L^p BEHAVIOR OF THE EIGENFUNCTIONS OF THE INVARIANT LAPLACIAN

E. G. KWON

ABSTRACT. Let $\tilde{\Delta}$ be the invariant Laplacian on the open unit ball B of C^n and let X_{λ} denote the set of those $f \in C^2(B)$ such that $\tilde{\Delta}f = \lambda f. X_{\lambda}$ counterparts of some known results on X_0 , *i.e.* on M-harmonic functions, are investigated here. We distinguish those complex numbers λ for which the real parts of functions in X_{λ} belongs to X_{λ} . We distinguish those λ for which the Maximum Modulus Priniple remains true. A kind of weighted Maximum Modulus Principle is presented. As an application, setting $\alpha \geq \frac{1}{2}$ and $\lambda = 4n^2\alpha(\alpha - 1)$, we obtain a necessary and sufficient condition for a function f in X_{λ} to be represented as

$$f(z) = \int_{\partial B} \left(\frac{1 - |z|^2}{|1 - \langle z, \zeta \rangle|^2} \right)^{n\alpha} F(\zeta) \, d\sigma(\zeta)$$

for some $F \in L^p(\partial B)$.

1. **Introduction.** Let \mathbb{C}^n be the *n*-dimensional complex Euclidean space with the norm $|z| = \sqrt{\sum_j |z_j|^2}$ and the Hermitian inner product $\langle z, w \rangle = \sum_j^n z_j \bar{w_j}, z = (z_1, \ldots, z_n), w = (w_1, \ldots, w_n)$. Let *B* denote the open unit ball of \mathbb{C}^n and let *S* be its boundary. Let Aut(*B*) denote the Möbius group, *i.e.* the group of those bijective holomorphic maps of *B* onto itself. Let ψ_z denote one such map with $\psi_z(0) = z$. For $f \in C^2(B)$, Δf is defined by

(1.1)
$$(\tilde{\Delta}f)(z) = 4(1-|z|^2) \sum_{i,j=1}^n (\delta_{ij} - z_i \bar{z}_j) \left(\frac{\partial^2}{\partial z_j \partial \bar{z}_j} f\right)(z)$$

[R, 4.1.3] and is called the *invariant Laplacian* because $\tilde{\Delta}(f \circ \psi) = (\tilde{\Delta}f) \circ \psi$ for $\psi \in \text{Aut}(B)$ [R, 4.1.2]. If $f \in C^2(B)$ satisfies $(\tilde{\Delta}f)(z) = 0, z \in B$, then f is said to be *M*-harmonic. Here M refers to the Möbius group. For a complex number λ , X_{λ} denotes the set of those $f \in C^2(B)$ such that $\tilde{\Delta}f = \lambda f$. X_{λ} is an *M*-invariant closed subspace of $C^2(B)$ in the topology of uniform convergence on compact sets. If $\lambda \neq \lambda'$ then $X_{\lambda} \cap X_{\lambda'}$ is trivial. *i.e.* $X_{\lambda} \cap X_{\lambda'} = \{0\}$. An outstanding feature of X_{λ} we need is that if $f \in X_{\lambda}$ and $\lambda = 4n^2\alpha(\alpha - 1)$ then f satisfies the weighted mean value property (and conversely) [R, 4.2.4]:

(1.2)
$$\int_{S} f(\psi_{z}(r\zeta)) d\sigma(\zeta) = f(z) \int_{S} P^{\alpha}(r\eta, \zeta) d\sigma(\zeta), \quad 0 \le r < 1, \ \eta \in S.$$

This research was partially supported by KOSEF.

Received by the editors March 23, 1992; revised November 3, 1992.

AMS subject classification: Primary: 31B10; secondary: 31B35.

Key words and phrases: Invariant Laplacian.

[©] Canadian Mathematical Society 1993.

Here index α refers to the principal branch, σ denotes the rotation invariant probability measure on *S*, and *P*(*z*, ζ) denotes the invariant Poisson kernel:

(1.3)
$$P(z,\zeta) = \left(\frac{1-|z|^2}{|1-\langle z,\zeta\rangle|^2}\right)^n, \quad z \in B, \ \zeta \in S.$$

See [K], [KK], and [R] for X_{λ} theory.

Throughout, two complex numbers α and λ are related to be

(1.4)
$$\lambda = 4n^2\alpha(\alpha - 1),$$

and the radial function $\int_{S} P^{\alpha}(z,\zeta) d\sigma(\zeta)$ is denoted by $g_{\alpha}(z)$. The function g_{α} is used both as a radial function on the ball and as a function on \mathbf{R}^{+} .

If $f \in X_0$, *i.e.* if f is M-harmonic, then the real part of f, $\operatorname{Re} f$, is also M-harmonic. Our question in Section 2 is whether this remains true for functions of X_{λ} . Theorem 1 and Theorem 2 distinguish those complex numbers λ for which the real parts of functions in X_{λ} also belongs to X_{λ} . If $f \in X_0$ then f satisfies the Maximum Modulus Principle, *i.e.* |f| can't obtain a local maximum unless f is a constant. In Section 3, we distinguish those λ for which every function of X_{λ} satisfies the the Maximum Modulus Principle. Also, it is observed that functions of X_{λ} , α real, satisfy a weighted type Maximum Modulus Principle with the weight function g_{α} (Theorem 4). As an application to this, in Section 4, we obtain a necessary and sufficient growth condition for a function f of X_{λ} , $\alpha \geq \frac{1}{2}$, to be represented as

$$f(z) = \int_{\partial B} (P(z,\zeta))^{\alpha} F(\zeta) \, d\sigma(\zeta),$$

for some $F \in L^{p}(S)$ (Theorem 6).

2. Real parts of X_{λ} .

THEOREM 1. If $\operatorname{Re} \alpha \neq \frac{1}{2}$ then the following are equivalent.

(1) X_{λ} has a nontrivial real function;

- (2) λ is real;
- (3) α is real;
- (4) $g_{\alpha}(z)$ is a real function;
- (5) $f \in X_{\lambda}$ if and only if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$.

THEOREM 2. If $\operatorname{Re} \alpha = \frac{1}{2}$, then we have

- (1) λ is real;
- (2) $g_{\alpha}(z)$ is a real function;
- (3) $f \in X_{\lambda}$ if and only if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$.

PROOF OF THEOREM 1. (1) \Rightarrow (2): From (1.1), we have $\overline{\Delta f} = \overline{\Delta} f$. Let f be a nontrivial real function of X_{λ} . Then

$$\lambda f = \tilde{\Delta} f = \overline{\tilde{\Delta}} \overline{f} = \overline{\tilde{\Delta}} \overline{f} = \overline{\lambda} \overline{f} = \overline{\lambda} f$$

Thus $\lambda = \overline{\lambda}$. *i.e.* λ is real.

(2) \Rightarrow (3): Let λ be real and let $\alpha = a + ib$, a, b real. Then $0 = \text{Im } \lambda = 4n^2b(2a - 1)$. Since $a = \text{Re } \alpha \neq \frac{1}{2}$, b = 0. *i.e.* α is real.

(3) \Rightarrow (4): Since $P(z, \zeta)$ is real, $g_{\alpha}(z)$ is real if α is real.

(4) \Rightarrow (5): Let $f \in X_{\lambda}$. Supposing g_{α} real, from (1.2), we have

$$\int_{\mathcal{S}} (\operatorname{Re} f \circ \psi_z)(r\zeta) \, d\sigma(\zeta) = \operatorname{Re} f(z) g_\alpha(r), \quad 0 < r < 1, \ z \in B.$$

Hence it follows from [R, 4.2.4] that $\operatorname{Re} f \in X_{\lambda}$. Similar arguments give us that $\operatorname{Im} f \in X_{\lambda}$ also. Conversely, if $\operatorname{Re} f \in X_{\lambda}$ and $\operatorname{Im} f \in X_{\lambda}$ then it obviously follows that $f \in X_{\lambda}$.

(5) \Rightarrow (1): Suppose (5). Since $g_{\alpha}(z) \in X_{\lambda}$ [R, 4.2.2], Re $g_{\alpha} \in X_{\lambda}$. Since $g_{\alpha}(0) = 1$, real part of g_{α} is a non-trivial real function of X_{λ} .

PROOF OF THEOREM 2. (1) Let $\alpha = \frac{1}{2} + ib$, b real. Then $\lambda = 4n^2\alpha(\alpha - 1) = 4n^2(\frac{1}{4} + b^2)$, so that λ is real.

(2) Since $\bar{\alpha} = 1 - \alpha$, from [R, 4.2.3 Corollary] it follows that

$$g_{\alpha} = g_{1-\alpha} = g_{\bar{\alpha}} = \overline{g_{\alpha}}.$$

Hence g_{α} is real.

(3) Let $f \in X_{\lambda}$, then (1.2) holds. Taking real parts, we conclude that $\operatorname{Re} f \in X_{\lambda}$ as in the proof (4) \Rightarrow (5) of Theorem 1. Similarly, $\operatorname{Im} f \in X_{\lambda}$.

3. On maximum modulus principle. We will say that f defined on B satisfies Maximum Modulus Principle (abbreviated as MMP) if |f| cannot have a local maximum in B unless f is a constant function. M-harmonic functions satisfy MMP. But MMP is no longer true for functions of X_{λ} in general even when λ is real.

THEOREM 3. Let $\alpha = a+ib$, a, b real. Then the following (1) and (2) are equivalent. (1) Every function of X_{λ} satisfy MMP.

(2) $a(a-1) > b^2$ or $\lambda = 0$.

PROOF. (1) \Rightarrow (2): Consider the radial function $g_{\alpha}(z)$. Note that

(3.1)
$$g_{\alpha}(r) = (1-r^2)^{n\alpha} F(n\alpha, n\alpha, n; r^2)$$

[KK, Corollary 2.4], where F is the Gaussian hypergeometric function:

$$F(a,b,c;t) = \sum_{0}^{\infty} \frac{(a)_k(b)_k}{(c)_k} \frac{t^k}{k!}$$

[S]. Let

(3.2)
$$y_{\alpha}(t) = (1-t)^{n\alpha} F(n\alpha, n\alpha, n; t), \quad -1 < t < 1.$$

Then it follows from differentiating (3.2) that

(3.3)
$$\left(\frac{d}{dt}|y_{\alpha}|^{2}\right)(0) = 2n\left(a(a-1)-b^{2}\right)$$

and

Now if $a(a-1) - b^2 < 0$ then by (3.3) we know $\frac{d}{dt}|y_{\alpha}|^2 < 0$ near t = 0. That is, the radial function $|y_{\alpha}|$ is decreasing near the origin, so that $|g_{\alpha}(0)| = 1$ is a local maximum of $|g_{\alpha}|$. Hence $g_{\alpha}(z) = y_{\alpha}(|z|^2)$ is a function of X_{λ} for which MMP fails. If $a(a-1) = b^2$ and $\lambda \neq 0$, then by (3.3) and (3.4) we have

$$rac{d}{dt}|y_{lpha}|^2(0)=0 ext{ and } rac{d^2}{dt^2}|y_{lpha}|^2(0)<0,$$

so that $|y_{\alpha}|$ has a local maximum at 0. Hence MMP fails for g_{α} .

 $(2) \Rightarrow (1)$: Let $f \in X_{\lambda}$. Suppose |f| has a local maximum, say at *a*. Take r_0 sufficiently small so that $|f(a)| \ge |f(z)|, z \in \phi_a(D(0, r_0))$. Here $D(0, r_0)$ denotes the open ball of radius *r* centered at 0. Then by the maximality of |f| and (1.2), we have

(3.5)
$$\begin{aligned} |f(a)| &\geq \int_{\mathcal{S}} |f \circ \phi_a(r\zeta)| \, d\sigma(\zeta) \\ &\geq \left| \int_{\mathcal{S}} f \circ \phi_a(r\zeta) \, d\sigma(\zeta) \right| = |f(a)| \, |y_a(r^2)|, \quad 0 < r < r_0. \end{aligned}$$

Now if $a(a-1) - b^2 > 0$ then, by (3.3), $\frac{d}{dt}|y_{\alpha}|^2 > 0$ in a neighborhood of 0, so that $|y_{\alpha}(r^2)| > |y_{\alpha}(0)| = 1$ for sufficiently small *r*. Thus, from (3.5), f(a) = 0. Since any local maximum of |f| is zero, we have $f \equiv 0$. If $\lambda = 0$ then $|y_{\alpha}(r^2)| = 1$, so that equality holds in (3.5), which implies that $|f| = \gamma f$ for some constant γ , on $D(a, r_0)$. Thus, γf is a nonnegative function of X_0 having local maximum in $D(a, r_0)$. This is impossible by the Maximum Principle of nonnegative *M*-harmonic functions [R, 4.3.2] unless *f* is a constant function.

Though MMP failed for some real λ , there is a MMP of weighted type in case α is real. Note that if α is real then g_{α} is nonzero and positive.

THEOREM 4. Let α be real. Then $g_{\alpha}^{-1}u$ has MMP for every $u \in X_{\lambda}$.

PROOF. Let $u \in X_{\lambda}$ and $f = g_{\alpha}^{-1}u$. From (1.2) we have

(3.6)
$$g_{\alpha}(r)u(z) = \int_{S} u \circ \phi_{z}(r\zeta) \, d\sigma(\zeta), \quad z \in B, \ 0 \le r < 1.$$

Hence

$$|f(z)| = \frac{1}{g_{\alpha}(r)g_{\alpha}(z)} \left| \int_{S} u \circ \phi_{z}(r\zeta) \, d\sigma(\zeta) \right|$$

$$= \frac{1}{g_{\alpha}(r)g_{\alpha}(z)} \left| \int_{S} g_{\alpha} \left(\phi_{z}(r\zeta) \right) f \circ \phi_{z}(r\zeta) \, d\sigma(\zeta) \right|$$

$$\leq \frac{1}{g_{\alpha}(r)g_{\alpha}(z)} \int_{S} g_{\alpha} \left(\phi_{z}(r\zeta) \right) |f \circ \phi_{z}(r\zeta)| \, d\sigma(\zeta)$$

$$\leq \sup_{\zeta \in S} |f \circ \phi_{z}(r\zeta)|, \quad z \in B, \ 0 \leq r < 1,$$

where we used (3.6) once more with g_{α} instead of u in the last inequality. We conclude from (3.7) that |f| can't have a local maximum unless $f = \gamma |f| = \text{constant}$ for some constant γ .

COROLLARY 5. Let α be real and let Ω be an open subset of B. Let $u \in X_{\lambda}$ and $f = g_{\alpha}^{-1} u \in C(\overline{B})$. If $|f| \leq M$ on $\partial \Omega$ then $|f| \leq M$ on Ω .

PROOF. The proof is typically routine. Suppose $|f(z)| \leq M$ on $\partial \Omega$ but |f(z)| > M for some $z \in \Omega$. Then the set *E* of the points in $\overline{\Omega}$ on which |f| takes its maximum is nonempty closed. Since $f \in C(\overline{\Omega})$, we can take $z_0 \in \Omega$ such that $dist(z_0, \Omega) = dist(E, \Omega)$. But for z_0 in place of *z* we have the strict inequality in (3.7):

$$|f(z_0)| < \sup_{\zeta \in S} |f \circ \phi_{z_0}(r\zeta)|, \quad 0 < r < 1.$$

This contradicts the maximality of $|f(z_0)|$, and so completes the proof.

4. L^p behavior of functions in X_{λ} . Throughout this section, we let α be real and $\beta = \alpha - 1$. For $1 \le p \le \infty$, $L^p(\sigma)$ norm of an $F \in L^p(\sigma)$ is denoted by $||F||_p$. For f continuous on B and $0 \le r < 1$, we denote

$$M_p(r,f) = \left(\int_S |f(r\zeta)|^p \, d\sigma(\zeta)\right)^{1/p}$$

if $p < \infty$, and

$$M_{\infty}(r,f) = \sup_{\zeta \in S} |f(r\zeta)|.$$

For a complex Borel measure μ , $P^{\alpha}[\mu]$ is defined by

$$P^{\alpha}[\mu](z) = \int_{S} \left(P(z,\zeta) \right)^{\alpha} d\mu(\zeta),$$

where $P(z,\zeta)$ is the invariant Poisson kernel defined in (1.3). Note that $P^{\alpha}[\sigma] = g_{\alpha}$.

We define the function spaces $h^{p,t}$, $1 \le p \le \infty$, $-\infty < t < \infty$, by

$$h^{p,t} = \{f : \sup_{0 \le r < 1} (1 - r^2)^t M_p(r, f) < \infty\}.$$

and

$$h^{p,t-} = \left\{ f: \sup_{0 \le r < 1} r^2 (1 - r^2)^t \log(1 - r^2) M_p(r, f) < \infty \right\}.$$

It is well-known that if $f \in X_0 \cap h^{p,0}$, $1 , then there is a function <math>F \in L^p(\sigma)$ such that f = P[F], and conversely [R, 4.3.3]. The goal of this section is in a generalization of this fact. Since, as a function of α , λ defined by (1.4) satisfies $\lambda(\alpha) = \lambda(1 - \alpha)$, we confine ourselves to $\alpha \ge \frac{1}{2}$.

THEOREM 6. Let $\alpha \geq \frac{1}{2}$. If $F \in C(S)$ and if we define

(4.2)
$$f(z) = \begin{cases} g_{\alpha}^{-1}(z)P^{\alpha}[F](z), & z \in B\\ F(z), & z \in S \end{cases}$$

then $f(z) \in C(\overline{B})$. Conversely, if $u(z) \in X_{\lambda}$ and $g(z) = g_{\alpha}^{-1}(z)u(z)$ is continuous up to S so that $g(z) \in C(\overline{B})$ then $u(z) = P^{\alpha}[G](z)$, where $G(\zeta) = \lim_{r \to 1} g(r\zeta), \zeta \in S$.

PROOF. Let $F \in C(S)$ and let f(z) be defined as (4.2). Consider

$$k(r) = \frac{(1 - r^2)^{n(\alpha + \beta)}}{F(-n\beta, -n\beta, n; r^2)}, \quad 0 \le r < 1.$$

If $\alpha > \frac{1}{2}$, then k(r) is dominated by $(1 - r^2)^{n(\alpha+\beta)}$, so that it tends to 0 as $r \to 1$. If $\alpha = \frac{1}{2}$, then $\alpha + \beta = 0$; but since $F(n/2, n/2, n; r^2) \sim -\log(1 - r^2)$ as $r \to 1$, k(r) also tends to 0 as $r \to 1$. Now set

$$K(z,\eta)=rac{P^{lpha}(z,\eta)}{g_{lpha}(z)},\quad z\in B,\ \eta\in S,$$

and

$$Q = Q(\zeta, \delta) = \{\eta \in S : |1 - \langle \zeta, \eta \rangle| < \delta\}, \quad \delta > 0.$$

Then $|1 - \langle r\zeta, \eta \rangle| \ge \delta - (1 - r)$ on S - Q, so that by (3.1) and above argument on k(r),

(4.3)
$$\int_{S-Q} K(r\zeta,\eta) \, d\sigma(\eta) = k(r) \int_{S-Q} \frac{d\sigma(\eta)}{|1-\langle r\zeta,\eta\rangle|^{2n\alpha}} \to 0(r\to 1).$$

From (4.3) and the fact $\int_S K(z, \eta) d\eta = 1$, we conclude that

$$f(r\zeta) - f(\zeta) = \int_{S} K(r\zeta, \eta) \left(F(\eta) - F(\zeta) \right) d\sigma(\zeta)$$

tends to 0 uniformly on $\zeta \in S$ as $r \to 1$. Therefore $f \in C(\overline{B})$.

Conversely, suppose $u(z) \in X_{\lambda}$ and $g(z) = g_{\alpha}^{-1}(z)u(z)$ is continuous up to *S* so that $g(z) \in C(\overline{B})$. Let $v(z) = P^{\alpha}[G](z)$, where $G(\zeta) = \lim_{r \to 1} g(r\zeta)$, $\zeta \in S$. We will show that u(z) = v(z), $z \in B$. Define

$$f(z) = \begin{cases} g_{\alpha}^{-1}(z)v(z), & z \in B\\ G(z), & z \in S. \end{cases}$$

Then f(z) and g(z) have the same boundary function G(z), and by what we have just proven (the first part of this theorem), $f(z) - g(z) \in C(\overline{B})$. Therefore we can conclude $u \equiv v$ by Corollary 5.

THEOREM 7. Let $1 \le p \le \infty$ and let $F \in L^p(\sigma)$. If $\alpha > \frac{1}{2}$ then $P^{\alpha}[F] \in X_{\lambda} \cap h^{p,n\beta}$ and if $\alpha = \frac{1}{2}$ then $P^{1/2}[F] \in X_{-n^2} \cap h^{p,-n/2-}$.

Conversely, suppose either $f \in X_{\lambda} \cap h^{p,n\beta}$, $\alpha > \frac{1}{2}$, or $f \in X_{-n^2} \cap h^{p,-n/2-}$. If $1 then there is an <math>F \in L^p(\sigma)$ such that $f = P^{\alpha}[F]$. If p = 1 then there is a measure μ such that $f = P^{\alpha}[\mu]$.

p = 2 case of Theorem 7 appeared at [KK] by an approach using orthogonality in $L^2(\sigma)$. In proving Theorem 7 all we need now are, as in the proof of X_0 case [R, 4.2.4],

an equicontinuity argument of D. Ullrich [R, 4.2.4], MMP (Corollary 5), and duality. We include here the equicontinuity as a lemma, and give a proof of Theorem 7 for the completeness.

Let \mathcal{U} denote the unitary group on *S*, and let dU denote the Haar measure on \mathcal{U} . \mathcal{U} is compact subgroup of O(2n) (See [R 1.4.6]). For G(z) defined on *B* and for 0 < r < 1, let us denote the dilation by $G_r(z) = G(rz), z \in B$.

LEMMA 8 [R, PP. 56–57]. Let $1 \le p \le \infty$. Let $\nu: \mathcal{U} \to [0, \infty)$ be continuous such that $\int_{\mathcal{U}} \nu(U) dU = 1$. If $G(z), z \in B$, is defined by

$$G(z) = \int_{\mathcal{U}} u(Uz)\nu(U) \, dU$$

for some $u \in h^{p,0}$ then we have

- (4.4) $\{G_r : 0 < r < 1\}$ is equicontinuous subset of C(S),
- (4.5) G(z) is uniformly bounded by $||u||_{p,0} (\int_{\mathcal{U}} \nu^q(U) dU)^{1/q}$, where q is the conjugate exponent of p, and

$$(4.6) \ M_p(r,G) \le ||u||_{p,0}.$$

PROOF OF THEOREM 7. Note first that if $\alpha > \frac{1}{2}$ then $(1-r)^{n\beta}g_{\alpha}(r) = O(1)$ and that $-\log(1-r)g_{\frac{1}{2}}(r) = O(1)$ as $r \uparrow 1$.

If $F \in L^p(\sigma)$ and $f = P^{\alpha}[F]$ then it follows from Hölder's inequality that

$$||f||_{p,n\beta} \leq C \Big(\int_{\mathcal{S}} |g_{\alpha}^{-1}f|^p \, d\sigma \Big)^{1/p} \leq ||F||_p < \infty,$$

so that $f \in h^{p,n\beta}$. On the other hand, $\tilde{\Delta f}(z) = \lambda f(z)$. This proves the first half of Theorem 7.

For the converse, let $1 and suppose either <math>f \in X_{\lambda} \cap h^{p,n\beta}$, $\alpha > \frac{1}{2}$, or $f \in X_{-n^2} \cap h^{p,\frac{n}{2}-}$. We assume $||g_{\alpha}^{-1}f||_{p,0} = 1$ without loss of generality. Let $\nu_j: \mathcal{U} \to [0, \infty)$, $j = 1, 2, \ldots$ be continuous such that $\int_{\mathcal{U}} \nu_j(U) dU = 1$ and the support of ν_j shrink to the identity of \mathcal{U} as $j \to \infty$. Apply Lemma 8 with $g_{\alpha}^{-1}(z)f(z)$ and $\nu_j(z)$ in places of u(z) and $\nu(z)$. Let G_j be the corresponding G. We fix j for a moment. Then by (4.4) and (4.5) there is a sequence $r_i = r(j, i)$ tending to 1 (as $i \to \infty$) such that $(G_j)_{r_i}$ converges to a function $g_j \in C(S)$ uniformly.

Let

(4.7)
$$\epsilon_{j,i} = \sup_{\zeta \in S} \left| G_j(r_i\zeta) - \frac{P^{\alpha}[g_j](r_i\zeta)}{g_{\alpha}(r_i\zeta)} \right|.$$

By Theorem 6, $g_{\alpha}^{-1}(z)P^{\alpha}[g_j](r_i\zeta)$ tends to $g_j(\zeta)$, uniformly as $i \to \infty$. Thus $\epsilon_{j,i} \to 0$ as $i \to \infty$. By Corollary 5 and (4.7),

$$\left|G_j(z) - \frac{P^{\alpha}[g_j](z)}{g_{\alpha}(z)}\right| \leq \epsilon_{j,i}, \quad |z| \leq r_i,$$

for every *i*. Hence $G_j(z) = g_{\alpha}^{-1}(z)P^{\alpha}[g_j](z), z \in B$. Now, letting $j \to \infty$, $G_j(z) \to g_{\alpha}^{-1}(z)f(z)$ pointwise. On the other hand, since $||g_j||_p \le 1$ by (4.6), there is a subsequence of $\{g_j\}$ that converges to some $F \in L^p(\sigma)$ in the weak*-topology of $L^p(\sigma)$. In particular,

$$P^{\alpha}[g_j](z) \longrightarrow P^{\alpha}[F](z), \quad z \in B.$$

Therefore we have $f(z) = P^{\alpha}[F](z)$.

When p = 1, the proof is same except using the dual of C(S).

COROLLARY 9. Let $\alpha \geq \frac{1}{2}$. If f is positive and $f \in X_{\lambda}$, then there is a positive measure μ on S such that $f = P^{\alpha}[\mu]$.

PROOF. If f is positive and $f \in X_{\lambda}$, then by (1.2), $g_{\alpha}^{-1}(r) \int_{S} f(r\zeta) d\sigma(\zeta) = f(0)$. Thus, by Theorem 7, $f = P^{\alpha}[\mu]$ for some μ . This μ is positive being weak*-limit of the positive function $h_r = g_{\alpha}^{-1}(r)f_r$. In fact, for $g \in C(S)$,

$$\int_{S} h_{r}g \, d\sigma = \frac{1}{g_{\alpha}(r)} \int_{S} g(\eta) \, d\sigma(\eta) \int_{S} P^{\alpha}(r\eta, \zeta) \, d\mu(\zeta)$$
$$= \frac{1}{g_{\alpha}(r)} \int_{S} P^{\alpha}[g](r\zeta) \, d\mu(\zeta),$$

and this last integral tends to $\int_{S} g(\zeta) d\mu(\zeta)$ by Theorem 6.

REFERENCES

[K] E. G. Kwon, One radius theorem for the eigenfunctions of the invariant Laplacian, Proc. AMS. 116(1992), 27–34.

[KK] H. O. Kim and E. G. Kwon, *M*-invariant subspaces of X_{λ} , Illinois J. Math, to appear.

[**R**] Walter Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.

[S] Lucy John Slater, Generalized hypergeometric functions, Cambridge University Press, 1966.

Department of Mathematics Education Andong National University Andong 760-749 Korea