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On the 2-Rank of the Hilbert Kernel
of Number Fields

Ross Griffiths and Mikaël Lescop

Abstract. Let E/F be a quadratic extension of number fields. In this paper, we show that the genus

formula for Hilbert kernels, proved by M. Kolster and A. Movahhedi, gives the 2-rank of the Hilbert

kernel of E provided that the 2-primary Hilbert kernel of F is trivial. However, since the original genus

formula is not explicit enough in a very particular case, we first develop a refinement of this formula in

order to employ it in the calculation of the 2-rank of E whenever F is totally real with trivial 2-primary

Hilbert kernel. Finally, we apply our results to quadratic, bi-quadratic, and tri-quadratic fields which

include a complete 2-rank formula for the family of fields Q(
√

2,
√
δ) where δ is a squarefree integer.

Introduction

Let F be a number field with ring of integers oF. Let Fv denote the local field at a finite

or real infinite prime v. For K a number field or a local field, let µ(K) be the group

of roots of unity of K and, for a finite group A, denote by |A| its cardinality, by A(2)

its 2-primary part, and by rk2(A) its 2-rank. Furthermore, let K2 be the functor of

Milnor [Mi]. In other words

K2(F) = F∗ ⊗
Z

F∗/〈x ⊗ (1 − x); x 6= 0, 1〉,

and denote by {a, b}F the class of the element a ⊗ b in K2(F).

To begin with, let us recall briefly the definition of the m-th Hilbert symbol on a

local field K containing the group µm of m-th roots of unity (for more details, see

[N]). If L is a finite extension of K , then there is an isomorphism

rL/K : Gal(L/K)ab ∼−→ K∗/NL/K L∗

given by the reciprocity map of local class field theory. Here NL/K is the norm map of

L/K and Gal(L/K)ab denotes the maximal abelian factor group of the Galois group of

L/K , i.e., Gal(L/K) divided by its commutator subgroup. By inverting rL/K , we obtain

the local norm residue symbol ( · , L/K) : K∗ → Gal(L/K)ab with kernel NL/K L∗.

For an element b ∈ K∗, the field Kb := K(
m
√

b) is a Kummer extension (hence

abelian) and so (a,Kb/K) ∈ Gal(Kb/K) for a ∈ K∗. The m-th Hilbert symbol

(a, b)K,m is defined to be the m-th root of unity satisfying

(a,Kb/K)(
m
√

b) = (a, b)K,m
m
√

b.
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(Note that this definition is independent of the choice of
m
√

b.)

Let ϕ = (ϕv) denote the homomorphism K2(F) → ⊕
v µ(Fv), given by the

|µ(Fv)|-th Hilbert symbol at all finite or real infinite primes v.

Let ψ :
⊕

v µ(Fv) → µ(F) be defined by ψ({ζv}) =

∏
v ζ

|µ(Fv )|
|µ(F)|

v . By definition

the Hilbert kernel or wild kernel W K2(F) of F is the kernel of ϕ, and by Moore’s

reciprocity law [CW] we obtain an exact sequence

0 −→ W K2(F) −→ K2(F)
ϕ−→ ⊕

v

µ(Fv)
ψ−→ µ(F) −→ 0,

where v runs through all the finite and real infinite primes of F.

We also have the tame symbol 〈a, b〉v determined for a, b ∈ F∗ and v a prime

of F as the unique element in the multiplicative group of the residue field kv which

modulo the maximal ideal is congruent to

(−1)ordv(a) ordv(b) aordv(b)

bordv(a)
.

For all finite primes v of F, the tame symbols define a homomorphism K2(F) →⊕
v k∗v whose kernel is actually the K-group K2(oF). This kernel is also known as the

tame kernel of F.

H. Garland proved [Ga] that the tame kernel K2(oF) is a finite abelian group and

thus the same is true of the Hilbert kernel as a subgroup. In this paper, we compute

the 2-rank of the Hilbert kernel for certain number fields, generalizing the formula

given by J. Browkin and A. Schinzel (see [BS, Theorem 2, p. 107; Theorem 4, p.

111]) for any quadratic field Q(
√

d) where d ∈ Z is a square-free integer. Note

that J.-F. Jaulent and F. Soriano-Gafiuk [JSG] found another method to compute the

2-rank of the Hilbert kernel of quadratic fields, considering the so-called 2-group of

positive logarithmic classes.

Here is the general plan of our paper. Let E/F be a quadratic extension of number

fields. Our work relies on a genus formula for Hilbert kernels given by [KM] and

presented in Section 1.1. Recall that this genus formula for Hilbert kernels is the

analogue of the well-known genus formula for ideal class groups proved by Chevalley.

We show in Section 1.2 that the genus formula gives the 2-rank of the Hilbert kernel

of E provided that the 2-part of the Hilbert kernel of F is trivial. Our first main result,

where the formulas to compute the 2-rank are given, is Theorem 1.5. However, since

the original genus formula of [KM] is not explicit enough in a very particular case,

called case (∗) in the sequel, we prove in Section 1.3 a refinement of this formula in

order to compute the 2-rank of E in general when it is only assumed that F is a totally

real number field with trivial 2-primary Hilbert kernel. Note that this refinement

is slightly different from the one proposed in [L2]. Finally Section 2 is devoted to

applying our results to quadratic, bi-quadratic and tri-quadratic fields [Gr2].

1 Genus Formula and 2-Rank for Hilbert Kernels

In this section we deal with a quadratic extension E/F of number fields with Galois

group G. Let F∞ be the cyclotomic Z2-extension of F.
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1.1 The Genus Formula for Hilbert Kernels

Let NE/F denote the norm map of the extension E/F and denote by DF the Tate kernel

of F: by definition, DF = {x ∈ F∗/ {−1, x}F = 1 ∈ K2(F)}. Clearly F∗2 ⊂ DF,

and we define D̃F := DF/F∗2. We recall (see [T]) that [DF : (F∗)2] = 21+r2 where

r2 is the number of pairs of complex embeddings of F, in such a way as to have

[F : Q] = r1 + 2r2 with r1 real embeddings of F. Thus, when F is totally real, the

group D̃F is cyclic of order 2 and in this case we define αF ∈ DF such that its class

modulo F∗2 is a generator of D̃F. In this case, αF has an explicit description.

Lemma 1.1 Let F be a totally real extension of Q and ζ2n be a primitive 2n-th root of

unity. Define for n > 2: αn = 2 + ζ2n + ζ−1
2n . Let n be maximal with αn ∈ F. Then we

can take αF = αn.

Proof First of all, note that αn is not a square in F∗ since this would contradict the

maximality of n. Indeed we have αn = (αn+1 − 2)2.

Let L := F(
√
−1) = F(ζ2n ). Then αn = (1 + ζ2n )(1 + ζ−1

2n ) = NL/F(1 + ζ2n ). Thus,

using the transfer map TrL/F : K2(L) → K2(F), we get

{−1, αn}F = TrL/F{−1, 1 + ζ2n}L = 1.

The last statement follows from the fact that for n > 2,

{−1, 1 + ζ2n}L = {(−ζ2n )2n−1

, 1 + ζ2n}L = {−ζ2n , 1 + ζ2n}2n−1

L = 1,

since {x, 1− x}L is trivial in K2(L) for any x 6= 1 in L∗. Thus αn ∈ DF (and is a norm

from DL) and we get the result.

We have as a consequence of Lemma 1.1 that if F is a totally real multi-quadratic

extension of Q , then αF = 2 if
√

2 /∈ F, and αF = 2 +
√

2 otherwise.

Let TE/F denote the set of primes of F consisting of those which are tamely ramified

in E and dyadic primes v of F, undecomposed in E, for which either µ(Ew)(2) =

µ(Fv)(2), or Ew is not contained in the cyclotomic Z2-extension of Fv, where w is the

prime above v in E. Actually, the set TE/F consists of all non-complex primes v of

F for which the map jv : µ(Fv)(2) → (
⊕

w|v µ(Ew)(2))G is not an isomorphism (see

[KM, p. 116]). Recall that jv is defined by jv(ζFv
) = (NEw/Fv

(ζEw
))w|v where ζEw

is a

generator of µ(Ew)(2) and

ζFv
:= ζ

|µ(Ew )(2)|
|µ(Fv )(2)|

Ew

is a generator of µ(Fv)(2).

We are now able to state the Genus Formula originally proved by M. Kolster and

A. Movahhedi [KM, p. 123].

Proposition 1.2 (Genus Formula) Let E/F be a quadratic extension of number fields

with Galois group G. Then

(a) If E ⊂ F∞ and if |µ(E)(2)| > |µ(F)(2)|, then W K2(E)(2)G
∼
= W K2(F)(2).
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(b) If either a real infinite prime of F ramifies in E, or µ(Fv)(2) = µ(F)(2) for a certain

prime v ∈ TE/F , then

|W K2(E)(2)G|
|W K2(F)(2)| =

2|TE/F|−rE/F−1

[DF :DF ∩ NE/F(E∗)]
,

where rE/F is a non-negative integer which equals 0 if F is totally real.

(c) In all other cases,

|W K2(E)(2)G|
|W K2(F)(2)| =

2|TE/F|−ρ

[DF :DF ∩ NE/F(E∗)]
,

with ρ = 0 or ρ = 1.

The integer ρ, sometimes denoted ρE/F , is defined in the following way (see also

[KM] and [L1]). Consider the following commutative diagram where the top two

rows are exact:

0 // W K2(F)(2)

i

��

// K2(oS
F)(2)

��

//

⊕
v∈S

µ(Fv)(2))

jS

��

0 // W K2(E)(2)G

��

γ
// K2(oS

E)(2)G
α

//

��

⊕
v∈S

(⊕
w|v
µ(Ew)(2)

)G

��

W K2(E)(2)G/ im i

��

γ ′

// DF/F∗2NE/F(DE)

��

α ′

//

⊕
v∈TE/F

DFv
/F∗2

v NEw/Fv
(DEw

)

��
0 0 0

Here S is the set of all dyadic primes of F, of all finite primes of F which ramify in E,

and of all real infinite primes of F; moreover, oS
F denotes the ring of S-integers of F

and oS
E is the integral closure of oS

F in E. Define ρ by [kerα ′ : im γ ′] = 2ρ, so that ρ is

necessarily either 0 or 1. Note that in the case that F is totally real we have

kerα ′
= DF ∩ NE/F(E∗)/F∗2NE/F(DE)

as a consequence of [KM, Corollary 2.6]. As a result, when F is totally real we have

that ρ = 0 whenever αF is not a norm or E ⊂ F∞ (in this case αF ∈ NE/F(DE)).

1.2 Computation of the 2-Rank of the Hilbert Kernel of Number Fields

Proposition 1.3 Let E/F be a quadratic extension of number fields with Galois group

G, such that W K2(F)(2) is trivial. Then

|W K2(E)(2)G| = 2rk2(W K2(E)).
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Proof Since G is cyclic we have |W K2(E)(2)G| = |W K2(E)(2)G|. The result then

follows from the fact that the group W K2(E)(2)G of G-invariants is exactly the group

2W K2(E) of elements of W K2(E) killed by 2. Indeed, considering the two natural

maps i : W K2(F) → W K2(E) and the transfer Tr : W K2(E) → W K2(F), we have the

following two facts.

• On the one hand, if y ∈ W K2(E)(2)G and σ generates G, then

1 = i ◦ Tr(y) =

∏
ϕ∈G

yϕ = yyσ = y2.

• On the other hand, if y ∈ 2W K2(E), then y2
= 1. But we also have

1 = i ◦ Tr(y) =

∏
ϕ∈G

yϕ = yyσ.

Hence we obtain yσ = y−1
= y, which gives the result.

Remark 1.4 Under the hypotheses of Proposition 1.3, the proof shows that G acts

trivially on W K2(E)(2) if and only if W K2(E)(2) is an elementary abelian group.

We are now in a position to state the following.

Theorem 1.5 Suppose E/F is a quadratic extension of number fields with F totally

real such that W K2(F)(2) = 0. If 〈[αF]〉 = D̃F, then

(i) If E/F is a CM extension (i.e., a totally imaginary quadratic extension of a totally

real field) or if µ(Fv)(2) = {±1} for some v ∈ TE/F , then

rk2(W K2(E)) =

{
|TE/F| − 2 if αF /∈ NE/F(E∗),

|TE/F| − 1 if αF ∈ NE/F(E∗).

(ii) Otherwise

rk2(W K2(E)) =

{
|TE/F| − 1 if αF /∈ NE/F(E∗),

|TE/F| − ρ if αF ∈ NE/F(E∗),

where ρ = 0 or ρ = 1.

Proof First of all, note that case (a) of the Genus Formula does not occur under our

hypotheses. We then simply apply Propositions 1.2 and 1.3, the point (i) correspond-

ing to case (b) in the Genus Formula and (ii) to case (c). The only thing in question

is the value of ρ in case (ii) when αF /∈ NE/F(E∗). But the result is obvious by the

final remark of Section 1.1.

To obtain the 2-rank explicitly, it remains to compute ρ in all cases. For this reason,

we focus our attention in the sequel on the interesting special case:

(∗)
E/F is a quadratic extension of totally real number fields, such that

αF ∈ NE/F(E∗), E 6⊂ F∞ and |µ(Fv)(2)| > 4 for all v ∈ TE/F .
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1.3 A Refinement of the Genus Formula

For the remainder of this section, we assume that the hypotheses of (∗) hold. In the

sequel we shall refer to quadratic extensions which fall under (∗) as case (∗) exten-

sions. We now aim at proving a refinement of the genus formula by computing ρ
explicitly in (∗).

Consider the diagram in Section 1.1. Recall that the homology at the term DF/F∗2

NE/F(DE) determines ρ. Let [αF] ∈ D̃F = DF/F∗2 generate D̃F. According to condi-

tion (∗), αF is a norm in E/F so that there exists η ∈ E∗ such that αF = NE/F(η).

Choose δ ∈ F∗ such that E = F(
√
δ). Let σ be a nontrivial element of G :=

Gal(E/F). Then {
√
δ, αF}σ = {−1, αF}{

√
δ, αF} = {

√
δ, αF}, the last equality

being true as [αF] ∈ D̃F .

Thus, as stated in [KM, p. 120], we see that the symbol {
√
δ, αF} lies in K2(oS

E)(2)G

and the class of {
√
δ, αF} generates the quotient group K2(oS

E)(2)G mod K2(oS
F)(2).

Indeed this comes from [Ka, Théorème 2.3(iv)], taking into account [Ka, Proposi-

tion 6.1] which supplies, under our hypothesis, the isomorphism

K2(oS
E)(2)G/ Im K2(oS

F)(2) ∼= K2(E)G/ Im K2(F).

Set ǫ := {
√
δ, αF} ∈ K2(oS

E)(2)G. Then its image in D̃F is [αF] ∈ D̃F (see [KM,

p. 120]). Now assume that α ′([αF]) = 0. From the diagram in Section 1.1 we see

that there exists ω ∈
⊕

v µ(Fv)(2) such that js(ω) = α(ǫ). Let

π :
⊕
v∈S

µ(Fv)(2) → µ(F)(2),

given by π ((ξv)v∈S) =

∏
v∈S ξ

nv/n
v , where nv = |µ(Fv)(2)| is the number of 2s-torsion

(for all s ∈ N) elements of F∗
v and n = |µ(F)(2)| is the number of 2s-torsion elements

in F∗.

We claim that ρ = 0 ⇔ π(ω) = 1. Indeed, assume first that ρ = 0 and hence the

diagram in Section 1.1 is exact in the term DF/F∗2NE/FDE. Then there exist elements

ν ∈ W K2(E)(2)G and θ ∈ K2(OS
F)(2) such that γ(ν) + i(θ) = ǫ. Here i is used also

to denote the natural map i : K2(oS
F)(2) → K2(oS

E)(2)G induced by the inclusion map

F → E.

Let ω ′ be the image of θ under the natural map

K2(oS
F)(2) −→ ⊕

v∈S

µ(Fv)(2).

Then we see that jS(ω − ω ′) = 0.

Using the exact sequence

K2(OS
F)(2) −→ ⊕

v∈s

µ(Fv)(2)
π−→ µ(F)(2) → 0,

we see that π(ω ′) = 1. Also ω − ω ′ belongs to the kernel of jS, which is equal to⊕
v∈TE/F

µ2 (for details on the determination of ker jS see [KM, p. 116]). Under the
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condition (∗), nv > 4 for all v ∈ TE/F so that nv/n = nv/2 > 2. Thus coming back to

the definition of π, any element in
⊕

v∈TE/F
µ2 is necessarily in the kernel of π. Hence

π(ω − ω ′) = 1 and so π(ω) = 1.

Later we will determine ρ by considering it at dyadic places and those in TE/F . For

this we make the following definition. Let v be a prime in F above the rational prime

q. If ω is defined as above, then we define ρv (mod 2) by the equation

(−1)ρv
= π|v(ωv).

Here π|v stands for π|µ(Fv)(2) and ω = (ωv)v where ωv ∈ µ(Fv)(2). Note that ρv = 0

if v is non-dyadic and unramified over Q since the corresponding tame symbol van-

ishes. Now define ρq by ρq ≡
∑

v|q ρv mod 2, so that we get ρ ≡
∑

q ρq mod 2, since

there is no contribution from the infinite primes (indeed αF is totally positive).

Before going further with the computation of ρ, we fix the following notations for

E/F, a quadratic extension of number fields:

• n = |µ(F)(2)|,
• m = |µ(E)(2)|,
• v a non complex prime of F,
• w is any non complex prime of E above v,
• nv = |µ(Fv)(2)|,
• mw = |µ(Ew)(2)|,
• ( . , . )Ew ,mw

or ( . , . )mw
denotes the local Hilbert symbol with values in µ(Ew)(2).

In the case that v is an odd prime in TE/F we calculate ρv using the following.

Proposition 1.6 Let F be totally real with E = F(
√
δ), δ ∈ Z such that E/F is a case

(∗) extension with E Galois over Q . Then for an odd prime v ∈ TE/F we have

ρv = 0 ⇐⇒ (δ, αF)Fv ,4 =

( αF

v

) eq(F/Q)

4
= 1,

i.e., ρv is defined by the formula

αF

Nv−1
4

·eq(F/Q) ≡ (−1)ρv mod v.

Here eq(F/Q) denotes the ramification index of q in the extension F/Q and
(
αF

v

)
4

is

the 4-th power-residue symbol.

Remark 1.7 (About the definition of the power-residue symbol) Let s be a natural

number and F a number field containing the group µs of s-th roots of unity. Let v be

a non complex prime of F. We have already recalled how to define the s-th Hilbert

symbol (a, b)Fv,s for a and b in F∗. We define the s-th power-residue symbol by
( a

v

)

s
:= (a, π̄)Fv ,s,

where v is a prime ideal of F prime to s, the element a is a unit in F∗
v , and π̄ is a prime

element of Fv. We can see that the definition does not depend on the choice of the

prime element π̄, and that
( a

v

)

s
≡ 1 mod v ⇐⇒ a ≡ xs mod v,
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(i.e., a is an s-th power residue modulo v), and more generally

( a

v

)

s
≡ a

Nv−1
s mod v.

Details can be found in [N, Chapter III, §5; Chapter IV, §9].

Proof of Proposition 1.6 Note that the Hilbert symbol in the above statement is in-

deed of order 2 by the assumption onαF. The conditions on the primes in TE/F imply

that |µ(Fv)(2)| > |µ(F)(2)| = 2. Thus, it must be the case that mw = nv, since other-

wise Ew ⊂ Fv,∞ (see for example [KM, Lemma 2.1]). Noting that (
√
δ, αF)mw

= ζ2

for some ζ ∈ µ(Fv)(2) (again by [KM, Lemma 2.1]), we see that ρv = 0 ⇔ ζnv/2
= 1.

Now

ζnv/2
= (ζ2)nv/4

= (
√
δ, αF)

nv/4
Ew,mw

= (
√
δ, αF)Ew,4

since mw = nv > 2. Since v does not split in E, we see that the last symbol is equal to

(
√
δ, αF)Ew,4 = (−δ, αF)Fv ,4 = (δ, αF)Fv,4.

Thus ρv = 0 ⇔ (δ, αF)Fv,4 = 1. Let q be the rational prime divisor of δ below

v ∈ TE/F . Recall that the norm residue symbols in which we are interested are tame

at non-dyadic primes, and so ρv is determined by

(q, αF)Fv ,4 =

(
(−1)abαF

a

qb

) Nv−1
4

mod v,

where a = ordv(q), b = ordv(αF). Thus the formula reduces to

(q, αF)Fv,4 = αF

Nv−1
4

·eq(F/Q) mod v.

The following proposition will be of use in the sequel for calculating ρ.

Proposition 1.8 Let M be a totally real Galois extension of Q , not containing
√

2,

with trivial 2-Hilbert kernel. Suppose that L = M(
√
δ) is a non-trivial extension for

some square-free integer δ such that L/M is a case (∗) extension. If the rational prime q

decomposes in some quadratic subfield of M, then ρq = 0.

Proof Let G = Gal(L/Q) and let H = Gal(L/M). In this situation we have

{
√
δ, 2}φ = {−

√
δ, 2} = {

√
δ, 2}

where H = 〈φ〉. Thus

α({
√
δ, 2}) ∈

(⊕
q

⊕
w|q
µ(Lw)

)G

and so ρv is independent of v|q. The result follows since there is an even number of

such v|q.
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Remark 1.9 In the sequel, we will apply the above proposition to multiple-quadra-

tic fields. Thus, we restrict our attention to quadratic and bi-quadratic fields since

Griffiths [Gr1] has shown that totally real number fields with Galois group isomor-

phic to (Z/2Z)r have non-trivial 2-Hilbert kernel if r > 2.

Corollary 1.10 Let L/M be as in Proposition 1.8 with M bi-quadratic over Q .

(i) If q is unramified in M/Q , then ρq = 0.

(ii) If q is odd, then ρq = 0.

Proof (i) Since q is unramified in M, the inertia group Iv of v in M/Q is trivial. Since

Gal(Mv/Qq) ∼
= Dv/Iv is cyclic, where Dv is the decomposition group of v in M/Q ,

we have |Dv| = 1 or 2 which means that q splits in some quadratic subfield of M and

the result follows from the above proposition.

The second assertion follows from (i) and Proposition 1.6.

The following is Lemma 3.2 of [KM] and will also be of use in Section 2.

Lemma 1.11 Let M be a multiple-quadratic field and let L be a subfield of index 2.

An undecomposed dyadic prime v of L does not belong to TM/L if and only if
√

2 /∈
Lv,Mw = Lv(

√
2) and Lv contains

√
−1 or

√
−2.

2 Applications

2.1 Quadratic Fields

For this section, let us set F = Q and E = Q(
√

d) where d is a squarefree integer.

We aim at computing the 2-rank of W K2(E) using the previous section and, as a

consequence, recovering the results already proved in [BS] using different techniques.

First of all, let us recall the following well-known lemma.

Lemma 2.1 Let d be a squarefree integer.

(i) −1 is a norm from Q(
√

d) if and only if d > 0 and all odd prime divisors of d are

congruent to 1 modulo 4.

(ii) 2 is a norm from Q(
√

d) if and only if all odd prime divisors of d are congruent to

±1 modulo 8.

We now focus our attention on quadratic fields satisfying the assumptions of

(∗): this means that E = Q(
√

d), d > 0. Since for p ∈ TE/Q we must have

|µ(Qp)(2)| > 4, this implies that 2 /∈ TE/Q and that p ≡ 1 mod 4 for all odd p|d;

hence d ≡ 1 mod 8. Since 2 is a norm, the prime divisors of d are all ≡ 1 mod 8.

Furthermore ρq = 0 for all odd q ∤ d, since the symbol {
√

d, 2} is tame at q. Using

the results of the previous section we have

(−1)ρ2
= (2,

√
d)Q2,2 =

∏

p∈TE/Q

(2,
√

p)Q2,2, (−1)ρp
=

( 2

p

)

4

, ∀p ∈ TE/Q .

Proposition 2.2 In the situation above, (2,
√

p)Q2,2 =

( −1
p

)
8

for all p ∈ TE/Q .

https://doi.org/10.4153/CJM-2009-051-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-051-3


1082 R. Griffiths and M. Lescop

Proof Indeed, both symbols vanish precisely when p ≡ 1 mod 16.

Hence, ρ is defined by

(−1)ρ =

∏

p∈TE/Q

(2,
√

p)Q2,2

∏

p∈TE/Q

( 2

p

)

4

=

∏

p∈TE/Q

( −1

p

)

8

∏

p∈TE/Q

( 4

p

)

8

=

∏

p∈TE/Q

( −4

p

)

8

since ζ8 ∈ Qp for all p ∈ TE/Q and so the formula

( 2

p

)

4

=

( 2

p

) 2

8

=

( 4

p

)

8

holds for all p ∈ TE/Q .

We may now state the result for d > 0.

Proposition 2.3 Let d > 0 be the product of odd rational primes, each ≡ 1 mod 8.

Then Q(
√

d)/Q is a case (∗) extension and ρ is given by

(−1)ρ =

∏

p|d

( −4

p

)

8

.

In other words, ρ is congruent (modulo 2) to the number of prime divisors of d not

representable over Z by the quadratic form x2 + 32y2.

Remark 2.4 Note that for primes p ≡ 1 mod 8, the condition
( −4

p

)
8

= −1 is

equivalent to p 6= x2 + 32y2 (see [BC]).

As a result of Proposition 2.3 and Theorem 1.5 we get the following.

Corollary 2.5 ([BS]) Let d > 0 be the product of odd rational primes, each ≡ 1

mod 8. Denote by t the number of prime divisors of d, and s the number of prime

divisors of d not representable over Z by the quadratic form x2 + 32y2. Then

rk2 W K2(Q(
√

d)) =

{
t if s is even,

t − 1 if s is odd.

We now wish to show that our method enables us to compute the 2-rank of the

Hilbert kernel of any quadratic field. Once again we aim at applying Theorem 1.5.

Since, by Lemma 1.11, we have

2 ∈ TE/F ⇐⇒ 2 is undecomposed in Q(
√

d),

⇐⇒ d 6≡ 1 mod 8,

it is easy to see that case (ii) in Theorem 1.5 holds if and only if d > 0, d ≡ 1 mod 8

and all prime divisors of d are ≡ 1 mod 4. It remains to note that αF = αQ = 2 by

Lemma 1.1, which implies that we can draw up (with Theorem 1.5 and Lemma 2.1)

the following table where the 2-rank of W K2(E) is given.
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2 ∈ NE/Q (E∗) 2 /∈ NE/Q (E∗)

d < 0
d 6≡ 1 mod 8 t t − 1

d ≡ 1 mod 8 t − 1 t − 2

d 6≡ 1 mod 8 t t − 1

d > 0 d ≡ 1 mod 8
−1 ∈ NE/Q (E∗) t − ρ t − 1

−1 /∈ NE/Q (E∗) t − 1 t − 2

In this table t denotes the number of odd prime divisors of d, and the value of ρ in

(∗) (i.e., when d > 0, d ≡ 1 mod 8 and that 2 and −1 are both norms from Q(
√

d))

is given by Corollary 2.5.

Using the computation of the 2-rank, we conclude by listing all quadratic fields

with trivial 2-primary Hilbert kernel (see also [BS]).

Corollary 2.6 The 2-primary Hilbert kernel exactly vanishes for the following values

of the squarefree integer d:

d = −1,±2,
d = ±p,±2p with p ≡ ±3 mod 8,
d = −p with p ≡ 7 mod 8,
d = p with p ≡ 1 mod 8 and p 6= x2 + 32y2,
d = pq with p ≡ q ≡ 3 mod 8,
d = −pq with p ≡ −q ≡ 3 mod 8,

where p and q are distinct odd primes.

2.2 Biquadratic Fields

We are now interested in computing the 2-rank of a bi-quadratic field E having a

totally real quadratic subfield F such that W K2(F)(2) = 0 (in order to apply The-

orem 1.5). As before, we will focus our attention on case (∗) extensions E since

the computation of ρ shows up in this case. For the remainder of this section let

F = Q(
√

d) and E = Q(
√

d,
√
δ) be totally real with W K2(F)(2) = 0. We may

assume that d, δ ∈ Z are squarefree and positive with d ∤ δ. In fact, Corollary 2.6

implies that d is one of the following:

2,
p, 2p p a prime with p ≡ ±3 mod 8,
p p a prime with p ≡ 1 mod 8, p 6= x2 + 32y2,
pq p, q primes with p ≡ q ≡ 3 mod 8.

As a result we may also assume that the gcd of d and δ is 1 or 2 in the cases where

d 6≡ 1 mod 8, and that this gcd is 1 or q for some prime q ≡ 3 mod 8 otherwise. In

addition we have the following.
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Proposition 2.7 For d in the previous list, the set TE/F contains all undecomposed

dyadic primes. Thus, a dyadic prime of F is in the set TE/F if and only if it does not split

in E.

Proof By Lemma 1.11, if an undecomposed dyadic prime lies outside of TE/F , then

necessarily Ew = Fv(
√

2), and Fv contains either
√
−1 or

√
−2. Thus we can assume

that d ≡ −1 or −2 mod 8. We see however that this is impossible (e.g. by Corollary

2.6).

Remark 2.8 (i) Note that we are only in (∗) when the dyadic primes of F split

in E. Indeed, in all cases involving the d’s of the above list, we have |µ(Fv)(2)| = 2 for

all dyadic primes v in F, so that necessarily v /∈ TE/F under the assumptions of (∗).

(ii) For an odd rational prime q lying below the prime v ∈ TE/F we have q ∤ d and

so thus eq(F/Q) = 1.

Before we move on to the explicit calculations, it will be convenient to record the

following observation.

Lemma 2.9 Suppose that E/F (as defined above) is a case (∗) extension and let q be

a rational prime lying below the prime v ∈ TE/F . Then q ≡ 1 mod 4 or
(

d
q

)
= −1. If√

2 /∈ F, then q ≡ 1 mod 8 or
(

d
q

)
= −1.

Proof Note that q ∤ d by Remark 2.8. The first statement is a reformulation of the

fact that |µ(Fv)(2)| > |µ(F)(2)|, which means that either
√
−1 ∈ Qq or else q must

be inert in F = Q(
√

d). The second statement incorporates the requirement that

2 ∈ F is a norm from F(
√
δ). Indeed, if

(
d
q

)
= 1, then q decomposes in F and q ≡ 1

mod 4. Since 2 is a norm, we must have (2, q)Fq1,2
= (2, q)Qq,2 = 1 which implies that

q ≡ 1 mod 8.

2.2.1 d 6= 2

We move on now to the determination of ρE/F for d 6= 2 appearing in the list.

Proposition 2.10 Let q be a rational prime sitting below a prime v ∈ TE/F . Then we

have ρq = 1 ⇔ q ≡ −3 mod 8.

Proof We first consider the case where q ≡ 3 mod 4 (i.e., q ≡ 3,−1 mod 8). For

such a prime we noted in Lemma 2.9 that ( d
q
) = −1 and so Nv = q2 and v(q) = 1.

Since 2 ∈ Z, we have (2 mod v) ∈ Z/qZ ⊂ oFv
/v. We also have 4|(q + 1) and so

2
q2−1

4 = 2(q−1)
q+1

4 = 1 mod q

which yields the result in this case by Proposition 1.6.

Now suppose q ≡ 5 mod 8. Again Lemma 2.9 implies that
(

d
q

)
= −1 so that

Nq = q2. Now q + 1 ≡ 6 mod 8 and so q+1
2

is an odd integer. Thus

2
q2−1

4 ≡ 2
q−1

2
q+1

2 ≡
( 2

q

) q+1
2 ≡ −1 mod q
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and the result follows in this case.

Recall that there are no restrictions placed on primes q ≡ 1 mod 8 dividing δ so

we must consider two cases. If ( d
q
) = −1, then the calculation is identical to the last

considered except that in this case ( 2
q
) = 1 and the result follows. We are left with the

case where q ≡ 1 mod 8 and ( d
q
) = 1 which is settled by Proposition 1.8.

For m ∈ Z define θ+(m) to be the number (mod 2) of primes dividing m which

are ≡ +3 mod 8. Similarly, let θ−(m) be the number (mod 2) of primes dividing m

which are ≡ −3 mod 8. Then we have the following.

Corollary 2.11 Recall that d ∤ δ. For d 6≡ 1 mod 8 we have ρE/F ≡ θ+(δ) mod 2; if

d ≡ 1 mod 8, then ρE/F ≡ θ−(δ) mod 2.

Proof To determine ρ, it remains to calculate ρ2 in the various cases. If d 6≡ 1

mod 8, then gcd(d, δ) = 1 or 2, so that the odd primes ramifying in E/F are precisely

those which divide δ. Thus

∑

v∈TE/F

ρv ≡
∑

q|δ
q odd

ρq ≡ θ−(δ) mod 2

by the previous proposition. Also, 2 does not split in F and so

(
√
δ, 2)Ew,2 = (NE/F1

(
√
δ), 2)F1,v,2 = (−δ, 2)2.

Thus ρ2 ≡ θ+(δ) + θ−(δ) mod 2 where F1 is the dyadic decomposition field in the

extension E/Q . Therefore ρE/F ≡ θ+(δ) + 2θ−(δ) ≡ θ+(δ) mod 2.

If d ≡ 1 mod 8, then ρ2 = 0 by Proposition 1.8 and either gcd(d, δ) = 1 or

gcd(d, δ) = q for some prime q ≡ 3 mod 8 (not lying below a prime in TE/F by

Remark 2.8). In both situations we see that the equality
∑

v∈TE/F
ρv ≡ θ−(δ) mod 2

still holds, as required.

Example 2.12 Let d = 3 and δ = 17 · 43 · 53 · 101 = 3913043. The prime divisors

q of δ satisfy:

q 17 43 53 101

q mod 8 1 3 −3 −3(
3
q

)
−1 −1 −1 −1

Thus the set TE/F consists of the unique primes of F = Q(
√

3) above 17, 43, 53,

and 101. Indeed since δ ≡ 3 mod 8, the prime 2 is decomposed in Q(
√

3δ) so that

the dyadic prime of F is decomposed in E/F and does not belong to TE/F . As a

consequence (here d = 3 6≡ 1 mod 8), we get θ+(δ) = 1, ρ = 1, and finally,

rk2 W K2(Q(
√

3,
√
δ)) = 3.
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Example 2.13 Let d = 3 and

δ = 7 · 29 · 31 · 67 · 73 · 139 · 149 = 637465173793.

The prime divisors q of δ satisfy

q 7 29 31 67 73 139 149

q mod 8 −1 −3 −1 3 1 3 −3(
3
q

)
−1 −1 −1 −1 1 −1 −1

Thus the set TE/F consists of the unique primes of F = Q(
√

3) above 7, 29, 31, 67,

139, 149 and the two primes of F above 73. Indeed, since δ ≡ 1 mod 8, the prime 2

is decomposed in Q(
√
δ) so that the dyadic prime of F is decomposed in E/F. As a

consequence (here d = 3 6≡ 1 mod 8), we get θ+(δ) = 2, ρ = 0, and finally,

rk2 W K2(Q(
√

3,
√
δ)) = 8.

Example 2.14 Let d = 17 and δ = 23 · 29 · 107 = 71369. The prime divisors q of

δ satisfy

q 23 29 107

q mod 8 −1 −3 3(
17
q

)
−1 −1 −1

Thus the set TE/F consists of the unique primes of F = Q(
√

17) above 23, 29, and

107. Indeed since δ ≡ 1 mod 8, the prime 2 is decomposed in Q(
√
δ) so that the

dyadic prime of F is decomposed in E/F and does not belong to TE/F . As a conse-

quence (here d = 17 ≡ 1 mod 8), we get θ−(δ) = 1, ρ = 1, and finally,

rk2 W K2(Q(
√

17,
√
δ)) = 2.

Example 2.15 Let d = 17 and δ = 5 · 11 · 37 · 89 · 131 = 23726065. The prime

divisors q of δ satisfy

q 5 11 37 89 131

q mod 8 −3 3 −3 1 3(
17
q

)
−1 −1 −1 1 −1

Thus the set TE/F consists of the unique primes of F = Q(
√

17) above 5, 11, 37,

131, and the two primes of F above 89. Indeed since δ ≡ 1 mod 8, the prime 2 is

decomposed in Q(
√
δ) so that the dyadic prime of F is decomposed in E/F. As a

consequence (here d = 17 ≡ 1 mod 8), we get θ−(δ) = 2, ρ = 0, and finally,

rk2 W K2(Q(
√

17,
√
δ)) = 6.

https://doi.org/10.4153/CJM-2009-051-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-051-3


On the 2-Rank of the Hilbert Kernel of Number Fields 1087

2.2.2 d = 2

We note that in this situation F = Q(
√

2) and αF = 2 +
√

2. The next proposition

gives a criterion for case (∗) extensions.

Proposition 2.16 Let δ be a squarefree integer. Then the extension F(
√
δ)/F is a case

(∗) extension if and only if each odd prime divisor of δ is ≡ 1 mod 16.

Proof Recall that αF must be a norm to be in (∗). We calculate the symbol

(2 +
√

2, δ)2 over the global field F by using the Hasse principle: suppose that 2 +
√

2

is a norm from E, and let q be a rational prime divisor of δ congruent to ±3 mod 8.

Since q is inert in F, let v denote the prime of F above q and we have

(2 +
√

2, δ)Fv,2 = (2 +
√

2, q)Fv,2 = (2, q)Qv,2 = −1,

which contradicts our assumption that 2 +
√

2 is a norm. Note also that for q ≡ −1

mod 8, q|δ we require that q is inert in F (so that we are adjoining roots of unity

locally), which is impossible.

Assume then that q ≡ 1 mod 8. Let v be one of the two primes above q and note

that

(2 +
√

2, q)Fv,2 = (2 +
√

2)
q−1

2 mod q,

which is clearly trivial if and only if ζ16 ∈ Fq (since
√
−1 ∈ Fq), i.e., if and only if

q ≡ 1 mod 16. The result follows by reciprocity since there is only one dyadic prime

in F.

For the remainder of this section we assume that δ is the product of distinct odd

rational primes, each ≡ 1 mod 16.

We now calculate ρ2. Since δ ≡ 1 mod 8, it is a 2-adic square and since δ ≡ 1

mod 16 we know that its 2-adic square roots are ≡ ±1 mod 8. Thus

(
√
δ, 2 +

√
2)F2,2 = (

√
δ, 2)Q2,2 = 1

and so ρ2 = 0.

Now let q|δ be odd and let v1, v2 be the primes in F above q. Then ρq = ρv1
+ ρv2

mod 2 and we calculate

(δ, 2 +
√

2)Fv1
,4 · (δ, 2 +

√
2)Fv2

,4

as in the previous section. This product is equal to

(2.1) (δ, 2 +
√

2)Qq,4 · (δ, 2 −
√

2)Qq,4 = (δ, 2)Qq,4 ≡ 2
q−1

4 mod q.

Lemma 2.17 The symbol in (2.1) is equal to
( −4

q

)
8
.
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Proof Since ζ16 ∈ Qq, we have
( −1

q

)
8

= 1. Now the symbol in (2.1) is equal to
(

2
q

)
4
, and we have

( 2

q

)

4

=

( 2

q

) 2

8

=

( 4

q

)

8

=

( −4

q

)

8

as required.

We arrive at the following proposition which, surprisingly, looks like Proposi-

tion 2.3.

Proposition 2.18 Suppose δ > 0 is the product of distinct odd rational primes, each

congruent to 1 mod 16. Then ρE/F is congruent (modulo 2) to the number of prime

divisors of δ not representable over Z by the quadratic form x2 + 32y2.

Proof This follows from the calculation of ρ above and from Remark 2.4.

As an application of the previous calculation of ρ, we give a family of bi-quadratic

fields for which we are able to compute the 2-rank of the Hilbert kernel in general.

Note that similar applications to other families of bi-quadratic fields should be pos-

sible.

Corollary 2.19 Let F = Q(
√

2) and E = Q(
√

2,
√
δ) where δ is any squarefree odd

integer. We denote by t0 the number of prime divisors of δ which are congruent to ±1

modulo 8 and by t1 the number of prime divisors of δ which are congruent to ±3 modulo

8. Then the 2-rank of the Hilbert kernel of E = Q(
√

2,
√
δ) is given in the following

table:

∀q|δ, q ≡ ±1 ∃q|δ, q 6≡ ±1

mod16 mod1

δ < 0
δ 6≡ 1 mod 8 2t0 2t0 + t1 − 1

δ ≡ 1 mod 8 2t0 − 1 2t0 + t1 − 2

δ > 0

δ 6≡ 1 mod 8 2t0 2t0 + t1 − 1

δ ≡ 1 mod 8

∀p|δ, p ≡ 1, 3, 4
2t0 − ρ 2t0 + t1 − 1

mod 8

∃p|δ, p ≡ −1
2t0 − 1 2t0 + t1 − 2

mod 8

The above value of ρ in the case where δ > 0, δ ≡ 1 mod 8, ∀p|δ, p ≡ 1, 3, 5 mod 8

and ∀q|δ, q ≡ ±1 mod 16, which simply means that δ > 0 and ∀q|δ, q ≡ 1 mod 16,

is given (by the previous proposition) in the following way: ρ is congruent (modulo 2)

to the number of prime divisors of δ not representable over Z by the quadratic form

x2 + 32y2.

Proof We aim at applying Theorem 1.5. Here we have F = Q(
√

2), E = Q(
√

2,
√
δ),

αF = 2 +
√

2. Moreover, the number of prime divisors of δ which are decomposed

(resp. undecomposed) in F is t0 (resp. t1). To complete the table we need the follow-

ing facts.
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Lemma 2.20 Let F = Q(
√

2) and E = Q(
√

2,
√
δ) where δ is any squarefree odd

integer. Then

(i) αF = 2 +
√

2 is a norm in E/F if and only if ∀q|δ, q ≡ ±1 mod 16.

(ii) If v is the dyadic prime of F, then v ∈ TE/F if and only if δ 6≡ 1 mod 8.

(iii) If v is a prime of F lying above a prime divisor q of δ, then v ∈ TE/F and

µ(Fv)(2) = {±1} ⇔ q ≡ −1 mod 8.

Proof (i) It comes from arguments already seen in the proof of our Proposition 2.16

and in the proof of [KM, Proposition 3.5].

(ii) We have v ∈ TE/F if and only if v is undecomposed in E and if µ(Fv)(2) =

{±1}. So v ∈ TE/F if and only if v is undecomposed in E, namely if and only if 2 is

undecomposed in Q(
√
δ), whence the result.

(iii) Since v is tamely ramified in E, we have v ∈ TE/F . Moreover if µ(Fv)(2) =

µ(Qq(
√

2))(2) = {±1}, then q ≡ 3 mod 4. Now, on the one hand, if q ≡ 3 mod 8, q

is inert in F = Q(
√

2) and µ4 is contained in the residue field Fq2 of Fv. On the other

hand, if q ≡ −1 mod 8, q is decomposed in F = Q(
√

2) and µ(Fv)(2) = µ(Qq)(2) =

{±1}.

Putting all these facts together, it is easy to apply Theorem 1.5. Note that in the

first column where ∀q|δ, q ≡ ±1 mod 16, the number t1 never shows up since t1 = 0

in this case.

Example 2.21 Let δ = 17 · 257 = 4369. We first note that 17 is not representable

over Z by x2 + 32y2, whereas 257 = 152 + 32× 12. The previous corollary gives ρ = 1

and so rk2 W K2(Q(
√

2,
√
δ)) = 3.

Example 2.22 Let δ = 97 · 113 · 241 = 2641601. Now 97 and 241 are not repre-

sentable over Z by x2 + 32y2, whereas 113 = 92 + 32 × 12. The previous corollary

gives ρ = 0 and thus rk2 W K2(Q(
√

2,
√
δ)) = 6.

2.3 Tri-Quadratic Fields

In this section we let F = Q(
√

d1,
√

d2) be a totally real bi-quadratic field with triv-

ial 2-Hilbert kernel. Such fields were completely determined (using ζ-functions) in

[KM] as those appearing in the following list:

Q(
√

2,
√

p) with p ≡ ±3 mod 8,

Q(
√

p,
√

q) with p ≡ q ≡ 3 mod 8,

Q(
√

2p,
√

2q) with p ≡ q ≡ 3 mod 8,

Q(
√

pq,
√

qr) with p ≡ q ≡ r ≡ 3 mod 8,

where p, q and r are distinct odd primes. Note that the vanishing of the 2-Hilbert

kernel for these fields can be verified by the 2-rank formula of the previous section.

Let E = F(
√
δ) be a quadratic extension of F for some square-free rational integer

δ and for a rational prime q we will always use v to denote a prime of F above q and

use w to denote a prime of E above v. We are again interested in case (∗) extensions

E/F and we show the following.
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Proposition 2.23 With the notations defined above, ρE/F = 0.

Proof First assume that
√

2 /∈ F. By Corollary 1.10 we have ρodd = 0. Moreover,

by Proposition 1.8 and Corollary 1.10, if 2 is either unramified in F or splits in a

quadratic subfield of F, then ρ2 = 0 and the result follows in this case.

Suppose now that F = Q(
√

2,
√

p), p ≡ ±3 mod 8. Again, we assume that αF =

2 +
√

2 is a norm from E = F(
√
δ) where δ is a squarefree integer and is prime to 2

and to p.

By taking norms twice we may calculate ρ2 as follows:

(−1)ρ2
= (2 +

√
2,
√
δ)

Q2(
√

2,
√

p)

= (2 +
√

2,±δ)
Q2(

√
2)

= (2, δ)Q2
.

Suppose that δ has an odd prime divisor q ≡ ±3 mod 8. Recall that to be a case (∗)

extension αF = 2 +
√

2 must be a norm from E and so, in particular, the symbol

(2 +
√

2, q)
Qq(

√
2,
√

p),2 must vanish. Now the primes above q must split in the ex-

tension Q(
√

2,
√

p)/Q(
√

2) by the proof of Corollary 1.10 and so the last symbol is

equal to (2 +
√

2, q)
Qq(

√
2),2 = (2, q)Qq,2 since q is inert in Q(

√
2). Thus αF cannot be

a norm in this situation, which means that the prime divisors of δ are ≡ ±1 mod 8

and so ρ2 = 0.

We now calculate ρodd. Let q be an odd prime lying below a prime in TE/F . Let

K = Q(
√

2). If the primes in K lying above q split in F, the same argument to the one

in Proposition 1.8 (with G = Gal(E/K), H = Gal(E/F) and 2 replaced with 2 +
√

2)

shows that ρq = 0.

It therefore remains to analyze the case where q splits in K and is inert in F/K . In

this situation we need to calculate the product (δ, 2 +
√

2)Fv1
,4 · (δ, 2 +

√
2)Fv2

,4, which

is equal to

(δ, 2 +
√

2)Qq(
√

p),4 · (δ, 2 −
√

2)Qq(
√

p),4 = (δ, 2)Qq(
√

p),4.

By norming this symbol down to Qq we obtain the symbol

(δ2, 2)Qq,4 = (δ, 2)Qq,2 =

( 2

q

)
= 1

where the last equality is given by the condition that q splits in K .

Example 2.24 Let δ = 17 · 97 = 1649 such that F = Q(
√

2,
√

13) and E =

Q(
√

2,
√

13,
√

1649). We start by checking that E/F is a case (∗) extension. Since 17

and 97 are primes ≡ 1 mod 16, we know by Proposition 2.16 that 2 +
√

2 is a norm

from the extension Q(
√

2,
√

1649)/Q(
√

2) and so is a norm from E/F. Moreover, for

any prime v of F above 17 or 97, it is obvious that v ∈ TE/F and that |µ(Fv)(2)| > 4.

Since δ ≡ 1 mod 8, the dyadic prime of F is decomposed in E/F and then does not

https://doi.org/10.4153/CJM-2009-051-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-051-3


On the 2-Rank of the Hilbert Kernel of Number Fields 1091

belong to TE/F . As a result, E/F is indeed a case (∗) extension. We then get ρ = 0 and

there remains to determine |TE/F|: the computation of some Legendre symbols gives

( 2

17

)
= 1,

( 13

17

)
= 1;

( 2

97

)
= 1,

( 13

97

)
= −1,

and implies that 17 is totally decomposed in F/Q , and there are two primes of F

above 97. Hence |TE/F| = 6 and rk2 W K2(Q(
√

2,
√

13,
√

1649)) = 6.
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