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PERIODIC SOLUTIONS OF THE BOUNDARY VALUE PROBLEM

FOR THE NONLINEAR HEAT EQUATION

M. N. NKASHAMA AND M, WILLEM

We prove the existence of generalized periodic solutions of

the boundary value problem for the nonlinear heat equation.

The proof is based on classical Leray-Schauder's techniques

and coincidence degree.

0. Introduction
2

Let J = [0,2v] x [0,it] and let H = L (J) be the space of

measurable Lebesgue square integrable real functions on J with the usual

inner product (.,.) and corresponding norm |.| . Suppose that h £ H

and g : J * H -*• H is a function such that g(.,.su) is measurable on

J for each u £ H, g(t,x,.) is continuous on B for a.e. (t,x) £ J.

We shall then say that g satisfies Carathiodory conditions. Moreover

we suppose that g satisfies a linear growth condition, i.e. there exists

a constant o > o and a real valued function d £ H such that

\g(t,x,u) | < <?|M| + d(t3x) for all u € H and a.e. (t,x) £ J.

Consider the problem

(H)

u.(t,x) - u (t,x) = git^x^uityX)) + h(t,x),(t,x) £ J,

u(t,o) = u(t,IT; = 0 , t £ [0,2v] ,

) - u(2v3x) = 0 , x £ [0,-n],

We shall prove existence results for (H) under nonuniform non-

resonance conditions.

Received 17 February 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727.84
$A2.00 + 0.00

99

https://doi.org/10.1017/S0004972700001751 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001751
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Let

H2(J) = {u € H : M.,« £ H} and

V X

Hlj2(J) = {u £ H1(J) : u € #} with
respectively

l«l? = I21" T (v?(t,x) + u2jt,x) + u2(t,x))dxdt
1 0 0 v x

and

1*11 a = J2iT f(u2(t,x) + u.(t,x) + uB(t,x) + u2 (t,x))dxdt.A 3 z o o v x xx

1 12
H (J) and H ' (J) are Banach spaces with these norms. Denote by

H (J) the closure in H (J) of all real functions u(t,x) on J which

are infinitely continuously differentiable such that

u(t,o) = u(t,TT) = 0 , t £ [0,2v] ,

u(o,x) - U(2T\JX) = 0 , x 6 [0,-n] .

A generalized periodic solution to the problem (H) is a function

12 1
U e H ' (J) n H (J) which satisfies the equation (H ) a.e. on J.

o i

In particular, the periodic-Dirichlet problem on J for the non-

homogeneous linear equation

(0.1) u, (t,x) - u (t,x) - \u(t,x) = h,(tyx)

is uniquely solvable for every h £ H if and only if

(see e.g. [6], [9] or [3]).

In [6], [9], [J9] it has been proved that the problem (H) has at

least a generalized periodic solution if there exists real numbers

p, q, r > o such that for some m £ H*

(0-2) m2 < p < u~1g(t,xJu) < q < (rrn-1)
2

for a.e. (t,x) € J and all u £ i? such that |M| > r.
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The aim of this paper is to generalise this result when (0.2) is

replaced by conditions of the form

2 -1 -1
m < y(t3x) < lim inf u g(t,x,u) < lim sup u g(t,x,u)

' 1 l !(0.3) '

< T(t,x)

(0.4) lim sup u~ g(t3x,u) < V(t,x)
| |

for some real functions y ,T with some supplementary conditions on the

interaction of y and T with m and (m+1) [or 1] respectively

(see Section 1 for details). Both results are based on Leray-Schauder's

type techniques and coincidence degree (see e.g. [10]).

Conditions of the form (0.3) or (0.4) have been considered recently by

many authors, namely by Berestycki and De Figueiredo [2], Gossez [7],

Mawhin, Ward [12], [14], Mawhin, Ward and one of the authors [15],

Iannacci and one of the authors [S] and others for ordinary, delay

differential equations, elliptic partial differential equations and

wave equation.

Define the linear operator

L •. Dom L a H -» H by

Dom L = H^fJ) 0 H2'2(J) and

Lu = u. + Eu where Eu = - u
t xx

so that E is self-adjoint and L is closed, densely defined linear

operator such that Ker L = Clm L) and L is compact (see e.g.. [9]

for details).

1. Main results

Suppose that g satisfies Caratheodory conditions and a linear

growth condition (see Section 0).
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THEOREM 1. Assume that the inequalities

(1.1) y(tjX) < lim inf u~ g(t3x,u) < lim sup u g(t,x,u) < ?(t,x)
| | | |

hold uniformly for a.e. (ttx) £ J, where y,T 6 jT(J) satisfy the

following conditions for some m £ H* ;

(1.2) m2 < yCt^x; < T(t,x) < fw-j;2 for a.e. (t,x) € J

0 0

(1.3) ait) s L (y(t,x)-m ) sin mx cic> 0 for a.e. t € [0,2M]

and

b(t) = / ^ ((m+1)2 - V(t,x)) sin2(m+l)xdx> 0 for a.e. t £ /'OJ2Tr7

tfcew i?ze problem (H) has at least one GPS for each h £ H.

REMARK 1. when y(t,x) a y(x) and V(t,x) = fix) i . e . y and

are independent of t , conditions (1.2) and (1.3) are equivalent to:

o g
(1.4) m < yfa^ and rCxj < (m+1) for a.e. x £ [0,it]

with strict inequalities on subsets of [0,v] of positive measure.

To prove theorem 1, we need some useful lemmas:

LEMMA 1.1. Let m £ JV* and let p £ L°(J) be such that for

2 2
a.e. (t,x) € J, m < p(t,x) < (m+1) with moreover for a.e. t £ [0,2M],

0 O

\~ (p(t3x)-m ) sin mx dx > 0 and

jn ((m+1) -p(t,x)) sin (m+l)xdx> 0

then the equation
u (t,x) - u (t,x) - p(t,x)u(t,x) = 0

(1.5) •{ u(t,o) = u(t,i[) = 0

u(o,x) - U(2TJ3X) = 0

has only the trivial solution.
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Proof. The problem (1.5) is equivalent to

(1.6) Lu - pu = 0

where L is defined in Section 0.

Let M € Dom £ be a GPS to the problem (1.6), then u has the Fourier

series

u(t}x) = I M, e sin nx.

Consider M 7 = Y U-, e sinnx and u0 = £ w, e sin war.
J kez, m * kez m

«<m nZnrt-1

Taking into account the symmetry of E and the orthogonality of M- and

u0, one gets easily that

(1.7) 0 = (u2-u13 Lu-pu) = (Eu2-pu2, u2) - (EUj-pu^ u^.

Moreover by the Parseval-Steklov equality:

(Eu2-pu2, u2) > (Eu2, u2) - (rrn-1)
2 (u2, u2) =

= I ( n 2 - (nn-1)2) \ u , \ 2 > 0
k£2Z l<n

n>nH-l

and (Eu--pu., u.) < 7 (n -m ) \u, | < 0.
1 2 l kez m

Therefore (1.7) is satisfied if and only if

(1.8) (Eu2-pu2J u2) = 0

and

(1.9) (EUj-pu , uJ = 0

so that u, = 0 for k €. Z, and n > m+1 or n < m.

Hence M, = ('sin mx) \ u, e = ("sin mx)v(t)
1 kiz *"
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and

u0 = (sin(m+l)x) V u,fm,is e
1 = (sin(m+l)x)w(t).

From (1.8) and (1.9) we have

fj Fo (p(t,x)-m2) sin2 mxdxv2(t)dt = 0 and

J2lr J* ((rrn-l)2-p(t,x)) sin2(m+l)xdx(u2(t))dt = 0.

By our assumptions on a and b we must have v(t) = 0 and w(£/> = 0

for a.e. t 6 [0,2T\], Thus M_ = w- = 0 and the proof is complete.

LEMMA 1.2. Let Y^T 6 zTlW i>e such that for a.e. (t3x) G J

m2 < y(t,x) < V(t,x) < (m+1)2 , m € JV*

a.e. t € [0,2-n]

fn(y(t,xj-m ) sin~mx dx > 0 and

2T(tx))i2fQ (Cm+l)2-T(tix))sin
2(m+l)x dx > 0

then there exists z = z(y,T) > 0 and 6 = 6(y,T) > 0 suoh that for any

p € L (J) satisfying y(t3x) - e ̂  p(t,x) < V(t,x) + e for a.e.

(t,x) € J, one has

\Lu - pu\

for all u € Dom L.

Proof. If it is not the case, one can find a sequence (u ) in

Dom L, with \u \ = 1 (n £ H*) and sequences (v ) in H, (p ) in

L™C/; such that

7 -J
y(t,x)-n < p (i,x; < r^^xj-w for a.e. (t,x) € .7

Lw« " ?nun =Vn ' n £ ** a n d

U •+• 0 strongly in H.
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Using the boundedness of the sequences (u ), (p ), ^U-J ^n H'

the finite dimension of Ker L, the compactness of L and the weak

closedness of L, we can assume, going if necessary to subsequences

that, for n -*• +<=,

u •*• u strongly in H (J)

p -*• p weakly in L (J) - weak*

Lu •* Lu weakly in H and |wL = 1

y(t,x) < p(t,x) < T(t,x) for a.e. (t3x) £ J.

Now, if (p € C (J)y we have

< o\un-u\ |cp| + \(pn-p)u,y)\.

Both terms of the right hand member go to zero if «-*•+<». Hence, from

the density of C (J) in H, we have that p U -*• pu weakly in H when

n -*• +<» , so that

Lu - pu = 0.

Lemma 1.1 implies that u = 0, a contradiction with |wL = 1 and the

proof is complete.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let e > 0 and 6 > 0 be associated to y

and r by Lemma 1.2, then there exists a real r = r(e) > 0 such that

for a.e. (t,x) G J and all u £ -F with |w| > r,

(1.10) y(t,x) - c < u~ g(t,x,u) < T(t}x) + e.

The equation (H) is then equivalent to

ujt,x)-u(t,x)=%(t,x,u(t,x))u(t,x)+f(t1xju(t,x))+h(t,x)1 (t,x) € J
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u(tao) = u(t,n) = 0 , t £ [0,2*]

u(o,x) - u(2v,x) = 0 , x € fOj-n]

where

"y(t,x,u) = u~ g(t,x,u) , for

y(t,x,u) = r'-Vt^rJ^ + a - ̂ )Y(t,x) , for 0 < w < r

y(t,x,u) = r'^^rt^x^-r;^ + C2 + ±)Y(t,x) , for -r < M < 0

and

f(t,x,u) = g(t3x,u) - "y(t3x,u)u.

The function y(tyX,u) is of Caratheodory's type since £7 i s , moreover

y(t,x) - e < y(t,x,u) < rCt,xJ + e

for a.e. ft,xj £ J and al l M G JR .

(1.11) |/Ct,x,M;| < a(t,x)

for some a G H only depending on y,T,c and d. In order to apply

coincidence degree (see e.g. [10] p. 44) we consider the following

homotopy:

u.(tjX) - u(t3x) = (l-\)T(t,x)u(t,x) + ̂ <(tyx1u(t1x))u(t}x) +

(1.12)
\f(t,x,u(t,x)) + \h(t,x) (t,x) £ J

where X € (031) and u € Dom £ (L as defined in Section 0).

We have to show that the set of all possible solutions of the

equation (1.12) is bounded independently of X € (0,1). By construction,

we have, for all u £ Dom L, y(t,x) - e < (l-\)T(t,x) + Xyft^x^uCt^

< T(t,x) + e for a.e. (t,x) € <7 and hence by Lemma 1.2, one has

\Lu - [(l-\)T(.,.)u + \y(.,.3u)ul\

for each w 6 Dom L and each X € (0,1).
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Consequently, from (1.11) one has

(1.13) \Lu-[(l-X)T (.:,.)u+£{(.3.1u)u+\f(.,.iu)+\h(.,.)]\ >&\u\1- \e\

for u € Dom £, X € (0,1) where e = f + h.

If we define the following operators

A : H •* H, u -»• Tf.^Ju

N : H ->• fl, M •+ YY.,.,MJW + f(.3.,u) + h(.,.)

then, 4̂ is linear, L-completely continuous, Ker(L-A) = {0} from Lemma

1.2 and by our assumptions on g, N is continuous and takes bounded sets

into bounded sets, and hence i-completely continuous [10]. Therefore, if

u € Dom L is a solution of (1.12), it follows from (1.13) that

|wL < — T — . Thus from Theorem IV.5 in [10] there exists at least one

solution for the equation (H) and the proof is complete.

THEOREM 2. Assume that the inequalities

(1.14) y(t,x) <lim inf u~ g(t,x,u) < lim sup u~ g(t,x,u) < T(t,x)
|| | |

hold uniformly for a.e. (t,x) € J, where y € L°(J) and r € L°(J)

satisfies the following conditions:

T(t}x) < 1 for a.e. (t,x) £ J and
(1.15) •

b(t) = \Q (1-X(tyx)) sin x dx > 0 for a.e. t 6 [0,2v].

Then the problem (H) has at least one GPS for each h 6 H.

LEMMA 1.3. Let p € L°(J) be such that p(t,x) < 1 for a.e.

(t,x) € J and J* (l-p(t,x)) s±n2xdx > 0 for a.e. t € ̂ 2 f f ; then the

equation (1.5) has only the trivial solution.

Proof. It follows from Parseval-Steklov equality that for any

(1-16) r V " x ; > (U'U)
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with equality if and only if u(t,x) = \ u, e sinx. Therefore,

if u is a solution of (1.5), then

(1.17) 0 = (Lu-pu.u) = (u ,u ) - (pu3u) > 0

and u(tjX) = sin x \ uv e = sin x.v(t) so that, by (1.17), one has
k€ZZ K

f* I* (l-p(t,x)) sin2x dx(v(t))2dt = 0 and

from our assumptions, one must have v(t) = 0 for a.e. t € [0,2TS] and

the proof is complete.

Proof of Theorem 2. Using notations, the approach of Theorem 1 and

Lemma 1.3 (instead of Lemma 1.1) one gets the conclusion and the proof is

complete.

REMARK 2 . It is obvious that the equation

u.(t3x) - u (t,x) = ("cos x)u(t,x)

"P XX
satisfies conditions of Lemma 1.3.

REMARK 3 . Similar results hold in the case of Periodic-Neuman

boundary conditions and Periodic-Periodic boundary conditions if [0, ITV

is replaced everywhere by [0,2^] in the last case.

REMARK 4 . We have considered the period to be equal to 2TT

only for the sake of commodity, one can consider any real number T > 0.
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