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1. I n t r o d u c t i o n . I t is well known (2, 4 ) t h a t the ring of all real (com
plex) continuous functions on a compact Hausdorff space can be characterized 
algebraically as a Banach algebra which satisfies certain addit ional intrinsic 
conditions. I t might be expected t h a t rings of all cont inuous functions on 
other topological spaces also have algebraic characterizat ions. T h e main 
purpose of this note is to discuss two such characterizat ions. In both cases 
the characterizations are given in the te rms of the theory of /brings (1). In 
one case a characterization is given for the ring of all (real) cont inuous func
tions on a generalized P-space, t h a t is, a zero-dimensional topological space in 
which the class of open-closed sets forms a c-algebra. A Hausdorff generalized 
P-space is a P-space in the terminology of (3). In the other case a theorem 
of Sikorski (6) is employed to give a characterizat ion of the ring of all (real) 
continuous functions on an upper Xi-compact P-space. A P-space is said 
to be upper Ki-compact if every open covering of the space can be replaced 
by an a t most countable subcovering. 

I t is remarked in a previous paper (1) t h a t the ring of all (real) cont inuous 
functions on a P-space is a regular M-ring and hence is the ring of all (£2, im
measurable functions where 12 is the domain of the continuous function ring 
and g is a certain distinguished o--algebra of subsets of 12. A portion of this 
note is devoted to a characterization of those $ 's for which a topology X 
exists such t h a t the ring of all (12, g )-measurable functions is exactly the ring 
of all real functions on 12 which are continuous under the topology X. 

The notat ion and definitions of (1) are used here with the exception t h a t 
M (12, ft) is used to denote the regular Af-ring of all (12, ft)-measurable func
tions. Since the following discussion involves a multiplicity of topologies 
defined on a given abs t rac t space, the notat ion [12, X] is used to designate a 
topological space having 12 as its set of points and X as its class of open sets. 
C [12, X] designates the ring of all (real) continuous functions on [12, X\. When 
there is no ambigui ty the shortened forms M(ft) and C[X] are used respectively 
for M (13, ft) and C [12, X]. 

If 31 is an algebra of subsets of some set 12, then T% s tands for the class 
of open sets in the topology generated by SI, and if [12, X] is a topological 
space, ÇX s tands for the class of all open-closed sets in [12, X]. Up f 12, then 
SOîp designates the set {A Ç 21 p $ A} which is clearly a maximal ideal of 51. 
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If © is a collection of sets, then H 35 and U 35 designate respectively the 
intersection and union of the elements in X). 

2. Generalized P-spaces and d-algebras. Let 12 be a set which contains 
at least two points and let % be a (7-algebra of subsets of 12. If X is a topology 
on 12 such that ikf(g) is the ring of all continuous functions on [12, X], then 
g Ç Ï and hence Pg Q X. It is a matter of direct vérification to show that 
in general [12, T%] is a generalized P-space and M(g) Ç C [Pg]. Thus if 
there is a X such that M(g) = C[X], then M(g) = C[Pg] = C[£]. Hence 
the problem of determining those g for which there exists a X such that 
C[ï] = M(%) is reduced to the problem of determining those g f° r which 
q r g ] = M(g). 

THEOREM 1. If % is a a-algebra of subsets of 12, £/̂ w the following statements 
are equivalent: 

(i) C[T%] = M^), 
(ii) f r g = %, 

(iii) If S3 is an ideal of g with properties: 

(a) « = n {aw, 1 2 ^ 2 33}, 
(b) $D?P 2 53 => //zere is a principal ideal 3v ^wc/t ^a^ 33 ^ 3 P ÇZ 99îp, 

//ze?z S3 is principal. 

Proof, (i) => (ii): If A is an open-closed set in the topology Pg, then XA 
is continuous and hence belongs to C[PJÇ] = M($). Thus it is clear that 
A = {p 6 12 | XA > h} belongs to g. Therefore f Pg Ç g. Obviously g Ç f Pg. 

(ii) => (iii): If 33 has property (iiia), then $8 = {A £ % \ A Cl D} where 
D = U33. Indeed, suppose A Q P . Then if 2tt„ 3 33, it follows that p i P , 
and therefore WlP 3 33 implies that 4 e 2» p .Thus^ G H {9K„ | 9ftp 3 33} = 33. 

If 33 satisfies both (iiia) and (iiib), then 33 is principal. This is proved by 
showing that D is open-closed and then noting that P Ç 33. Let p (£D. Then 
9Wp 3 33 and there is a principal ideal $p such that 33 £ 3^ Ç 9Jtp. If 7P is 
the generator of $p, then p $ Ip and B Q Ip for all P G 33. Thus D Q Ip and 
£ G 12 — I? £ g. Therefore P is open-closed and belongs to g. If P $ 33, then 
for some 9WP 2 33 we have p £ P which leads to a contradiction because 
5D?P Z) 33 implies p $ D. This proves that 33 is the principal ideal generated 
by P . 

(iii) =» (ii): Let P be an open-closed set in the topology Pg. The ideal 
35 = {A e g I A C P} satisfies (iiia). Indeed, if ^ 6 H {gftp | 9K„ 3 S)}, then 
p $A for all 90^ 3 35. Since 9KP 3 35 is equivalent to p $ P , it then follows 
that A e H {$Jlp | 9Wp 2 35} implies p $ A {or all p $ D which in turn implies 
i Ç D . Thus H {2K, I mv 3 35} = ©. 

If p $ P , then there is a P Ç g s uch that p £ B and P O P = 0, because 
P is closed. Hence 12 — P 3 P and the principal ideal 3>p generated by 
12 — B contains 35. Therefore if Wp 3 J), there is a principal ideal 3 P such that 
35 Ç $v Q 2Kp. Thus 35 satisfies (iiib) and 35 is principal. 
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Now U ;D = D, because D is open. Since 3) is principal, D is its generator; 
hence D £ % and % = f T%. 

(ii) => (i): Since M(%) Ç C[T$], statement (i) is established if we show 
that C[T%] C M(%). Suppose 9 Ç C[T%}. Then as in (3, Theorem 5.3), 
Q~1(a) = {/> Ç 12 I g(£) = <*} is an open set for any real a (because countable 
intersections of sets in T$ belong to T%) and hence 

{p e Q I (j(/>) < x} = u {fl-H») I « < M 6 r r g = g. 

Therefore g Ç M(g) . 
As an example of an g for which C[Tg] ^ Af(g), let g be the class of all 

Borel sets on the real line E. It is clear that T% is the discrete topology on E 
and that C[7"5] is the ring of all real functions on E. 

In Theorem 1 the proof that (ii) <=> (iii) does not depend on the hypothesis 
that g is a n ^-algebra. Therefore the following more general result can be 
obtained : 

COROLLARY 1. Let % be an algebra of subsets of Œ. Then §1 satisfies condition 
(ii) if and only if (fi, 31) satisfies condition (iii). 

The following corollary, useful in the sequel, is a direct consequence of 
Theorem 1 : 

COROLLARY 2. / / [0, X] is a generalized P-space, then C[Q, X] = Af(Q, f£) . 

Indeed, in a generalized P-space, TÇX = X and f T f ï = f ï . Hence by 
Theorem 1 the equation C[0, ï ] = Jkf(fl, f ï ) is valid. 

3. A maximal ideal theorem. Before consideration of the characteriza
tions, a theorem and a corollary concerning maximal ideals are proved. These 
make clear the relationship between the concepts of closed maximal ideal and 
real maximal ideal for regular Tarings. 

THEOREM 3. Let R be a regular F-ring. If a maximal ideal 9ft of R is real, it 
is also closed. 

For definitions of real and closed see (1). In order to prove Theorem 3 the 
following lemma is employed.. 

LEMMA 1. If {en} is an orthogonal sequence of idempotents of R such that 
Vw=i°° en — 1 and if {an) is a sequence of real numbers such that 0 < e < an for 
all integers n > 1, then Vw=i°° anen £ R. 

Proof. The element b = Vn^i° V«w en belongs to R. From the equation 

ëb = V r o . r (1 A mb) = Vw=1
œ [1 A m (Vw==1°° en/an], 

we deduce by the distributivity of the lattice operations that ëb = Vn=={°e„ — 1. 
Hence the regularity of R implies (1, Theorem 2) that b~l Ç R. Clearly 

em = b b~l em = (Vw==i°° en/an) b~l em = en/an b~l, 
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so anen = b~le lorn > 1. Therefore, since b~l = (Vw==i°° en) b~l = Vn=i° (^6_1)> 
it follows that b~l = Vw==i°° anen. 

Proof of Theorem 3. Suppose 2ft is not closed. Then there is a sequence 
\en] of orthogonal idempotents such that Vw==i°° en = 1 and ew 6 2ft for each 
integer n > 1. Indeed, there is a sequence {6n} of elements of 2ft, such that 
bn > 0 for all integers n > 1 and 6 = Vw=i°° bn £ R while 6 $ 2ft. Since 

V £ i ê6n = V~=1 V£-i [1 A mbn] = V£.i [1 A m V£ i iB] = S» 

and since x G 2ft if and only if êx £ 2ft, it follows that ëô does not belong 
to 2ft. Therefore eQ = 1 — ëb G 2ft. Let 

«» = [«o V ( V ^ x O l A {1 - [eo V ( V ^ l O l ! 
for w > 1. Then it can be shown that {e0, ei, . . .} is an orthogonal sequence 
of idempotents such that Vn=o°° en = 1, while en £ 2ft for each integer n > 0. 

If {ew} is a sequence of orthogonal idempotents in 2ft such that Vw==0
œ ew = 1, 

then by Lemma 1, d = Vw=o°° (n + 1) en belongs to R and has an inverse 
drl Ç R. If m is a natural number, then 

m—1 

d — m • 1 = X) (» + 1 — m) en + V%Lm(n + 1 — m)ew 
ra=0 

belongs to i?. Since Ln=om_1(w + 1 — M)en belongs to 2ft for all m > 1, it 
follows that the non-negative element Vw==m°°(n + 1 — m)en and the element 
d — m • 1 have the same image under the natural homomorphism of R onto 
R — %Jl. This homomorphism preserves order, and hence d(W) — m-1 > 0 for 
all choices of m > 1. Therefore i£ — 2ft cannot be the real field. 

COROLLARY. If R is a regular F-ring, then a maximal ideal is real if and 
only if it is closed. 

Proof. This follows from Theorem 3 and (1, Theorem 5). 

4. Characterizations. In this section, when J? is a regular Turing B(R) 
is used to designate the collection of idempotents of R. It is shown in (1) that 
B(R) is a o--complete Boolean algebra with respect to the lattice operations 
of R. 

Let G be either a regular F-ring or a o--complete Boolean algebra, and let 
Œ stand for the class of all closed maximal ideals of G. Consider the following 
conditions: 

(a) If 93 is an ideal of G of the form 23 = Pi {2ft 6 Q | 2» 2 23} and if for 
each 2ft £ Œ such that 2ft 2 33 there exists a principal ideal 3 which satisfies 
the relation 33 C 3 ^ 2ft, then 33 is a principal ideal. 

(13) Every proper closed ideal of G is a subset of some closed maximal 
ideal of G. 

LEMMA 2. Let R be a regular F-ring. The ideal lattices of R and B(R) are 
isomorphic (under J —> / C\ B (R) and its inverse J —•» RJ) such that principal 
ideals correspond to principal ideals and closed ideals to closed ideals. 
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Proof, T h e isomorphism of the ideal lattices and the result t h a t principal 
ideals correspond to principal ideals are trivial consequences of (5, Theorem 
5) . I t remains only to prove t h a t closed ideals correspond to closed ideals. An 
ideal Q of R is closed if and only if for a sequence {fn\ of non-negative elements 
of Q, the existence of / = Vn==x

œ fn in R i m p l i e s / Ç Q. Suppose J is a closed 
ideal of B(R). If {/„.} is a sequence of non-negative elements of RJ, then 

ëfn£ J, n > 1, 

and hence 

VSLI efn e J. 

If / = Vw=i°° fn exists in R, then as in the proof of Theorem 3 it can be shown 
tha t 

Hence ëf £ J and / = fëf £ RJ. Therefore RJ is also closed. If Q is a closed 

ideal of R, then trivially QC\B(R) is a closed ideal of B(R). 

The following useful corollary is an immediate consequence of Lemma 2. 

COROLLARY. / / R is a regular F-ring, then R satisfies condition a(0) if and 

only if B (R) satisfies condition a (/3). 

I t is now possible to characterize the ring of all continuous (real) functions 
on a generalized P-space. 

T H E O R E M 4. A regular F-ring R is isomorphic to the ring of all continuous 
functions on a generalized P-space if and only if R is an M-ring which satisfies 
condition a. 

Proof. Let R be an M-ring which satisfies condition a. F rom Theorems 7 
and 8 of (3) it follows t h a t there is a correspondence <t>\x —» x which maps x 
onto a real function x defined on &. At each tyfl £ 12 the value of x is the image 
of x under the homomorphism with kernel SDÎ. This correspondence <j> is an 
isomorphism of R onto an M-ring M(fi, § ) , and under it the Boolean algebra 
B(R) is mapped isomorphically onto the set of characteristic functions of 
elements in the cr-algebra %. I n addit ion B(R) = $ under the correspondence 
x —> {StR G ^ 1 x(sD?) = 1}, [Î2, T$] is a generalized P-space (in part icular 
since [fi, T$] is Hausdorff it is a P-space) , and finally the ideal lattices of R 
and B(R) are isomorphic (Lemma 2). Therefore if R satisfies a, then % satis
fies a also and from Theorem 1 it follows tha t M(Q, %) = C[U, T$]. 

Conversely, if [0*, X] is a generalized P-space, then (Corollary 2, Theorem 
1) C[fi*, £ ] = M(Q*, f î ) . Therefore C[Q*, X] is an M-ring and the o-algebra 
f ï satisfies condition (iii) of Theorem 1. Suppose S3 is an ideal of f ï which 
satisfies the hypothesis of condition a. Let S3* = {$Jlp \ p £ fl*, 9WP 3 93). 
Clearly S3 ^ S3* and hence £ = U S3 Ç £ * = US3*. Since p $B if and only 
if 2ftp 3 S3 and p (B* if and only if Wlp 3 S3*, it follows t h a t 5 = B*. Sup
pose /l G S * - S . Then there is a closed maximal ideal 9J? such t ha t A $ 9DÎ 
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and 9)J 2 S3. There is a principal ideal 3 with generator I such that SD? 3 3 
2 53. Hence I 2 5 D A. This contradicts the statement A $ 9JÎ; therefore 
33* = 93. From Theorem 1 it follows that 93 is principal and hence f£ satisfies 
condition a. Therefore both 5(C[12*, X}) and C[12*, £] satisfy condition a. 

For the characterization of the ring of all continuous functions on an upper 
Xi-compact P-space the following theorem is employed. 

THEOREM 5 (Sikorski). If & is the set of all closed maximal ideals of a a-com-
plete Boolean algebra B, then the following statements are equivalent: 

(i) There exists a topology X on 12 such that the correspondence 

is an isomorphism of B onto the a-algebra of open-closed subsets of the upper 
Ki-compact P-space [12, X]. 

(ii) B satisfies condition f3. 

This theorem is a restatement of (6, Theorem xviii) in terms of the sym
bolism of the present paper. 

The following theorem constitutes the characterization. 

THEOREM 6. Let R be a regular F-ring. A necessary and sufficient condition 
for R to be isomorphic to C[12, X] for some upper Hi-compact P-space [12, X] is 
that R satisfy condition 13. 

Proof. Assume R satisfies fi. Since principal ideals of R are closed, every 
principal ideal is a subset of a closed maximal ideal. Therefore R is an Af-ring. 
In addition (see proof of Theorem 4 and (3, Theorems 7 and 8)), R is iso
morphic to ikf(12, 5) where the isomorphism maps B(R) onto the <r-algebra of 
characteristic functions on g and g = B(R). Therefore (Lemma 2) g satisfies £ 
and since closed maximal ideals of g are of the form 9D?P for p £ 12 we deduce 
from Theorem 5 that g is the class of open-closed sets for an upper Ki-compact 
P-topology X on 12. Thus g = fX and from Corollary 2, Theorem 1 it follows 
that C[12, X] = M (12, g) ^ R. 

Assume [12*, X] is an upper Xi-compact P-space. The upper Xi-compactness 
implies that each closed maximal ideal of f ï is fixed. Therefore (Theorem 5) 
the (T-algebra ÇX satisfies condition /3; hence M(12, f ï ) satisfies fi as well. Finally 
by Corollary 2, Theorem 1 we have C[12, X] = M(Q, f£). 
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