
J. Aust. Math. Soc. 102 (2017), 9–19
doi:10.1017/S1446788715000117
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Abstract

From the mid-1990s onwards, the main focus of L. G. Kovács’ research was on Lie powers. This brief
survey presents some of the key results on Lie powers obtained by Kovács and his collaborators, and
discusses some subsequent developments and applications of this work.
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L. G. Kovács (or Laci as he was known to those around him) made numerous
significant contributions to the study of Lie powers, and from the mid-1990s onwards
this was the main focus of his research. Much of this work [6–10, 18–22] was carried
out in collaboration with Manchester-based researchers Roger Bryant and Ralph Stöhr
(who together are responsible for much of my own mathematical education). Such
collaborations necessarily involve a number of research visits, and I had the pleasure
of meeting Laci on just one such occasion when he visited Karin Erdmann in Oxford
to complete some joint work [12]. In this brief survey I shall present some of the key
results on Lie powers obtained by Laci and his collaborators. I thank Ralph Stöhr for
his many insightful remarks and comments whilst preparing this article.

1. A brief introduction to Lie powers

Let G be a group, K a field and V a KG-module. Let L(V) denote the free Lie
algebra on V over K (that is, the Lie algebra which is freely generated by any K-basis
of V). This is a graded algebra L(V) =

⊕
n≥1 Ln(V), where Ln(V) is the K-subspace

containing all homogeneous elements of degree n. The universal enveloping algebra
of L(V) is the tensor algebra T (V) =

⊕
n≥0 V⊗n, and it is clear that each homogeneous

c© 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 $16.00

9

https://doi.org/10.1017/S1446788715000117 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000117


10 M. Johnson [2]

component Ln(V) = V⊗n ∩ L(V) can be considered as a subspace of the corresponding
tensor power V⊗n. The action of G on V extends uniquely to L(V) and T (V), with
the elements of G acting as algebra automorphisms, hence turning these algebras into
KG-modules. Moreover, since the action respects the degree of each homogeneous
element, it is easy to see that each of the subspaces Ln(V) is actually a KG-submodule
of V⊗n. These are the so-called Lie powers of V .

If V is finite-dimensional, then so is each Lie power Ln(V) and in this case the
dimension of the nth Lie power is given by Witt’s dimension formula,

dim(Ln(V)) =
1
n

∑
d|n

µ(d)(dim(V))n/d,

where µ denotes the Möbius function [34]. Observe that these dimensions increase
very rapidly as n is increases. Now fix a group G and a field K and choose your
favourite finite-dimensional KG-module V . The above considerations show that these
initial conditions can be used to generate an interesting infinite family of finite-
dimensional KG-modules, the Lie powers. Now suppose that you have some nice
detailed information about the structure of V as a KG-module, such as a decomposition
into indecomposable modules (V was your favourite, after all). Can you give a similar
description of the Lie powers (up to isomorphism)? For the classical case of Lie
powers in characteristic zero, this ‘decomposition problem’ is well understood via
the early works of Thrall [32], Brandt [1] and Wever [33], with further qualitative
information and combinatorial insights later given by Klyachko [17] and Kraśkiewicz
and Weyman [23]. To set the scene, let us begin with a brief overview of these works.

In his 1942 paper, Thrall considered the case where G is the general linear group
GLn(K), K a field of characteristic zero, and V is the natural KG-module. In this case it
is well known [28] that the simple submodules L(λ) of V⊗n are indexed by the partitions
λ of n into at most dim V parts. Moreover, each tensor power V⊗n is semisimple and the
simple module L(λ) occurs as a direct summand of V⊗n with multiplicity tλ equal to the
number of standard tableaux of shape λ. Thrall asked for the decomposition of the nth
Lie power Ln(V). Since Ln(V) can be regarded as a submodule of V⊗n, it follows that
the nth Lie power will be isomorphic to a KG-module direct sum of those same simple
modules L(λ) occurring with multiplicities lλ, where 0 ≤ lλ ≤ tλ. Thrall was able to
calculate the multiplicities lλ for all partitions λ of n ≤ 10, with a correction in the case
n = 10 later given by Brandt [1], who also gave a formula for the character of the nth
Lie representation. In 1949 Wever [33] gave a formula for the multiplicities lλ in terms
of characters of the symmetric group of degree n. Although these character theoretic
formulae are useful and indeed beautiful, it is not easy to see from this information
alone which of the multiplicities lλ are positive, or in other words, which simple
modules actually do occur in the Lie powers. Moreover, those who enjoy counting
things may have hoped for a combinatorial formula for lλ, similar to the interpretation
of the multiplicities tλ in the tensor power. In 1974 Klyachko [17] was able to answer
the question of which simple modules occur in the Lie power. He proved that for n > 6
almost every simple module L(λ) occurs in Ln(V), the exceptions being the simple
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modules corresponding to the partitions λ = (n) and λ = (1n). In 1987 Kraśkiewicz
and Weyman [23] provided a combinatorial formula for the multiplicities, proving that
the multiplicity lλ is equal to the number of standard tableaux of shape λ with major
index congruent to a modulo n, for any fixed positive integer a which is coprime to n.
Using this result, one obtains the following rather intriguing combinatorial version of
Klyachko’s theorem: for each partition λ , (n), (1n) of n > 6 there is a standard tableau
of shape λ whose major index is coprime to n. A completely combinatorial proof of
this result was given in [15], which when combined with the result of Kraśkiewicz and
Weyman provides an alternative proof of Klyachko’s theorem.

We conclude our discussion of the characteristic-zero case by mentioning some of
Laci’s joint work with Stöhr [21], where another combinatorial proof of Klyachko’s
above-mentioned result was given. The key observation is [21, Lemma 1], which
says that whenever n = k + l with k > l > (k/2), the subspace [Lk(V), Ll(V)] of Ln(V)
is a submodule isomorphic to the tensor product Lk(V) ⊗ Ll(V). Together with the
Littlewood–Richardson rule and the preliminary calculations of Thrall, this neat result
was used to give a short inductive proof of Klyacho’s theorem. Their method gives an
improved lower bound lλ ≥ (n/6) − 1 for all multiplicities lλ > 1.

In fact, Laci’s interest in Lie powers focused at first on positive characteristic. His
collaboration with Bryant and Stöhr stemmed from the following problem, which Laci
had entered into the 1990 edition of the Kourovka Notebook [26, Problem 11.47].

Let Ln, be the homogeneous component of degree n in a free Lie algebra
L of rank two over the field of order 2. What is the dimension of the
fixed point space in Ln, for the automorphism of L which interchanges
two elements of a free generating set of L?

This problem was subsequently solved by Bryant and Stöhr [3], and marked the
beginning of a long-term collaboration on Lie powers between these three. A major
topic of this collaboration was the solution of the decomposition problem for modular
Lie representations of groups with cyclic Sylow p-subgroup in defining characteristic,
with the first two cases of interest being symmetric group of degree p [6] and
GL(2, p) [9]. In situations where the Sylow p-subgroups of G are cyclic, there are
only finitely many isomorphism classes of indecomposable KG-modules. Thus, once
armed with an understanding of the finitely many indecomposable modules which
could occur, the decomposition problem for Lie powers of a given module V asks for
the Krull–Schmidt multiplicities of those indecomposables in Ln(V) for all n.

Work on GL(2, p) began in Laci’s joint work with Stöhr [19], in which the Lie
powers Ln(E) of the natural module E for GL(2, p) over the field of p elements were
considered, with results obtained for p = 2 and p = 3. This work was brought to a
conclusion in joint work of the three authors [9]. The main ingredient of the conclusive
results on GL(2, p) is the three-authored paper [8], which is of interest in its own
right. The paper [8] concerns Lie powers for cyclic groups of prime order and gives
a complete solution of the decomposition problem in this case. The result is highly
complex, requiring several clever ideas, many of which laid the groundwork for later
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progress on modular Lie powers. This article gives a roughly chronological account of
the research leading up to the influential paper [8] and some of the developments that
followed.

2. Early experiments in prime characteristic

The smallest case one can think to consider is that of Lie powers of the regular
module for the cyclic group of order two in characteristic two. In this case there are
just two indecomposable modules: the one-dimensional trivial module and the regular
module. Thus the decomposition problem for Lie powers asks for the Krull–Schmidt
multiplicities of these two indecomposables in the nth Lie power. This was the topic of
Bryant and Stöhr’s paper [3] (which set out to answer the above-mentioned question
of Laci). This work was subsequently extended by those two authors in [4], where the
decomposition problem for Lie powers of a free module for the cyclic group of order
p in characteristic p was solved. Of course, the cyclic group of order two can also be
considered as the symmetric group of degree two, and it is therefore natural to enquire
more generally about the structure of the Lie powers for the natural module for the
symmetric group Sr.

2.1. Modular Lie powers for the symmetric group. In characteristic zero, the
ordinary characters of Lie representations of the symmetric group can be obtained
from the character formula of Brandt [1], and from this the multiplicities of the simple
summands of the nth Lie power can be obtained using orthogonality relations. In prime
characteristic, there is a completely analogous formula for the Brauer character of
the Lie representation of the symmetric group, and again one can use orthogonality
relations to identify the relevant composition factors and their multiplicities. When
r < p the Lie powers are semisimple, and so in this case the analysis above solves the
decomposition problem. For r ≥ p, things are not so simple (if you will pardon the
pun).

In [6], Bryant et al. considered the cases where p ≤ r < 2p. For p = 2, these cases
had essentially already been dealt with by these three authors in [3] (for r = p = 2)
and in [18] (for p = 2, r = 3). The paper [6] therefore concentrates on the case
of odd characteristic. Their main results identify the nonprojective indecomposable
summands of the nth Lie power as Specht or dual Specht modules corresponding to
certain partitions. Their most detailed results apply in the case where r = p. Here they
show that each nonprojective indecomposable summand of the Lie module for Sp in
characteristic p is isomorphic to one of the Specht modules S λ or its dual, where the
modules S λ occurring are indexed by the hook partitions λ = (p − k, 1k) with k odd
and 1 ≤ k ≤ p − 2, and furthermore, they give a formula for the multiplicity of each of
these modules inside the nth Lie power.

2.2. Modular Lie powers of the natural module for GL(2, p). Let K be a field
of prime characteristic p, G = GLr(K) and let E denote the natural KG-module.
This situation is rather more delicate than its characteristic-zero counterpart, since
(unlike the characteristic-zero case) the Lie power is unlikely to be semisimple, and
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moreover, may not turn out to be isomorphic to a module direct summand of the
tensor power (which is not semisimple in general). In fact, it transpires that the nth
Lie power is a direct summand of V⊗n whenever p - n. This fact was exploited by
Donkin and Erdmann [11] to obtain a formula for the Krull–Schmidt multiplicities
in the case where K is infinite. The first case of interest to Laci was the simplest
case at the other extreme, namely when r = 2 and K is the field with p elements,
so that G is the finite group GL(2, p). In this case the Sylow p-subgroups of G are
cyclic and hence there are finitely many indecomposables up to isomorphism. For
instance, when p = 2 this group has three isomorphism types of indecomposable
modules. These are the one-dimensional trivial module, the two-dimensional natural
module, and a nonsimple indecomposable of dimension 2. The decomposition problem
therefore asks for the Krull–Schmidt multiplicities (a(n), b(n), c(n), say) of these three
indecomposables in Ln(E). It is clear that a(n) + 2b(n) + 2c(n) is equal to the dimension
of Ln(E), which is given by Witt’s dimension formula. It is also straightforward to
verify that a(n) + b(n) + c(n) is the dimension of the fixed point space in Ln(E) under
the automorphism which interchanges the two standard basis vectors of E. (In other
words, a(n) + b(n) + c(n) is equal to the dimension of the fixed point space elucidated
by Bryant and Stöhr [3].) To complete the analysis in this case, one can use the
Brauer character of the Lie representation to obtain a third linear equation in the
multiplicities a(n), b(n) and c(n), and hence obtain closed formulae for these Krull–
Schmidt multiplicities [19, Theorem 3.1]. The Brauer character formula for the Lie
representation of the general linear group had been known for some time (it is the exact
analogue of the ordinary character formula of [1], and the methods of Wever [33] can
be adapted to give an analogous proof of this), so the final ingredient of the theorem
was the result about the dimension of the fixed point space; this is precisely what
prompted Laci to pose his problem in the Kourovka Notebook.

The bulk of the paper [19] consists of a thorough examination of Lie powers of
the natural GL(2, p)-module in the case p = 3, resulting in the complete solution for
the decomposition problem in this case [19, Theorem 6.1]. The central argument
built upon previous work of Bryant and Stöhr [4], which dealt with Lie powers of
free modules for the group of order p. However, the methods employed in [19] did
not immediately carry over to larger primes; the theory needed to be extended and
completely new ideas were required. This was accomplished in [8], which conquered
the decomposition problem conclusively for Lie powers for groups of prime order.

3. Lie powers for groups of prime order

By the end of the 1990s it is fair to say that progress on the decomposition
problem in prime characteristic had been limited to an understanding of Lie powers
of degree not divisible by p, together with a study of the Lie powers of some rather
special modules (as discussed above). In stark contrast, the paper [8] provides a
complete solution decomposition problem for Lie powers for groups of prime order,
where it is explained how to compute the Krull–Schmidt multiplicities for Lie powers
of any finite-dimensional module for a group of prime order p over any field of
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characteristic p. The first key idea is to use Lazard elimination to show that if
V � V1 ⊕ · · · ⊕ Vk is a decomposition of V into indecomposable modules, then the
Lie power Ln(V) can be expressed in terms of Lie powers of the form Ln(Vi) for
i = 1, . . . , k together with modules of the form L j(W), where j < n and W is an
indecomposable summand of a tensor product formed from the Vi. If U and V are
vector spaces, Lazard elimination gives a vector space decomposition of the free
Lie algebra L(U ⊕ V) as the direct sum of L(U) and L(V o U), where V o U is the
subspace of L(U ⊕ V) spanned by all products of the form [v, u1, . . . , um] with m ≥ 0,
v ∈ V and u1, . . . , um ∈ U. The first important observation made in [8, Lemma 2.2]
is that if U and V are KG-modules, then elimination yields module decompositions,
not just vector space decompositions, where V o U is a KG-module isomorphic to
V ⊗ T (U). By induction, this essentially reduces the decomposition problem for
Ln(V) to first determining the Krull–Schmidt multiplicities of all Lie powers of
indecomposable modules up to degree n, and then keeping track of these multiplicities
when elimination is (repeatedly) applied. Notice that for this scheme to work, we
must have a good understanding of the indecomposable KG-modules and be able to
decompose tensor products of these. In the case considered in [8] where G is a group
of prime order p and K is a field of characteristic p, there are (up to isomorphism)
only p indecomposable modules J1, . . . , Jp, where Jr � KG/(g − 1)rKG, and detailed
information about how to decompose tensor products of indecomposables is readily
available. Thus the most technically challenging part of [8] is in decomposing the Lie
powers of indecomposables.

A dimension shifting argument is used to find an expression for Ln(Jr) for each r ≥ 2
in terms of modules of the form Li(V), with i < n and V finite-dimensional. Since the
dimension of Jr is r, it is clear that L1(J1) = J1 and Ln(J1) = 0 for n > 1. For r ≥ 2, the
authors construct a particular graded submodule U of the enveloping algebra T (Jr) of
L(Jr) such that U = U2 ⊕ U3 ⊕ · · · and Uk is a direct summand of T k(Jr). The main
technical results of the paper concern the Lie subalgebra of T (Jr) generated by U,
termed the shifted Lie algebra L(U). It is shown that this Lie subalgebra is free on U,
and moreover, that

L(U) ∩ T k(Jr) = Lk(Jr) for k < {1, p},
(L(U) ∩ T p(Jr)) ⊕ Jp−1 � Lp(Jr) ⊕ Jp.

Since the elements of Uk are homogeneous of degree k, in order to calculate Ln(Jr) up
to isomorphism it is therefore sufficient to find

L(U2 ⊕ · · · ⊕ Un) ∩ T n(Jr) =

n−1⊕
i=1

Li(U2 ⊕ · · · ⊕ Un) ∩ T n(Jr),

which can be calculated by using Lazard elimination.
The remainder of the paper explains how one can keep track of the indecomposable

summands obtained at each degree from this delicate elimination procedure, by using
graded modules and formal power series with coefficients in the Green ring. In the case
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where V is a free KG-module (that is, V is a direct sum of copies of Jp), it is shown
that every indecomposable module occurring in the Lie power Ln(V) is isomorphic
to either Jp or Jp−1 and explicit formulae are obtained for the multiplicities of these
indecomposables (these results were already proved in [4] by a different method). For
p ≥ 3, a similar result is shown to hold for the Lie powers Ln(Jp−1), which also consist
only of copies of Jp and Jp−1, and again explicit formulae for the corresponding
multiplicities are obtained. For the Lie powers Ln(Jr) with 2 ≤ r ≤ p − 2, some
qualitative information is given about which indecomposables can occur and it is
shown that for every sufficiently large n, every indecomposable occurs as a summand
of the Lie power Ln(V).

4. Integral Lie representations

Another topic of interest to Laci was the much more difficult case of integral Lie
representations [7, 18, 19]. Consider the free Lie ring L(V), whose elements take
coefficients from Z, where V is a Z-free ZG-module. It is easy to see that in this case
L(V) is itself a Z-free ZG-module which decomposes as the direct sum of integral Lie
powers Ln(V). Of course, the ‘decomposition problem’ for integral representations
is no longer well posed, since there is no Krull–Schmidt theorem in this case (two
direct sum decompositions of a given ZG-module can contain different collections of
indecomposable summands up to isomorphism). Nevertheless, Laci and his co-authors
were able to give detailed information about the integral Lie powers in a few special
situations.

In joint work with Stöhr [19], Laci investigated the ZGL(2, Z)-module structure
of L(V), where V is the natural GL(2, Z)-module. The main result of [3] can be
used to deduce the structure of the Lie powers Ln(V) considered as modules for any
indecomposable subgroup of order 2 in GL(2, Z). In [19] this result is substantially
extended, essentially giving full information about the Lie powers Ln(V) considered
as modules for any finite subgroup of GL(2,Z). This is achieved by first considering
the integral Lie powers as modules for a maximal finite subgroup G of GL(2,Z). Such
maximal subgroups fall into two conjugacy classes and it therefore turns out to be
enough to consider the integral Lie powers as modules with respect to two particular
subgroups of GL(2, Z), namely C × H and D, where C is the centre of GL(2, Z),
H is a dihedral subgroup of order six and D is a dihedral subgroup of order eight.
The general strategy is then to use knowledge of the integral representation theory
of the dihedral groups (in particular, the work of Lee [25]) together with (amongst
other things) an understanding of the restriction to a subgroup of order two provided
by [3] and an understanding of the integral Lie powers upon reduction modulo 3;
this latter having been described in detail in an earlier section of their paper where
Lie powers of the natural GL(2, 3)-module are considered. In both cases (G = C × H,
G = D) it turns out that there are finitely many indecomposable G-modules which can
arise as summands of the integral Lie power, and that the multiplicity with which a
particular indecomposable module occurs does not depend upon the decomposition
(a rather surprising result for these integral representations). Recursive formulae for
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the multiplicities are given, hence completely determining the structure of these Lie
powers. A very similar approach was also adopted by these two authors in [18] to
completely describe the integral Lie powers of the natural ZS3-module.

Finally, in joint work with Bryant and Stöhr [7], Laci studied the free Lie ring
L(V) where V is a Z-free module of rank 2r under the action of the subgroup of
S2r generated by a fixed-point-free permutation τ of order two. They were able to
provide a highly symmetric Z-basis B = B0 ∪ B−1 for Ln(V), with the property that
for each b ∈ B0 there is a unique b′ such that τ interchanges b and b′, whilst τ acts by
multiplication by −1 on each b ∈ B−1. It is then easy to see that each b ∈ B−1 generates
a one-dimensional indecomposable Z〈τ〉-module, whilst each of the pairs b, b′ ∈ B0

generates a two-dimensional indecomposable Z〈τ〉-module and it follows that their
basis construction yields a decomposition ofL(V) into indecomposable Z〈τ〉-modules.

5. Further developments and applications

In recent years modular Lie representations have developed into an important
research topic, and there is no doubt that Laci played a major role in this, both as
an eminent author and as a tireless promoter of the subject. Since the publication
of [8], substantial progress has been made on modular Lie powers by a number of
authors including Bryant, Stöhr, Erdmann and the late Manfred Schocker. A highlight
in this development was the Bryant–Schocker decomposition theorem. As we have
seen, Lie powers in degrees not divisible by the characteristic are direct summands of
the corresponding tensor power, and in this case it is possible to exploit knowledge
of the tensor power to obtain information about the Lie power. The Bryant–Schocker
decomposition theorem concerns Lie powers in degrees divisible by the characteristic
in the most general case (K a field of characteristic p, G a group, V a finite-dimensional
KG-module).

The first case of difficulty, namely n = p, was dealt with in [5] by Bryant and Stöhr
via an analysis of the structure of V⊗p. They proved that Lp(V) � Bp(V) ⊕ Mp(V),
where Bp(V) = L′′(V) ∩ Lp(V) and Mp(V) is the pth metabelian Lie power of V . In
the case where K is an infinite field, G is the general linear group and V is the natural
KG-module, they also calculated the indecomposable summands of Bp(V), along with
their multiplicities. Since Mp(V) is also known to be indecomposable, this gives full
information for Lp(V) in this case. We note that the metabelian Lie powers Md(V) in
this setting were later studied in more detail by Laci in joint work with Erdmann [12].
These modules are in fact the dual Weyl modules of weight (d − 1, 1) and, as such,
are of interest to representation theorists. The paper [12] completely describes the
submodule structure of these metabelian powers, giving a composition series for each
and identifying the composition factors and their dimensions. Moreover, it is shown
that the composition factors are pairwise nonisomorphic, from which it follows that
the submodule lattice is finite and distributive.

The next step forward in the decomposition problem for Lie powers was achieved
by Erdmann and Schocker [13] who considered Lie powers of degree n = pk, where
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p - k, and were able to prove that the study of Lpk(V) can be reduced to the study of
Lp(Lk(V)). Their methods made use of the Solomon descent algebra – a certain subring
of the symmetric group ring (see [27] for further reference). Bryant and Schocker [2]
were able to develop this idea much further, proving that the study of arbitrary Lie
powers can, in a sense, be reduced to the study of Lie powers of p-power degree. Their
decomposition theorem states that for all k > 0, with p - k, and for all m ≥ 0, there
exists a KG-module direct sum decomposition

Lpmk(V) = Lpm
(Bk) ⊕ Lpm−1

(Bpk) ⊕ · · · ⊕ L1(Bpmk),

for some submodules Bpik of Lpik(V), which are in turn isomorphic to KG-module
direct summands of V⊗pik.

Apart from the intrinsic interest in this fascinating subject, there is also considerable
interest from researchers in both group theory and representation theory. We note that
an additional and somewhat unexpected impetus came from algebraic topology, where
the relevance of modular representations became apparent in the work of Selick and
Wu [29], prompting several topologists to undertake research in this area. We shall
restrict ourselves here to a discussion of one particular application in which Laci had
direct involvement.

It turns out that modular Lie powers can be used to give insight into an interesting
problem, concerning torsion in free central extensions of groups. In 1973 Gupta [14]
discovered elements of finite order in free centre-by-metabelian groups. More
precisely, she proved that the relatively free group F/[F′′, F] (where F is a free
group of rank d ≥ 4) contains an elementary abelian 2-group of rank

(
d
4

)
in its centre.

This was the first result to remark upon an, at the time, surprising phenomenon:
the appearance of torsion in free central extensions of certain torsion-free groups.
Gupta’s proof was purely group-theoretical, consisting of several pages of intricate
commutator calculations. Kuz’min [24] introduced homological methods into the
study of Gupta’s torsion elements, and subsequently was able to identify the torsion
subgroup of F/[F′′,F] with the fourth homology group of the free abelian group F/F′

reduced modulo 2. The unexpected presence of torsion and the connection with group
homology created considerable interest in such groups.

More generally, for G a group given by free presentation G = F/R, the quotient
F/[γcR, F], where c ≥ 2 and γcR denotes the cth term of the lower central series of
R, is a free central extension of F/γcR. The quotient F/γcR is in turn an extension of
G = F/R with free nilpotent kernel R/γcR. Whilst F/γcR is always torsion-free [30],
Gupta’s result shows that elements of finite order can occur in the centre of F/[γcR,F],
that is, in the quotient γcR/[γcR, F]. The problem is then to determine the torsion
subgroup of γcR/[γcR, F]. In a similar spirit to Kuz’min’s result, Stöhr [31] was able
to identify the torsion subgroup with a certain (nontrivial) homology group in the cases
where c = 4 and c = p a prime, provided that the group G does not contain any c-
torsion.

Lie powers of the relation module can be brought to bear via the isomorphism

γcR/[γcR, F] � Lc(Rab) ⊗G Z,
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where Lc(Rab) denotes the cth homogeneous component of the free Lie ring L(Rab).
It is this connection which motivated the paper [22]. Reduction modulo p, where p is
a prime, turns the relation module into the (Z/pZ)G-module Mp = Rab ⊗ (Z/pZ). The
main result of [22] is that the Lie power Lc(Mp) is a projective (Z/pZ)G-module,
provided that c > 1 and c is not divisible by p. In joint work with Stöhr [16] we
extended this result, showing that if G does not contain any elements of order p, then
each of the Lie powers Lc(Mp) with c not equal to a power of p is a projective (Z/pZ)G-
module. This result, together with (an infinite-dimensional version of) the Bryant–
Schocker decomposition theorem, was then applied in [16] to show that whenever c
is divisible by at least two primes and G has no c-torsion the group γcR/[γcR, F] (and
hence F/[γcR, F]) is torsion-free.
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[12] K. Erdmann and L. G. Kovács, ‘Metabelian Lie powers of the natural module for a general linear

group’, J. Algebra 352 (2012), 232–267.
[13] K. Erdmann and M. Schocker, ‘Modular Lie powers and the Solomon descent algebra’, Math. Z.

253(2) (2006), 295–313.
[14] C. K. Gupta, ‘The free centre-by-metabelian groups’, J. Aust. Math. Soc. 16 (1973), 294–299;

Collection of articles dedicated to the memory of Hanna Neumann, III.
[15] M. Johnson, ‘Standard tableaux and Klyachko’s theorem on Lie representations’, J. Combin.

Theory Ser. A 114(1) (2007), 151–158.
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