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BROWN-HALMOS TYPE THEOREMS
OF WEIGHTED TOEPLITZ OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. The spectra of the Toeplitz operators on the weighted Hardy space
H2(WdíÛ2ô) and the Hardy space Hp(díÛ2ô), and the singular integral operators on
the Lebesgue space L2(díÛ2ô) are studied. For example, the theorems of Brown-Halmos
type and Hartman-Wintner type are studied.

1. Introduction. Let m be the normalized Lebesgue measure on the unit circle T
and let W be a non-negative integrable function on T which does not vanish identically.
Suppose 1 � p � 1. Let Lp(W) = Lp(Wdm) and Lp(W) = Lp when W � 1. Let Hp(W)
denote the closure in Lp(W) of the set P of all analytic polynomials when p 6= 1. We will
write Hp(W) = Hp when W � 1, and then this is a usual Hardy space. H1 denotes the
weak Ł closure of P in L1. P denotes the projection from the set C of all trigonometric
polynomials to P . For 1 Ú p Ú 1, P can be extended to a bounded map of Lp(W) onto
Hp(W) if and only if W satisfies the condition

(Ap) sup
I

 
1
jIj

Z
I
W dm

! 
1
jIj

Z
I
W�

1
p�1 dm

!p�1

Ú 1

where the supremum is over all intervals I of T. This is the well known theorem of Hunt,
Muckenhoupt and Wheeden [7], which is a generalization of the theorem of Helson and
Szegő [6].

In this paper, we assume that the weight W satisfies the condition (Ap). For û in L1,
the Toeplitz operator TW

û
is defined as a bounded map on Hp(W) by

TW
û f = P(ûf )

For ã and å in L1, the singular integral operator SW
ãå

is defined as a bounded map on
Lp(W) by

SW
ãåf = ãPf + å(I � P)f

where I is an identity operator. If W � 1, we will write TW
û

= Tû and SW
ãå

= Sãå. Almost
all results in this paper will be essentially shown using the following theorems. They are
called the theorems of Widom, Devinatz and Rochberg (cf. [1], [10] and [9]).
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BROWN-HALMOS TYPE THEOREMS 197

THEOREM A. Suppose 1 Ú p Ú 1 and W = jhjp satisfies the condition (Ap), where
h is an outer function in Hp. Then the following conditions on û and W are equivalent.

(1) TW
û

is an invertible operator on Hp(W).
(2) û = k(h̄0Ûh0)(hÛh̄), where k is an invertible function in H1 and h0 is an outer

function in Hp with jh0j
p satisfying the condition (Ap).

(3) û = ç exp(U� iṼ), where ç is constant with jçj = 1ÒU is a bounded real function,
V is a real function in L1 and W exp( p

2 V) satisfies (Ap).

THEOREM B. Suppose 1 Ú p Ú 1 and W = jhjp satisfies the condition (Ap), where
h is an outer function in Hp. SW

ãå
is invertible on Lp(W) if and only if both ã and å are

invertible in L1 and ãÛå = ç exp(U � iṼ), where ç is constant with jçj = 1ÒU is a
bounded real function, V is a real function in L1 and W exp( p

2 V) satisfies (Ap).

THEOREM C. Suppose Tû and Sãå are on L2, whereûÒ ã andå are invertible functions
in L1.

(1) Tû is invertible if and only if û has the form: û = jûjeit where t is a real function
in L1 such that

ktk0 = inffkt� s̃ � ak1 ; s 2 L1R and a 2 Rg Ú ôÛ2

(2) Sãå is invertible if and only if ãÛå has the form: ãÛå = jãÛåjeit where t is the
same to that of (1). Hence Sãå is invertible if and only if TãÛå is invertible.

In this paper, we are interested in õ(TW
û

) and õ(SW
ãå

), that is, the spectra of TW
û

and SW
ãå

.
For ã = ã1 + iã2 2 C and å = å1 + iå2 2 C, put hãÒ åi = ã1å1 + ã2å2 and

í(ãÒ å) = arc cos(hãÒ åiÛjãj jåj) for ã 6= 0 and å 6= 0. Set

‡+
ã = fz 2 C ; hzÒ ãi ½ 1g and ‡�ã = fz 2 C ; hzÒ ãi � 1g

and Eij
ãå

denotes ‡i
ã \ ‡

j
å

where i = + or � and j = + or �. For each pair (ãÒ å),

C = E++
ãå [E+�

ãå [E�+
ãå [ E��

ãå

and if ‡ = �i and m = �j, then

(E‡m)c = C nE‡m ¦ Eij
ãå


For any bounded subset E in C, there exists a pair (ãÒ å) such that Eij
ãå

� E for some
(iÒ j). In fact, there are a lot of such pairs (ãÒ å). Now we can define a set which contains
E and is important in this paper. When jí(ãÒ å)j = ô � 2t and 0 � t Ú

6�

ôÛ2, put

ht(E) = \f(E‡m
ãå

)c ; Eij
ãå
� E and ‡ = �iÒm = �jg

for a subset E in C. If t Ú s, then ht(E) � hs(E). If t = 0, then h0(E) is the closed convex
hull of E. For example, if E = [aÒ b] then

ht(E) = 4(cÒ r) \4(c̄Ò r)
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c = a+b
2 � i a�b

2 cot 2t and r = � a�b
2 sin 2t where 4(cÒ r) denotes the circle of center c and

radius r. If E = 4(0Ò 1), then ht(E) = 4(0Ò 1Û cos t). When Tû is a Toeplitz operator
on H2, Brown and Halmos (cf. [2, Corollary 7.19]) showed that õ(Tû) � h0

�
R (û)

�
where R (û) is the essential range of û. In this paper we show this type results for
Toeplitz operators on H2(W) and Hp and for singular integral operators on L2. When
û is a real function and Tû is a Toeplitz operator on H2, Hartman and Wintner (cf. [2,
Theorem 7.20]) showed that õ(Tû) = h0

�
R (û)

�
. In this paper, for real symbols we try

to describe the spectra of Toeplitz operators on H2(W) and Hp, and singular integral
operators on L2. When û is a continuous function, õ(Tû) is described using R(û) and the
winding number of the curve determined by û (cf. [2, Corollary 7.28]). In this case it is
known that õ(TW

û
) = õ(Tp

û
) = õ(Tû) for arbitrary weight W satisfying the condition (A2),

and for any p with 1 Ú p Ú 1, Tp
û

denotes the Toeplitz operator on Hp. In this paper,
we study symbols û such that õ(TW

û
) = õ(Tû) for arbitrary weight W.

Now we collect the notations which will be used in this paper. R is the set of all real
numbers and XR denotes the set of the real parts of all elements in X. [X]c‡ denotes the
closure of X. D is the open unit disc. C is the set of all continuous functions on T. If v is
a real function in L1, then ṽ denotes the harmonic conjugate function with v(0) = 0.

2. Toeplitz operators on H2(W). In this section, we fix arbitrary weight W satisfying
the condition (A2) or equivalently, a Helson-Szegő weight W. We call W a Helson-Szegő
weight when W = eu+ṽÒ u and v are functions in L1R and kvk1 Ú ôÛ2. For a Helson-Szegő
weight W = eu+ṽ, put

tW = kvk0 = inffkv� s̃� ak1 ; s 2 L1R Ò a 2 Rg

When W � 1, (1) of Theorem 1 is a theorem of Brown and Halmos (cf. [2, Corollary 7.19])
and (2) and (3) of Theorem 1 is a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]).
When û is a piecewise continuous function, õ(TW

û
) is described when W is arbitrary

weight [11]. The symbol û in Corollary 2 and (3) of Corollary 3 is not necessarily
piecewise continuous. It is known that õ(TW

û
) 6= õ(Tû) for some weight W and some

piecewise continuous symbolû (cf. [4]). In Theorem 2, we determine weight W such that
õ(TW

û
) = õ(Tû) for arbitrary symbolû in L1 and study symbolsû such that õ(TW

û
) = õ(Tû)

for arbitrary weight W. Spitkovsky [13] showed that the set of all weights W for which
õ(TW

û
) = õ(Tû) for all û in L1 does not depend on p. (1) of Corollary 3 is related with

a particular (corresponding to p = 2) case of [3, Theorem 6.1 and Corollary 6.2]. For if
log W 2 VMO then log W = u + ṽ for some real functions u and v in C. (2) of Corollary 3
shows the known result [11] such that if û is continuous, then õ(TW

û
) = õ(Tû) for arbitrary

weight W.

THEOREM 1. Let û be a function in L1, let W be a Helson-Szegő weight and t = tW.
(1) R (û) � õ(TW

û
) � ht

�
R (û)

�
.

(2) if û is real valued, a = essinf û and b = esssupû, then

R (û) � õ(TW
û ) � 4(cÒ r) \4(c̄Ò r)
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where c = a+b
2 � i a�b

2 cos 2t and r = � a�b
2 sin 2t .

(3) Suppose W = eu+ṽ andï 2 [aÒ b]\R (û)c in (2). Then û�ï

jû�ïj
= ei‡ and ‡ = ô(1�üE)

for some measurable set E in T with 0 Ú m(E) Ú 1. ï 2 õ(TW
û

) if and only if

kôüE � vk0 ½ ôÛ2

PROOF. In (1) and (2), it is well known that R (û) � õ(TW
û

). Suppose W = eu+ṽ, u
and v are functions in L1R and kvk1 Ú ôÛ2, and g2 = eu+ṽ+i(ũ�v). Then W = jgj2.

(1) By Theorem A in Introduction, for ï 2 C, TW
û�ï

is invertible if and only if

T û�ï
jû�ïj

ḡ
g

is invertible

Suppose jí(ãÒ å)j = ô � 2t and R (û) � Eij
ãå

. If ï 2 (E‡m
ãå

)0 with ‡ = �iÒm = �j, then

TW
û

is invertible. In fact, then (û� ï)Ûjû � ïj = eisï where 0 � sï � ô� 2t� 2¢ a.e. or
�ô + 2t + 2¢ � sï � 0 a.e. for some ¢ Ù 0. Hence jsï �

ô

2 + t + ¢j � ô

2 � t � ¢ a.e. or
jsï + ô

2 � t � ¢j � ô

2 � t � ¢ a.e. Hence

û � ï

jû � ïj

ḡ
g

= ei(sï+v�ũ)

and

ksï + v � ũk0 �
ô

2
� ¢

Thus T û�ï
jû�ïj

ḡ
g

is invertible by Theorem C and hence TW
û�ï

is invertible. If ï 62 ht
�
R (û)

�
,

then by definition ï 2 [f(E‡m
ãå

)0 ; Eij
ãå

� R (û) and ‡ = �iÒm = �jg and jí(ãÒ å)j =

ô�2t. By what was just proved, ï 62 õ(TW
û

). (2) By (1), õ(TW
û

) � ht
�
R (û)

�
� ht([aÒ b])

for t = tW . It is elementary to see that ht([aÒ b]) � 4(cÒ r) \ 4(c̄Ò r). (3) The first part is
clear. The second statement is a result of Theorems A and C.

COROLLARY 1. Suppose û = aüE + büEc where a and b are real numbers, a 6= b and
0 Ú m(E) Ú 1. Let W = eu+ṽ, then õ(TW

û
) � [aÒ b] if and only if kôüE � vk0 ½ ôÛ2.

COROLLARY 2. Let E be a measurable set with 0 Ú m(E) Ú 1. Suppose W and û
satisfy the following (i) and (ii):

(i) W = eu+ṽ where u 2 L1R , ṽ = d(üE � üEc) + q, q 2 CR and d is a constant with
0 Ú d Ú ôÛ2.

(ii) û = aüE + büEc where a and b are real numbers.
Then tW = d,

õ(TW
û ) =

²
ï 2 C ; arg

a� ï

b� ï
= ô � 2d

¦


and

hd
�
R (û)

�
=
²
ï 2 C ; arg

a � ï

b � ï
= ô � 2d or � ô + 2d

¦

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PROOF. Put v0 = ô

2 (üE � üEc), then h2 = eṽ0�iv0 and jhj2Ûh2 = eiv0 = i(üE � üEc).
If küE � üEck0 Ú 1, then jhj2 = eṽ0 is a Helson-Szegő weight and so
k jhj2Ûh2 + zH1k Ú 1 (see [3, Chapter IV, Theorem 3.1]). On the other hand,
k jhj2Ûh2 +zH1k = ki(üE�üEc )+zH1k = 1. This contradiction shows that küE�üEck0 =
1. Thus

tW = inffkd(üE � üEc)� s̃ � ak1 ; s 2 L1R Ò a 2 Rg

= d inffküE � üEc � s̃ � ak1 ; s 2 L1R Ò a 2 Rg

= d

Put g2 = eu+ṽ+i(ũ�v), then ḡÛg = ei(ũ�v) = exp ifũ� d(üE �üEc)� qg. If ï 6= a and ï 6= b,
then

û � ï

jû � ïj
=

a � ï

ja � ïj
üE +

b � ï

jb � ïj
üEc

= exp ifa(ï)üE + b(ï)üEcg

where a(ï) = arg(a�ï) and b(ï) = arg(b�ï). Thus (û�ï)ḡÛjû�ïjg = exp ifa(ï)üE +
b(ï)üEc + ũ � d(üE � üEc) � qg. Since q 2 CR, by the first part of the proof,

inffka(ï)üE + b(ï)üEc � d(üE � üEc ) + ũ � q � s̃� ak1 ; s 2 L1R Ò a 2 Rg

=
þþþþþa(ï) � b(ï)

2
� d

þþþþþ inffküE � üEc � s̃ � ak1 ; s 2 L1R Ò a 2 Rg

=
þþþþþa(ï) � b(ï)

2
� d

þþþþþ =
1
2

þþþþþarg
a � ï

b � ï
� 2d

þþþþþ
Thus, by (1) of Theorem C ï 62 õ(TW

û
) if and only if

þþþþarg a�ï
b�ï � 2d

þþþþ 6= ô. If arg a�ï
b�ï Ù 0,

then
þþþþarg a�ï

b�ï � 2d
þþþþ 6= ô because d Ù 0, and hence õ(TW

û
) = fï Û2 C ; arg a�ï

b�ï = ô� 2dg.

The description of hd
�
R (û)

�
is a result of (2) of Theorem 1.

THEOREM 2. Let û be a function in L1 and let W be a Helson-Szegő weight.
(1) tW = 0 if and only if õ(TW

û
) = õ(Tû) for arbitrary symbol û in L1.

(2) õ(Tû) � õ(TW
û

) for arbitrary Helson-Szegő weight W if and only if for any

ï 62 õ(Tû), û�ï

jû�ïj
= ei‡ and k‡k0 = 0.

PROOF. (1) Suppose W = eu+ṽ, tW = 0 and g2 = eu+ṽ+i(ũ�v). If ï 62 õ(Tû), then by
Theorem C û�ï

jû�ïj
= ei‡ and k‡k0 Ú ôÛ2. Hence

û � ï

jû � ïj

ḡ
g

= exp i(‡ + ũ � v)

and since tW = 0,

inffk‡ + ũ � v � s̃ � ak1 ; s 2 L1R and a 2 Rg

= inffk‡ � s̃ � ak1 ; s 2 L1R and a 2 Rg

Ú
ô

2

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Thus ï 62 õ(TW
û

) by Theorems A and C. Similarly we can show that if ï 62 õ(TW
û

) then
ï 2 õ(Tû). Suppose õ(TW

û
) = õ(Tû) for arbitrary symbol û in Ł1. If t = tW is nonzero

and W = eu+ṽ is a Helson-Szegő weight, then Tû is invertible where û = e�ikv and
k = ôÛ2t� 1. For inffkkv� s̃� ak1 ; s 2 L1R and a 2 Rg = kt = ôÛ2� 1. On the other
hand, TW

û
is not invertible. For

û

jûj

ḡ
g

= exp ifũ � (k + 1)vg

and
inffkũ � (k + 1)v � s̃ � ak1 ; s 2 L1R and a 2 Rg = (k + 1)t =

ô

2

where g2 = eu+ṽ+i(ũ�v).
(2) Suppose for any ï 62 õ(Tû), û�ï

jû�ïj
= ei‡ and inffk‡ � s̃ � ak1 ; s 2 L1R and

a 2 Rg = 0. We will show that õ(Tû) � õ(TW
û

) for arbitrary Helson-Szegő weight W. If
ï 62 õ(Tû)ÒW = eu+ṽ is a Helson-Szegő weight and g2 = eu+ṽ+i(ũ�v), then

û � ï

jû � ïj

ḡ
g

= ei(‡+ũ�v)

and inffk‡+ũ�v� s̃�ak1 ; s 2 L1R Ò a 2 Rg Ú ôÛ2 by the hypothesis. This implies that
õ(TW

û
) 63 ï. Conversely suppose that õ(Tû) � õ(TW

û
) for arbitrary Helson-Szegő weight

W. If ï Û2 õ(Tû), then û�ï

jû�ïj
= ei‡ and b = inffk‡ � s̃ � ak1 ; s 2 L1R Ò a 2 Rg Ú ôÛ2. If

b 6= 0, put W = ek‡̃ and g2 = ek‡̃�ik‡ where k = ô

2b � 1, then W is a Helson-Szegő weight.
However TW

û
is not invertible and so ï 2 õ(TW

û
). This contradiction implies that b = 0.

COROLLARY 3. Let û be a function in L1.
(1) If W = eu+ṽ, u and v are real functions in L1and C respectively, then õ(TW

û
) = õ(Tû)

for arbitrary symbol û in L1.
(2) If û is a function in C or H1, then õ(TW

û
) = õ(Tû) for arbitrary Helson-Szegő

weight W.
(3) If û = aüE + büEc, 0 Ú m(E) Ú 1 and aÒ b 2 C with a 6= b, then there exists a

Helson-Szegő weight W such that õ(TW
û

) ²
6�
õ(Tû).

PROOF. Since tW = 0 because v 2 CR, (1) of Theorem 2 implies (1). Suppose
û is a function in C and ï Û2 õ(TW0

û
) for a Helson-Szegő weight W0 = eu+ṽ. Since

R (û) � õ(TW0

û
),

û � ï

jû � ïj

ḡ
g

= zmei‡ei(ũ�v)

where m is an integer, ‡ 2 CR and g2 = eu+ṽ+i(ũ�v). By Theorems A and C, we can show
m = 0. As W0 � 1, (2) of Theorem 2 implies that õ(Tû) � õ(TW

û
) for arbitrary Helson-

Szegő weight W. The converse is trivial. Suppose û is a function in H1 and ï Û2 õ(TW0

û
)

for a Helson-Szegő weight W0 = eu+ṽ. Since R (û) � õ(TW0

û
), û � ï is invertible in L1
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and so û � ï = qh where q is inner and h is invertible in H1. Since h = e‡+i‡̃ and
‡ = log jhj 2 L1,

û � ï

jû � ïj

ḡ
g

= qei‡̃ei(ũ�v)

where g2 = eu+ṽ+i(ũ�v). By Theorems A and C, we can show that q is constant. As in
case û 2 C, we can show õ(TW

û
) = õ(Tû) for arbitrary Helson-Szegő weight W. This

completes the proof of (2). Suppose û = aüE + büEc , 0 Ú m(E) Ú 1 and aÒ b 2 C with
a 6= b. To prove (3), without loss of generality, we may assume that a and b are real
numbers. By a theorem of Hartman and Wintner (cf. [2, Theorem 7.20]), õ(Tû) = [aÒ b].
If ï Û2 [aÒ b],

û � ï

jû � ïj
= exp ifa(ï)üE + b(ï)üEcg

where a(ï) = arg(a � ï) and b(ï) = arg(b � ï). By the proof of Corollary 1,

inffka(ï)üE + b(ï)üEc � s̃ � ak1 ; s 2 L1R and a 2 Rg =
1
2

þþþþarg
a � ï

b � ï

þþþþ 6= 0

and hence by (2) of Theorem 2, there exists a Helson-Szegő weight W such that õ(TW
û

) ²
6�

õ(Tû).

3. Toeplitz operators on Hp. For 1 Ú p Ú 1ÒTp
û

denotes a Toeplitz operator on

Hp. We will write T2
û

= Tû. By a theorem of Widom, Devinatz and Rochberg (cf. [8]), we
know the invertibility of Tp

û
and by a theorem of Widom (cf. [2, Corollary 7.46]), õ(Tp

û
)

is connected. If 1 Ú q Ú 2 Ú p Ú 1, then Aq ² A2 ² Ap. It is more difficult to describe
õ(Tq

û
) than õ(Tp

û
). In this paper, we study only õ(Tp

û
). When p = 2, (1) of Theorem 3 is

a theorem of Brown and Halmos and (2) is a theorem of Hartman and Wintner. (3) of
Theorem 3 is known in [10] for arbitrary 1 Ú p Ú 1. Our proof is different from it.

THEOREM 3. Suppose p ½ 2 and t = (p � 2)ôÛ2p.
(1) If û is a function in L1, then õ(Tp

û
) � ht

�
R (û)

�
.

(2) If û is a real function in L1Ò a = essinf û and b = esssupû, then

[aÒ b] � õ(Tp
û
) � 4(cÒ r) \ 4(c̄Ò r)

where c = a+b
2 � i a�b

2 cot 2t and r = � a�b
2 sin 2t . In particular, if p = 2, then t = 0 and hence

õ(Tp
û
) = [aÒ b].

(3) If û is a function in C, then õ(Tp
û
) = õ(Tû).

PROOF. (1) If ï Û2 ht
�
R (û)

�
, then by definition ï 2 [f(E‡m

ãå
)0 ; Eij

ãå
� R (û)

and ‡ = �iÒm = �jg and jí(ãÒ å)j = ô � 2t. Hence (û � ï)Ûjû � ïj = eisï where
0 � sï � ô�2t�2¢ a.e. or�ô+2t+2¢ � sï � 0 a.e. for some ¢ Ù 0. Put vï = sï�

ô

2 +t+¢
or vï = sï+ ô

2�t�¢, then kvïk1 � ô

2 �t�¢. Put g2 = e�ṽï+ivï , then g2 is an outer function
and jgj2 = e�ṽï . Then k p

2 vïk1 Ú ô

2 because kvïk1 Ú ô

2 �
(p�2)ô

2p . Hence jgjp satisfies
(A2) condition and so jgjp satisfies (Ap) condition by (cf. [3, Lemma 6.8]) because p Ù 2.
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Since (û � ï)Ûjû � ïj = ã(ḡÛg) for some constant ã with jãj = 1, Theorem A implies
(1).

(2) We may assume that û is not constant. By Theorem A, R (û) � õ(Tp
û
). Suppose

ï 2 [aÒ b] and ï Û2 R (û), then (û � ï)Ûjû � ïj = 2üE � 1 for some measurable set
E in T. If ï Û2 õ(Tp

û
), then by Theorem A, there exists an outer function h0 in Hp such

that 2üE � 1 = h̄0Ûh0. This implies that h2
0 is a real function in H1 because p ½ 2. It is

well known that only one real function in H1 is constant. Hence h0 is constant and this
contradicts that û is not constant. Thus [aÒ b] � õ(Tp

û
). Now (1) implies (2).

(3) If ï Û2 R (û), then (û � ï)Ûjû � ïj is a continuous function and hence

û � ï

jû � ïj
= z‡eiv

where ‡ is an integer and v is a real function in C. Put g2 = e�ṽ+iv, then jgj2 = e�ṽ. Since v
is continuous, for any ¢ Ù 0Ò ṽ = s + t̃ where both s and t are in C and ktk1 Ú ¢. Suppose
‡ = 0. If ¢ Ú ôÛp, then jgjp = jg2j

p
2 = exp(� p

2 ṽ) = exp(� p
2 s � p

2 t̃) and k p
2 tk1 Ú ô

2 .
Hence jgjp satisfies (A2) condition and so (Ap). By Theorem A, Tp

û�ï
is invertible and so

ï Û2 õ(Tp
û
). Suppose ‡ 6= 0. If Tp

û�ï
is invertible, then by Theorem A

û � ï

jû � ïj
= z‡eiv =

jkj
k
jhj2

h2

where k and k�1 are in H1, and h is an outer function in Hp with jhjp satisfying (Ap)
condition. Since z‡jgj2Ûg2 = jkh2jÛkh2, z‡f ½ 0 a.e. where f = kh2Ûg2. If ‡ Ù 0, z‡f is a
nonnegative function in H1Û2 and hence it is constant. This contradicts that z‡ is zero on
the origin. If ‡ Ú 0, z‡j1 + z̄‡jÛ(1 + z̄‡)2 ½ 0 and so (1 + z̄‡)2f ½ 0 a.e. Thus (1 + z̄‡)2f
is a nonnegative function in H1Û2 and so f = c(1 + z̄‡)2 for some constant c Ù 0. This
contradicts that f�1 2 H1Û2.

4. Singular integral operators on L2. By Theorems A, B and C, we can expect
that õ(Sãå) is strongly related with õ(Tã) and õ(Tå). (1) of Theorem 4 is an analogy of
a theorem of Brown and Halmos, and (2) of Theorem 4 is an analogy of a theorem of
Hartman and Wintner.

THEOREM 4. Suppose ã and å are functions in L1.
(1) R (ã) [R (å) � õ(Sãå) � ht

�
R (ã) [R (å)

�
where t = ôÛ4.

(2) If ã and å are real functions in L1,

n
h
�
R (ã)

�
\ h

�
R (å)

�co
[
n
h
�
R (ã)

�c
\ h

�
R (å)

�o
� õ(Sãå) � 4(cÒ r) \ 4(c̄Ò r)

where a = minfessinfãÒ essinf ågÒ b = maxfesssupãÒ esssupågÒ c = a+b
2 � i a�b

2 and
r = � a�b

2 .
(3) If å is in C,

õ(Tã) \ fï 2 C ; it(åÒ ï) = 0g [R (å) � õ(Sãå) � õ(Tã) [ õ(Tå)
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(4) If both ã and å are in C, then õ(Sãå) = fõ(Tã) [ õ(Tå)g n fï 2 C ; it(ãÒ ï) =
it(åÒ ï) 6= 0g.

(5) Suppose both ã and å are in C. If å is a real function, then õ(Sãå) = õ(Tã) [
h
�
R (å)

�
and hence if bothã andå are real functions, then õ(Sãå) = h

�
R (ã)

�
[h

�
R (å)

�
.

(6) If ã and å̄ are functions in H1, then õ(Sãå) = [ã(D)]cl [ [å̄(D)]cl .
(7) If ã and å are functions in H1, then õ(Sãå) = [ã(D)]cl [ [å(D)]cl n fï Û2

R (ã)[R (å) ; Tqïp̄ï is invertiblegwhere qï is the inner part ofã�ï and pï is the inner
part of å � ï.

(8) If ã and å are inner functions, and singã 6= singå, then õ(Sãå) = [D]cl, where
singã and singå denote the subsets of ] D on which ã and å can not be analytically
extended, respectively.

PROOF. (1) By Theorem B, it is clear that R (ã) [ R (å) � õ(Sãå). If ï Û2

ht
�
R (ã) [ R (å)

�
, then (ã � ï)Ûjã � ïj = eisï and (å � ï)Ûjå � ïj = eitï where

0 � sï, tï �
ô

2 � ¢ a.e. or � ô

2 + ¢ � sïÒ tï � 0 a.e. for some ¢ Ù 0. Therefore

ã � ï

å � ï
= exp(U � iṼ)

where U = log jã � ïj � log jå � ïj and Ṽ = tï � sï. Then U is bounded and exp V =
exp�(tï � sï)¾ and ktï � sïk1 � ô

2 � ¢. By Theorem C, Sã�ïÒå�ï is invertible.
(2) If ã and å are real functions and ï 2 h

�
R (ã)

�
\ h

�
R (å)

�c
, then ã � ï is a

real function which is not nonnegative or nonpositive, and å � ï is a nonnegative or
nonpositive function which is invertible in L1. (ã� ï)Û(å � ï) is a real function in L1

which is not nonnegative or nonpositive. If Sã�ïÒå�ï is invertible, then by Theorems B
and C both ã � ï and å � ï are invertible in L1, and

ã � ï

å � ï
=
þþþþã � ï

å � ï

þþþþeit

where inffkt � s̃ � ak1 : s 2 L1R and a 2 Rg Ú ôÛ2. Let g = e�t̃+it, then g is a
real function in H1. Since only one real function in H1 is constant, g is constant and
so it contradicts that (ã � ï)jå � ïjÛ(å � ï)jã � ïj is nonconstant. This implies that
h
�
R (ã)

�
\ h

�
R (å)

�c
� õ(Sãå). The same method shows that h

�
R (ã)

�c
\ h

�
R (å)

�
�

õ(Sãå). Since R (ã) [ R (å) � [aÒ b], by (1) õ(Sãå) � ht([aÒ b]) where t = ôÛ4. This
implies (2).

(3) Suppose ï 2 õ(Tã) \ fï 2 C ; it(åÒ ï) = 0g. Then å � ï = jå � ïjeiv and v 2 C
because å is continuous. If Sã�ïÒå�ï is invertible, then by Theorem B

ã � ï

å � ï
= çe(U�iṼ)

where ç is constant, U is a bounded real function, V is a real function in L1 and exp V
satisfies (A2) condition. Hence

ã � ï = ç expfU + log jå � ïj � i(Ṽ � v)gÒ
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U + log jå �ïj is in L1 and eV�ṽ satisfies (A2) condition because v 2 C. By Theorem A,
this implies that ï Û2 õ(Tã). This contradiction shows that ï 2 õ(Sãå) and hence
õ(Tã) \ fï 2 C ; it(åÒ ï) = 0g [ R (å) � õ(Sãå). If ï Û2 õ(Tã) [ õ(Tå), then by
Theorem C and [2, Corollary 7.28] ã � ï = jã � ïjeit and å � ï = jå � ïjei‡ where
inffkt � s̃ � ak1 ; s 2 L1R and a 2 Rg Ú ôÛ2 and ‡ 2 C. Therefore

ã � ï

å � ï
=
jã � ïj

jå � ïj
ei(t�‡)

and hence by Theorem C ï Û2 õ(Sãå).
(4) If ï Û2 R (ã) [ R (å) and it(ãÒ ï) 6= it(åÒ ï), then ã � ï = jã � ïjz‡eiu and

å � ï = jå � ïjzteiv where u and v are in C, and ‡ and t are integers with ‡ 6= t. Hence

ã � ï

å � ï
=
jã � ïj

jå � ïj
z‡�tei(u�v)

and ‡ � t 6= 0. By Theorem C, we can show that ï Û2 õ(Sãå). This implies that fõ(Tã) [
õ(Tå)g n fï 2 C ; it(ãÒ ï) = it(åÒ ï) 6= 0g � õ(Sãå). If ï Û2 fõ(Tã) [ õ(Tå)g n fï 2 C ;
it(ãÒ ï) = it(åÒ ï) 6= 0g, then ã � ï = jã � ïjz‡eiu and å � ï = jå � ïjz‡eiv where u and
v are in C, and ‡ is an integer. Hence (ã � ï)Û(å � ï) = (jã � ïjÛjå � ïj)ei(u�v). By
Theorem C, ï Û2 õ(Sãå). This completes the proof of (4). (5) is a result of (4).

(6) Ifï 2 ã(D)nR (ã)[R (å), thenã�ï = qh andå�ï = p̄k̄ where q and p are inner,
and h and k are invertible in H1. Hence (ã�ï)Û(å�ï) = qphÛk̄ and so by Theorem C
ï 2 õ(Sãå). This shows that ã(D) n R (ã) [ R (å) � õ(Sãå). By the same method we

can show that å(D) n R (ã) [ R (å) � õ(Sãå). By (1), [ã(D)]cl [ [å̄(D)]cl � õ(Sãå). If

ï Û2 [ã(D)]cl [ [å̄(D)]cl, then ã � ï = h and å � ï = k̄ where both h and k are invertible
in H1. By Theorem C, ï Û2 õ(Sãå).

(7) If ï 2 [ã(D)]cl n R (ã) [ R (å), then ã � ï = qïhï and å � ï = pïkï where
both qï and pï are inner and both hï and kï are invertible in H1. Hence (ã � ï)Û(å �
ï) = qïp̄ïhïÛkï. If Tqïp̄ï is not invertible, by Theorem C ï 2 õ(Sãå). This implies
that f[ã(D)]cl [ [å(D)]clg n fï Û2 R (ã) [ R (å) ; Tqïp̄ï is invertible g � õ(Sãå). If
ï Û2 [ã(D)]cl [ [å(D)]cl , then ï Û2 õ(Sãå) as in (6). If ï Û2 R (ã) [ R (å) and Tqïp̄ï is
invertible, then by Theorem C ï Û2 õ(Sãå).

(8) õ(Sãå) � [D]cl by (7) and so if ï Û2
�
R (ã) [ R (å)

�
\ [D]cl, then the inner part

of ã�ï is qï = (ã�ï)Û(1�ï̄ã) and the inner part of å�ï is pï = (å�ï)Û(1�ï̄å).
Then sing qï = sing q 6= sing p = sing pï. By [6, Theorem 1], Tqïp̄ï is not invertible. By
(7), this implies that õ(Sãå) = [ã(D)]cl [ [å(D)]cl = [D]cl.
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