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BROWN-HALMOS TYPE THEOREMS
OF WEIGHTED TOEPLITZ OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. The spectra of the Toeplitz operators on the weighted Hardy space
H2(Wd4 /2r) and the Hardy space HP(dd/2r), and the singular integral operators on
the Lebesgue space L4(dd / 2r) arestudied. For example, thetheoremsof Brown-Halmos
type and Hartman-Wintner type are studied.

1. Introduction. Let m be the normalized Lebesgue measure on the unit circle T
and let W be a non-negative integrable function on T which does not vanish identically.
Suppose 1 < p < oo. Let LP(W) = LP(Wdm) and LP(W) = LP when W = 1. Let H?(W)
denotethe closurein LP(W) of the set P of all analytic polynomialswhenp # co. Wewill
write HP(W) = HP when W = 1, and then this is a usual Hardy space. H* denotes the
weak * closure of P in L°°. P denotes the projection from the set C of all trigonometric
polynomialsto P. For 1 < p < oo, P can be extended to a bounded map of LP(W) onto
HP(W) if and only if W satisfies the condition

(Ap) Sll.lp(ﬁ/de) (“iI/IW’ﬁ dm)p_l < 00

wherethe supremumisover al intervals| of T. Thisisthe well known theorem of Hunt,
Muckenhoupt and Wheeden [7], which is a generalization of the theorem of Helson and
Szegb [6].

In this paper, we assume that the weight W satisfies the condition (Ap). For ¢ in L,
the Toeplitz operator T‘q{" is defined as a bounded map on HP(W) by

TV = P(gf).

For o and 3 in L*°, the singular integral operator S‘(% is defined as a bounded map on
LP(W) by
SUf = aPf + (1 — P)f

where| is anidentity operator. If W = 1, we will write T = T, and S}, = S,,5. Almost
all resultsin this paper will be essentially shown using the following theorems. They are
called the theorems of Widom, Devinatz and Rochberg (cf. [1], [10] and [9]).
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THEOREM A. Suppose 1 < p < oo and W = |h|P satisfies the condition (A,), where
hisan outer function in HP. Then the following conditions on ¢ and W are equivalent.

Q) Tx\’ isan invertible operator on HP(W).

(2) ¢ = k(ho/hg)(h/h), where k is an invertible function in H> and hy is an outer
function in HP with |ho|P satisfying the condition (Ap).

(3) ¢ =7 exp(U —iV), where isconstantwith || = 1., U isa bounded real function,
Visareal functionin L! and Wexp(gV) satisfies (Ap).

THEOREM B. Supposel < p < oo and W = |h|P satisfies the condition (Ap), where
his an outer function in HP. SO’ZVB is invertible on LP(W) if and only if both o and 3 are
invertible in L and o/ = Yexp(U — iV), where ¥ is congtant with || = 1,U isa
bounded real function, V isareal functionin L* and Wexp(5V) satisfies (Ay).

THEOREM C. SupposeT, and S, areonL?, where¢. o and 3 areinvertiblefunctions
inLee.

(1) T, isinvertibleif and only if ¢ hasthe form: ¢ = |¢|€" wheret isareal function
in L* such that

It =inf{|t—3—al|w;selLyandac R} < /2
(2) Sysisinvertibleif and only if /3 hasthe form: «/3 = |/ 3| wheret is the
same to that of (1). Hence S, isinvertibleif and only if T, 5 isinvertible.

In this paper, we are interested in o(TY) and o(SY),), that is, the spectraof T and SJ,.

Fora = oy +iay, € Cand 8 = 51 +iB2 € C, put <O(,ﬂ> = o1 + apf and
6(ce. 3) = arccos((ac. 3)/ || |8]) for o # 0and 3 # 0. Set
(h={zeC;(za)>1} and (,={zeC;(za)<1}
and E!l, denotes ¢!, N ¢}, wherei = + or — andj = + or —. For each pair (. 3),
c=E!

(o4

sUEL; UELFUES

andif £ = —i andm= —j, then

(Eme=C\Em>SE] .

For any bounded subset E in C, there exists a pair («, 3) such that Egﬂ D E for some
(i,]). Infact, there are alot of such pairs («, 3). Now we can define a set which contains
E and isimportant in this paper. When |6(c.. 3)| = 7 —2tand 0 <t < 7/2, put

7L

h'(E) =N{(E[N; E), DEand ( = —i.m=—j}

for asubset Ein C. If t < s, then h'(E) C h3(E). If t = 0, then h°(E) is the closed convex
hull of E. For example, if E = [a, b] then

h(E) = Alc,r) N A, T)
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c=2b_j&beot2t and r = — 25 where A(c.r) denotes the circle of center ¢ and
radiusr. If E = A(0, 1), then h'(E) = A(0.1/ cost). When T, is a Toeplitz operator
on H?, Brown and Halmos (cf. [2, Corollary 7.19]) showed that o(T,) C hO(R (9))
where R (¢) is the essential range of ¢. In this paper we show this type results for
Toeplitz operators on H2(W) and HP and for singular integral operators on L2. When
¢ isareal function and T is a Toeplitz operator on H?, Hartman and Wintner (cf. [2,
Theorem 7.20]) showed that o(T,) = h°(R (¢)). In this paper, for real symbols we try
to describe the spectra of Toeplitz operators on H2(W) and HP, and singular integral
operators on L2. When ¢ isa continuous function, o(T,) is described using R(¢) and the
winding number of the curve determined by ¢ (cf. [2, Corollary 7.28]). In thiscaseit is
known that o(T)") = o(Tg'j) = ¢(T,) for arbitrary weight W satisfying the condition (Az),
and for any p with 1 < p < oo, T" denotes the Toeplitz operator on HP. In this paper,
we study symbols ¢ such that o(Tx"’) = o(T,) for arbitrary weight W.

Now we collect the notations which will be used in this paper. Ris the set of all real
numbers and Xg denotes the set of the real parts of all elementsin X. [X]¢¢ denotes the
closure of X. D isthe open unit disc. C isthe set of al continuousfunctionsonT. If vis
areal function in L, then ¥ denotes the harmonic conjugate function with v(0) = 0.

2. Toeplitzoperatorson HAW). Inthissection, wefix arbitrary weight Wsatisfying
the condition (A,) or equivalently, aHelson-Szeg6 weight W. We call W a Helson-Szeg6
weight when W = e**¥, uand varefunctionsin Ly and ||v|| . < 7/2. For aHelson-Szeg6
weight W = "%, put

tw = [v[|" =inf{lv—-8—all.;s€ Ly, acR}.

WhenW = 1, (1) of Theorem lisatheorem of Brownand Halmos(cf. [2, Corollary 7.19])
and (2) and (3) of Theorem 1 isatheorem of Hartman and Wintner (cf. [2, Theorem 7.20]).
When ¢ is a piecewise continuous function, o(T:ﬁV) is described when W is arbitrary
weight [11]. The symbol ¢ in Corollary 2 and (3) of Corollary 3 is not necessarily
piecewise continuous. It is known that a(TXV) # o(T,) for some weight W and some
piecewise continuous symbol ¢ (cf. [4]). In Theorem 2, we determine weight W such that
a(T}") = o(T,) for arbitrary symbol ¢ in L> and study symbols¢ suchthat o(T)") = o(T,)
for arbitrary weight W. Spitkovsky [13] showed that the set of all weights W for which
o(T;fV) = o(T,) for al ¢ in L*> does not depend on p. (1) of Corollary 3 is related with
a particular (corresponding to p = 2) case of [3, Theorem 6.1 and Corollary 6.2]. For if
logW € VMO thenlog W = u+Vfor somerea functionsuandvin C. (2) of Corollary 3
showstheknown result [11] suchthat if ¢ iscontinuous, then a(TX") = o(T,) for arbitrary
weight W.

THEOREM 1. Let ¢ beafunctionin L>, let W be a Helson-Szeg6 weight and t = tyy.

() R(¢) o) Ch(R(9)).
(2) if ¢ isreal valued, a = essinf ¢ and b = esssup ¢, then

R (¢) Co(M) C A NAET)
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wherec = &0 —j2&L cos2tandr = — 22
(3) SupposeW = e**Vand A € [a, b]NR (¢)¢in(2). Then ‘:iji‘ =¢eand( = n1(1—xE)

for some measurableset Ein TwithO < m(E) < 1. A\ € o—(Tg‘{V) if and only if

mxe — vl = /2.

PROOF. In (1) and (2), it is well known that R (¢) C o(T\"). Suppose W = &*¥, u
and v are functionsin LY and ||V||o, < 7/2, and g7 = €@V Then W = |g|2.
(1) By Theorem A in Introduction, for A € C, TX‘LA isinvertibleif and only if

Ts g isinvertible.

o= g

Suppose |0(a, B)| =7 — 2t and R (¢) C Egﬁ. If X e (EZN° with ¢ = —i.m = —j, then

Txvisinvertible. Infact, then (¢ — \)/|¢ — A| = €% where0 <'s, < 7 —2t—2: ae.or
—m+2t+2 < <0Oae. forsomee > 0. Hencels, — 5 +t+¢| < 5 —t—caeor
s\ +5 —t—¢| <5 —t—cae Hence

¢ — A

¢ — Al

)

Q Q|

and
sy +v—f < g —e.

Thus T .- 5 isinvertible by Theorem C and hence TYY , isinvertible. If A £ h'(R (¢)),

[6=A1 9
then by definition A € U{(E/M° ; EEB DR(¢)and ¢ = —i.m= —j} and |0(c. B)| =
m— 2t. By what wasjust proved, A £ o(T¥). (2) By (1), o(T}) C h(R (¢)) € h'([a. b])
for t = tw. It is elementary to seethat h'([a, b]) € A(c,r) N A(C, r). (3) Thefirst partis
clear. The second statement is aresult of Theorems A and C.

COROLLARY 1. Suppose ¢ = axe + byec wherea and b arereal numbers, a # b and
0<m(E) < 1. Let W =&, then o(T¢‘fV) D [a. bl ifandonlyif ||mxe — Vv||' > /2.

COROLLARY 2. Let E be a measurable set with 0 < m(E) < 1. Suppose W and ¢
satisfy the following (i) and (ii):
(i) W=e""whereu € LY, ¥ = d(xe — xec) + 0, g € Cr and d is a constant with

o<d<n/2
(i) ¢ = aye +bye whereaand b arereal numbers.
ThentW:d,
WA _ ) a—A_
o(TY) = {,\ €Ciag,— =r 2d}.
and

h'(R (¢)) = {/\eC;arg%:ﬂ—Zdor —7r+2d}.
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PROOF. Put Vo = 3(xe — Xes), then h? = =% and |h|2/h? = €% = i(ye — xE).
If llxe — xecl” < 1, then |h> = €% is a Helson-Szeg6 weight and so
| 1h|?/h? + zH>®|| < 1 (see [3, Chapter 1V, Theorem 3.1]). On the other hand,
| 1h]2 /2 +zH>|| = ||i(xe— xe:)+zH>|| = 1. Thiscontradiction showsthat || xye—xec||’ =

1. Thus
tw = inf{]|d(xe — xec) — 35— al| ; SE LR, a € R}
=dinf{|lxe — xee — 35— || ; SE L. a€ R}
=d.
Put g2 = @Y theng/g = €Y = expi{ll— d(xe — xec) — q}. If A Zaand \ #b,
then
o—X _ a—2A b— A

o= T A oA
= expi{a(\)xe + b(\)xe }

wherea(\) = arg(a— ) andb(\) = arg(b— \). Thus(¢ —A)g/|¢ — A|g = expi{a(\)xe +
b(A)xee + 0 — d(xe — xec) — g}. Sinceq € Cg, by thefirst part of the proof,

inf{|[a(\)xe + b(\)xec — d(xe — xec) +U—g—35—a|.;selg.acR}

- M—d inf{[xe — xes —3—alloo ; SELR.a€ R}
a0 b0y L ash
=525 d =g — —2d.

Thus, by (1) of Theorem C A # o(T*) if and only if ‘arg =) Zd' #m If g >0,
then |arg a2 Zd' # m becaused > 0, and henceo(TYY) = {\ ¢ C ; arg &= = = — 2d}.
The description of h?(R (¢)) isaresult of (2) of Theorem 1.

THEOREM 2. Let ¢ beafunctionin L*> and let W be a Helson-Szegd weight.
(1) tw=0ifandonlyif o(T(‘;") = o(T,) for arbitrary symbol ¢ in L*.
(2 o(Ty) 2 a(T‘q{") for arbitrary Helson-Szeg6 weight W if and only if for any

A ¢ o(Ty), g5 =€’ and||¢] =0.

PROOF. (1) Suppose W = €V, ty = 0 and g% = eV |f X ¢ o(T,), then by
Theorem C 2=2- = €’ and || ¢||’ < 7/2. Hence

[p=Al
]
lo —Alg

=expi({ +l—V)

and sincety =0,
inf{|[{+0—v—-8—a|,;sclyandac R}
=inf{||{ —8—al|»;se Ly andac R}

<l
>
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Thus A # o(T)") by Theorems A and C. Similarly we can show that if A # o(T}") then
A € o(T,). Suppose o(TX") = o(T,) for arbitrary symbol ¢ in £>°. If t = ty is nonzero
and W = e**¥ is a Helson-Szegd weight, then T, is invertible where ¢ = e and
k=n/2t—1 Forinf{|[kv—3—al|» ; s€ L¥ anda € R} = kt = 7/2— 1. On the other
hand, TXV is not invertible. For

L2
9]

Q@ Q|

= expi{l— (k+ 1)v}

and
inf{||ii— (k+ )v—3—all»;seL¥ andac R} = (k+ 1)t=g

where g? = et (@),
(2) Supposefor any A # o(T,), ‘j;:i‘ =gl andinf{||{ —3—al|l, ; s € LY and
a € R} = 0. We will show that o(T,) 2 a(T}f") for arbitrary Helson-Szegd weight W. If

A ¢ o(T,). W = eV is a Helson-Szeg6 weight and g? = e then

0= 9 _ yesiy
[0 —Alg

andinf{||(+l—v—8—al|» ; s€ LR.a € R} < n/2by thehypothesis. Thisimpliesthat
a(T}") # . Conversely supposethat o(T;) 2 o(T}") for arbitrary Helson-Szeg6 weight
W.If A ¢ o(T,), then (=, =€’ andb = inf{||{ — 3~ a|| ; s€ELR.a € R} < 7/2.1f
b #0, put W= & and g2 = &/~ wherek = 5 — 1, then Wis a Helson-Szeg6 weight.
However T} isnot invertible and so A € o(TY"). This contradiction implies that b = 0.

COROLLARY 3. Let ¢ beafunctionin L.

(1) IfW = "V, uandvarereal functionsin L> and C respectively, then a(TX") =a(Ty)
for arbitrary symbol ¢ in L.

(2) If ¢ isa functionin C or H*, then o(T‘q{") = o(T,) for arbitrary Helson-Szegb
weight W.

(3) If ¢ =axe +bye, 0 < ME) < 1anda.b € C with a # b, then there exists a
Helson-Szeg6 weight W such that o(TY") c o(T,).

PrOOF. Since tw = 0 because v € Cg, (1) of Theorem 2 implies (1). Suppose
¢ is afunction in C and A ¢ o(T;{"’) for a Helson-Szeg6 weight W = e'*V. Since
R (¢) C o(TY), )

p—A g 0 (-

— =2 = Al

|6 —Alg
where mis an integer, ( € Cr and g = e**"(@) By Theorems A and C, we can show
m=0.AsW = 1, (2) of Theorem 2 implies that o(T,) 2 a(TX") for arbitrary Helson-
Szeg6 weight W. The converseistrivial. Suppose ¢ isafunctionin H* and A ¢ a(Tq‘{V’)
for a Helson-Szegé weight W = €Y. Since R (¢) C a(TXV’), ¢ — Misinvertiblein L*
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and so ¢ — A = gh where g is inner and h is invertible in H*®. Since h = e’ and
¢ =log|h| € L™,
i7 S ([0—v)

0= 9 goid

|6 —Alg
where g2 = e*"(@V) By Theorems A and C, we can show that q is constant. As in
case ¢ € C, we can show o(T;fV) = o(T,) for arbitrary Helson-Szeg6 weight W. This
completes the proof of (2). Suppose ¢ = axe + bye:, 0 < M(E) < land a,b € C with
a # b. To prove (3), without loss of generality, we may assume that a and b are real
numbers. By atheorem of Hartman and Wintner (cf. [2, Theorem 7.20]), o(T,,) = [a. b].
If X ¢ [a b],

@%;\\' = expi{a(\)xe + b(A\)xec }

wherea()) = arg(a— A) and b(\) = arg(b — A). By the proof of Corollary 1,

: ~ 1 a—A\
inf{|la\)xe +b(A\)xee — 35— a||w;SE Ly andac R} = E‘arg b—/\‘ Z0

and hence by (2) of Theorem 2, there exists a Helson-Szegé weight W such that o(T)/(") g
O'(Tq‘)).

3. Toeplitz operatorson HP. For1 < p < 00.qu denotes a Toeplitz operator on
HP. We will write Tq% = T,. By atheorem of Widom, Devinatz and Rochberg (cf. [8]), we
know the invertibility of Tg and by atheorem of Widom (cf. [2, Corollary 7.46]), U(Tg)
isconnected. If 1 < g <2 < p < oo, thenAy C Ay C Ay. Itismoredifficult to describe
o(T3) than o(T?). In this paper, we study only o(T?). When p = 2, (1) of Theorem 3 is
a theorem of Brown and Halmos and (2) is a theorem of Hartman and Wintner. (3) of
Theorem 3isknownin [10] for arbitrary 1 < p < oo. Our proof is different from it.

THEOREM 3. Supposep > 2andt = (p — 2)7/2p.
(1) If ¢ isafunctionin L, then o(TP) C h'(R (¢)).
(2) If ¢ isareal functionin L>°, a = essinf ¢ and b = esssup ¢, then

[a.b] C o(TP) C Afe.)NAE.T)

a—b
2sin2t”

wherec = 2P —ja&Lcot2t andr = —
o(TP) = [a. b].
(3) If pisafunctioninC, then o(T}) = o(T,).

In particular, if p = 2, thent = 0 and hence

PrOOF. (1) If A ¢ h'(R (¢)), then by definition A\ € U{(E/D)° ; El, D R(¢)
and ¢ = —i,m = —j} and |6(c, )] = 7 — 2t. Hence (¢ — \)/|¢ — A| = €% where
0<s <7m—2t—2caeor—7+2t+2:c <s, < 0Oae forsomes > 0.Putv, = s, —J+t+e
orv, =s,+5—t—e, then||vy[o < 5—t—e. Putg? = e ", theng?isanouter function
and g2 = e ™. Then ||3v; || < § because ||V, [l < § — 8527, Hence [g|P satisfies
(A2) condition and so |g|P satisfies (Ap) condition by (cf. [3, Lemma6.8]) becausep > 2.
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Since (¢ — \)/|¢ — A| = «(g/g) for some constant o with || = 1, Theorem A implies
D).

(2) We may assume that ¢ is not constant. By Theorem A, R (¢) C a(Tf;). Suppose
X € [abl and X ¢ R (), then (¢ — A)/|¢ — A| = 2xe — 1 for some measurable set
EinT.If X ¢ o(Tg), then by Theorem A, there exists an outer function hg in HP such
that 2xe — 1 = hy/ho. Thisimplies that h2 is a real function in H* becausep > 2. It is
well known that only one real function in H* is constant. Hence hg is constant and this
contradictsthat ¢ is not constant. Thus[a, b] C a(Tg). Now (1) implies (2).

() If X € R(¢), then (¢ — X\)/|¢ — A| is acontinuous function and hence

where ¢ isaninteger and visareal functionin C. Put g> = e ", then |g|* = e . Sincev
is continuous, for any e > 0,V = s+Twherebothsandt arein C and ||t||., < . Suppose
(=0.1fe < n/p, then |gPP = |g?|} = exp(—5V) = exp(—5s — 5%) and || 5t]« < 3.
Hence |g|P satisfies (A2) condition and so (Ap). By Theorem A, Tf;_A isinvertible and so
A ¢ o(T?). Suppose ¢ # 0. 1f T0_, isinvertible, then by Theorem A

o= _ v KNP
o T

where k and k! are in H®, and h is an outer function in HP with |h|P satisfying (Ap)
condition. Since z'|g|?/g? = |kh?| /kh?, z/f > 0 ae. wheref =kh?/g%. If £ > 0, Z'f isa
nonnegative function in H/2 and henceit is constant. This contradictsthat z' is zero on
the origin. If ¢ < 0, Z/|1+Z'|/(1+Z)?> > 0and so (1 +Z')*f > Oae. Thus (1 +Z')%f
is a nonnegative function in HY2 and so f = ¢(1 + Z')? for some constant ¢ > 0. This
contradictsthat f 1 € HY/2,

4. Singular integral operatorson L2, By Theorems A, B and C, we can expect
that 0(S,s) is strongly related with o(T,) and o(T;). (1) of Theorem 4 is an analogy of
a theorem of Brown and Halmos, and (2) of Theorem 4 is an analogy of a theorem of
Hartman and Wintner.

THEOREM 4. Suppose o and 3 are functionsin L*°.
D) R(@UR(B) C 0(Sys) C h(R () UR (3)) wheret = 7 /4.
(2) If o and 3 arereal functionsin L°,

{h(R (@) Nh(R3))"} U {h(R (@) Nh(R(B)} C o(Ss) € Ale.)NAEC.T)

where ab: min{essinf o, essinf 3}.b = max{esssupa. esssup 3}.¢ = & — &L and
r=—2

3 szﬁisin C,

o(T)N{A € Cit(8.2) = 0} UR (8) C 0(Sus) € o(Ta) U a(Ty).
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(4) If both o and 3 arein C, then 0(S,5) = {o(Tx) Ua(T)} \ {} € C; it(a, \) =

(5) Supposeboth o and 3 arein C. If g isareal function, then o(S,3) = o(T,) U
h(R (8)) and henceif both a and 3 arereal functions, then o(S,5) = h(R («))Uh(R (3)).

(6) If a and 3 arefunctionsin H*, then o(S,5) = [a(D)]® U [3(D)]°.

(7) If a and 3 are functions in H®, then o(S,5) = [«(D)]¥ U [B(D)]Y \ {\ ¢
R (@)UR (8) ; Ty, isinvertible} whereq, istheinner part of « — A and p, istheinner
partof 3 — A.

(8) If a and 3 are inner functions, and singa # sing 3, then o(S,5) = [D]¥, where
singa and sing 3 denote the subsets of 9 D on which o and 8 can not be analytically
extended, respectively.

PROOF. (1) By Theorem B, it is clear that R (0) UR (B) C 0(Sy). If A ¢
h‘(R (@) UR (ﬂ)), then (o — \)/|a — A| = €% and (3 — \)/|3 — A| = € where
0<s,f,<F—caeor—3+ec<s,t, <0ae forsomee > 0. Therefore

oa— A .

m = eXp(U — IV)
whereU = log|a — A| — log|3 — A] andV = t, — s,. Then U is bounded and expV =
exp—(ty —s))~ and ||ty — 8)[|o < 5 — . By TheoremC, S,_, 5, isinvertible.

(2) If o and B are real functionsand A € h(R (o)) Nh(R (5))°, then o — X isa
real function which is not nonnegative or nonpositive, and 3 — A is a nonnegative or
nonpositive function whichisinvertiblein L>. (o — \) /(3 — ) isareal functionin L™
which is not nonnegative or nonpositive. If S,_, 53—, isinvertible, then by Theorems B
and C both @ — X and 8 — X areinvertiblein L>°, and

a—XA_|a—A
B—X ‘5 —A ¢
where inf{|t —3—all, : s€ Ly anda € R} < /2. Let g = e ™ thengisa
real function in H*. Since only one real function in H! is constant, g is constant and
so it contradicts that (o« — A)|8 — A| /(B — A)|a — A| is nonconstant. This implies that
h(R (@) Nh(R (8))° C 0(S,s). The same method shows that h(R ()N h(R (3)) C
0(Sys). Since R (o) UR (B) C [a.b], by (1) 0(S,5) C h'([a,b]) wheret = /4. This
implies (2).

(3) Suppose ) € o(T,)N{A € C;i(B.)\) =0}. Theng — A = |3 — A\ andve C
because 3 is continuous. If S,_, 53—, isinvertible, then by Theorem B

oa—A iv
— (U—iVv)

—— =€

FET

where v is constant, U is a bounded real function, V isareal functionin L* and expV
satisfies (A) condition. Hence

a—Xx=vexp{U+log|8 — A —i(V —V)},
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U+log|3 — A|isinL> and e¥~V satisfies (Az) condition becausev € C. By Theorem A,
this implies that A ¢ o(T,). This contradiction shows that A € ¢(S,3) and hence
o(Te) N{X € C; k(3. %) = 0 UR(B) C a(Sw). If A ¢ a(Ts) U a(Tp), then by
Theorem C and [2, Corollary 7.28] & — A = |a — A|d'and 8 — X = |3 — A|é’ where
inf{lt—8—al|»;selL¥andac R} <m/2and( € C. Therefore

O(—)\: |OC—A|e|(t7p)
G=A BN

and henceby Theorem C \ ¢ 0(S,5).
@ 1f X ¢ R(@UR(@B) and it(e. \) # ik(B.)), then @ — A = o — \|Z€Y and
B—\=|6—\|Z€¥whereuandvarein C, and ( andt are integers with ¢ # t. Hence

a—X_ |la—A\
B=XA 1B=Al

and ¢ —t # 0. By Theorem C, we can show that A ¢ 0(S,;). Thisimpliesthat {o(T,) U
o(T)}\ {A € C il N) = (8. X) # 0} C 0(Ss). If A ¢ {o(T) Ua(T)} \ {A € C;
itf(c, \) =ie(8, \) Z 0}, thenar — A = |a — A\|Z€¥ and 3 — \ = |3 — \|Z €Y whereuand
varein C, and ¢ is an integer. Hence (o« — \)/(8 — \) = (Ja — A| /|8 — A[)e“~. By
Theorem C, A ¢ 0(S,s). This completesthe proof of (4). (5) isaresult of (4).

(6) If X € a(D)\R ()UR (3), thena—\ = ghand 3—\ = pkwhereqandpareinner,
and handk areinvertiblein H>*. Hence (o — \) /(3 — \) = gph/k and so by Theorem C
X € 0(Sys). This shows that «(D) \ R (@) UR (8) C 0(Sys). By the same method we
can show that 5(D) \ R (&) UR (8) C a(Sus). By (1), [a(D)]° U[BD)]® C o(Sis). If
A ¢ [a(D)]9 U[B(D)]Y, then  — A = hand 8 — A = k where both h and k are invertible
in H>. By Theorem C, A ¢ 0(Sys).

(7) If X € [aD)]® \ R (a) UR (B), then « — X = gyhy and 3 — X = pyk, where
both g, and p, areinner and both h, and k, are invertiblein H*. Hence (o — \) /(3 —
A) = aapahy /ky. If Tgp is not invertible, by Theorem C A € 0(S,s). This implies
that {[«(D)]¥ U[BD)]9} \ {N ¢ R (@) UR(B) ; Tqp, isinvertible } C o(Syg). If
A ¢ [a(D)] U[B(D)]Y, then A ¢ o(Sys) asin (6). If A ¢ R (@) UR (8) and Tq,p, is
invertible, then by Theorem C A ¢ o(S,5).

(8) 0(Sus) € [D]¥ by (7) and soif A ¢ (R () UR (8)) N[D]¥, then the inner part
of a—Xisqy = (@ —\)/(1—Ae) and theinner partof 5 — X isp, = (3 —\)/(1—\p).
Thensingq, = singq # singp = singp,.. By [6, Theorem 1], Tq,5, is not invertible. By
(7), thisimplies that 0(S,5) = [«(D)]? U[B(D)]¢ = [D]°.

Z(’—tei(u—v)
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