L^{p} BEHAVIOR OF THE EIGENFUNCTIONS OF THE INVARIANT LAPLACIAN

E. G. KWON

Abstract

Let $\tilde{\Delta}$ be the invariant Laplacian on the open unit ball B of C^{n} and let X_{λ} denote the set of those $f \in C^{2}(B)$ such that $\tilde{\Delta} f=\lambda f . X_{\lambda}$ counterparts of some known results on X_{0}, i.e. on M-harmonic functions, are investigated here. We distinguish those complex numbers λ for which the real parts of functions in X_{λ} belongs to X_{λ}. We distinguish those λ for which the Maximum Modulus Priniple remains true. A kind of weighted Maximum Modulus Principle is presented. As an application, setting $\alpha \geq \frac{1}{2}$ and $\lambda=4 n^{2} \alpha(\alpha-1)$, we obtain a necessary and sufficient condition for a function f in X_{λ} to be represented as

$$
f(z)=\int_{\partial B}\left(\frac{1-|z|^{2}}{\mid 1-\left\langle z,\left.\zeta\right|^{2}\right.}\right)^{n \alpha} F(\zeta) d \sigma(\zeta)
$$

for some $F \in L^{p}(\partial B)$.

1. Introduction. Let \mathbf{C}^{n} be the n-dimensional complex Euclidean space with the norm $|z|=\sqrt{\sum_{j}\left|z_{j}\right|^{2}}$ and the Hermitian inner product $\langle z, w\rangle=\sum_{j}^{n} z_{j} \bar{w}_{j}, z=\left(z_{1}, \ldots, z_{n}\right)$, $w=\left(w_{1}, \ldots, w_{n}\right)$. Let B denote the open unit ball of \mathbf{C}^{n} and let S be its boundary. Let $\operatorname{Aut}(B)$ denote the Möbius group, i.e. the group of those bijective holomorphic maps of B onto itself. Let ψ_{z} denote one such map with $\psi_{z}(0)=z$. For $f \in C^{2}(B), \tilde{\Delta} f$ is defined by

$$
\begin{equation*}
(\tilde{\Delta} f)(z)=4\left(1-|z|^{2}\right) \sum_{i, j=1}^{n}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right)\left(\frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{j}} f\right)(z) \tag{1.1}
\end{equation*}
$$

$[R, 4.1 .3]$ and is called the invariant Laplacian because $\tilde{\Delta}(f \circ \psi)=(\tilde{\Delta} f) \circ \psi$ for $\psi \in \operatorname{Aut}(B)$ [R, 4.1.2]. If $f \in C^{2}(B)$ satisfies $(\tilde{\Delta} f)(z)=0, z \in B$, then f is said to be M-harmonic. Here M refers to the Möbius group. For a complex number λ, X_{λ} denotes the set of those $f \in C^{2}(B)$ such that $\tilde{\Delta} f=\lambda f . X_{\lambda}$ is an M-invariant closed subspace of $C^{2}(B)$ in the topology of uniform convergence on compact sets. If $\lambda \neq \lambda^{\prime}$ then $X_{\lambda} \cap X_{\lambda^{\prime}}$ is trivial. i.e. $X_{\lambda} \cap X_{\lambda^{\prime}}=\{0\}$. An outstanding feature of X_{λ} we need is that if $f \in X_{\lambda}$ and $\lambda=4 n^{2} \alpha(\alpha-1)$ then f satisfies the weighted mean value property (and conversely) $[\mathrm{R}$, 4.2.4]:

$$
\begin{equation*}
\int_{S} f\left(\psi_{z}(r \zeta)\right) d \sigma(\zeta)=f(z) \int_{S} P^{\alpha}(r \eta, \zeta) d \sigma(\zeta), \quad 0 \leq r<1, \eta \in S \tag{1.2}
\end{equation*}
$$

[^0]Here index α refers to the principal branch, σ denotes the rotation invariant probability measure on S, and $P(z, \zeta)$ denotes the invariant Poisson kernel:

$$
\begin{equation*}
P(z, \zeta)=\left(\frac{1-|z|^{2}}{|1-\langle z, \zeta\rangle|^{2}}\right)^{n}, \quad z \in B, \zeta \in S \tag{1.3}
\end{equation*}
$$

See [K], [KK], and [R] for X_{λ} theory.
Throughout, two complex numbers α and λ are related to be

$$
\begin{equation*}
\lambda=4 n^{2} \alpha(\alpha-1) \tag{1.4}
\end{equation*}
$$

and the radial function $\int_{S} P^{\alpha}(z, \zeta) d \sigma(\zeta)$ is denoted by $g_{\alpha}(z)$. The function g_{α} is used both as a radial function on the ball and as a function on \mathbf{R}^{+}.

If $f \in X_{0}$, i.e. if f is M-harmonic, then the real part of $f, \operatorname{Re} f$, is also M-harmonic. Our question in Section 2 is whether this remains true for functions of X_{λ}. Theorem 1 and Theorem 2 distinguish those complex numbers λ for which the real parts of functions in X_{λ} also belongs to X_{λ}. If $f \in X_{0}$ then f satisfies the Maximum Modulus Principle, i.e. $|f|$ can't obtain a local maximum unless f is a constant. In Section 3, we distinguish those λ for which every function of X_{λ} satisfies the the Maximum Modulus Principle. Also, it is observed that functions of X_{λ}, α real, satisfy a weighted type Maximum Modulus Principle with the weight function g_{α} (Theorem 4). As an application to this, in Section 4, we obtain a necessary and sufficient growth condition for a function f of $X_{\lambda}, \alpha \geq \frac{1}{2}$, to be represented as

$$
f(z)=\int_{\partial B}(P(z, \zeta))^{\alpha} F(\zeta) d \sigma(\zeta)
$$

for some $F \in L^{p}(S)$ (Theorem 6).

2. Real parts of X_{λ}.

Theorem 1. If $\operatorname{Re} \alpha \neq \frac{1}{2}$ then the following are equivalent.
(1) X_{λ} has a nontrivial real function;
(2) λ is real;
(3) α is real;
(4) $g_{\alpha}(z)$ is a real function;
(5) $f \in X_{\lambda}$ if and only if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$.

Theorem 2. If $\operatorname{Re} \alpha=\frac{1}{2}$, then we have
(1) λ is real;
(2) $g_{\alpha}(z)$ is a real function;
(3) $f \in X_{\lambda}$ if and only if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$.

PROOF OF THEOREM 1. (1) \Rightarrow (2): From (1.1), we have $\overline{\tilde{\Delta} \tilde{f}}=\tilde{\Delta} f$. Let f be a nontrivial real function of X_{λ}. Then

$$
\lambda f=\tilde{\Delta f}=\overline{\tilde{\Delta} \bar{f}}=\overline{\Delta \tilde{\Delta}}=\overline{\lambda f}=\bar{\lambda} f .
$$

Thus $\lambda=\bar{\lambda}$. i.e. λ is real.
(2) \Rightarrow (3): Let λ be real and let $\alpha=a+i b, a, b$ real. Then $0=\operatorname{Im} \lambda=4 n^{2} b(2 a-1)$. Since $a=\operatorname{Re} \alpha \neq \frac{1}{2}, b=0$. i.e. α is real.
$(3) \Rightarrow(4)$: Since $P(z, \zeta)$ is real, $g_{\alpha}(z)$ is real if α is real.
(4) \Rightarrow (5): Let $f \in X_{\lambda}$. Supposing g_{α} real, from (1.2), we have

$$
\int_{S}\left(\operatorname{Re} f \circ \psi_{z}\right)(r \zeta) d \sigma(\zeta)=\operatorname{Re} f(z) g_{\alpha}(r), \quad 0<r<1, z \in B
$$

Hence it follows from $[\mathrm{R}, 4.2 .4]$ that $\operatorname{Re} f \in X_{\lambda}$. Similar arguments give us that $\operatorname{Im} f \in X_{\lambda}$ also. Conversely, if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$ then it obviously follows that $f \in X_{\lambda}$.
$(5) \Rightarrow(1):$ Suppose (5). Since $g_{\alpha}(z) \in X_{\lambda}[R, 4.2 .2], \operatorname{Re} g_{\alpha} \in X_{\lambda}$. Since $g_{\alpha}(0)=1$, real part of g_{α} is a non-trivial real function of X_{λ}.

Proof of Theorem 2. (1) Let $\alpha=\frac{1}{2}+i b, b$ real. Then $\lambda=4 n^{2} \alpha(\alpha-1)=$ $4 n^{2}\left(\frac{1}{4}+b^{2}\right)$, so that λ is real.
(2) Since $\bar{\alpha}=1-\alpha$, from [R, 4.2.3 Corollary] it follows that

$$
g_{\alpha}=g_{1-\alpha}=g_{\bar{\alpha}}=\overline{g_{\alpha}} .
$$

Hence g_{α} is real.
(3) Let $f \in X_{\lambda}$, then (1.2) holds. Taking real parts, we conclude that $\operatorname{Re} f \in X_{\lambda}$ as in the proof $(4) \Rightarrow(5)$ of Theorem 1. Similarly, $\operatorname{Im} f \in X_{\lambda}$.
3. On maximum modulus principle. We will say that f defined on B satisfies Maximum Modulus Principle (abbreviated as MMP) if $|f|$ cannot have a local maximum in B unless f is a constant function. M-harmonic functions satisfy MMP. But MMP is no longer true for functions of X_{λ} in general even when λ is real.

THEOREM 3. Let $\alpha=a+i b, a, b$ real. Then the following (1) and (2) are equivalent.
(1) Every function of X_{λ} satisfy MMP.
(2) $a(a-1)>b^{2}$ or $\lambda=0$.

Proof. (1) \Rightarrow (2): Consider the radial function $g_{\alpha}(z)$. Note that

$$
\begin{equation*}
g_{\alpha}(r)=\left(1-r^{2}\right)^{n \alpha} F\left(n \alpha, n \alpha, n ; r^{2}\right) \tag{3.1}
\end{equation*}
$$

[KK, Corollary 2.4], where F is the Gaussian hypergeometric function:

$$
F(a, b, c ; t)=\sum_{0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{t^{k}}{k!}
$$

[S]. Let

$$
\begin{equation*}
y_{\alpha}(t)=(1-t)^{n \alpha} F(n \alpha, n \alpha, n ; t), \quad-1<t<1 . \tag{3.2}
\end{equation*}
$$

Then it follows from differentiating (3.2) that

$$
\begin{equation*}
\left(\frac{d}{d t}\left|y_{\alpha}\right|^{2}\right)(0)=2 n\left(a(a-1)-b^{2}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } a(a-1)=b^{2} \text { then } \frac{d^{2}}{d t^{2}}\left|y_{\alpha}\right|^{2}(0)=-2 a\left(4 n^{2} a(a-1)^{2}+n^{2} a-n^{2}\right) \tag{3.4}
\end{equation*}
$$

Now if $a(a-1)-b^{2}<0$ then by (3.3) we know $\frac{d}{d t}\left|y_{\alpha}\right|^{2}<0$ near $t=0$. That is, the radial function $\left|y_{\alpha}\right|$ is decreasing near the origin, so that $\left|g_{\alpha}(0)\right|=1$ is a local maximum of $\left|g_{\alpha}\right|$. Hence $g_{\alpha}(z)=y_{\alpha}\left(|z|^{2}\right)$ is a function of X_{λ} for which MMP fails. If $a(a-1)=b^{2}$ and $\lambda \neq 0$, then by (3.3) and (3.4) we have

$$
\frac{d}{d t}\left|y_{\alpha}\right|^{2}(0)=0 \text { and } \frac{d^{2}}{d t^{2}}\left|y_{\alpha}\right|^{2}(0)<0
$$

so that $\left|y_{\alpha}\right|$ has a local maximum at 0 . Hence MMP fails for g_{α}.
(2) \Rightarrow (1): Let $f \in X_{\lambda}$. Suppose $|f|$ has a local maximum, say at a. Take r_{0} sufficiently small so that $|f(a)| \geq|f(z)|, z \in \phi_{a}\left(D\left(0, r_{0}\right)\right)$. Here $D\left(0, r_{0}\right)$ denotes the open ball of radius r centered at 0 . Then by the maximality of $|f|$ and (1.2), we have

$$
\begin{align*}
|f(a)| & \geq \int_{S}\left|f \circ \phi_{a}(r \zeta)\right| d \sigma(\zeta) \\
& \geq\left|\int_{S} f \circ \phi_{a}(r \zeta) d \sigma(\zeta)\right|=|f(a)|\left|y_{\alpha}\left(r^{2}\right)\right|, \quad 0<r<r_{0} \tag{3.5}
\end{align*}
$$

Now if $a(a-1)-b^{2}>0$ then, by (3.3), $\frac{d}{d t}\left|y_{\alpha}\right|^{2}>0$ in a neighborhood of 0 , so that $\left|y_{\alpha}\left(r^{2}\right)\right|>\left|y_{\alpha}(0)\right|=1$ for sufficiently small r. Thus, from (3.5), $f(a)=0$. Since any local maximum of $|f|$ is zero, we have $f \equiv 0$. If $\lambda=0$ then $\left|y_{\alpha}\left(r^{2}\right)\right|=1$, so that equality holds in (3.5), which implies that $|f|=\gamma f$ for some constant γ, on $D\left(a, r_{0}\right)$. Thus, γ_{f} is a nonnegative function of X_{0} having local maximum in $D\left(a, r_{0}\right)$. This is impossible by the Maximum Principle of nonnegative M-harmonic functions $[\mathrm{R}, 4.3 .2]$ unless f is a constant function.

Though MMP failed for some real λ, there is a MMP of weighted type in case α is real. Note that if α is real then g_{α} is nonzero and positive.

Theorem 4. Let α be real. Then $g_{\alpha}^{-1} u$ has MMP for every $u \in X_{\lambda}$.
Proof. Let $u \in X_{\lambda}$ and $f=g_{\alpha}^{-1} u$. From (1.2) we have

$$
\begin{equation*}
g_{\alpha}(r) u(z)=\int_{S} u \circ \phi_{z}(r \zeta) d \sigma(\zeta), \quad z \in B, 0 \leq r<1 \tag{3.6}
\end{equation*}
$$

Hence

$$
\begin{align*}
|f(z)| & =\frac{1}{g_{\alpha}(r) g_{\alpha}(z)}\left|\int_{S} u \circ \phi_{z}(r \zeta) d \sigma(\zeta)\right| \\
& =\frac{1}{g_{\alpha}(r) g_{\alpha}(z)}\left|\int_{S} g_{\alpha}\left(\phi_{z}(r \zeta)\right) f \circ \phi_{z}(r \zeta) d \sigma(\zeta)\right| \tag{3.7}\\
& \leq \frac{1}{g_{\alpha}(r) g_{\alpha}(z)} \int_{S} g_{\alpha}\left(\phi_{z}(r \zeta)\right)\left|f \circ \phi_{z}(r \zeta)\right| d \sigma(\zeta) \\
& \leq \sup _{\zeta \in S}\left|f \circ \phi_{z}(r \zeta)\right|, \quad z \in B, 0 \leq r<1,
\end{align*}
$$

where we used (3.6) once more with g_{α} instead of u in the last inequality. We conclude from (3.7) that $|f|$ can't have a local maximum unless $f=\gamma|f|=$ constant for some constant γ.

Corollary 5. Let α be real and let Ω be an open subset of B. Let $u \in X_{\lambda}$ and $f=g_{\alpha}^{-1} u \in C(\bar{B})$. If $|f| \leq M$ on $\partial \Omega$ then $|f| \leq M$ on Ω.

PROOF. The proof is typically routine. Suppose $|f(z)| \leq M$ on $\partial \Omega$ but $|f(z)|>M$ for some $z \in \Omega$. Then the set E of the points in $\bar{\Omega}$ on which $|f|$ takes its maximum is nonempty closed. Since $f \in C(\bar{\Omega})$, we can take $z_{0} \in \Omega$ such that $\operatorname{dist}\left(z_{0}, \Omega\right)=\operatorname{dist}(E, \Omega)$. But for z_{0} in place of z we have the strict inequality in (3.7):

$$
\left|f\left(z_{0}\right)\right|<\sup _{\zeta \in S}\left|f \circ \phi_{z_{0}}(r)\right|, \quad 0<r<1 .
$$

This contradicts the maximality of $\left|f\left(z_{0}\right)\right|$, and so completes the proof.
4. L^{p} behavior of functions in X_{λ}. Throughout this section, we let α be real and $\beta=\alpha-1$. For $1 \leq p \leq \infty, L^{p}(\sigma)$ norm of an $F \in L^{p}(\sigma)$ is denoted by $\|F\|_{p}$. For f continuous on B and $0 \leq r<1$, we denote

$$
M_{p}(r, f)=\left(\int_{S}|f(r \zeta)|^{p} d \sigma(\zeta)\right)^{1 / p}
$$

if $p<\infty$, and

$$
M_{\infty}(r, f)=\sup _{\zeta \in S}|f(r \zeta)| .
$$

For a complex Borel measure $\mu, P^{\alpha}[\mu]$ is defined by

$$
P^{\alpha}[\mu](z)=\int_{S}(P(z, \zeta))^{\alpha} d \mu(\zeta),
$$

where $P(z, \zeta)$ is the invariant Poisson kernel defined in (1.3). Note that $P^{\alpha}[\sigma]=g_{\alpha}$.
We define the function spaces $h^{p, t}, 1 \leq p \leq \infty,-\infty<t<\infty$, by

$$
h^{p, t}=\left\{f: \sup _{0 \leq r<1}\left(1-r^{2}\right)^{t} M_{p}(r, f)<\infty\right\} .
$$

and

$$
h^{p, t-}=\left\{f: \sup _{0 \leq r<1} r^{2}\left(1-r^{2}\right)^{t} \log \left(1-r^{2}\right) M_{p}(r, f)<\infty\right\} .
$$

It is well-known that if $f \in X_{0} \cap h^{p, 0}, 1<p \leq \infty$, then there is a function $F \in L^{p}(\sigma)$ such that $f=P[F]$, and conversely $[\mathrm{R}, 4.3 .3]$. The goal of this section is in a generalization of this fact. Since, as a function of α, λ defined by (1.4) satisfies $\lambda(\alpha)=\lambda(1-\alpha)$, we confine ourselves to $\alpha \geq \frac{1}{2}$.

Theorem 6. Let $\alpha \geq \frac{1}{2}$. If $F \in C(S)$ and if we define

$$
f(z)= \begin{cases}g_{\alpha}^{-1}(z) P^{\alpha}[F](z), & z \in B \tag{4.2}\\ F(z), & z \in S\end{cases}
$$

then $f(z) \in C(\bar{B})$. Conversely, if $u(z) \in X_{\lambda}$ and $g(z)=g_{\alpha}^{-1}(z) u(z)$ is continuous up to S so that $g(z) \in C(\bar{B})$ then $u(z)=P^{\alpha}[G](z)$, where $G(\zeta)=\lim _{r \rightarrow 1} g(r \zeta), \zeta \in S$.

Proof. Let $F \in C(S)$ and let $f(z)$ be defined as (4.2). Consider

$$
k(r)=\frac{\left(1-r^{2}\right)^{n(\alpha+\beta)}}{F\left(-n \beta,-n \beta, n ; r^{2}\right)}, \quad 0 \leq r<1
$$

If $\alpha>\frac{1}{2}$, then $k(r)$ is dominated by $\left(1-r^{2}\right)^{n(\alpha+\beta)}$, so that it tends to 0 as $r \rightarrow 1$. If $\alpha=\frac{1}{2}$, then $\alpha+\beta=0$; but since $F\left(n / 2, n / 2, n ; r^{2}\right) \sim-\log \left(1-r^{2}\right)$ as $r \rightarrow 1, k(r)$ also tends to 0 as $r \rightarrow 1$. Now set

$$
K(z, \eta)=\frac{P^{\alpha}(z, \eta)}{g_{\alpha}(z)}, \quad z \in B, \eta \in S
$$

and

$$
Q=Q(\zeta, \delta)=\{\eta \in S:|1-\langle\zeta, \eta\rangle|<\delta\}, \quad \delta>0
$$

Then $|1-\langle r \zeta, \eta\rangle| \geq \delta-(1-r)$ on $S-Q$, so that by (3.1) and above argument on $k(r)$,

$$
\begin{equation*}
\int_{S-Q} K(r \zeta, \eta) d \sigma(\eta)=k(r) \int_{S-Q} \frac{d \sigma(\eta)}{|1-\langle r \zeta, \eta\rangle|^{2 n \alpha}} \rightarrow 0(r \rightarrow 1) . \tag{4.3}
\end{equation*}
$$

From (4.3) and the fact $\int_{S} K(z, \eta) d \eta=1$, we conclude that

$$
f(r \zeta)-f(\zeta)=\int_{S} K(r \zeta, \eta)(F(\eta)-F(\zeta)) d \sigma(\zeta)
$$

tends to 0 uniformly on $\zeta \in S$ as $r \rightarrow 1$. Therefore $f \in C(\bar{B})$.
Conversely, suppose $u(z) \in X_{\lambda}$ and $g(z)=g_{\alpha}^{-1}(z) u(z)$ is continuous up to S so that $g(z) \in C(\bar{B})$. Let $v(z)=P^{\alpha}[G](z)$, where $G(\zeta)=\lim _{r \rightarrow 1} g(r \zeta), \zeta \in S$. We will show that $u(z)=v(z), z \in B$. Define

$$
f(z)= \begin{cases}g_{\alpha}^{-1}(z) v(z), & z \in B \\ G(z), & z \in S\end{cases}
$$

Then $f(z)$ and $g(z)$ have the same boundary function $G(z)$, and by what we have just proven (the first part of this theorem), $f(z)-g(z) \in C(\bar{B})$. Therefore we can conclude $u \equiv v$ by Corollary 5 .

Theorem 7. Let $1 \leq p \leq \infty$ and let $F \in L^{p}(\sigma)$. If $\alpha>\frac{1}{2}$ then $P^{\alpha}[F] \in X_{\lambda} \cap h^{p, n \beta}$ and if $\alpha=\frac{1}{2}$ then $P^{1 / 2}[F] \in X_{-n^{2}} \cap h^{p,-n / 2-}$.

Conversely, suppose either $f \in X_{\lambda} \cap h^{p, n \beta}, \alpha>\frac{1}{2}$, or $f \in X_{-n^{2}} \cap h^{p,-n / 2-}$. If $1<p \leq$ ∞ then there is an $F \in L^{p}(\sigma)$ such that $f=P^{\alpha}[F]$. If $p=1$ then there is a measure μ such that $f=P^{\alpha}[\mu]$.
$p=2$ case of Theorem 7 appeared at [KK] by an approach using orthogonality in $L^{2}(\sigma)$. In proving Theorem 7 all we need now are, as in the proof of X_{0} case [R, 4.2.4],
an equicontinuity argument of D. Ullrich [R, 4.2.4], MMP (Corollary 5), and duality. We include here the equicontinuity as a lemma, and give a proof of Theorem 7 for the completeness.

Let \mathcal{U} denote the unitary group on S, and let $d U$ denote the Haar measure on \mathcal{U}. \mathcal{U} is compact subgroup of $O(2 n)$ (See [R 1.4.6]). For $G(z)$ defined on B and for $0<r<1$, let us denote the dilation by $G_{r}(z)=G(r z), z \in B$.

Lemma $8[\mathrm{R}$, pr. 56-57]. Let $1 \leq p \leq \infty$. Let $\nu: \mathcal{U} \rightarrow[0, \infty)$ be continuous such that $\int_{\mathcal{U}} \nu(U) d U=1$. If $G(z), z \in B$, is defined by

$$
G(z)=\int_{\mathscr{U}} u(U z) \nu(U) d U
$$

for some $u \in h^{p, 0}$ then we have
(4.4) $\left\{G_{r}: 0<r<1\right\}$ is equicontinuous subset of $C(S)$,
(4.5) $G(z)$ is uniformly bounded by $\|u\|_{p, 0}\left(\int_{\mathcal{U}} \nu^{q}(U) d U\right)^{1 / q}$, where q is the conjugate exponent of p, and
(4.6) $M_{p}(r, G) \leq\|u\|_{p, 0}$.

Proof of Theorem 7. Note first that if $\alpha>\frac{1}{2}$ then $(1-r)^{n \beta} g_{\alpha}(r)=O(1)$ and that $-\log (1-r) g_{\frac{1}{2}}(r)=O(1)$ as $r \uparrow 1$.

If $F \in L^{p}(\sigma)$ and $f=P^{\alpha}[F]$ then it follows from Hölder's inequality that

$$
\|f\|_{p, n \beta} \leq C\left(\int_{S}\left|g_{\alpha}^{-1} f\right|^{p} d \sigma\right)^{1 / p} \leq\|F\|_{p}<\infty
$$

so that $f \in h^{p, n \beta}$. On the other hand, $\tilde{\Delta} f(z)=\lambda f(z)$. This proves the first half of Theorem 7 .
For the converse, let $1<p \leq \infty$ and suppose either $f \in X_{\lambda} \cap h^{p, n \beta}, \alpha>\frac{1}{2}$, or $f \in$ $X_{-n^{2}} \cap h^{p, \frac{n}{2}-}$. We assume $\left\|g_{\alpha}^{-1} f\right\|_{p, 0}=1$ without loss of generality. Let $\nu_{j}: \mathcal{U} \xrightarrow{\rightarrow}[0, \infty)$, $j=1,2, \ldots$ be continuous such that $\int_{\mathcal{U}} \nu_{j}(U) d U=1$ and the support of ν_{j} shrink to the identity of \mathcal{U} as $j \rightarrow \infty$. Apply Lemma 8 with $g_{\alpha}^{-1}(z) f(z)$ and $\nu_{j}(z)$ in places of $u(z)$ and $\nu(z)$. Let G_{j} be the corresponding G. We fix j for a moment. Then by (4.4) and (4.5) there is a sequence $r_{i}=r(j, i)$ tending to 1 (as $\left.i \rightarrow \infty\right)$ such that $\left(G_{j}\right)_{r_{i}}$ converges to a function $g_{j} \in C(S)$ uniformly.

Let

$$
\begin{equation*}
\epsilon_{j, i}=\sup _{\zeta \in S}\left|G_{j}\left(r_{i} \zeta\right)-\frac{P^{\alpha}\left[g_{j}\right]\left(r_{i} \zeta\right)}{g_{\alpha}\left(r_{i} \zeta\right)}\right| \tag{4.7}
\end{equation*}
$$

By Theorem 6, $g_{\alpha}^{-1}(z) P^{\alpha}\left[g_{j}\right]\left(r_{i} \zeta\right)$ tends to $g_{j}(\zeta)$, uniformly as $i \rightarrow \infty$. Thus $\epsilon_{j, i} \rightarrow 0$ as $i \rightarrow \infty$. By Corollary 5 and (4.7),

$$
\left|G_{j}(z)-\frac{P^{\alpha}\left[g_{j}\right](z)}{g_{\alpha}(z)}\right| \leq \epsilon_{j, i}, \quad|z| \leq r_{i},
$$

for every i. Hence $G_{j}(z)=g_{\alpha}^{-1}(z) P^{\alpha}\left[g_{j}\right](z), z \in B$. Now, letting $j \rightarrow \infty, G_{j}(z) \rightarrow$ $g_{\alpha}^{-1}(z) f(z)$ pointwise. On the other hand, since $\left\|g_{j}\right\|_{p} \leq 1$ by (4.6), there is a subsequence of $\left\{g_{j}\right\}$ that converges to some $F \in L^{p}(\sigma)$ in the weak*-topology of $L^{P}(\sigma)$. In particular,

$$
P^{\alpha}\left[g_{j}\right](z) \rightarrow P^{\alpha}[F](z), \quad z \in B .
$$

Therefore we have $f(z)=P^{\alpha}[F](z)$.
When $p=1$, the proof is same except using the dual of $C(S)$.
Corollary 9. Let $\alpha \geq \frac{1}{2}$. Iff is positive and $f \in X_{\lambda}$, then there is a positive measure μ on S such that $f=P^{\alpha}[\mu]$.

Proof. If f is positive and $f \in X_{\lambda}$, then by (1.2), $g_{\alpha}^{-1}(r) \int_{S} f\left(\zeta^{\prime}\right) d \sigma(\zeta)=f(0)$. Thus, by Theorem $7, f=P^{\alpha}[\mu]$ for some μ. This μ is positive being weak*-limit of the positive function $h_{r}=g_{\alpha}^{-1}(r) f_{r}$. In fact, for $g \in C(S)$,

$$
\begin{aligned}
\int_{S} h_{r} g d \sigma & =\frac{1}{g_{\alpha}(r)} \int_{S} g(\eta) d \sigma(\eta) \int_{S} P^{\alpha}(r \eta, \zeta) d \mu(\zeta) \\
& =\frac{1}{g_{\alpha}(r)} \int_{S} P^{\alpha}[g](r \zeta) d \mu(\zeta),
\end{aligned}
$$

and this last integral tends to $\int_{S} g(\zeta) d \mu(\zeta)$ by Theorem 6.

References

[K] E. G. Kwon, One radius theorem for the eigenfunctions of the invariant Laplacian, Proc. AMS. 116(1992), 27-34.
[KK] H. O. Kim and E. G. Kwon, M-invariant subspaces of X_{λ}, Illinois J. Math, to appear.
[R] Walter Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, 1980.
[S] Lucy John Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.

Department of Mathematics Education
Andong National University
Andong 760-749
Korea

[^0]: This research was partially supported by KOSEF.
 Received by the editors March 23, 1992; revised November 3, 1992.
 AMS subject classification: Primary: 31B10; secondary: 31B35.
 Key words and phrases: Invariant Laplacian.
 (c) Canadian Mathematical Society 1993.

