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Subgrid-scale models of isotropic turbulence
need not produce energy backscatter
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This investigation questions the importance of inverse interscale energy fluxes, the
so-called energy backscatter, for the modelling of the energy cascade in large-eddy
simulations (LES) of turbulent flows. The invariance of the filtered Navier–Stokes
equations to divergence-preserving transformations of the subgrid-scale (SGS) stress
tensor is exploited here to explore alternative representations of the local SGS energy
fluxes. Numerical optimisation procedures are applied to the SGS stress tensor – obtained
by filtering isotropic turbulence flow fields – to find alternative stresses that satisfy the
filtered Navier–Stokes equations, but that produce negligible backscatter. These alternative
SGS stresses show that backscatter represents not a flux of energy from the subgrid to
the resolved scales, but conservative spatial fluxes, and that it need not be modelled to
reproduce the local energetic exchange between the resolved and the subgrid scales in
LES. From the perspective of statistical mechanics, it is argued that this is a consequence
of the strong statistical irreversibility of inertial-range dynamics, which precludes inverse
energy cascades even in a local sense. These findings show that the energy cascade is
strongly unidirectional locally, and that it can be modelled as an irreversible sink of energy,
justifying the extended use of purely dissipative SGS models in LES.
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1. Introduction

In recent decades, the numerical simulation of turbulent flows has become a prominent
tool for the prediction of natural phenomena and the design of efficient industrial
applications. In most practical situations, the number of degrees of freedom required
to represent turbulence fully is intractable for current computational resources, and
turbulence modelling is necessary to yield computationally feasible simulations. One of
the most successful modelling approaches is the large-eddy simulations (LES) technique,

† Email address for correspondence: alberto.vela.martin@zarm.uni-bremen.de

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 937 A14-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

12
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:alberto.vela.martin@zarm.uni-bremen.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.123&domain=pdf
https://doi.org/10.1017/jfm.2022.123


A. Vela-Martín

which resolves explicitly the dynamics of turbulence above a prescribed filter scale, and
substitutes the interactions with smaller scales by a subgrid-scale (SGS) model (Meneveau
& Katz 2000).

This paper focuses on incompressible turbulence away from solid boundaries. It is
assumed that the filter scale is small enough compared to the forcing mechanisms of
turbulence, and large enough compared to the viscous scale. In these conditions, the flow at
the filter scale is statistically isotropic and governed by inertial forces, and the interactions
between the resolved and subgrid scales lead to the turbulence energy cascade, a highly
non-linear process that results in a net transfer of energy from the resolved to the subgrid
scales. To yield a correct kinetic energy distribution in the resolved scales, and to reproduce
the correct turbulent structure at the filter scale, SGS models should replicate the dynamics
of the inertial cascade, not only in an average sense, but also locally.

The energy cascade goes on average from large to small scales, yet it is believed to
be strongly bidirectional in a local sense. This is supported by the observation that the
local SGS energy fluxes computed by filtering turbulent velocity fields in the inertial
range very often have a direction opposite to the mean energy flux (Leslie & Quarini
1979; Piomelli et al. 1991; Borue & Orszag 1998; Cerutti & Meneveau 1998; Tao, Katz &
Meneveau 2002; Aoyama et al. 2005; Cardesa et al. 2015; Carter & Coletti 2018; Ballouz
& Ouellette 2018). This phenomenon, known as backscatter, is commonly identified with
an inverse cascade that transports energy from the small to the large scales, and is widely
considered a fundamental feature of inertial dynamics that must be modelled explicitly
(Carati, Ghosal & Moin 1995; Ghosal et al. 1995). However, constructing SGS models
that faithfully reproduce backscatter has posed a huge challenge for researchers that
has not been accomplished satisfactorily to date. As a consequence, the use of purely
dissipative SGS models, which cannot produce backscatter, is very extended. Although
some attempts have been made to design models that reproduce backscatter (Bardina,
Ferziger & Reynolds 1980; Chasnov 1991; Germano et al. 1991; Ghosal et al. 1995),
these models are either impractical or introduce little advantage with respect to dissipative
models at the expense of a higher computational complexity and extra tuning parameters.

Despite the conspicuousness of backscatter in the local SGS fluxes, evidence suggests
that its relevance to the energy cascade is limited. Simulations performed with dissipative
SGS models agree reasonably well on average with fully resolved direct numerical
simulations (DNS) and experiments. For instance, dissipative SGS models reproduce
the correct kinetic energy spectrum and decay rate of isotropic turbulence, despite their
inability to produce backscatter (see Meneveau & Katz (2000) and references therein).
Also, the multifractal scaling of the structure functions in the inertial range is well
reproduced by the Smagorinsky (1963) model, which is purely dissipative (Linkmann,
Buzzicotti & Biferale 2018). This suggests that backscatter is not necessary to keep the
energy balance of the resolved scales or to reproduce fundamental features of the energy
cascade, at least in a statistical or average sense. Recent evidence questions the relevance
of backscatter also in a local sense. Vela-Martín & Jiménez (2021) analysed the local SGS
fluxes in numerical simulations of isotropic turbulence, and reported that backscatter is
not correlated in scale (whereas direct energy transfer is), and that it disappears when the
SGS fluxes are averaged over scales of the order of the filter width. These findings are in
agreement with Ballouz & Ouellette (2018), who studied the efficiency of the interscale
energy transfer in the inertial range, and found it to be low. They concluded that a large
fraction of the SGS stresses drive spatial transport rather than the net energy cascade.
This evidence suggests that backscatter represents conservative spatial fluxes at the filter
scale, rather than interscale interactions, and is not part of the effective energetic exchange
between the subgrid and resolved scales.
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Subgrid-scale models need not produce backscatter

This investigation elaborates further on this idea, providing direct evidence that
backscatter is associated not with an inverse cascade of energy, but with conservative
spatial fluxes, and that it need not be reproduced to construct a ‘perfect’ model of the
energy cascade. Although the local SGS fluxes in the inertial range often have a direction
opposite to that of the mean energy cascade, we will see that this is a consequence of the
commonly adopted representation of the SGS stress tensor; backscatter can be eliminated
almost completely by transforming the SGS stress tensor, but without modifying the effect
that the subgrid scales have on the resolved scales. This is possible because the filtered
Navier–Stokes equations (NSE) depend not directly on the SGS stress tensor, but on its
spatial divergence, and one is free to choose any representation of this tensor provided
that its spatial divergence is preserved (Jiménez 2016; Osawa & Jiménez 2018). This
approach is based on the well-known gauge invariance of continuum mechanics (Jackson
& Okun 2001), which is exploited here for modelling purposes. In this investigation,
simple numerical optimisation procedures are applied to the SGS stress tensor calculated
by filtering DNS of isotropic turbulence, leading to alternative representations of this
tensor that satisfy the filtered NSE, but that produce almost no backscatter.

From a physical perspective, these findings are justified by resorting to non-equilibrium
statistical mechanics. It is argued that non-equilibrium leads to the statistical irreversibility
of inertial-range dynamics, which imposes a strongly unidirectional flow of energy from
large to small scales. Although possible, global inverse cascades go against the tendency
of non-equilibrium systems to evolve towards absolute equilibrium, and are therefore
overwhelmingly less probable than global direct cascades (Vela-Martín & Jiménez 2021).
That backscatter can be transformed into a conservative spatial flux suggests that this
global limitation also holds locally, restricting the spontaneous generation of local inverse
cascades. The results presented in this paper show that the energy cascade is unidirectional
enough that it can be modelled locally as an irreversible sink of energy, justifying the
extended use of purely dissipative SGS models for LES of turbulence.

This paper is organised as follows. In § 2, we present a review of the LES modelling
approach in isotropic turbulence, and its relation to the energy cascade. In § 3, we expose
the concept of gauge invariance in the NSE and how it applies to the SGS stress tensor,
and in § 4, we propose a methodology to exploit this invariance in order to eliminate
backscatter almost completely. This methodology is applied to the SGS fluxes calculated
by filtering isotropic turbulent flows. The database and the filtering approach are described
§ 5, and the results are presented in § 6. Finally, the implications of these results are
discussed in § 7, and the conclusions are offered in § 8.

2. Modelling the energy cascade

2.1. The energy cascade in physical space
Let us consider the three-dimensional (3-D) incompressible NSE with periodic boundary
conditions,

∂tui + uj ∂jui = −∂ip + ν ∂kkui + qi,

∂iui = 0,

}
(2.1)

where ui is the ith component of the velocity vector, p is the kinematic pressure, ν is the
kinematic viscosity, and qi is a body force per unit mass that acts on the large scales of the
flow to sustain turbulence. Repeated indices imply summation.

We consider the classical view of turbulence as a multiscale phenomenon in which
energy is injected at an integral scale L, and then transferred to smaller scales by the
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turbulence cascade (Richardson 1922; Kolmogorov 1941). At the end of the cascade, the
kinetic energy is dissipated at the Kolmogorov scale, η = (ν3/ε)1/4, where ε is the mean
kinetic energy dissipation per unit mass.

To study the energy cascade in physical space, we apply an isotropic filter at an inertial
scale �, such that L � � � η. The filter operation is denoted by (·), and serves to separate
the dynamics of scales above � from the dynamics of scales below. The equation for each
component of the filtered velocity vector reads

∂tūi + ūj ∂jūi = −∂ip̄ + ∂jτ
S
ij + q̄i,

∂iūi = 0,

}
(2.2)

where
τ S

ij = ūiūj − uiuj (2.3)

is the so-called SGS stress tensor, and we have neglected the viscous diffusion of
momentum. Note that the SGS stress tensor defined in (2.3) has a sign opposite – but
is formally similar – to the usual definition in the literature, and is adopted here to ease the
manipulation of the equations.

By taking the dot product of (2.2) with the filtered velocity vector, we obtain the equation
of the kinetic energy of the resolved scales, E = 1

2 ūiūi:

∂tE + ūj ∂jE = −∂i(ūip̄)+ ūi ∂jτ
S
ij + ūiq̄i, (2.4)

where the effect of the scales below � on the energy of the scales above � is represented
by ūi ∂jτ

S
ij . This term is usually decomposed into

ūi ∂jτ
S
ij = DS − TS. (2.5)

The first term on the right-hand side,

DS = ∂j(ūiτ
S
ij ), (2.6)

represents a spatial flux with zero average, 〈DS〉 = 0, where the angular brackets denote
the average over the flow domain. The second term,

TS = S̄ijτ
S
ij , (2.7)

is a source term usually identified with the local energy fluxes of the turbulence energy
cascade (Leonard 1975; Borue & Orszag 1998; Eyink & Aluie 2009; Cardesa et al. 2015),
where Sij is the rate-of-strain tensor. When the filter scale is within the inertial range, this
term has a positive average, 〈TS〉 > 0, indicating that energy flows, on average, from large
to small scales. Moreover, its space and ensemble average, denoted by a double angular
bracket, equates to the kinetic energy dissipation rate and to the power input, 〈〈TS〉〉 =
〈〈ūiq̄i〉〉 = ε.

The energy cascade in physical space is associated with TS, rather than with ūi ∂jτ
S
ij ,

because the former quantity is Galilean-invariant whereas the latter is not, i.e. TS does
not change in a uniformly moving frame of reference (Eyink & Aluie 2009). In addition,
TS represents scale-local energy fluxes (Eyink 1995) consistent with the scale-locality of
the energy cascade (Zhou 1993; Domaradzki & Carati 2007), and is free from non-local
convective sweeping caused by large scales (Eyink 2005; Aluie & Eyink 2009).

The sign of TS is commonly associated with the local direction of the energy fluxes:
TS > 0 for a direct cascade, and TS < 0 for an inverse cascade. In the inertial range of
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isotropic turbulence, TS fluctuates strongly around its mean, and becomes negative in a
large fraction of the domain (Domaradzki, Liu & Brachet 1993; Cerutti & Meneveau 1998;
Tao et al. 2002; Cardesa et al. 2015). These negative values of TS constitute the so-called
energy backscatter. The amount of backscatter depends strongly on the filter type, and
is particularly profuse for sharp-Fourier filters, which produce backscatter in ∼40 % of
the flow domain (Cardesa et al. 2015; Buzzicotti et al. 2018b). For well-behaved filters
in physical space, such as the Gaussian filter, backscatter appears in ∼15 % of the flow
domain (Cardesa et al. 2015, see also § 5). Also, DS and ūi ∂jτij become negative in a large
fraction of the domain (∼50 % for Gaussian or sharp filters, see § 6.3), but these negative
events are associated with conservative spatial fluxes related to the advection of the SGS
stress tensor. Vela-Martín & Jiménez (2021) showed that when ūi ∂jτ

S
ij is averaged over

volumes of the order of the filter width, this term becomes positive almost everywhere and
highly correlated to the local average of TS. This suggests that an important fraction of
the negative events in ūi ∂jτ

S
ij comes from DS, which seems to represent spatial fluxes that

cancel over scales of the order of the filter width.

2.2. Modelling the subgrid-scale stress tensor
In the LES technique, the NSE are coarse-grained, usually by spatial filtering, and
simulated on a coarse grid, leading to an equation similar to (2.2). This alleviates the
computational cost of simulating a fully resolved turbulent flow, but requires that we model
the SGS stress tensor, which contains the interactions between the subgrid and resolved
scales. The modelled SGS stress tensor should be able to reproduce the energetic exchange
between the resolved and subgrid scales.

A very popular class of LES models relies on the idea of the eddy viscosity; the traceless
part of the modelled SGS stress tensor is assumed to be proportional to the filtered
rate-of-strain tensor,

τM
ij − 1

3δijτ
M
kk = 2νsS̄ij, (2.8)

where νs is the eddy viscosity, which depends on the resolved velocity field, and is
designed, among other things, to generate the appropriate amount of SGS energy transfer,
TM = 2νsS̄ijS̄ij. A very popular eddy-viscosity model is due to Smagorinsky (1963).

In order to account for backscatter, the eddy viscosity must take negative values, which
generally leads to critical numerical instabilities. This is the case, for instance, in the
dynamic procedure (Germano et al. 1991) in which a local νs is computed dynamically
following self-similarity arguments. In order to remove numerical instabilities, νs is set
to zero, where it attains negative values (clipped) or averaged in homogeneous directions,
leading to models for which νs > 0 and TM > 0 everywhere (Meneveau & Katz 2000).
These purely dissipative eddy-viscosity models have been used with considerable success
despite their inability to reproduce backscatter, and despite the weak correlation that exists
between the filtered rate-of-strain tensor and the SGS stresses calculated in DNS and
experiments (Clark, Ferziger & Reynolds 1979; Meneveau 1994; Borue & Orszag 1998;
Tao, Katz & Meneveau 2000).

At variance with the eddy-viscosity models, the so-called similarity models (Bardina
et al. 1980) do reproduce to a large extent the structure of the SGS stress tensor, and are
able to produce numerically stable backscatter. They are based on the simple argument
that the SGS stresses at the filter scale are proportional to the SGS stresses at larger scales.
However, these models lead to inaccurate results, partly because they are not dissipative
enough. This is why they are usually combined with a purely dissipative eddy-viscosity
model (Zang, Street & Koseff 1993; Meneveau & Katz 2000). A similar problem exists
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for the tensor-diffusivity model, which also produces numerically stable backscatter but is
not dissipative enough (Winckelmans et al. 2001).

Contrary to what is commonly believed, we will see that backscatter need not be
reproduced to faithfully model the SGS interactions, and that the inability of SGS models
to reproduce backscatter is not a limitation. Instead, it will be argued in this paper that
this is a feature consistent with the strong statistical irreversibility of the energy cascade,
which enforces an almost unidirectional flux of energy from large to small scales, even in
a local sense.

3. Alternative subgrid-scale stresses

The filtered NSE have the general form of a conservation equation: the temporal variation
of the local momentum equates to the divergence of spatial fluxes. Since the early
development of continuum mechanics (Jackson & Okun 2001), it was noted that fluxes
are not uniquely defined; there are infinitely many possible representations of these fluxes
that produce the same physical effect on the system. As remarked by Jiménez (2016), this
indeterminacy applies to the momentum fluxes in the NSE, and thus to the SGS stress
tensor.

Let us consider (2.2). To τ S
ij = ūiūj − uiuj, we can add any tensor field with zero

divergence, ∂jτ
∗
ij = 0, so that

τA
ij = τ S

ij + τ ∗
ij , (3.1)

and τ S
ij produces the same physical effect on the filtered velocity field. This is so

because although the SGS stress tensor changes, its divergence is not modified by the
transformation in (3.1), i.e.

∂jτ
S
ij = ∂jτ

A
ij . (3.2)

Therefore τ S
ij and τA

ij are equivalent from the physical point of view. The NSE equations
are said to be invariant under the gauge transformation τ S

ij → τA
ij . As is the case of

electromagnetism with the Coulomb or Lorenz gauge (Jackson 2002), we are free to
choose any gauge for the SGS stresses other than τ ∗

ij = 0, at our own convenience. An
example applied to the momentum transfer in turbulent channels is Osawa & Jiménez
(2018). In the context of LES modelling, gauge invariance implies that it is necessary to
model not the SGS stress tensor, but rather its divergence. In other words, we are free
to model any particular representation of the SGS stresses, provided that its divergence
produces the required effect on the resolved scales.

From an energetic perspective, any transformation of the SGS stress tensor leads to the
same average interscale energy transfer, but, as we will show, produces in general different
spatial distributions of the local SGS energy fluxes. From (3.2) follows

ūi ∂jτ
S
ij = ūi ∂jτ

A
ij (3.3)

and
DS − TS = DA − TA, (3.4)

where TA = S̄ijτ
A
ij and DA = ∂j(ūiτ

A
ij ) are alternative representations of the local SGS

fluxes and the local conservative term due to the SGS interactions. Although (3.4) holds
for any τA

ij , we will see that, in general, TA(x) /= TS(x) and DA(x) /= DS(x). Thus by
changing the gauge of τ S

ij , we are locally modifying both DS and TS, but not DS − TS.
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Modifying the SGS stress tensor is equivalent to ‘moving’ the effect of the subgrid scales
from a source term into a conservative spatial flux, which produces no net energy transfer
to the unresolved scales. Since 〈DS〉 = 〈DA〉 = 0, we have

〈uj ∂iτ
S
ij 〉 = 〈uj ∂iτ

A
ij 〉 = 〈TS〉 = 〈TA〉, (3.5)

and the average energy flux is not modified by a change of the SGS stress tensor.
In the following, it will be shown that it is possible to find transformations of the SGS

stress tensor, obtained by filtering DNS data of isotropic turbulence, that eliminate the
backscatter in the SGS fluxes almost completely.

4. Reducing backscatter in the subgrid-scale fluxes

Any physical representation of the SGS stress tensor must fulfil
∂jτij = Qi, (4.1)

where Qi = ∂jτ
S
ij = ∂j(ūiūj − uiuj). This equation, together with the symmetry constraint

τij − τji = 0, (4.2)
defines the linear subspace that contains all the possible representations of the SGS stress
tensor. We explore this linear subspace in order to find representations of the SGS fluxes
without backscatter.

We search for representations of the SGS stresses in which the fluctuations of T around
its mean are small enough to eliminate its negative values. This idea is formulated as the
minimisation of the square of the standard deviation of T , σ 2 = 〈T2〉 − 〈T〉2. Since 〈T〉 is
invariant under transformations of the SGS stresses, minimising the standard deviation of
T is equivalent to minimising the average of T2.

Let us consider the minimisation of the functional

L =
∫

V
[T2 + γi(∂jτij − Qi)+ μij(τij − τji)] dV, (4.3)

where γi and μij are Lagrange multipliers that impose (4.1) and (4.2). The integral extends
over the full computational volume. It is possible to apply calculus of variations to obtain a
closed linear system of equations on τij, γi andμij, which, together with the constraints, can
be solved to obtain the optimal form of τij. The exact expression of this system of equations
is presented in Appendix A. To the knowledge of the author, there is no analytical solution
to this problem, and one must resort to numerical procedures.

We apply a projected gradient descent (PGD) method. Let us define a state vector
that contains the components of the SGS stress tensor at each point in the domain,
χ = {τ11(x), τ22(x), . . . , τij(x)}, and iterate to minimise T2 by following

χ∗ = χn − β �χ ,

χn+1 = P(χ∗),

}
(4.4)

where β is the step size, P is a linear projector, and �χ is the unprojected descent
direction, which is given by the gradient of the cost function with respect to the state
vector,

�χ = ∂χ

(∫
V

T2 dV
)

= 2TΣ . (4.5)

Here, Σ = {S̄11(x), S̄22(x), . . . , S̄ij(x)} contains the components of the filtered
rate-of-strain tensor at each point in the domain, and ∂χ represents the partial derivative
with respect toχ .
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N Reλ kmaxη L/η Teto Nsnap �/L �/η

256 140 1.5 99 320 200 0.64–0.32 63–32
512 240 1.5 198 32 30 0.63–0.16 125–32
1024 324 2.0 284 64 60 0.65–0.08 185–22

Table 1. Details of the homogeneous isotropic turbulence database. Here, N is the number of grid points of
the numerical mesh in each direction, kmax is the maximum resolved Fourier wavenumber, Teto is the number
of eddy-turnovers of each dataset, and Nsnap is the number of snapshots used for the optimisation procedure.
The snapshots are separated in time approximately Teto/Nsnap. In the last two columns, we show the maximum
and minimum filter scale applied to each simulation normalised with the integral and Kolmogorov scales.

The linear operator P(χ∗) projects χ∗ into the closest state vector (under the L2-norm)
that fulfils the linear constraints in (4.1) and (4.2). This projector is derived by minimising
a functional using calculus of variations, which leads to a linear set of partial differential
equations that can be solved readily with periodic boundary conditions. The details of this
procedure are presented in Appendix B. The step size, β, is fixed numerically so that the
descent is maximised (Nocedal & Wright 2006). The standard representation of the SGS
stress tensor, τ S

ij = ūiūj − uiuj, is chosen as an initial condition of the PGD algorithm.
The PGD algorithm is numerically affordable, and allows us to obtain at each iteration

a true physical representation of the SGS stresses, i.e. a representation that fulfils
the constraints of the problem to numerical accuracy. This last property is especially
advantageous because we are interested not in finding the minimum standard deviation
of T , but in reducing it enough to eliminate backscatter.

5. Local energy fluxes in the inertial range of isotropic turbulence

5.1. Database
The optimisation algorithm presented above is applied to the SGS stresses obtained by
filtering turbulent flow fields. We consider an extensive database of isotropic turbulence
generated by DNS in a triply periodic cubic box, and forced linearly at the large scales.
The database is composed of hundreds of statistically independent fields at three different
Reynolds numbers, Reλ = Uλ/ν = 140, 240 and 324, which correspond to numerical
grids of 2563, 5123 and 10243 points, respectively. Here, U is the root-mean-squared
velocity fluctuations, and λ = 15

√
(ν/ε)U is the Taylor microscale. Three datasets have

been analysed, one for each Reλ value. These datasets contain time-consecutive snapshots
from a single history spanning several integral eddy-turnover times, T = L/U, where L is
the characteristic large scale of the flow, calculated from the integral of the longitudinal
velocity autocorrelation (Pope 2001). From each dataset, independent fields separated by
at least 0.5T are selected. In total, 290 independent flow fields are analysed. Table 1 shows
a summary of the details of the database. Further details of the simulations and the code
can be found in Cardesa et al. (2015) and Cardesa, Vela-Martín & Jiménez (2017).

5.2. Filtering operations
For each velocity field, the standard SGS stresses, τ S

ij , are calculated by applying a filtering
operation,

φ̄(x) =
∫
φ(ξ)G(x − ξ) d3ξ , (5.1)
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where the integral is taken over the full computational domain. The filtering operations
are performed as a product in Fourier space,

ˆ̄φ(k) = Ĝ(k) φ̂(k), (5.2)

where the caret denotes the Fourier transform, and k = {ki} is the wavenumber vector in
Fourier space.

Two different LES filters are applied at each scale �. First, a sharp-Fourier filter (SF) at
wavenumber π/�, defined as

Ĝ(k) = 1, if |k| < π

�
,

Ĝ(k) = 0, if |k| � π

�
,

⎫⎬⎭ (5.3)

and second, a Gaussian filter (GF)

Ĝ(k) = exp

(
−k2�2

2π2

)
. (5.4)

In addition to the LES filters, a numerical filter is also applied to reproduce the
discretisation of the filtered NSE on a numerical grid (Carati, Winckelmans & Jeanmart
2001). This filtering operation, which is denoted by (̃·), projects a field on a truncated
Fourier basis with maximum wavenumber in each direction equal to

kmax
i = απ

�
, (5.5)

where α is a parameter. This numerical filter is used for consistency with LES simulations,
and to limit the number of degrees of freedom on which the optimisation procedure
operates, thus alleviating the computational costs.

The main results of this paper are obtained with α = 2, so that the grid spacing of the
numerical mesh is half the filter length, but results for α = 3 are also presented to show
that they are not sensitive to the resolution of the numerical grid. For the case of the SF,
α = 1 is also used. This is similar to the common case in which the LES filter is imposed
by the grid. The standard SGS stresses and the SGS fluxes are effectively calculated as

τ S
ij = ˜̄uiūj − 	̃uiuj,

T = τij̃S̄ij,

⎫⎬⎭ (5.6)

where τij is any physical representation of the SGS stresses. All operations are performed
on the truncated numerical grid with proper aliasing procedures, including the triple
products present in the unprojected descent gradient in (4.5). Note that because the
numerical filter is a projector, the SGS stresses and the SGS fluxes are Galilean-invariant
(Buzzicotti et al. 2018b). This property also extends to the gradient descent direction in
(4.5), and therefore to the alternative SGS stresses produced by the optimisation procedure.

5.3. Statistics of the subgrid-scale energy fluxes
The turbulent flow fields in the database are filtered at scales separated by a factor of 2,
from � = 0.65L to the end of the inertial range, � ≈ 30η, and TS is calculated by applying
(5.6) with α = 2. The results are very similar for α = 3 and α = 1 (in the case of the SF).
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Figure 1. Average SGS fluxes normalised by the average energy dissipation for (a) an SF, and (b) a GF, for
different filter scales and Reynolds numbers.

The maximum and minimum filter scales used for each Reynolds number are shown in
table 1. In figure 1, we show the average energy fluxes at each scale for the three different
Reynolds numbers and the two filter types. The average of TS is very close to the total
energy dissipation for all cases, indicating that the filter scales lie within an inertial range.

In figures 2(a,b), we show the probability density function (p.d.f.) of TS at different
scales for Reλ = 240 and for the SF and GF. The local SGS fluxes are negative in a large
fraction of the domain, particularly for the SF, in agreement with previous investigations
(Aoyama et al. 2005; Cardesa et al. 2015; Buzzicotti et al. 2018b). To quantify the amount
of backscatter, we define the volume fraction in which T < 0,

v− = 1
V

∫
V
H(T) dV, (5.7)

and the net amount of backscatter normalised with the total energy flux,

f − = − 1
〈T〉V

∫
V

T H(T) dV, (5.8)

where H(T) is a step function that takes values H = 1 when T < 0, and H = 0 when
T � 0, and V is the volume of the computational domain.

These quantities are calculated for each independent flow field in the database, and their
average for different filter scales and Reynolds numbers is shown in figures 2(c,d). To
characterise how much these quantities change across different flow fields, their standard
deviations in the database are shown as error bars. For the SGS fluxes calculated with the
SF, backscatter is present in around half of the points in the domain, v− ≈ 0.5, but this
fraction reduces to less than one-fifth when a GF is applied, v− ≈ 0.15. The differences
between filters is more drastic for the net backscatter, which is close to unity for the
SF but decreases to f − ≈ 0.05 for the GF. Both f − and v− increase with decreasing
scale, especially f − for filter scales close to the dissipative range, i.e. for the smallest
filter at each Reλ value. This increment may reflect the reduction of the mean energy
flux due to viscous dissipation, and the increased fluctuations of the local SGS fluxes
due to intermittency effects (Cerutti & Meneveau 1998). The standard deviations of these
quantities in the database are small compared to their means, indicating that they do not
change substantially across different flow fields.
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Figure 2. (a,b) P.d.f.s of TS for different filter scales for Reλ = 240, and for (a) an SF, and (b) a GF. The
vertical dotted line marks the origin, and the vertical dashed line the average of TS. (c,d) Volume fractions of
backscatter, v−, and net backscatter, f −, in TS for different filter scales and Reynolds numbers, and for (c) an
SF, and (d) a GF. The markers correspond to the average in the database and the error bars to the standard
deviation.

6. Results

6.1. Convergence of the projected gradient descent algorithm
For each independent flow field and filter scale, we apply the PGD algorithm described in
§ 4 using τ S

ij as an initial condition. At each iteration, the convergence of the algorithm is
quantified using the standard deviation of T in the domain,

σ(T) = (〈T2〉 − 〈T〉2)1/2, (6.1)

and the L2-norm of the projected gradient of the cost function,

|�χp| = 1
β

|χn − χn−1|, (6.2)

which is derived from (4.4). To assess the ability of the algorithm to reduce backscatter,
also f − and v− are calculated at each iteration. In this section, only results for � = 0.33L
and Reλ = 240 are shown, but the convergence is qualitatively similar for the rest of the
filter scales and Reynolds numbers.

In figures 3(a–d), we show the evolution of σ(T) and |�χp| averaged across the database
as functions of the number of steps in the optimisation procedure. In the case of the SF,
the PSD algorithm is able to decrease σ(T) by a factor of 10 before reaching a plateau.
For the GF, the initial standard deviation of T is approximately half that of the SF, but
the algorithm reaches a plateau with a similar value. These results are quantitatively very
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Figure 3. Evolution of: (a,b) σ(T)/〈T〉; (c,d) |�χp| normalised by its value at the first step |�χp|n=0; (e, f ) v−

and (g,h) f −, averaged over the database as functions of the iteration step, n. The figures in (a,c,e,g) correspond
to the SF, and the ones in (b,d, f,h) to the GF. The different line styles correspond to different values of the
resolution parameter, α, used for the numerical filter in (5.5). The shaded blue contour marks plus/minus the
value of the standard deviation of each quantity in the database for α = 2. The data correspond to � = 0.33L
and Reλ = 240.

similar for different values of α, indicating that the size of the numerical grid on which
the optimisation procedure is performed has no effect on the final outcome of the PGD
algorithm. For both filter types, the gradient of the cost function decreases approximately
by a factor of 10 and reaches a plateau. It is unclear whether the algorithm converges to a
local or global minimum.
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Subgrid-scale models need not produce backscatter

In any case, the optimisation procedure is effective, and yields alternative SGS fluxes
with reduced backscatter. In figures 3(e–h), we show the evolution of f − and v− averaged
across the database as functions of the number of steps in the optimisation procedure.
Initially, the standard SGS fluxes calculated with the SF yield f − ≈ 0.6 and v− ≈ 0.4,
but after the optimisation, these quantities are reduced approximately by three orders of
magnitude to v− ∼ 10−3 and f − ∼ 10−4. The optimisation procedure is also effective
for the GF, and reduces f − and v− to comparable values. Again, we observe only small
variations of f − and v− with the resolution of the numerical grid, indicating that the
outcome of the algorithm is not sensitive to the value of α. Hereafter, we consider α = 2.

In figures 3(a–h), we have also plotted the standard deviation of each quantity with
respect to the mean across different fields. In all cases, this deviation is at most of the
order of the mean, indicating that the algorithm is effective in reducing backscatter in
general. The SGS fluxes obtained with this optimisation procedure are denoted by TO, and
will be referred to as the optimised SGS fluxes (rather than optimal SGS fluxes) to remark
that it is not clear whether they are optimal in the sense of (4.3).

6.2. Statistics of the subgrid-scale energy fluxes with reduced backscatter
This section is devoted to characterising the reduction of backscatter achieved by the
optimisation algorithm for different Reynolds numbers and filter scales. We will see that
the results reported in the previous section for � = 0.33L and Reλ = 240 are quantitatively
very similar for all the filter scales and Reynolds numbers tested.

In figures 4(a,b), we show the standard deviation of the optimised SGS fluxes,
σ(TO)/〈TO〉, for different filter scales and Reynolds numbers. This quantity increases
slowly with decreasing filter scale, and is very similar for both filter types. The best
least-squares fit to the data, assuming it depends logarithmically on the filter scale, is
σ = 〈T〉(0.25 − 0.037 log(�/L)) for the SF, and σ = 〈T〉(0.25 − 0.033 log(�/L)) for the
GF. This fit shows that the standard deviation of the optimised stresses depends only
weakly on the filter scale.

In figures 4(c–f ), we show the backscatter volume fraction and the net backscatter
as functions of the filter scale for different Reynolds numbers. The backscatter volume
fraction is reduced in all cases to v− ≈ 10−3, and the net backscatter to f − ≈ 10−4. These
values change only slightly with decreasing filter scale, and are very similar for different
Reynolds numbers and filter types.

The deviations of all the quantities across the database are shown as error bars in
figures 4(a–f ), and are small compared to the means (or at most of the same order as
the means), indicating that backscatter can be reduced in general, independently of the
filter scale and the Reynolds number.

6.3. The structure of the optimised subgrid-scale fluxes
In view of the results presented above, we now characterise how the optimisation algorithm
changes the structure of the SGS fluxes. In figures 5(a,b), the p.d.f.s of the standard
and optimised SGS fluxes are compared for Reλ = 140 and � = 0.33L. Here, the SGS
fluxes are normalised by their ensemble average, denoted by a double bracket. There is
a strong reduction of the standard deviation of the SGS fluxes for the two filter types,
which leads to a concentration of the p.d.f. around the mean. Since the mean remains
invariant under transformations of the SGS stresses, the narrowing of the p.d.f. entails
that only a negligible fraction of TO reaches negative values. Conversely to T , D is not
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Figure 4. (a,b) The standard deviation, (c,d) the volume fraction, and (e, f ) the net amount of backscatter,
as functions of the filter scale, �/L, for different Reynolds numbers. The markers denote the average of each
quantity in the database, and the bars indicate the standard deviation. In (a,b), the bars are smaller than the
markers and are not plotted.

strongly modified by the optimisation procedure. As shown in figures 5(c,d), the p.d.f.s
of DO and DS normalised by the mean SGS fluxes are very similar. Finally, the p.d.f.s
of TS and TO without their ensemble average (denoted by a prime), and divided by their
ensemble standard deviation, 〈〈T ′2〉〉1/2, are shown in figures 5(e, f ). For the SF, there
is a reasonable collapse of both p.d.f.s for values close to the mean, but differences are
noticeable in the tails, which are fatter for TS than for TO. For the GF, the p.d.f.s are
substantially different, with TS being more positively skewed and flatter that TO. These
results suggest that the optimisation procedure modifies not only the variance of T , but
also its higher-order moments.
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Figure 5. Probability density functions of (a,b,e, f ) TS and TO, and (c,d) DS and DO. The figures in (a,c,e)
correspond to quantities calculated with an SF, and the ones in (b,d, f ) with a GF. In (a–d), quantities are
normalised by the ensemble average of the SGS fluxes, 〈〈T〉〉, and in (e, f ) quantities are normalised by the
standard deviation 〈〈T ′2〉〉1/2. The prime denotes quantities without their ensemble average. In (b, f ), the circles
mark the p.d.f.s of the optimised SGS fluxes calculated with an SF. The data correspond to � = 0.33L and
Reλ = 140.

We focus now on the third- and fourth-order moments, the skewness and flatness factors,
respectively, of TS and TO, which are defined as

s(T) = 〈〈T ′3〉〉
〈〈T ′2〉〉3/2 (6.3)

and

κ(T) = 〈〈T ′4〉〉
〈〈T ′2〉〉2 . (6.4)
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Figure 6. (a,b) Skewness s, and (c,d) flatness factor κ , of the optimised and standard SGS fluxes, and of the
total SGS interactions, D − T , as functions of the filter scale, for (a,c) the SF, and (b,d) the GF. For �/L = 0.64
and 0.32 the data come from Reλ = 140, for �/L = 0.16 from Reλ = 240, and for �/L = 0.08 from Reλ = 320.
The black diamonds in (d) correspond to the data by Cerutti & Meneveau (1998) (CM98) at Reλ ≈ 150, which
have been plotted only until �/η = 20, where η is the Kolmogorov scale.

In figures 6(a,b), s(TO) and s(TS) are shown as functions of the filter scale for the SF and
the GF. The skewness of TS increases with decreasing scales for the SF and the GF, but is
larger for the GF than for the SF, in agreement with the p.d.f.s shown in figures 2(a,b). For
the SF, TS is rather symmetric, while for the GF the p.d.f. of TS displays stretched right
tails. After the optimisation, the skewness is not strongly modified for the SF, and s(TO)
is similar to s(TS). On the other hand, for the GF, the skewness of TO is substantially
reduced with respect to TS and becomes similar to the data of the SF. This reflects the
disappearance of the strong positive events in the optimised SGS fluxes.

In figures 6(c,d), κ(TO) and κ(TS) are shown as functions of the filter scale for the SF
and the GF. The flatness factor calculated here is in agreement with the flatness factor
of TS at different scales calculated by Cerutti & Meneveau (1998) for Reλ ≈ 150, which
is shown in figure 6(d). For TS, the flatness grows as a power law with decreasing scale
due to intermittency effects. However, for TO, the flatness remains approximately constant
in the range of filter scales used here for both filter types, indicating that the optimised
SGS fluxes are free from intermittency effects in their fourth-order moment. Note that this
implies not that intermittency can be eliminated from the SGS interactions, only that it
need not be modelled as part of the SGS energy fluxes. In figures 6(c,d), we also show the
flatness factor of D − T , which increases with decreasing scale. This quantity represents
the total effect of the subgrid scales on the resolved kinetic energy, and is invariant under
gauge transformations. This suggests that intermittency should be modelled as a robust
feature of the SGS interactions, regardless of the particular definition of the SGS stress
tensor. A more elaborate discussion on this idea is offered in the conclusion, § 8.
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Subgrid-scale models need not produce backscatter

Despite the strong differences between TS when calculated with the SF and the GF, the
p.d.f.s of the optimised SGS fluxes are very similar for the two filter types, as shown by
their good collapse in figures 5(b, f ). We define the correlation coefficient

ρ(φ,ψ) = 〈〈φ′ · ψ ′〉〉√
〈〈φ′2〉〉〈〈ψ ′2〉〉

, (6.5)

and use it to quantify the differences between the optimised SGS fluxes calculated with
the SF, Ts, and with the GF, Tg. For the standard SGS fluxes, ρ(TS

s , TO
g ) = 0.4, whereas

for the optimised SGS fluxes, the correlation coefficient increases to ρ(TO
s , TO

g ) ≈ 0.65.
These values are similar for the different Reynolds numbers and filter scales, and suggest
that the differences between TS

g and TS
s are partially related to conservative spatial fluxes.

As discussed in § 3, the changes in TO with respect to TS imply the modification of
D. However, this term changes only slightly due to the optimisation procedure. This is
shown by its p.d.f.s in figures 5(c,d), and by the correlation ρ(DS,DO) ≈ 0.9. On the
other hand, ρ(TS, TO) ≈ 0.01. Again, these values are comparable for different Reynolds
numbers, filter scales and filter types. The reduction of backscatter, which implies a strong
modification of the structure of T , corresponds to a slight modification of the conservative
spatial fluxes produced by the SGS interactions.

The low correlation between TS and TO reflects the differences between τ S
ij and τO

ij .
We calculate the correlation coefficient between these two tensors (including the diagonal
and the trace), and find that it is not high. For the GF and the SF, ρ(τ S

ij , τ
O
ij ) ≈ 0.6 for

�/L = 0.64, but it decreases with decreasing scale down to ρ(τ S
ij , τ

O
ij ) ≈ 0.4 for �/L =

0.08. Borue & Orszag (1998) reported a similar decay of the correlation between τ S
ij and

the Smagorinsky model with scale, although they found values between 0.4 and 0.25.
However, they considered only the correlation of the off-diagonal elements of the tensor.
Here, when only the traceless part of the tensor – or the off-diagonal elements of the tensor
– is considered, the correlations are lower than 0.5 in any case, and particularly low for the
SF. Let us remark that τ S

ij and τO
ij are equivalent physical representations of the SGS stress

tensor, yet they are not strongly correlated locally.

6.4. Visualisation of the standard and optimised subgrid-scale fluxes
To gain a qualitative understanding of the changes produced by the optimisation algorithm,
we compare two-dimensional (2-D) cuts of TS and DS with the same cuts of TO and DO.
These cuts are shown in figures 7(a–d). For ease of visualisation, only data for Reλ = 320,
� = 0.08L and the GF are plotted. We observe that TS is particularly active in certain
regions of the domain, which also correspond to regions of intense activity in DS. Intense
positive events of TS appear frequently surrounded by intense negative events, which
resemble the characteristic patterns generated by advection. These clusters of positive
and negative events are transformed into a spatial flux by the optimisation procedure.
Compared to TS, TO is much more spread across the domain, and has values closer to the
mean. On the other hand, the structure of the conservative term remains largely unchanged
by the optimisation procedure, and DO and DS have a very similar structure, in agreement
with their high correlation coefficient.

To conclude this section, we provide a visual demonstration of the substantial reduction
of backscatter due to the optimisation procedure. In figures 7(e, f ), we show isocontours
of T = 0, which enclose backscatter events, for the standard and optimised SGS stresses.
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Figure 7. (a–d) Colour plots of the SGS fluxes T , and of the conservative spatial fluxes D, for Reλ = 320, � =
0.08L, and a GF. The panels correspond to: (a) TS; (b) TO; (c) DS; (d) DO. (e, f ) Isocontours of T = 0 (blue)
and T = 〈T〉 (red), for (e) the standard SGS fluxes, and ( f ) the optimised SGS fluxes. All panels correspond to
the same plane in the same flow field.

For comparison, we also show isocontours of T = 〈T〉. While for TS backscatter appears
distributed across most of the domain, for TO backscatter is reduced to isolated spots of
size ∼�3 and intensity of the order of −0.1〈T〉. These backscatter events are too few and
too weak to have any effect on the energy balance of the resolved scales.
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7. Implications of the backscatterless subgrid-scale stresses

7.1. A purely dissipative ‘perfect’ eddy viscosity
An important consequence of the results presented in the previous sections is that it is
not necessary to reproduce backscatter to model the interactions between the subgrid and
resolved scales in LES. Here we illustrate this idea with a simple example.

Let us consider an eddy-viscosity model, in which the traceless part of the modelled
SGS stress tensor is proportional to the resolved rate-of-strain tensor,

τM
ij − 1

3τ
M
kk δij = 2νsS̄ij, (7.1)

and νs is the eddy viscosity. Assuming that a real representation of the SGS stress tensor is
available, it is possible to choose an eddy viscosity that minimises the difference between
the modelled SGS stresses and some representation of the true stresses. This constitutes
a sort of ‘optimal’ a priori eddy viscosity. In the simple case in which differences are
measured with an L2-norm, this optimal eddy viscosity is obtained by minimising the
functional

M =
∫

V
(2νsS̄ij − τij)

2 dV, (7.2)

where τij is any representation of the SGS stress tensor. Introducing a variation on νs, δνs,
and imposing that the variation of M is zero, leads to

(2νsS̄ij − τij) 4S̄ij δνs = 0. (7.3)

The eddy viscosity that satisfies this equation for any δνs is

νopt
s = τijS̄ij

2S̄ijS̄ij
, (7.4)

for S̄ijS̄ij > 0. With this definition of the eddy viscosity, the SGS model in (7.1) produces
exactly the same local SGS fluxes as the real turbulent flow,

TM = 2νopt
s S̄ijS̄ij = τijS̄ij. (7.5)

Note that νopt
s is proportional to τij, which is defined up to a gauge transformation. This

implies that there are infinitely many possible ‘optimal’ eddy viscosities, one for each
different representation of the SGS stresses. For the standard definition τ S

ij = ūiūj − uiuj,
ν

opt
s becomes negative in a large fraction of the domain (see § 5.3), and modelling it

leads, most surely, to numerical instabilities (Meneveau & Katz 2000). However, as shown
in this paper, there are representations of the SGS stress tensor for which τijS̄ij, and
therefore νopt

s , is positive almost everywhere, independently of the filter scale and filter
type. This example illustrates the main point of this work: there is at least a ‘perfect’
(from the perspective of the SGS fluxes) eddy-viscosity model that reproduces exactly a
representation of the SGS fluxes with almost no backscatter.

The idea of the ‘optimal’ eddy viscosity described here shows that even in the case
in which the modelled SGS stress tensor is constrained to be parallel to the filtered
rate-of-strain tensor, we still have the freedom to choose the most convenient form of
the eddy viscosity. This is done by choosing what representation of the SGS stresses to
model. The ‘optimal’ eddy viscosity constructed from the alternative SGS stresses found
in § 6 may not be easy to model only with information from the resolved scales or may fail
to reproduce other crucial aspects of turbulence dynamics. But it might be possible to find
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representations of the SGS stresses that yield a νopt
s that is backscatterless, physical in a

general sense and practical from a modelling perspective, i.e. that can be appropriately
reproduced using easy-to-compute quantities of the resolved scales, for instance, the
filtered velocity gradients (Johnson 2020).

7.2. Non-equilibrium statistical mechanics and the local direction of the energy cascade
The approach followed here to show that backscatter is not an essential feature of the SGS
fluxes may seem fundamentally mathematical, and somehow independent of the physics
of the cascade, which has not been addressed directly up to now. This section discusses
the findings of this paper on physical grounds.

In the context of statistical mechanics, turbulence is a strongly dissipative and
non-equilibrium phenomenon. The energy cascade is a fundamental consequence of this
non-equilibrium state, and its direction from large to small scales can be justified on the
basis of equilibrium statistical mechanics. It can be shown, by analysing the truncated
Euler equations, which reproduce inertial-range dynamics under certain conditions (She
& Jackson 1993; Cichowlas et al. 2005), that a direct energy cascade from large to small
scales is consistent with the tendency of isolated systems to evolve towards absolute
equilibrium (Orszag 1974; Vela-Martín & Jiménez 2021). This equilibrium is achieved
when energy is equally distributed across all Fourier modes. Due to the fact that more
degrees of freedom (Fourier modes) represent the small than the large scales, the evolution
towards equilibrium of turbulence with a Kolmogorov spectrum leads to a direct energy
cascade.

This argument is used to justify the direction of the energy cascade, but it is probabilistic
and does not exclude the possibility of inverse cascades. In the inertial range, the effect of
viscous diffusion is negligible and the dynamics is fully time-reversible. Thus interscale
interactions are essentially bidirectional: the same mechanisms that operate to produce
a direct energy cascade may operate to produce an inverse cascade. In fact, as shown
by Carati et al. (2001) and Vela-Martín & Jiménez (2021), sustained global inverse
cascades (in which 〈T〉 < 0) are possible in the inertial range. Although possible, global
inverse cascades can be observed for only a limited time and appear not spontaneously,
but due to carefully selected initial conditions (Vela-Martín & Jiménez 2021). This
limitation reflects the broken temporal symmetry of inertial-range dynamics and the
emergence of statistical irreversibility, a consequence of the chaotic interactions of many
degrees of freedom. Inverse energy cascades are highly improbable because they move
turbulence away from the path towards absolute equilibrium by arranging the energy
in a few large-scale structures. In fact, Vela-Martín & Jiménez (2021) showed that,
unlike direct cascades, global inverse energy cascades require the organisation of the
full flow. This is more unlikely the more chaotic the flow and the larger its number of
degrees of freedom. As a consequence, only global direct energy cascades are observable
empirically.

The above discussion is restricted to isotropic 3-D turbulence, which conserves (in the
inviscid case) one positive-definite invariant, the kinetic energy. Other flows with cascades,
such as 2-D turbulence (Rutgers 1998), homochiral turbulence (Biferale, Musacchio
& Toschi 2012) or magnetohydrodynamic turbulence (Christensson, Hindmarsh &
Brandenburg 2001), conserve more positive-definite invariants apart from the energy –
enstrophy, sign-definite helicity and magnetic helicity, respectively – and display inverse
cascades that can be predicted by similar non-equilibrium arguments (Kraichnan 1967;
Frisch et al. 1975; Alexakis & Biferale 2018).
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Despite the unlikeliness of global inverse cascades in 3-D turbulence, the
time-reversibility of the inertial-range dynamics makes it conceivable that local inverse
cascades involving a reduced number of degrees of freedom may be observed for limited
times. These local inverse cascades could appear often enough and for sufficiently long
times to have practical consequences. This idea was supported in part by the phenomenon
of backscatter, which has been often associated with an inverse cascade of energy.
However, the results presented here rule out this scenario. That backscatter can be almost
completely eliminated suggests that the limitations that operate to prevent global inverse
cascades operate also locally on the SGS fluxes. Due to its out-of-equilibrium nature, the
energy cascade is unidirectional enough to prevent local inverse energy cascades in time
scales of practical relevance. Thus, although possible, local inverse cascade are far too
unlikely to require modelling; irreversible dissipative SGS models reproduce appropriately
the statistical irreversibility of the energy cascade.

8. Conclusions

In summary, the results presented in this paper show that the so-called backscatter, defined
as T < 0 (see § 2.1), does not represent a net inverse flux of energy from the small to the
large scales, but conservative spatial fluxes. Thus it need not be modelled to reproduce the
local energy exchange between the subgrid and resolved scales in large-eddy simulations
(LES) of turbulence.

This has been shown by exploiting the invariance of the filtered Navier–Stokes equations
(NSE) to divergence-preserving transformations of the subgrid-scale (SGS) stress tensor.
Because the SGS stress tensor enters the filtered NSE as a divergence, we can add to it
any divergence-free tensor to obtain an alternative representation the SGS stress tensor
that produces the same physical effect on the NSE (Jiménez 2016). Any alternative
representation of the SGS stress tensor is physically valid and produces the same average
SGS flux. However, different representations of the SGS stress tensor yield, in general,
different local SGS fluxes.

Numerical optimisation procedures have been used to find alternative representations of
the SGS stress tensor that produce SGS fluxes with negligible backscatter. In the equation
of the resolved kinetic energy, these alternative SGS stresses represent backscatter as
conservative spatial fluxes instead of as a source term. These conservative fluxes produce
zero net energy transfer, and are not directly related to the energy cascade. By analysing an
extensive database at different Reynolds numbers and filter scales, it has been shown that
these results are general for the SGS fluxes in the inertial range of isotropic turbulence.

The results presented here justify the extended use of purely dissipative SGS models
for LES of turbulence away from solid boundaries, and when the filter scale is small
enough not to be strongly affected by large-scale anisotropies. In the case of strongly
anisotropic scales in which inverse energy fluxes may be relevant, for instance in shear-
or rotation-dominated flows (Campagne et al. 2014; Deusebio et al. 2014; Dong et al.
2020), the approach presented in this paper could provide a better estimate of the exact
ratio of direct to inverse energy transfer, as well as a better quantitative local measure of
these fluxes and of their relation to the local structure of the flow (Buzzicotti et al. 2018a;
Dong et al. 2020). This may help to improve LES models, in particular by reducing as
much as possible the amount of unstable backscatter – if any – that needs to be reproduced
by the SGS model.

In the same way that it is not necessary to model backscatter, it is not necessary to
model the strong positive fluctuations of the SGS fluxes. This idea is already present in
the so-called minimum dissipation models (Verstappen 2011; Rozema et al. 2015), which
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prescribe the minimum eddy viscosity required to keep the local energy balance of the
resolved scales. Moreover, the SGS fluxes found in this investigation have a fourth-order
moment that is almost constant with the filter scale, suggesting that, as noted by Jiménez
(2016), the intermittency of the SGS fluxes need not be modelled either.

The approach followed here to reduce backscatter is not based on physical or modelling
arguments, but is of a demonstrative nature. Backscatter need not be modelled, but it may
as well be. This leeway is advantageous for cases in which backscatter is problematic,
such as in eddy-viscosity models. However, eliminating backscatter may not be necessary,
or even undesirable, in models that produce numerically stable backscatter, such as the
similarity or tensor-diffusivity models.

The same applies to the intense positive fluctuations or the intermittency of the SGS
fluxes. The latter case is particularly relevant and illustrative in this discussion. It is
widely accepted that intermittency is an essential property of inertial-range dynamics
(Sreenivasan & Antonia 1997). Yet we have shown that it can be removed from the SGS
fluxes, although it remains as part of the total SGS interactions (§ 6.2). This may suggest,
erroneously, that intermittency need not be considered in the modelling of the SGS stress
tensor. This argument stems from a modelling approach based only on the energetics of
the cascade, but reproducing exactly the local energy fluxes may not be enough to produce
a ‘good’ SGS model. An example is the eddy-viscosity model in § 7.1, which is ‘perfect’
in the sense that it produces the exact SGS fluxes, but may fail to reproduce other crucial
properties of turbulence in the inertial range. We have presented physical reasons why
we believe that backscatter may be unnecessary from a modelling perspective (see § 7.2).
Conversely, we have no physical reasons to think the same of intermittency, which is a
more general property of turbulence dynamics than backscatter.

What other properties a ‘good’ SGS model should reproduce remains an open question
beyond the scope of this paper, but this work shows that we have more freedom when
looking for ‘good’ models than was commonly believed. This work stresses the practical
importance of gauge invariance for LES modelling (Jiménez 2016). The fact that the
SGS stress tensor enters the NSE inside a divergence implies that some of its degrees
of freedom are not physical but mathematical, and do not have a directly measurable
effect on the filtered-momentum equations. Thus it is ineffective to model a particular
representation of the SGS stresses when it is only necessary to model its physical effect
on the flow, i.e. its divergence. This also implies that a poor correlation between the
standard SGS stress tensor and the modelled SGS stress tensor is not necessarily an
indication of poor modelling. In fact, it has been shown here that equivalent physical
representations of the SGS stress tensor are not highly correlated (see § 6.3). An SGS
model may not reproduce well a particular representation of the SGS stress tensor, yet its
physical effect on the flow could be reproduced appropriately. This seems to be the case,
to some extent, with eddy-viscosity models (Clark et al. 1979; Meneveau 1994; Borue &
Orszag 1998). The freedom in modelling any physical representation of the SGS stresses
can be leveraged to improve and develop SGS models in a variety of turbulent flows, and
to conveniently choose well-behaved or practical models, for instance, those that do not
produce numerically unstable backscatter.

From a physical perspective, the findings of this paper have been justified by resorting to
statistical mechanics. In the context of non-equilibrium dynamics, global inverse cascades
contravene the tendency of out-of-equilibrium systems to evolve towards equilibrium,
and, although possible, are highly unlikely due to statistical irreversibility (Vela-Martín &
Jiménez 2021). That backscatter can be almost completely eliminated from the SGS fluxes
suggests that the limitations imposed by statistical irreversibility to global cascades also
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apply to local inverse cascades, which seem to be unlikely enough to have little practical
importance in the modelling of the cascade.

Let us emphasise here the fundamental difference between space-local inverse energy
cascades and backscatter. The latter strictly represents negative values of the SGS fluxes,
T < 0, as defined in (2.7), while the former imply a space-local inverse energy flux
due to interactions across scales. As shown here, backscatter is not, in general, related
to a local inverse cascade of energy in fully developed 3-D isotropic turbulence. From
a fundamental perspective, backscatter may represent a local inverse cascade in special
cases, for instance in the numerical experiments by Carati et al. (2001) and Vela-Martín
& Jiménez (2021) discussed in § 7.2. Note that in these numerical experiments, it is
not possible to reduce backscatter in T following the procedure described here because
〈T〉 < 0. It seems inconceivable that there exists a representation of T that does not
fluctuate in space and time. This implies that backscatter cannot always be completely
eliminated because fluctuations may always allow for the spontaneous – but unlikely –
generation of local or global inverse cascades. This idea is formally described by the
fluctuation relations (Evans & Searles 2002), and is consistent with the microscopic
reversibility of the energy cascade and with the fact that inertial-range dynamics admits
inverse cascades (Vela-Martín & Jiménez 2021). However, from a practical perspective,
the fluctuations of T leading to space-local inverse cascades are unlikely enough to be of
practial relevance.

The limited practical relevance of inverse cascades agrees with the idea of a strongly
unidirectional turbulence cascade, in which energy (and probably also ‘information’) flows
preferentially from large to small scales (Meneveau & Lund 1994; Cardesa et al. 2017;
Ballouz, Johnson & Ouellette 2020; Vela-Martín 2021). As a consequence, the interactions
between the subgrid and resolved scales can be modelled as an irreversible sink of energy.
This idea is akin to the successful modelling of microscopically reversible phenomena,
such as momentum diffusion or heat conduction, by irreversible macroscopic models. The
unidirectionality of the energy cascade is perhaps the reason why its modelling is possible
despite its complex dynamics. It is difficult to conceive that the LES approach would have
been so successful if the energy cascade was a strongly bidirectional process.

The results presented here may suggest that the definition of the local SGS fluxes is
fraught with ambiguity. However, this is true only when the SGS fluxes are analysed
from a strictly local perspective, in which case they are affected strongly by conservative
spatial fluxes. As shown by Vela-Martín & Jiménez (2021), these spatial fluxes can be
eliminated by averaging carefully the SGS fluxes, leading to more universal markers of
the energy cascade. Modifying the definition of the SGS stresses to eliminate these fluxes
has a similar effect. For instance, the strong differences in the SGS fluxes for different
filter types (Cardesa et al. 2015; Buzzicotti et al. 2018b) disappear when the conservative
spatial fluxes are removed from the SGS fluxes by modifying the SGS stress tensor (see
figure 5b).

Finally, let us note that we have limited here the analysis of gauge transformations in the
SGS stress tensor to a modelling perspective. We suggest that a study of the energy cascade
from a purely physical perspective, and beyond modelling purposes, should consider
gauge transformations motivated by physical arguments, and in which the properties
of the cascade are taken into account (e.g. scale and space locality, or intermittency).
In this sense, the standard definition of the SGS fluxes may be an appropriate marker
of the local interscale fluxes, particularly after local averaging, although its robustness
should be tested against other possible definitions (see Osawa & Jiménez (2018) for an
example).
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Here, we have considered gauge transformations only in physical space, not in scale
space. The latter should be also considered for descriptions of the cascade that require
approximate locality both in scale and in physical space (Meneveau 1991; Farge 1992).
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Appendix A. Minimising the standard deviation of the subgrid-scale fluxes

Let us consider the functional

L =
∫

V
[T2 + γi(∂jτij − Qi)+ μij(τij − τji)] dV, (A1)

where T = τijS̄ij, and γi and μij are Lagrange multipliers that impose

∂jτij = Qi,

τij − τji = 0,

}
(A2)

where Qi = ∂jτ
S
ij . To find the minimum of L, we introduce a variation on τij, δτij,

δL =
∫

V
[2TS̄ij δτij + γi ∂jδτij + μij(δτij − δτji)] dV, (A3)

and impose that the variation of the functional is zero, δL = 0, regardless of the form of
δτij. Considering the relations

γi ∂jδτij = ∂j(γiδτij)− ∂γi δτij (A4)

and
μij(δτij − δτji) = (μij − μji)δτji, (A5)

and imposing periodic boundary conditions, we obtain

δL =
∫

V
[2TS̄ij − ∂jγi + (μij − μji)] δτij dV. (A6)

For δL = 0 independently of δτij,

2TS̄ij − ∂jγi + (μij − μji) = 0. (A7)

By adding this equation to its transpose, we eliminate μij, and obtain a set of equations for
τij and γi:

1
2 (∂jγi + ∂iγj) = 2TS̄ij. (A8)

These six equations, together with the three equations of one of the constraints,

∂jτij − Qi = 0, (A9)

determine the three components of γi and the six components of τij.
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Appendix B. The linear projector in the gradient descent algorithm

Here, we derive the linear projector used in the gradient descent algorithm,

χP = P(χ∗), (B1)

where χ = {τ11(x), τ22(x), . . . , τij(x)}, the asterisk denotes the test state vector, and the
superscript ‘P’ denotes its projection. The projection is accomplished by minimising the
functional

R =
∫

V

[
1
2 (τ

∗
ij − τP

ij )
2 + γi(∂jτ

P
ij − Qi)+ μij(τ

P
ij − τP

ji )
]

dV, (B2)

where the first term in the integral is the L2 distance between the projected tensor and the
test tensor, and γi and μij are Lagrange multipliers that impose

∂jτ
P
ij = Qi,

τP
ij − τP

ji = 0,

}
(B3)

where Qi = ∂jτ
S
ij .

Introducing a variation on τP
ij , δτP

ij , and operating, we obtain the variation of the
functional

δR =
∫

V
[(τ ∗

ij − τP
ij ) δτ

P
ij + γi ∂jδτ

P
ij + μij(δτ

P
ij − δτP

ji )] dV. (B4)

Considering the relations

γi ∂jδτ
P
ij = ∂j(γiδτ

P
ij )− ∂jγi δτ

P
ij (B5)

and
μij(δτ

P
ij − δτP

ji ) = (μij − μji) δτ
P
ji , (B6)

and imposing periodic boundary conditions, we obtain

δR =
∫

V
(τ ∗

ij − τP
ij − ∂jγi + μij − μji) δτ

P
ij dV. (B7)

For δR to be zero independently of δτP
ij , we have that

τ ∗
ij − τP

ij − ∂jγi + μij − μji = 0. (B8)

We eliminate μij by adding this equation to its transpose, and obtain

∂iγj + ∂jγi = 2(τP
ij − τ ∗

ij ), (B9)

where we have assumed that the test SGS stress tensor is symmetric. By taking derivatives
of this equation and using the constraint ∂iτ

P
ij = Qi, we arrive at an equation for γi:

∂kkγi + ∂i(∂kγk) = 2(∂iτ
∗
ij − Qi). (B10)

We now use the identity

∂kkγi = ∂i(∂kγk)− εijkεklm ∂j∂lγm, (B11)

where εijk is the antisymmetric Levi-Civita symbol. The last term on the right-hand side
corresponds to minus the double rotor of γ = {γi}, which in vectorial notation reads
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−∇ × (∇ × γ ). Substituting this expression in (B11) and taking the divergence leads to
an equation for Γ = ∂kγk:

∂kkΓ = ∂iΛi, (B12)

where Λi = ∂jτ
∗
ij − Qi. We solve this equation imposing periodic boundary conditions,

and substitute Γ in (B10), leading to

∂kkγi = 2Λi − ∂iΓ. (B13)

Solving for γi, and substituting in (B9), leads to

τP
ij = τ ∗

ij − 1
2(∂iγj + ∂jγi), (B14)

which allows us to readily obtain the projected SGS stress tensor.
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