
Appendix C

Holographic renormalization, one-point functions,
and a two-point function

Here we will illustrate the general prescription of Section 5.3.1 for computing
Euclidean correlators. We will begin by giving a derivation of the general expres-
sion (5.47) for a one-point function to linear order in the external source, although
we note that Eq. (5.47) is in fact valid at the nonlinear level [538], as follows from
a generalization of the discussion that we shall present. Then, we will calculate
the two-point function of a scalar operator O(x) in N = 4 SYM at zero tem-
perature. In so doing we will provide a derivation of the more general expression
(5.55) for a two-point function and then evaluate it explicitly for this particular
case. Although our main interest is in four-dimensional boundary theories, for the
sake of generality we will present the formulas for a general dimension d.

Let � be the scalar field in AdS dual to O. The Euclidean two-point function
of O is then given by the right-hand side of Eq. (5.43) with n = 2. In order to
evaluate this, we first need to solve the classical equation of motion for � subject
to the boundary condition (5.29), and then evaluate the action on that solution.
Since in order to obtain the two-point function we only need to take two functional
derivatives of the action, it suffices to keep only the terms in the action that are
quadratic in �, ignoring all interaction terms. At this level, the action is given by
Eq. (5.20), except without the minus sign inside

√−g, as appropriate for Euclidean
signature:

S = −1

2

∫
dz dd x

√
g
[
gM N∂M�∂N� + m2�2

] + · · · . (C.1)

Note that we have adopted an overall sign convention for the Euclidean action
appropriate for (5.41). The metric is that of pure Euclidean AdS and takes the form

ds2 = R2

z2

(
dz2 + δμνdxμdxν

)
. (C.2)

We will work in momentum space along the boundary directions. The equation
of motion for �(z, k) then takes the form (5.22), which we reproduce here for
convenience:
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zd+1∂z
(
z1−d∂zφ

) − k2z2� − m2 R2� = 0 , (C.3)

with k2 = δμνkμkν as appropriate in Euclidean signature.
Integration by parts shows that, when evaluated on a solution �c, S reduces to

the boundary term

S[�c] = −1

2
lim
ε→0

∫
z=ε

ddk

(2π)d
�c(−k)�c(k) , (C.4)

where �c is the canonical momentum associated with the z-foliation,

� = −√−g gzz∂z�, (C.5)

evaluated at the solution �c. Since z = 0 is a regular singular point of Eq. (C.3), it
is possible to choose a basis for �1,2 given by

�1 → R
1−d

2 zd−�, �2 → R
1−d

2 z�, as z → 0 , (C.6)

with the corresponding canonical momenta �1,2(z, k) behaving as

�1 → − (d − �) R
d−1

2 z−�, �2 → −�R
d−1

2 z−(d−�), as z → 0 , (C.7)

where

� = d

2
+ ν, ν =

√
d2

4
+ m2 R2 . (C.8)

Note that in (C.6) and (C.7) we only indicated the leading terms in a power series
expansion in kz for each function. For example,

�1(z, k) = R
1−d

2 zd−�
(
1 + a2(kz)2 + a4(kz)4 + · · ·) (C.9)

for some constants a2,4. Because all the terms in Eq. (C.3) are analytic in k2, all the
expansions are also analytic in k2. This will be important in demonstrating that the
counterterm action that we shall introduce below is local.

Then �c and its canonical momentum can be expanded as

�c(z, k) = A(k)�1(z, k) + B(k)�2(z, k) ,

�c(z, k) = A(k)�1(z, k) + B(k)�2(z, k) , (C.10)

as in (5.23), and the classical on-shell action becomes

S[�c] = −1

2
lim
ε→0

∫
z=ε

ddk

(2π)d

[(A(−k)A(k)�1(−k)�1(k) + B(−k)B(k)�2(−k)�2(k)

+ A(−k)B(k)(�1(−k)�2(k) + �1(−k)�2(k))] . (C.11)

Note that because ν > 0, in the ε → 0 limit the first term on the right-hand
side of (C.11) contains divergences and thus S requires renormalization. These
divergences can be interpreted as dual to UV divergences of the boundary gauge
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theory. A local counterterm action Sct defined on the cut-off surface z = ε can be
introduced to cancel the divergences. From (C.11) we need to choose 1

Sct = 1

2

∫
z=ε

ddk

(2π)d

�1(−k)

�1(−k)
�(−k)�(k) . (C.12)

Below we will show that this is a local action for sources in the boundary theory.
The renormalized on-shell action is then given by

S(ren)[�c] ≡ S[�c] + Sct [�c] = 1

2

∫
ddk

(2π)d
2ν A(−k)B(k) , (C.13)

where we have dropped terms which vanish in the ε → 0 limit; the action is now
finite.

We now impose the (Euclidean momentum space version of the) boundary
condition (5.29) on �c. We can use (C.10) or (C.9) to write this boundary
condition as

�c(ε, k) → �1(ε, k)φ(k) as ε → 0 , (C.14)

which from equation (C.10) gives

A(k) = φ(k) + terms that vanish as ε → 0 . (C.15)

Note that the boundary condition as written in (C.14) contains a factor R
1−d

2 (com-
ing from the definition of �1 in (C.6)) that is not written in (5.29). This factor
ensures that φ(k) has the correct engineering dimension for a source coupled to an
operator of dimension �. Consequently, there are no R factors in equations below.

We also need to impose the condition that �c be regular everywhere in the inte-
rior. This extra condition then fixes the solution of (C.3) completely, which in turn
determines the ratio χ ≡ B/A in terms of which B = χφ. The renormalized action
can now be written as

S(ren)[�c] = 1

2

∫
ddk

(2π)d
2ν χφ(−k)φ(k) . (C.16)

It follows that the one-point function is given by

〈O(k)〉φ = δS(ren)[�c]
δφ(−k)

= 2νχφ(k) = 2νB(k) , (C.17)

which is the momentum space version of (5.47). The two-point function is then

G E(k) = 〈O(k)〉φ
φ(k)

= 2ν
B(k)

A(k)
, (C.18)

which is Eq. (5.55).

1 We assume that 2ν is not an integer. If 2ν were an integer, then extra logarithmic terms would arise. See the
discussion in Ref. [742].
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Let us now verify explicitly that (C.12) is a local action in terms of the boundary
source φ. Substituting (C.14) into (C.12) we find that

Sct = 1

2

∫
z=ε

ddk

(2π)d
�1(−k)�1(−k) φ(−k)φ(k)

= 1

2

∫
z=ε

ddk

(2π)d
εd−2� ((� − d) + · · ·) φ(−k)φ(k), (C.19)

where the · · · in the second line denotes terms of O(ε2) and higher. As we noted
below (C.9), all the k-dependence in �1 and �1 is analytic in k2, which implies
that all the k-dependence in the terms represented by · · · is also analytic in k2. So,
after doing the Fourier transform to coordinate space, (C.19) is a local action for
the boundary source φ.

Note that the entire discussion above only uses the form of Eq. (C.3) near z = 0
and thus applies to any geometry that is asymptotically AdS. In the case where the
boundary theory is N = 4 SYM theory at zero temperature, the bulk geometry is
pure AdS and we can evaluate (C.18) explicitly. We begin by noting that, for pure
AdS, Eq. (C.3) can in fact be solved exactly, with �1,2 given by

�1 = �(1 − ν)

(
k

2

)ν

R
1−d

2 z
d
2 I−ν(kz) , �2 = �(1 + ν)

(
k

2

)−ν

R
1−d

2 z
d
2 Iν(kz) ,

(C.20)
where I (x) is the modified Bessel function of the first kind. Requiring �c to be
regular at z → ∞ determines the solution up to an overall multiplicative constant:

�c ∝ z
d
2 Kν(kz) , (C.21)

where Kν(x) is the modified Bessel function of the second kind. From (C.10),
(C.20) and (C.21) we then find that

B

A
= �(−ν)

�(ν)

(
k

2

)2ν

(C.22)

and thus

G E(k) = 2ν
�(−ν)

�(ν)

(
k

2

)2ν

. (C.23)
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