)$ is contained in J, then $\binom{011}{110}^n$ is contained in J for all $n \ge p$. Thus

$$J = \bigoplus_{p \ge N} \mathscr{A}(p),$$

where N is the smallest integer for which $\mathscr{A}(N) \subset J$. We see thus that the nontrivial two-sided ideals, if any, form a chain and that each is of finite codimension in \mathscr{A} .

Let J be a nontrivial ideal of \mathscr{A} .

The quotient algebra \mathscr{A}/J , being a finite dimensional quotient of $\mathscr{U}(so_8)$, the universal enveloping algebra of so_8 , is semisimple; that is, it is isomorphic to a finite product of full matrix algebras. Since the ideals in \mathscr{A}/J form a chain, there can be at most one factor in the product. We deduce that J is maximal.

Let *I* be the inverse image of *J* in $\mathscr{U}(so_8)$. There is a finite dimensional irreducible representation π_η of so_8 such that *I* equals the kernel of π_η in $\mathscr{U}(so_8)$.

Let Z be the center of $\mathcal{U}(so_8)$, and let $\chi_{\eta}: Z \to \mathbb{C}$ be the central character of π_{η} . Let $\chi: Z \to \mathbb{C}$ be the central character of the representation of so_8 on V.

It is clear that $\chi = \chi_{\eta}$. We will show that this equality leads to a contradiction.

The representation of so_8 on V is irreducible with highest weight (-1, -1, -1, -1). Indeed the element $1 \in V$ is a (-1, -1, -1, -1, -1)-vector which is annihilated by E_{12} , E_{23} , $\begin{pmatrix} 010\\001 \end{pmatrix}$, and $\begin{pmatrix} 001\\001 \end{pmatrix}$.

The equality $\chi = \chi_{\eta}$ implies the existence of an element w in the Weyl group of f such that

 η + (3, 2, 1, 0) = w((-1, -1, -1, -1) + (3, 2, 1, 0)).

But this is impossible for a dominant weight η .

REFERENCES

- G. E. Baird and L. C. Biedenharn. On the representations of the semi-simple lie groups IV. A canonical classification for tensor operators in SU₃, J. Math. Phys. 5 (1964), 1730-1747.
- 2. N. Bourbaki, Groupes et algebres de lie, Chap. VI Section 4.7 (Hermann, Paris, 1968).
- 3. I. M. Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk. SSSR 71 (1950), 825-828.
- 4. A. U. Klimyk, Decomposition of a tensor product of irreducible representations of a semisimple lie algebra into a direct sum of irreducible representations, Amer. Math Soc. Translations (Amer. Math. Soc., Providence, 1968).
- 5. J. D. Louck and L. C. Biedenharn, Canonical unit adjoint tensor operators in U(n), J. Math. Phys. 11 (1970), 2368-2414.
- 6. H. Weyl, The theory of groups and quantum mechanics (Methuen and Co., London, 1931).
- 7. —— The structure and representation of continuous groups, Lectures at the Institute for Advanced Study (1934-1935) (notes by Richard Brauer, reprinted 1955).

Duke University, Durham, North Carolina