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Abstract. In a previous paper the authors derived expansions of the derivatives of the disturbing function 
for the general case including the orbits close to intersection. The present paper deals especially with the 
case of close commensurability of the mean motions. A new variable v is introduced characterizing the 
deviation of the mean anomalies from the exact commensurability, and is considered further as an unknown 
quantity. In the equations of motion the short-period terms are eliminated. The form of expansions of the 
right-hand sides is chosen basing on the same principles as in the general case. The factors are separated, 
corresponding to the poles in the case of circular intersecting orbits. For rapidity of calculation the summa
tion in powers of the major semi-axes ratio is made the inner one. 

1. Expansion with Respect to the Negative Powers of the Mutual Distances 

For studying the case of close commensurability in the planetary motion von Zeipel's 
method and its various modifications are generally used. The canonical transforma
tions performed in the methods entail the Hamiltonian expansions in trigonometric 
series, the elimination of particular arguments and finding the mean and extreme 
values of the Hamiltonian. All these operations are usually carried out numerically 
(Giacaglia, 1968; Hori and Giacaglia, 1968; Giacaglia and Nacozy, 1969), since the 
analytical treatment is complicated by the problem of convergence of the series. The 
well-known expansions of the disturbing function are valid, provided the ratio of the 
major axes and other parameters are sufficiently small (Kozai, 1962,1968). In Petrovs-
kaya (1972) an analytical expansion of the perturbation function is given for the general 
case, including the intersecting orbits. When resonance problems are considered the 
possibility offers to improve the convergence of the series. One can take advantage of 
the fact that the mean anomalies, Mx and M2, of the planets are fairly commensurable 
and so, the distance A between the bodies is approximately a periodic function of the 
time. While the convergence of the two-argument expansion representing A ~y (Ml5 M2) 
depends on the minimum distance between the planetary orbits, the validity of the 
single-argument expansion of A ~y in the case of exact commensurability is dependent 
on the minimum actual distance between the planets. 

Considering the case of close commensurability we put 
t 

Mj=Ml+\Njdt9 i = l,2, 
to* 

Nj being the mean motions of the planets, and 
N2-(p/q)N1 = v, (1) 

where p and q are integers, and v is a small quantity. 
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Introduce, instead of Mx and M2, new variables z and y as follows: 
t t 

z = - Ni dr, y = vdt. 
to t0 

Hence Mx and M2 are expressed as 

M^qz + M0^ M2 = pz + M°2 + y . (2) 

If Nx and N2 are strictly commensurable, that is v = 0, we have y = 0. Thus, y is a 
slowly changing variable. 

In the Lagrange's equations the disturbing function after substituting (2) becomes 
a function of y and z, the equations for those being 

dy/dt = v, (3a) 
dz/dt = NJq. (3b) 

In the restricted three-body problem one of the two Nj is a constant. Let it be N2. 
Then, after finding y from Equation (3a), Mx will be 

M1=(q/p)(M2-Ml-y) + M0
1. 

We put a: the major semi-axis, e: the eccentricity, i: the inclination, Q: the longitude 
of the node, co: the argument of the perihelion, M°: the mean anomaly at the epoch. 

The mutual distance of the planets A (a, e, i, Q, co, M°, z, y), where a = au a2,..., in 
the case of rigorous commensurability for the undisturbed motion, is 

A0 = A(a°9e°, i°, fl°, co0, M(r0), z, 0), 
being the function of a single variable z and of 12 constants. 

Consider a Taylor's expansion, 

It is a series in powers of the deviation of A2 from A\, which is of order of <x=max 
{fi, |v|}, where \i is the disturbing mass, and v is given by (1). If, for example, |V|^JK1/2, 
then the terms of series (4) are of the order ^*/2. When |v|>/i1/2 there is no need to 
treat the problem as one of resonance, since in this case the perturbations may be 
derived by the usual procedure of successive approximations and the solution of the 
differential equations would be developed in powers of /*1/2. 

Thus, we assume that |v|</*1/2. Then, if the perturbations up to the second order 
with respect to \x have to be calculated, one should substitute into Lagrange's equa
tions instead of A'1 the sum of terms of expansion (4) for JC= 1,2, 3,4. The zero term 
disappears after differentiation with respect to the elements. Hence, if one starts from 
(4) the problem of developing the principal part of the disturbing function is reduced 
to the expansion of several positive powers of the two-argument function A2(z, y), 
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and several negative powers of the single-argument function AQ(Z)9 all the Keplerian 
elements in the latter being fixed. 

One has to take notice of the following characteristics of expansion (4). It involves 
no negative powers of the two-argument distrubed function A (z, y) while the positive 
powers of A2(z, y) are rapidly convergent series which can be easily differentiated 
with respect to Keplerian elements. The functions AQ2K~1(Z) are single-argument 
series which are not differentiated into Langrange's equations, their coefficients being 
evaluated once with any precision. It is convenient to use expansion (4) when the 
equations are solved with the short-period terms being eliminated since all the opera
tions performed by numerical integration or by finding out the stationary solutions 
etc. are applied to the positive powers of A2, which depends analytically on the ele
ments. 

We confine ourselves to the evaluation of the perturbations up to the second order. 
As in (4) the same powers of A2jA% appear several times, the following form of A ~1 is 
preferable: 

4 A2s 

S =° ° (5) 
s~ (i)s

 [l)sh (i)q ' 

2. Expansion of A2s 

Consider 

A2S = (T2
1+TI-2T1T2COSH)S, 

where T1? T2 and H are the distances of Sun-asteroid, Sun-Jupiter and the elongation 
of the asteroid from Jupiter. 

As it is known (Sack, 1964), the following relations hold: 

^2s=Z /W^^WcosH), 
K=0 

Ru.Au xJ-#{j£($ F{K~S' -*-*' K+|; f )' 
or 

The Legendre's polynomials PK(cosfl) can be presented by the formula (Brum-
berg, 1971), 

PK(costf)=£ t f ( 2 - 5 J > 0 ) | ^ F l t / , ( , - 1 ) x 
l = 0 1, = 0 j = 0 \lhc + j 

x FKjll(i2) cos[(K-20 «, - ( K - 2 / , ) «2+y(«i -O2)], (7) 
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where ux and u2 are the arguments of latitude of the planets and 

FKjl(i) = AKjl(sm(WK-j-2l] (cos(i/)) ,K+j-2i | x 
x F ( - m , 2 K - W + 1 , l+|/c-7*-2/|;sin2(^/). 

m = K-$(\K - 7 - 2 / | + \K +7-2/1), 

/I are some numerical coefficients, <50>0 = 1, ̂  0 = 0 if7V 0, F is Gauss' hypergeometric 
function. 

After substituting (7) into (6) A2s can be readily presented as a series in the multiples 
of Mt and M2 : 

^ 2 s = X Z I ^ c o s f r ^ + f c A f a + f e C B ! +94^2+45(^1 - ^ 2 ) ] . (9) 
q\ 42 43.44,45 

The absolute values of the integers q3, q4 and q5 do not exceed 4. /4{9} are the func
tions of the remaining elements a, e, i: 

AM = C(al,a2)X(el)X(e2)F(il)F(i2), 

C and F being the polynominals of the order 2s and X being Hansen's coefficients. The 
limits in the sums with respect to qx and q2 depend on the rapidity of diminishing 
Hansen's coefficients, in other words, on the values of eccentricities. 

Expression (9) may be presented as a series with respect to all the variables involved, 
so that it would be a polynomial in al9 a2, sin(^/j) and sin(^'2)>a power series in ex and 
e2, a trigonometric one with respect to Mx and M2 and a trigonometric polynomial 
in cou co2, and Ql—Q2. This series will be obtained readily as soon as any of well-
known expansions of Hansen's coefficients in powers of eccentricities is used. In such 
a form function (9) and, therefore, (5) can be easily differentiated with respect to the 
Keplerian elements. 

Substituting (2) into (9) it follows: 

A2s= £ fl«2s)einz, « , > 0 , n 2 > 0 , (10) 

B(
n

2s) being the function of Keplerian elements and y. The number of terms taken into 
consideration, as was mentioned above, depends on the values of the eccentricities. 

3. Expansion of A^y, y = l , 3, 5,.. . 

Now we would like to express AQ y as a Fourier series in z with numerical coefficients. 
The first step is to develop AQ y in multiples of Mj and M2 by any device of expansion. 
Taking into account that in A0 Mj are given by (2) under condition y=0 one is to 
construct the expansion 

^oy= t C^einz, 7=1 ,3 , . . . . (11) 
n= — 00 

In order to calculate the coefficients C{y) an intermediate expansion of A ~y may be 

https://doi.org/10.1017/S0074180900070534 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070534


ON THE CALCULATION OF SECULAR PERTURBATIONS 161 

applied which was derived by Petrovskaya (1972). From this expansion Cj,y) are 
defined as 

k = 0 m=0 (L)K 

In 

l^L=Yn^f^)e-inzdz, (13) 
0 

f^{z)={xUAYyxKcosmH0, (14) 

D d g?«S(l-g?)( l -g$) 
<Hn/T P |>? ( l+e? )+a° ( l+e° ) ] 2 ' 

*%>ffl = (2-&m.o) J ^ PmF(m+&, m+h, 2m+ 1; 4/J), 

X = 1 - / J ( T ? + TS)2/T?T§. 

As to the integrals /J,^ they may be evaluated either by mechanical quadratures 
methods or by developing them in an analytical way with respect to Keplerian ele
ments. In order to obtain an analytical expansion the functions /K(jj,(z) have to be 
presented as a series in multiples of Mx and M2 and then of z, taking into consideration 
that 

M^qz + M^to), M 2 =pz + M2(r0). 

Finally, one can develop with respect to z each function of (T° + T2)~7 , X and cos//0 

in (14) and the series for (14) follows from the multiplications. 
To calculate the functions (D)K ̂ ](P) in (12) recurrent formulas were obtained 

earlier. These functions can be also evaluated without application of recurrent rela
tions which sometimes may result in less accurate calculations. The following formula 
is free from that deficiency: 

(D) 
^0^(P) = (l-4py^2-(m)Kx X > U * B , (15) 

^l = (2-dm,0){^pmF(m + l-b,ni + i2m + l+i;4p), 

j 4 / y ( m + j y ) , ( " + & ( ! - 4 i r ' 
( l ) ,H , (2m + lMiy-» * 

Formulas (11)—(15) provide the expansion of AQ\ 
The coefficients of the series (11) might be calculated by evaluating the integrals 

In 

C{
n
y)=^- Aoye~inzdz, 

o 

with the aid of the quadrature formulas. Though this way may lead to difficulties when 

In ' 
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the minimum distance between the orbits is small (A -*0). In our procedure we suggest 
to use the harmonic analysis method only for calculating the functions (13), after the 
singularity (1 -4j?)1/2-y/2_K at a ? - ^ , e?->0, e^O is removed from (11) by the for
mula (15). The absolute value of the integrand f±y)

m in (13) is less than 1. 

4. Averaged Equations of Motion 

For simplicity we consider the restricted three-body problem. The formulas (5), (10) 
and (11) provide the expansion of A " * with respect to z. The constant term in A ~ * is 

[ Z I - 1 ] = X ' A S X £<2*>c<_2;;+1), (1 6) 

where C(2s
n
+1) are numerical coefficients, while B^s) are functions of the disturbed 

Keplerian elements. The limits nx and n2 are defined by the number of terms retained 
in A2s. 

After substituting (16) into Lagrange's equations the secular and long-period 
perturbations will be determined by the set 

ds/dt = iif(e,y), dy/dt = N2-(p/q)Nl=v, (17) 

£ being any Keplerian element, N2 = const, N1 being a function of al9 f(e, y) being 
derivatives of the quantity (16). 

After solving (17), M t is provided by the relations 

Ml={q/p)(M2-M°2-y) + Ml M2 = N2(r-r0). 
We denote 

v = v0(l-hv1), 
where v0 is the value of v for \i = 0. It is easily seen that, if v0 is less than /i1/2, by putting 
T = v0 (t —10) and y = x + £ one obtains equations 

dE/dt = A/(6, T + C), dC/dr = v1, (18) 

where A = 0(/x1/2). 
After averaging with respect to T the equations provide the purely secular perturba

tions with respect to time, which are power series in A. The periodic terms in the solu
tion can be found by the usual procedure of von Zeipel. 

In the case which is of particular interest for us the order of v is more than \i112 and 
we return to set (17). If it is solved by numerical integration then at any step of approxi
mation the coefficients C(i£+1) in (16) corresponding to the expansion (11) remain 
unchanged. They may be evaluated once with any precision. The coefficients B^s) 

which appear in (16) from (10) are literal series with respect to all the Keplerian ele
ments, including the major semi-axes. 

Equations (17) may be applied for finding out periodic solutions and those which 
are close to them. 
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This consideration remains valid in the case of intersecting resonant oribts of 
asteroids and in the Neptune-Pluto case. 
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