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Abstract

In order to assess the security of cryptosystems based on the discrete logarithm problem in
non-prime finite fields, as are the torus-based or pairing-based ones, we investigate thoroughly
the case in Fp6 with the number field sieve. We provide new insights, improvements, and
comparisons between different methods to select polynomials intended for a sieve in dimension
3 using a special-q strategy. We also take into account the Galois action to increase the relation
productivity of the sieving phase. To validate our results, we ran several experiments and real
computations for various polynomial selection methods and field sizes with our publicly available
implementation of the sieve in dimension 3, with special-q and various enumeration strategies.

1. Introduction

The security of major cryptographic protocols relies heavily on the difficulty of two main
number-theoretic problems: large integer factorization and discrete logarithm computation in
a finite group. Recently, the discrete logarithm problem on finite fields has received a lot
of attention, leading to new results all related to the index calculus family of algorithms.
If the small characteristic finite fields can be classified as a lost cause thanks to the quasi-
polynomial algorithm [3] and the prime field case resorts to the classical number field sieve
(NFS) [13, 18, 30], there is still room to understand better how to adapt variants of the NFS
to non-prime finite fields [2, 19].

Cryptosystems that would be affected by better complexity and practical results in this
setting would be torus-based [23, 27] or pairing-based (see [11] for a survey). Although not
widely deployed in everyday products, the specificity of their use makes it necessary to finely
assess the security margin that one can expect from a given choice of parameters for an expected
period of time as progress in cryptanalysis can spectacularly undermine their usability, as was
the case for pairing-based cryptography using small characteristic finite fields.

In this context, today’s favorite finite fields targets are Fp12 and Fp6 . As already mentioned
in [19], the classical NFS whose relation search relies on polynomials of degree 1 (dimension 2)
is not the best suited in those cases. Instead, if we want to optimize the number of relations
found, we need to consider a variant of the NFS in a higher dimension, that is, relying on
polynomials of degree greater than 1. Although the complexity fits in the L(1/3, c) class, these
finite fields where higher-dimensional sieving is required are those for which the constant c is
highest compared to other finite fields, despite recent advances [4, 6, 21, 25].

The NFS algorithm is usually considered as composed of four sub-algorithms: the polynomial
selection which produces a pair of polynomials that define the number fields used in the
relation collection, which in turn produces relations involving small elements of the number
fields. When enough relations are produced, a linear algebra step provides the logarithms of
the small elements. Then, an individual logarithm step computes the logarithm of the target
element thanks to the logarithms of the small elements.
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In the literature, the two main computation examples using higher-dimensional sieves which
can serve as a reference to compare different variants and strategies are set in an Fp6 of 240 bits
and in an Fp12 of 203 bits. The computation in Fp12 is presented in [16]. It uses a sieve in
dimension 7, a special-q strategy to divide the sieving region and a line sieve to enumerate the
polynomials in each special-q lattice.

There are several examples of computations in Fp6 . In [32], Zajac sets the first record
computation. He uses a sieve in dimension 3, no special-q and a line sieve to enumerate the
polynomials in the sieving region. In [33], he also experimented with applying a special-q
strategy to divide the sieving region. He concluded that in his reference example it seemed
too slow to provide any performance gain. In [17], Hayasaka et al. targeted the same finite
field but using both a special-q strategy and an adapted lattice-sieve enumeration inspired by
Franke and Kleinjung [10]. Their computation time is comparable, around 22–24 normalized
CPU days. Both results use the same polynomial pair which define the number fields.

Our contributions. In this article we focus on improving the sieve in dimension 3, which is
best suited to finite fields of the form Fp6 . This is achieved by carefully analyzing the polynomial
selection phase and adapting computations that are usually handled in dimension 2 to the case
of dimension 3, for instance the α-value and the Murphy E quantity. Furthermore, we compare
different polynomial selection methods and take into account that these polynomials will be
used with a special-q strategy which suggests introducing a controlled imbalance between them.
We also consider the possibility of a Galois action for the polynomials which provides cheap
relations, saving some sieving time. Our goal is to output better polynomials to improve the
relation productivity of the sieving phase.

In order to validate these criteria for polynomial selection, in the end we have to rely on
real computations. To that end, we implemented a three-dimensional sieve with a special-q
strategy and several adapted enumeration algorithms (line sieve, plane sieve, and space sieve)
to be able to run several experiments and compare different strategies.

With our implementation, the improvements in the polynomial selection, and a Galois action
of order 6, we were able to find a complete set of relations for Zajac’s 40-bit p in less than 1
normalized CPU day. We ran two bigger computations in an Fp6 , one with a 50-bit p which
took about 7 CPU days and another with a 65-bit p which took about 790 CPU days.

2. Background on the special-q sieve, and notation

2.1. The number field sieve

We recall briefly the general workflow of the NFS in the context of finite fields Fpn , keeping in
mind those of the form Fp6 as our favorite targets. We take the opportunity to fix the global
notation used in the rest of the article.

Using more than two polynomials in the NFS (the so-called MNFS variants [6, 8, 9, 25])
has not yet been done for practical computations, even in the much easier case of integer
factorization, so we stick to two polynomials. The setting starts therefore with two irreducible
polynomials f0 and f1 over Z that have a common irreducible factor of degree n modulo p.
They define two number fields Kf0 and Kf1 . Then relations are collected by trying many
content-free irreducible polynomials a: each trial a is viewed as an element of the field Kf0

and one tests if the corresponding principal ideal is smooth, that is, factors into prime ideals
of norm less than a given smoothness bound. Similarly, a smoothness test is done in the other
field Kf1 , and if both sides are smooth, then we call it a relation. To detect that a principal
ideal (a) is smooth in a field Kf , we start by testing the smoothness of its norm, which is
an integer (or perhaps a rational if f is not monic) or simply the smoothness of its resultant
with f . In this article, we will not distinguish between the norm and the resultant, keeping
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in mind that for steps of the algorithm after the relation collection, care must be taken if f
is not monic. Also, when a large prime power is involved, smoothness of the norm does not
imply smoothness of the ideal.

The set of polynomials a that must be tried before finding enough relations is called the
sieving region S. The size of the coefficients of these is therefore (#S)1/t, where t is the number
of coefficients of a (that is, its degree plus 1), which is the dimension of the sieve.

Since f0 and f1 must have degrees at least n, this degree can be large compared to the size
of p, and then also to the size of the coefficients of the fi. At some point, n becomes large
enough so that the norms get smaller if we consider a-polynomials with a larger value of t and
smaller coefficients; this is the reason why we have to sieve in dimension higher than 2.

In order to speed up the detection of smooth elements, a sieving procedure is used. For each
prime ideal r in Kf0 of norm less than a sieving bound (which is less than the smoothness
bound), all the polynomials a where r divides the corresponding principal ideal are marked as
such. Storing the set of a-polynomials in a t-dimensional array, these locations are regularly
spaced in memory, which speeds up the process considerably. Once this has been done,
the promising locations that have been hit many times are scrutinized more thoroughly
for smoothness with the ECM algorithm. Of course this is also done with ideals in Kf1 ,
and actually, the processing of the two sides is interleaved, so that ECM is run only if the
a-polynomial looks promising on both sides. We call the bound on the number of bits left in
the norm after sieving the threshold; this is used to define what ‘promising’ means.

Once we have collected more relations than the number of prime ideals less than the
smoothness bound, the relations are interpreted as linear equations between the virtual
logarithms [29] of those ideals thanks to Schirokauer maps. Then a sparse linear algebra
step is performed to solve these equations. Finally, the so-called descent step [14] allows us
to deduce the discrete logarithm of any finite field element. Since we are mostly interested in
sieving we say no more about these steps. The overall complexity is in Lpn(1/3, c+ o(1)), with
a constant c that varies from 1.75 to 2.21 depending on the variant that can be used (or from
1.72 to 2.16 with MNFS); but the practical consequence is unclear for the Fp6 target for which
the best algorithm to use for currently feasible sizes is still to be determined.

2.2. Using special-qs

The special-q strategy introduced by Pollard [26] is a way to organize the exploration of the
sieving region S. Since most of the relations come from norms that are divisible by at least
one not-so-small ideal, we do not lose much by exploring only locations with this property.
Hence, we choose a list of prime ideals q of Kf0 (we can choose Kf1 instead) of norms less than
the smoothness bound, but large enough (typically, above the sieving bound). We treat each q
separately and consider the sublattice of a-polynomials having divisibility by q in Kf0 , which
we call the q-lattice. For a given norm size, prime ideals of inertia degree more than 1 are far
less numerous than those of degree 1, so we consider only qs of inertia degree 1. In Kf0 , the
element x is not necessarily an integer; still, all but a tiny number of the qs can be represented
by two elements of the form (q, x − ρ), where q is the norm of q and ρ a root of f0 modulo
q; a basis of the q-lattice is then given by (q, (x− ρ), x(x− ρ), . . . , xt−2(x− ρ)). Applying the
LLL algorithm, we obtain a reduced basis whose elements form a matrix Mq, such that for
any vector c with integral coefficients, the vector a = Mqc is in the q-lattice. Furthermore,
taking all coefficients of c bounded in absolute value by a bound H, we get vectors a that
cover approximately the target sieving region S. In fact, since two proportional a-polynomials
would give the same relation, we consider only c vectors with a positive last coordinate. From
now on, we will therefore always suppose that the sieving region for c is a cuboid C of the
form [−H0, H0[×[−H1, H1[× . . . × [0, Ht−1[. To fit with the classical notation, in the case of
three-dimensional sieving which we will study at length, we will set I = 2H0, J = 2H1, and
K = H2.
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2.3. Sieving in the special-q lattice

For a given special-q, the sieving phase goes as follows. A t-dimensional array corresponding to
the cuboid C is initialized with approximations of the logarithms of the norms. Then for each
prime ideal r of norm less than the sieving bound, one has to find a description of the vectors
c that yield elements divisible by r, in order to enumerate and visit all the corresponding
locations to subtract the logarithm of the norm of r. Only ideals of inertia degree less than t
can occur, so there is no need to consider the others.

All but a tiny number of the ideals r of inertia degree d are generated by two elements of
the form (r, h(x)), where rd is the norm of r and h is a monic polynomial of degree d. A basis
of the lattice of a-polynomials yielding divisibility by r is (r, rx, . . . , rxd−1, h(x), xh(x), . . . ,
xt−d−1h(x)). Therefore, modulo r, the first d columns of the corresponding matrix are zero
and its rank is t− d. Hence this lattice can be described by a set of d linear relations modulo
r between the coefficients of a. We write these relations in a d× t matrix Ur such that Ura ≡
0 mod r if and only if a yields divisibility by r. This can be translated into a condition on the
coefficients of c: since a = Mqc, setting Uq,r = UrMq, we can identify the vectors c yielding
divisibility by r with the equation Uq,rc ≡ 0 mod r, where again Uq,r is a d × t matrix. In
particular, in the most frequent case where r is of inertia degree 1, this becomes a single linear
equation modulo r. From this description, fast algorithms are described in § 4; but before going
these details, we describe more thoroughly the polynomial selection step.

3. Polynomial selections

3.1. Quality criteria

In the case of the classical NFS algorithm based on a two-dimensional sieve, criteria to select
the best polynomial pair among several candidates have been defined and refined over time
[1, 22, 24]. Although the general idea remains the same, it is necessary to revisit them in the
case of a t-dimensional sieving for t > 2, and in particular for t = 3.

3.1.1. Size properties. The first and easiest criterion is to compute an upper bound on the
sizes of the norms corresponding to both polynomials. This is enough for getting the optimal
theoretical complexities, and can also be used as a first filter in practice.

Let (f0, f1) be the polynomial pair to be studied. In order to give a bound on the
corresponding norms, it is first necessary to get an estimate of the size of the sieving region S.
Doing so from a theoretical point of view is classical, but often imprecise compared to what
is obtained in practice. The strategy is therefore as follows: a crude estimate for #S is made,
which allows one, taking other criteria into account, to select a not-so-bad pair; then running
some sample sieving, it is possible to get a much better view of the actual sieving region size,
and the polynomial selection is run again, possibly giving a better pair. This bootstrapping
process does not have to be done again for each finite field: all the fields Fpn for fixed n and
p of similar sizes will behave similarly. So from now on, we assume that an estimate for #S is
known.

Then the skewness must be taken into account. If all the coefficients of f0 (respectively,
of f1) are of similar sizes, the smallest upper bound is obtained by taking all the coefficients of
a bounded by the same value (#S)1/t. On the other hand, if one of the fi is skewed, that is, its
coefficients have a size that decreases with the degree, then it is better to choose a-polynomials
with the same property. This is even more necessary if both f0 and f1 are skewed. The ratio
between the size of two consecutive coefficients of the a-polynomials is called the skewness.

Finally, having taken into account the size of the sieving region and the skewness, it is
possible to obtain an upper bound for each norm. It remains to subtract from one of them
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the size of the special-q that one plans to use (again, it might be necessary to bootstrap with
some crude sieving experiments to tune this size).

The first criterion is then to select the polynomial pair for which the sum of the sizes
of the norms on both sides is minimal. This can be refined to take into account the fact that
the Dickman rho function is convex: in a list of polynomial pairs that yield a similar value
for the sum of the sizes of the norms, it is better to choose the pair for which the norms have
sizes as close as possible to each other.

3.1.2. Local properties. We now study the effect of local properties, that is, the fact
that the polynomials can have many roots modulo small primes. This is done on each side
independently. Therefore, we let f be an irreducible polynomial in Z[x], that in the end will
be either f0 or f1. The α quantity related to f , which we denote α(f), measures the difference
in terms of smoothness probability between an integer obtained by computing the resultant
of f and a polynomial of degree t− 1 and a random integer of the same size. In other words,
if a norm has size A, it will be smooth with the same probability as a random integer of size
A+α(f). A negative value for α(f) is a characteristic of a good polynomial f . In the following
formal definition of α, the size of an integer is given by the natural logarithm, in conformance
with the traditional definition of α in dimension 2.

Definition 1. Let f be an irreducible polynomial in Z[x]. Let S be the set of content-free
irreducible polynomials of degree t− 1 over Z. For a prime `, the local α-value of f at ` is

α`(f) = log(`)(A(val`(n) | n ∈ Z)− A(val`(Res(f, a)) | a ∈ S)),

where val` denotes the `-adic valuation and A(·) is the average value. The α-value of f is then
defined as the sum over all primes α(f) =

∑
` α`(f).

In this definition, the average value A(·) is defined by taking the limit of the average value of
the quantity for increasingly large finite subsets of the whole set considered. To disambiguate
this choice, we take these subsets as intersections of S with centered balls of increasing radius.
Another potential issue with this definition is the convergence of the series defining α(f). We
leave it as a conjecture, since adapting the proof of [5] goes beyond the scope of this article.

The quantity A(val`(n) | n ∈ Z) is equal to 1/(`− 1). The other part of the formula defining
α`(f) can be simplified when ` does not divide the leading coefficient of f or its discriminant.
The case of t = 2 is well known [24] and yields α`(f) = (log(`)/(`− 1))(1 − (`/(`+ 1))n1),
where n1 is the number of roots of f modulo `. We derive the same kind of formula for the
case t = 3.

Proposition 2. Let f be an irreducible polynomial in Z[x] and ` be a prime not dividing
the leading coefficient of f or its discriminant. Then, in the case of sieving in dimension t = 3,

α`(f) =
log(`)

`− 1

(
1 − n1

`(`+ 1)

`2 + `+ 1
− 2n2

`2

(`+ 1)(`2 + `+ 1)

)
,

where n1 and n2 are the number of linear (respectively, degree-2) irreducible factors of f
modulo `.

Proof. The condition on the leading coefficient allows us to avoid questions about projective
roots, and the condition on the discriminant implies that any irreducible factor of f modulo `
can be lifted to an irreducible factor of f of the same degree over the `-adic ring Z`.

Let ϕ be a quadratic irreducible factor of f over Z`. Let a(x) be a quadratic polynomial with
coefficients in Z whose content is not divisible by `. Then the `-adic valuation of the resultant
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of ϕ and a(x) is 2k, where k is the largest integer such that a(x) is proportional to ϕ modulo
`k. The number of a(x) with coefficients in [0, `k − 1] that satisfy this condition is `k − `k−1
since they are the polynomials of the form γϕ, where γ is not divisible by `. Furthermore,
the number of polynomials a(x) with coefficients in [0, `k − 1] whose content is not divisible
by ` is `3k − `3k−3. Hence the proportion of those polynomials for which the valuation of its
resultant with ϕ is at least 2k is (`k − `k−1)/(`3k − `3k−3). Finally, the contribution due to
ϕ in the expected valuation of the resultant of f and a is

∑
k>1 2(`k − `k−1)/(`3k − `3k−3) =

2`2/((`2 − 1)(`2 + `+ 1)).
The case of the contributions of roots of f is handled similarly: the number of polynomials

a(x) with coefficients in [0, `k − 1] whose content is not divisible by ` and that give a value
divisible by `k when evaluated at an `-adic root ρ of f is `2k − `2k−2, since they are all of
the form (x − ρ)(αx − β), with α and β in [0, `k − 1] and not simultaneously divisible by `.
Therefore the contribution of a root ρ in the expected valuation of the resultant of f and a is∑
k>1 (`2k − `2k−2)/(`3k − `3k−3) = (`2 + `)/(`3 − 1).

When the proposition does not apply, the natural workaround is to compute the factorization
of f over the `-adic field (see, for instance, [7, Chapter 6.1]) and for each factor to do the same
kind of study as in the proof of the proposition. One could argue that, since computing the
`-maximal order is required for converting relations to rows of the matrix, this is appropriate.
However, computing α must be as fast as possible because we might want to investigate billions
of polynomials. In the classical two-dimensional case, a very simple lifting is enough to deduce
the average `-adic valuation. In Appendix A we sketch a similar approach that, in many cases,
will give the average valuation without having to perform a full `-adic factorization.

Finally, the case where ` divides the leading coefficient of f is dealt with by adding the
contribution of the (possibly multiple) root 0 in the reverted polynomial f(1/x)xdeg f .

3.1.3. A three-dimensional Murphy E. The Murphy E quantity was introduced in [24]
as an estimate of the average smoothness probability of the norms corresponding to a sieving
region. In the most precise variant the sieving region is replaced by a volume in R3, leading to
the following definition, where we assume that the special-qs are chosen in Kf0 .

Definition 3. Let (f0, f1) be a pair of irreducible polynomials used in the NFS algorithm,
S a volume in R3 approximating the sieving region, and B the smoothness bound. Let Q be
the average size of the special-qs on the f0-side. The Murphy E function is defined by

E(f0, f1,S, B,Q) =

∫
a∈S

ρ

(
log|Res(f0, a)| −Q+ α(f0)

logB

)
ρ

(
log|Res(f1, a)|+ α(f1)

logB

)
,

where ρ is Dickman’s rho function.

This three-dimensional integral is in general too costly to compute when we have a large set of
polynomial pair candidates to select from. Various approaches have been taken in dimension 2,
and we follow the one taken in CADO-NFS (see [31]), which is inspired by Kleinjung’s code
and Murphy’s thesis. The idea is to use a Monte Carlo approach, not on S itself but on
its boundary, so that the dimension drops by 1. The rationale is that when we multiply a
polynomial a by a scalar r, the resultant with f is multiplied by rdeg f , and therefore the sizes
of the norms on a line through the origin are well controlled once one value on it is known.

With the special-q sieving strategy, since we are dealing with many ideals q, each of them
favoring some direction, viewed globally the general shape of the sieving region will be a sphere,
or an ellipsoid if there is some skewness in f0 and f1. Hence, we will use this approximation
for computing a Murphy E value and compare the polynomial pairs: we pick a sphere or an
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ellipsoid corresponding to our sieving region, and perform a Monte Carlo evaluation of the
integral on its surface. In practice, we found it convenient to use a Fibonacci sphere [12] as
evaluation points.

Finally, in the classical two-dimensional NFS, having many real roots tends to increase the
Murphy E value. We describe an analog for three-dimensional sieving in Appendix B, but this
is not really another criterion, because it is already captured by the Murphy E.

3.1.4. Explicit Galois action. An additional criterion that must be taken into account is
the possible existence of an explicit Galois action that takes the same form for f0 and f1.
Examples are given in [2] and we also use some in our experiments. For a polynomial f , and a
homography σ(x) = n(x)/d(x), we define fσ(x) = f(σ(x))d(x)deg f . Then, σ is said to be an
explicit Galois action for f if fσ is proportional to f . In that case, σ is an automorphism of the
number field Kf . In this field, a(σ(x)) is a conjugate of a(x): they have the same norm. In our
context we need to work with polynomials, so we consider aσ = a(σ(x))d(x)deg a. The norm is
therefore multiplied by the norm of d(x)deg a, which is typically a small, smooth number.

We have shown that if σ is an explicit Galois action for f0 and f1, and if a is a polynomial
that has a smooth norm on both sides and hence yields a relation, then aσ also yields a relation.
And in fact, if σ is of order k, then we can deduce k−1 additional relations from each relation
obtained by sieving, by letting σ act on a.

In a special-q context, it is simple to organize the computation in order to save a factor k in
the relation collection phase. Indeed, the special-qs can be organized in orbits of k conjugate
ideals, and if a polynomial a yields a principal divisor divisible by q, then aσ yields a principal
divisor divisible by qσ. It is therefore enough to sieve only one of the special-qs per orbit, and
to derive relations for the other special-qs with conjugation by σ.

3.2. Several strategies

We now review the different polynomial selection methods that might make sense for a finite
field Fp6 ; we present them for any field Fpn , but we keep this target in mind. We do not discuss
the SNFS case [20], where the polynomials are directly derived from a special form of p.

3.2.1. Adapting the JLSV strategy to special-q sieving. The most basic polynomial
selection method adapted to our case is the one proposed by Joux, Lercier, Smart, and
Vercauteren in [19]. We first pick a polynomial f0 of degree n with small coefficients, which
is irreducible modulo p. Then f1 is set to f1 = f0 + p. The polynomial f1 resulting from this
construction is skewed, while f0 is not; but since f1 is the polynomial that yields the largest
norms, it makes sense to sieve a-polynomials with skewness f1, namely p1/n.

A first improvement on this method was proposed in [19], and was used in particular in
[2, 6, 25]. The goal is to obtain polynomials f0 and f1, without skewness and of similar sizes,
so that the norms are balanced. We propose a modification of this polynomial selection to take
into account the fact that we use a special-q sieving: the goal is now to obtain norms of slightly
different sizes, so that after dividing out by the special-q, they become of the same size.

Let Q be the average value of q for all the special-qs we consider, and assume that we will
take them on the f1-side. We first look for an irreducible polynomial f0 such that f0 = π+ ηρ
with π and ρ two polynomials with small integer coefficients and of degree at most n, with
at least one of them of degree exactly n, and with η an integer close to p1/2−ε, with 0 <
ε < 1/2. Thanks to the extended Euclidean algorithm, we then compute κ and λ such that
η ≡ κ/λ mod p, with κ ≈ p1/2−ε and λ ≈ p1/2+ε, to define f1 = λπ + κρ with coefficients
of size O(p1/2+ε). Using a crude upper bound, the ratio between the norms on both sides is
Nf1(a)/Nf0(a) ≈ ‖f1‖t−1∞ /‖f0‖t−1∞ ≈ p2ε(t−1). By taking ε = logp (Q)/(2(t−1)), we can ensure
that this ratio is close to Q, and therefore we obtain balanced norms after taking the special-q
sieving into account.
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As explained in [2], by using specific π and ρ polynomials, it is possible to enforce a Galois
action of order n, at least for small values of n. This is still true with our unbalanced version.
Finally, for a given choice of f0 and the f1 following our construction, it is possible to find
other choices for f1 by adding to it a small multiple of f0. Since the coefficients of f0 are
smaller than those of f1, there are many choices that do not change the size properties, so
that we can select the f1 with the best other criteria, in particular its α value.

3.2.2. Sarkar–Singh constructions for Fp6 . We recall the Sarkar–Singh method, in a
slightly less general setting than in [28], since we always set r = k = n/d in Algorithm A
of that article; on the other hand, we do not insist on having monic polynomials. The method
is parameterized by a divisor d of n; for d = 1 we recover the GJL construction, and for
d = n the conjugation method (see [2] for the original description of the GJL and conjugation
methods). For n = 6, we have two additional cases, d = 2 and d = 3, to consider.

The construction works as follows. Let π and ρ be two polynomials with small integer
coefficients with π of degree d and ρ of degree at most d − 1. Then, we pick a polynomial
A of degree 1 + n/d with small integer coefficients, irreducible over Z, and that admits an
irreducible factor Φ of degree n/d modulo p. The polynomial f0 is then defined by f0(x) =
Resy(A(y), π(x)+yρ(x)); it is of degree n+d, and has small coefficients. If it is not irreducible
we restart the construction with other choices. The polynomial defining Fpn in this setting is
ϕ(x) = Resy(Φ(y), π(x) + yρ(x)) mod p, therefore, if it is not irreducible over Fp, we have to
start over with other choices. To construct f1, we first use a lattice basis reduction to compute
a polynomial Ψ over Fp proportional to Φ with coefficients represented by integers of sizes
approximately pn/(n+d). The polynomial f1 is then defined by f1 = Resy(Ψ(y), π(x)+yρ(x)); it
is of degree n and its coefficients have sizes about pn/(n+d), and again we check its irreducibility
over Z and repeat the whole procedure if it is not the case. In Table C.1 in Appendix C, we
summarize the sizes of the coefficients and the degree of f0 and f1 for the case n = 6.

Just as for the JLSV construction, it is possible to choose π and ρ in order to enforce a
common explicit Galois action for f0 and f1 of order d. A drawback of this method compared
to JLSV is that there is less room to optimize the α-value of the polynomials.

4. Special-q sieve in dimension 3

For finite fields of the form Fp6 of sizes that are within reach with current technology and
algorithms, it is difficult to predict which polynomial selection method is the best. We will
therefore rely on practical experiments, based on the runtime of a sieve implementation, to
decide and validate our criteria. In this setting, the optimal sieving dimension is 3. It might be 4
for small values of p, where it is unclear whether NFS is actually the best available algorithm;
and for a sufficiently large value of p, the best sieving dimension will eventually become 2,
but this will occur for sizes that are too large to run meaningful experiments. Therefore, we
concentrate on the three-dimensional sieving.

In the factor base, most of the ideals are of inertia degree 1, so we describe our sieving
procedure only for this case. In fact we consider a slightly more restrictive situation. From
§ 2.3 the vectors c = (x, y, z) that yield elements divisible by a factor base ideal r are those
whose coordinates satisfy a modular linear relation, and we assume that this relation is of the
form

x+By + Cz ≡ 0 mod r, (4.1)

where r is the norm of the ideal r, and B is non-zero. This avoid complications due to projective
roots (or generalizations thereof to dimension 3).

In order to obtain elements a = Mqc in the target sieving region S, and norms of controlled
sizes, we are interested in vectors c in the cuboid C of size I × J ×K. Our convention for the
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memory organization of this cuboid is z-major, and then y-major for each xy-plane (that is,
fixed-z-plane). Hence, for fixed values of y and z, the corresponding x-line contains cells that
are contiguous in memory. With this setting, for ideals of tiny norms r < I, it makes sense
to do line-sieving. When r becomes larger than I, the average number of hits per x-line is
less than 1, and line-sieving is suboptimal: Franke and Kleinjung’s plane-sieving is then more
appropriate. But then again, when r becomes larger than IJ , the average number of hits per
xy-plane is less than 1, and it is better to switch to a space-sieve strategy.

Line sieving is the most basic sieving strategy: after specializing all coordinates but one, this
becomes a one-dimensional sieve, and one can jump from one hit location to the other by just
adding r to the location index. For fixed y- and z-coordinates, finding the initial hit location
amounts to solving the linear equation (4.1) to get the smallest x solution within the given
range. We remark, furthermore, that solving this problem for (y + 1, z) after having solved it
for (y, z) costs essentially no more than one addition modulo r.

4.1. Plane sieve

The plane sieve is for sieving ideals whose norms r are of intermediate sizes. It works only for
r > I, and we assume this from now on. The general idea is to process all the xy-planes in
turn, by increasing values of z. For a given value of z, there are two problems to solve: first, we
need to find an initial hit location in the intersection of the given plane and the cuboid C; and
second, we need to adapt the Franke–Kleinjung (FK) algorithm in order to visit efficiently all
the other hit locations in the plane.

We denote by Λ the lattice corresponding to the vectors c that satisfy equation (4.1), or
equivalently corresponding to divisibility by the ideal r. For any z0, we denote by Λz0 the
intersection of Λ and the plane of equation z = z0. The set of points in Λ0 form a two-
dimensional lattice of volume r, and Λz0 is a translate of Λ0. The FK algorithm relies on a
particular basis for non-orthogonal two-dimensional lattices, adapted to the bound I on the
x-coordinate: in [10, Proposition 1] it is shown that there exists a unique basis {(α, β)T , (γ, δ)T }
of the lattice Λ0, called an FK basis, which can be efficiently computed using the extended
Euclidean algorithm, such that:
• β > 0 and γ > 0;
• −I < α 6 0 6 γ < I;
• γ − α > I.

Using this basis, the classical FK algorithm allows us to enumerate the elements of Λ0 whose
x-coordinate is within an interval of size I, by increasing value of y. The following proposition
shows that with a natural extension of the FK algorithm, it is possible to enumerate the
elements of Λz0 whose x-coordinate is within an interval of size I, by increasing and decreasing
values of y; finding an initial point with the smallest y-value is therefore not necessary.

Proposition 4. Let I > 0 be an integer and let Λ be a 3-dimensional lattice of volume
r > I. Let {(α, β)T , (γ, δ)T } be the FK basis of the intersection of Λ with the xy-plane. Let
A be an integer, and A = [A,A + I[ the corresponding interval of length I. Let z0 be a fixed
third coordinate for elements of Λ. Let c = (x0, y0, z0) be an element of Λz0 with x0 ∈ A. Then
the point of Λz0 , with an abscissa in A and with the smallest y-coordinate larger than y0 is
obtained by adding to c one of the following vectors:

(α, β, 0)T if x0 > A− α,
(γ, δ, 0)T if x0 < A+ I − γ,
(α, β, 0)T + (γ, δ, 0)T if A+ I − γ 6 x0 < A− α.

(4.2)
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Similarly, the point of Λz0 with an abscissa in A and with the largest y-coordinate smaller
than y0 is obtained by subtracting from c one of the following vectors:

(α, β, 0)T if x0 < A+ I + α,

(γ, δ, 0)T if x0 > A+ γ,

(α, β, 0)T + (γ, δ, 0)T if A+ I + α 6 x0 < A+ γ.

(4.3)

Proof. Let c = (x0, y0, z0) be an element of Λz0 with x0 ∈ A. Let c′ = (x′0, y
′
0, z0) be

the vector obtained by applying equation (4.2) to it, and c′′ = (x′′0 , y
′′
0 , z0) be the vector of

Λz0 ∩ (A× Z× {z0}) with the smallest y-coordinate that is larger than y0. We want to show
that c′′ is equal to c′. Let u ∈ Λ be defined by u = (0,−C/B mod r, 1), in the notation
of equation (4.1). Subtracting z0u from c, c′ and c′′, we obtain three vectors c, c′ and c′′ in
Λ0 while preserving their x-coordinates, and translating their y-coordinates by a constant. In
contrast to Λz0 , Λ0 is a lattice, therefore we are exactly in the context of the two-dimensional
FK algorithm, and by [10, Proposition 2], we must have c′ = c′′, and, adding back z0u, the
result follows. The second case is obtained by symmetry.

It remains to explain how to find a valid starting point for this variant of the FK algorithm.
Our strategy is to precompute a few lattice vectors with z-coordinate equal to 1, and other
coordinates as small as possible. Hence, from a point in Λz0 whose x- and y-coordinates
are within the target intervals of length I and J , adding such a vector will give a point in
Λz0+1 whose x- and y-coordinates are perhaps not in the target interval, but probably not
too far from it. In order to compute three small lattice vectors with z = 1, we proceed as
follows.

(1) Select a lattice vector v with z = 1, for instance the one given in the proof above.
(2) Find a reduced basis (e0, e1) of Λ0 using Gauss algorithm.
(3) Deduce the closest vector u0 of the orthogonal projection of v in Λ0.
(4) Add or subtract e0 and e1 to or from u0, to get three vectors (u0, u1, u2) of Λ0 that form

the smallest triangle containing the projection of v.
(5) return the three vectors v − ui for 0 6 i < 3.
Again, there is no guarantee that adding one of the small vectors with z = 1 will keep the

two other coordinates within the target intervals. If after having tried the three vectors we
do not find a starting point, then by adding or subtracting the vector of the FK basis with
the largest x-coordinate, it is possible to quickly get the x-coordinate back into the target
interval. Then, we apply the modified FK algorithm to enumerate the hit locations for the
current plane.

4.2. Space sieve

When the volume r of the lattice Λ becomes large compared to the area IJ of the intersection
of the sieving cuboid and the xy-plane, the plane sieve becomes inefficient, because in most of
the planes the modified FK algorithm will not find any hit location. In that case, we have to
find a way to jump quickly from one lattice point in the cuboid C to the one with the smallest
larger z-coordinate. This justifies the following definition.

Definition 5. Let A and B be two integral intervals of length I and J , respectively. Let
Λ be a lattice of volume r > IJ . A transition vector v is a vector of Λ for which there exists
a vector u of Λ in A × B × Z such that u + v is the vector of Λ belonging to A × B × Z and
which is the one with the smallest z-coordinate that is larger than the one of u.
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For simplicity, we first assume that there is no lattice vector in A × B × {0}, so that for a
given u, there is a unique transition vector associated to it.

An analogous notion of transition vector can be defined for two-dimensional sieving. The
first statement of Proposition 4 says that the two vectors of the FK basis and their sum
are the only transition vectors. Unfortunately, in three-dimensional sieving, the number
of transition vectors is much less controlled. We give some examples in Appendix D. Still, the
transition vectors have some simple properties that follow directly from their definition.

Lemma 6. With the notation of Definition 5, the following statements hold.
– For a given lattice vector, the associated transition vector depends only on its x- and
y-coordinates.

– The set of transition vectors depend only on Λ, and on the length I and J of the intervals
A and B, not on the intervals themselves.

– The x- and y-coordinates of a transition vector belong to ]−I, I[ and ]−J, J [ respectively.

We do not try to compute the complete set of transition vectors, but only a subset that covers
a large enough proportion of the I × J area. In fact, we do not even insist on proving that we
really have transition vectors: we accept the fact that in some not-too-frequent cases we will
use a vector that makes us jump too far in the z-coordinate, thus missing a hit location. The
general idea is that this step is in a very critical loop of the algorithm, and we cannot afford to
spend too much time in it. Therefore, it is better to miss a few relations if the general rate of
relations found per second is higher than with an algorithm that would try to be exhaustive.

We resort to a heuristic but simple and efficient method to find candidate transition vectors:
with a weighted LLL algorithm, we find a reduced basis of Λ, targeting vectors with x- and
y-coordinates with sizes about I and J , respectively (and then the target for the z-coordinate
is about r/IJ). Then we compute a few small linear combinations of the vectors of this reduced
basis, and keep the list of the half-dozen vectors with the smallest z-coordinates and x- and
y-coordinates of absolute value bounded by I and J , respectively. There are certainly highly
unbalanced lattices for which this method will fail, but we observed that in practice for most
of the ideals it produces a list of transition vectors that covers a large xy-area.

After computing this list L of candidate transition vectors, our space-sieve algorithm
proceeds as follows. Let v be the current hit location which we initialize with the zero vector
(assuming 0 belongs to the intervals A and B). To get the next hit location, we try to add, in
turn, the elements of L, until this addition produces a vector in A×B×Z. We test the vectors
of L in increasing order of their z-coordinates. If no appropriate vector is found after trying all
vectors of L, we fall back on a plane sieve strategy: we use vectors with z = 1 to go up by one
plane, and if there is no hit in this plane, we continue until one is found. This slower process
yields a new transition vector that is added to L before resuming with the space sieve.

In this description, we have assumed that there were no lattice vector with z = 0, |x| < I
and |y| < J , which is certainly true in general provided that r is large enough, but we cannot
exclude it from occurring, especially when r is just marginally larger than IJ . It is not too
difficult to handle those ideals that can hit several times in some planes: before trying to apply
transition vectors, one must check whether the vectors with z = 0 can yield hits, and if so,
transition vectors can be tried on all these hits. Pseudo-code following these ideas can be found
in the Appendix (Algorithm 3). Experiments in the next section confirm that using the space
sieve is indeed faster than the plane sieve for large ideals (see also Appendix F).

Remark 7. In a recent preprint [17], another three-dimensional version of the FK algorithm
is proposed. Although we did not manage to fully reproduce the work in this preprint, the
strategy it follows is not to precompute a set of transition vectors, but to try to compute them
on the fly at each step, using a well-reduced basis (when it exists).

https://doi.org/10.1112/S1461157016000164 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000164


collecting relations for the nfs in Fp6 343

5. Experimental results

The experiments in this section have been done with our C implementation of the
three-dimensional sieving that we made available as a branch called hd in the CADO-NFS
official repository [31] (done with commit 0ae01d0...). In the file README.nfs-hd, instructions
are given on how to reproduce all our experiments. The polynomial selection based on the
criteria and constructions that we explained in § 3 was carried out by Aurore Guillevic who has
developed strategies to speed up the exhaustive search that she will describe in an independent
article in which Fp6 will be just one example among many others. All the running times are
given after normalization for a single core at 2 GHz.

5.1. Experiments with the example of the literature

Our first experiment follows the two previous computations made by Zajac [32] and
Hayasaka et al. [17] for a 40-bit prime p = 1081034284409. They used different sieving
algorithms but the same polynomial pair, the same smoothness bounds and the same sieving
region for the polynomials a. With these parameters, the Murphy E value computed with our
description is about 2−24.5 with Zajac’s parameters and 2−21.6 for Hayasaka’s parameters. The
difference between the two is due to the special-q sieve.

We selected our own polynomials. In this small field, the best polynomial selection appears
to be the asymmetric JLSV method with the explicit Galois action of order 6 given by x 7→
−(2x+ 1)/(x− 1). We chose f0 = x6 + 91354x5 + 228370x4 − 20x3 − 228385x2 − 91348x+ 1
and f1 = 23667000x6 +6549182x5−338632045x4−473340000x3−16372955x2 +135452818x+
23667000. We selected the smoothness bounds and the sieving region in order to reduce the
total sieving time. The sizes of norms are about 115 bits on the f0-side and 117 bits on the
f1-side, after subtracting the contribution of the special-q. We sieved all the prime ideals r of
inertia degree 1 less than 219. The thresholds are set to 265. We obtained 1312416 raw relations
with 12.3% duplicates. These results are summarized in Table 1.

Table 1. Experiments on sieving in Fp6 with p = 1081034284409.

Zajac [32] Hayasaka et al. [17] Our work

Special-q sieve No Yes Yes

Enumeration algorithm Line sieve
Line sieve and FK Line, plane and

method in 3D space sieves

Sieving region (global or per q) 219 × 214 × 1149 28 × 28 × 26 27 × 27 × 26

Smoothness bounds 222.64, 222.64 222.64, 222.64 223, 223

α values 1.7, 0 1.7, 0 −1.8, −11.5

Murphy E 2−24.5 2−21.6 2−20.1

Number of special-qs — 217.77 214.44

Order of the Galois action — — 6

Number of relations 1077 984 937 575 1151 099

Number of needed relations 854 833 893 773 1128 604

Timing (days) 24.13 21.94 0.90

5.2. Experiments with a 300-bit finite field

In order to compare the polynomial selections described in § 3, we chose a new Fp6 field
with a 50-bit prime p = 1043035802846857. For this experiment, we worked with a reduced
range of about 10 000 special-qs up to 220.5. Our tests were done with a sieving region of size
28 × 28 × 27 and two smoothness bounds equal to 225. The polynomials we used can be found
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in Appendix G. The results are summarized in Table 2. We were able to select the best suitable
polynomials in order to find a complete set of relations. The numbers of relations per special-q
are given without the use of the Galois action; therefore to get a fair comparison the entries
of the last two lines of Table 2 should be multiplied together.

For the full sieving computation, we kept the sieving region and the smoothness bounds
of the experiments and used the polynomials given by the asymmetric JLSV polynomial
selection. They are f0 = x6 − 867578x5 − 2168960x4 − 20x3 + 2168945x2 + 867584x + 1 and
f1 = 2404471680x6 + 4874502674x5 − 23880818515x4 − 48089433600x3 − 12186256685x2 +
9552327406x+ 2404471680, with the same Galois action as for the smaller example. The 214.7

special-qs are set on the f1-side. The sieving bounds equal to 220.5 and the thresholds were set
to 280. We obtained 4 637 772 raw relations that gave 4 231 562 unique relations after duplicate
removal; there are 4 129 438 ideals in the factor bases. The relation collection time is 6.84 days.

Table 2. Experiments on sieving with p = 1043035802846857.

Asym. JLSV Conjugation Sarkar–Singh (8, 6) Sarkar–Singh (9, 6)

α values −12, −4.9 −0.8, −6.4 1.2, −4.6 1.9, −6.5
Murphy E 2−19.0 2−27.3 2−22.5 2−23.0

Special-q side 1 0 1 1
Size of norms 2128, 2139 2251, 2148 2153, 2143 2186, 2144

Galois action 6 6 2 3
Rels per q 25.7 0.2 1.2 0.9

5.3. Computation for a 389-bit finite field

We selected a 65-bit prime p = 31415926535897942161. For this computation, the asymmetric
JLSV polynomial selection with the same Galois action of order 6 seems to give anew
the best polynomials in terms of Murphy E value. The polynomials are f0 = x6 −
218117072x5−545292695x4−20x3+545292680x2+218117078x+1 and f1 = 288064804440x6+
1381090484642x5−868245854995x4−5761296088800x3−3452726211605x2+347298341998x+
288064804440. We selected the sieving region to be 210× 210× 28 and two smoothness bounds
equal to 228. The 218.7 special-qs are set on the f1 side and the average values of the norms
are 2160 on the f0-side and 2173 on the f1-side. The sieving bounds are equal to 221 and the
thresholds are set to 290. The relation collection required 790 days to find 29 428 326 unique
relations after the removal of less than 20.3% duplicates; this is greater than the 29 261 526
ideals in the factor bases. This computation was done with commit 4470e1....

6. Conclusion

In this article we have investigated at length different strategies to improve the relation
productivity of the sieving step in the NFS in dimension 3 targeted for a discrete logarithm
computation in Fp6 . This involved adapting and comparing different polynomial selection
methods taking into account a special-q sieve and a Galois action especially for dimension
3. We ran experiments on several real computations to compare with existing records and set
new reference timings. Most notably, we ran a relation collection for a 50-bit p in about 7
normalized CPU days and a 65-bit p in about 790 CPU days. Our implementation is publicly
available as part of CADO-NFS.

In the near future, we plan to run a full discrete logarithm computation in Fp6 that includes
the linear algebra and individual logarithm steps for a size as large as possible with our
computing resources. It is possible that including some of the ideas of [17] would speed up our
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implementation. Further work also includes studying the practical aspects of the tower NFS
variants [4, 21]; this would imply sieving in dimension at least 4.

Appendix A. Computing the average `-adic valuation

In the case of two-dimensional sieving, the average `-adic valuation can be computed with the
small recursive lifting function given as Algorithm 1. This is what is done, for instance, in the
CADO-NFS implementation. This is admittedly much simpler and faster that running a full
factorization of f over the `-adics, which is advantageous when many polynomials have to be
tested.

The equivalent for three-dimensional sieving is not as simple, but can still be faster in
many cases than a full `-adic factorization. Let us give first the modifications to be made for
computing the contribution of irreducible factors of degree 2 modulo `. The normalization
factor C must be changed to `2/(`2 + ` + 1). Then all the computations must no longer be
done over the integers, but over the unramified extension Q`2 of Q` of degree 2. Only the roots
genuinely over this extension are considered in the for loop, but their computation is still
done modulo `: in step 4, we are now doing polynomial factorization over F`2 . Finally, in step
6, the contribution to add is 1/(`2 − 1), and in step 8, the result of the recursive call must be
multiplied by C/`2 instead of C/`. We obtain Algorithm 2.

We emphasize that this algorithm returns the correct answer, even in the case where the
degree-2 factor is a multiple factor of f modulo `; knowing the nature of the `-adic factorization
above this multiple factor is not required.

The case of a multiple factor of degree 1 is less straightforward, because the contribution
to the average valuation will not be the same for a split, inert or ramified factor above this
root. Still, in most cases, and in particular when the root is only a double root, it is possible
to adapt Algorithm 1 and get the correct answer. We skip the details; the corresponding code
is given in the hd branch of the CADO-NFS repository.

Algorithm 1: av val dim2

Average `-adic valuation, 2-dim. case.

input : A polynomial f ; a prime `.
output: The average `-adic valuation of

Resx(f(x), a− bx).
1 v ← `-valuation of the content of f .
2 f ← f/`v .
3 C ← `/(`+ 1); v ← Cv.
4 for r in Roots(f) modulo ` do
5 if r is a simple root then
6 v ← v + C/(`− 1).
7 else

8 v ← v + C
`

av val dim2(f(r + `x), `).

9 end

10 end
11 return v.

Algorithm 2: av val dim3 deg2

Average `-adic valuation, 3-dim. case;

Contribution of irreducible factors of deg 2.

input : A polynomial f over Q`2 ; a prime `.
output: The contribution to the average `-adic

valuation of Resx(f(x), ax2 + bx+ c), coming
from irreducible factors of degree 2 mod `.

1 v ← Minimum `-valuation of the coefficients of f .
2 f ← f/`v .

3 C ← `2/(`2 + `+ 1); v ← Cv.
4 for r in Roots(f) modulo ` do
5 At top-level of recursion, if r is in Q`, skip it.
6 if r is a simple root then
7 v ← v + C/(`2 − 1).
8 else

9 v ← v + C
`2

av val dim3 deg2(f(r + `x), `).

10 end

11 end
12 return v.

Appendix B. Real and complex roots: shape of the isonorms

In the classical two-dimensional NFS, having many real roots in f0 and f1 tends to increase the
Murphy E value. This can be explained by the fact that when we sieve a degree-1 polynomial
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(a)

(c) (d)

(b)

Figure B.1. Isonorms for polynomials of degree 6 with (a) 0, (b) 2, (c) 4 and (d) 6 real roots. The
red planes correspond to real roots and the green lines to complex roots.

whose (rational) root is a good approximation of a root of f , then the corresponding norm
will be small. In the case of three-dimensional sieving, complex roots have to be taken into
account as well.

Let f be a polynomial to be used in the NFS. A first-order estimate of the sizes of the
norms would imply that the surface of points corresponding to polynomials a(x) of degree 2
that yield a norm of a given size is a sphere (or an ellipsoid if there is skewness). A real
root in f will correspond to a plane in the direction of which the isonorm sphere is deformed
with a bump. Since we are now sieving polynomials of degree 2, they can also approximate
complex roots (or irreducible real factors of degree 2). The isonorm sphere is therefore also
stretched in the direction of the lines corresponding to polynomials close to irreducible factors
of degree 2.

Figure B.1 illustrates how the sphere is modified in the directions corresponding to real and
complex roots of f . This clearly shows that the spherical approximation is not accurate enough
and justifies use of the more precise Murphy E estimate. For Figure B.1 we used the following
polynomials:

– with no real root, 1456x6 − 170x5 + 15810x4 − 20x3 − 1825x2 + 2676x+ 1774;
– with 2 real roots, 1456x6 + 6330x5 + 15810x4 − 20x3 − 15825x2 − 6324x+ 1771;
– with 4 real roots, 1067x6 + 3757x5 + 4277x4 + 3637x3 − 1789x2 − 4876x+ 603;
– with 6 real roots, 3267x6 + 3251x5 − 16174x4 − 12508x3 + 11988x2 + 2084x− 531.
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Appendix C. Sarkar–Singh polynomial selections

For the various choices of d in the case n = 6, we report the sizes of the coefficients and the
degrees of the two polynomials f0 and f1 according to Algorithm A of [28].

Table C.1. Sizes and degrees of polynomials with the Sarkar–Singh constructions for Fp6 .

d = 1 (GJL) d = 2 d = 3 d = 6 (conjugation)

‖f0‖∞ Small Small Small Small

deg f0 7 8 9 12

‖f1‖∞ p6/7 p3/4 p2/3 p1/2

deg f1 6 6 6 6

Galois None 2 3 6

Appendix D. Transitions vectors for the space sieve algorithm

The space sieve algorithm relies heavily on the notion of transition vectors, but the number of
them is not easily controlled. From Lemma 6, for a given lattice we can define the transition
vector associated to a point in the I × J plane. In Figure D.1 a different color is associated to
each transition vector. The example on the right is highly degenerate, in the sense that there
are many different transition vectors; however, in this example, most of the area is covered by
the vector with the smallest z-coordinate.

Figure D.1. Three examples of how transition vectors cover the I × J plane. Each color corresponds
to a transition vector; below each picture, the colors are listed in increasing order of the z-coordinate
of the corresponding vector.

Appendix E. Full space sieve algorithm

We describe in Algorithm 3 a complete space sieve algorithm that works even if vectors with
z-coordinates equal to 0 are found during the weighted LLL or the small combination processes.
In this algorithm, L is a list that stores all the point we enumerate, Lz=0 contains vectors with
coordinates in ]−I, I[× ]−J, J [× {0} and Lz 6=0 the transition vectors.
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Algorithm 3: Space sieve
input : a lattice Λ and the target cuboid of size I × J ×K.
output: list of visited points.
L← ∅. Lz=0 ← ∅. Lz 6=0 ← ∅.
// Compute candidate transition vectors.

MSLR ← weighted LLL on Λ, with non-negative z-coordinate.

Lz ← linear combinations of the elements of MSLR.
Split Lz into Lz=0 ∪ Lz 6=0 according to the z-coordinate of elements being zero or not.
Keep only the smallest non-collinear vectors of Lz=0 if they exist.
Sort Lz 6=0 by increasing z-coordinate.
// Main enumeration loop.

s← (0, 0, 0)T .
while the z-coordinate of s is smaller than K do

// Find elements in the plane of the z-coordinate of s.
Lc ← {s}.
for v ∈ Lz=0 do

Add to Lc all the points in the intersection of the line s+ λv and the cuboid, λ ∈ Z.
end
// Find smallest next location.

st ← (0, 0,K)T .
for sn ∈ Lc do

for v ∈ Lz 6=0 do
if v + sn is in the sieving region and (v + sn)[2] < st[2] then

st ← v + sn.
end

end

end
// Use plane sieve as a fallback.

if st was not updated then
st ← call the plane sieve with Lc[0] as a starting point and stop when an element is found.
Insert st − s in Lz 6=0, keeping the list sorted.

end
s← st.

end
return L

Appendix F. Comparison between sieves in the space sieve zone

We first tried to use an enumeration algorithm following Algorithm 10 of [15]; the space
sieve turned out to be about 120 times faster than our implementation of this enumeration
algorithm.

We also compared the efficiency of the space sieve and the plane sieve. We sampled 1600
special-qs among those that we used during the computation detailed in § 5.2 and sieved about
216.7 ideals of norm larger than IJ on each side. On average for each side, the plane sieve
takes 5.23 s in a single core at 3.20 GHz, against 1.60 s for the space sieve. This gives a 3.25
accelerating factor by using the space sieve instead of the plane sieve.

Appendix G. Different polynomial selections for the field Fp6 with a 50-bit p

We report here the three different pairs of polynomials we used to build Table 2:
– Conjugation:
• f0 = x12+12x11+40x10−20x9−245x8−200x7+344x6+592x5+250x4−20x3−26x2+1;
• f1 = 31943784x6 + 201177002x5 + 23785745x4 − 638875680x3 − 502942505x2 − 9514298x

+ 31943784.
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– Sarkar–Singh with d = 2, yielding degrees (8, 6):
• f0 = 2x8 − 2x7 + 6x6 − 4x5 + 9x4 − 4x3 + 6x2 − 2x+ 2;
• f1 = 13305451020x6+13068452527x5−122274520263x4+74260869388x3−122274520263x2

+ 13068452527x+ 13305451020.
– Sarkar–Singh with d = 3, yielding degrees (9, 6):
• f0 = x9 + 2x8 − 5x7 − 9x6 + 13x5 + 24x4 − 2x3 − 15x2 − 7x− 1;
• f1 = 10266423024x6− 6028238612x5− 67420797690x4− 2036172080x3 + 116716740730x2

+ 67626776756x+ 10266423024.
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Université de Lorraine, Nancy
France

pierrick.gaudry@loria.fr

Laurent Grémy
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Université de Lorraine, Nancy
France

marion.videau@loria.fr

https://doi.org/10.1112/S1461157016000164 Published online by Cambridge University Press

http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
https://doi.org/10.1112/S1461157016000164

	1 Introduction
	2 Background on the special-q sieve, and notation
	2.1 The number field sieve
	2.2 Using special-qs
	2.3 Sieving in the special-q lattice

	3 Polynomial selections
	3.1 Quality criteria
	3.1.1 Size properties
	3.1.2 Local properties
	3.1.3 A three-dimensional Murphy E
	3.1.4 Explicit Galois action

	3.2 Several strategies
	3.2.1 Adapting the JLSV strategy to special-q sieving
	3.2.2 Sarkar–Singh constructions for Fp6


	4 Special-q sieve in dimension 3
	4.1 Plane sieve
	4.2 Space sieve

	5 Experimental results
	5.1 Experiments with the example of the literature
	5.2 Experiments with a 300-bit finite field
	5.3 Computation for a 389-bit finite field

	6 Conclusion
	Appendix A Computing the average l-adic valuation
	Appendix B Real and complex roots: shape of the isonorms
	Appendix C Sarkar–Singh polynomial selections
	Appendix D Transitions vectors for the space sieve algorithm
	Appendix E Full space sieve algorithm
	Appendix F Comparison between sieves in the space sieve zone
	Appendix G Different polynomial selections for the field Fp6 with a 50-bit p
	References

