VALUATIONS AND PRUFER RINGS

MALCOLM GRIFFIN

1. Introduction. The word ring is used to mean commutative ring.

Just as valuations on fields are used to study domains, so valuations on rings can be used to study rings; these rings need not have units [12]. We introduce slightly weaker conditions than having identity in order to get a more general theory. A Prufer ring A is one in which every finitely generated regular ideal is invertible. If we replace invertibility in the total quotient ring K, by invertibility in a ring R where $A \subseteq R \subseteq K$ we get an R-Prufer ring. These rings do occur, for example the Witt ring of a non-Pythagorean field or a ring of bounded continuous functions.

This paper is devoted to the questions: To what extent do the properties of valuations on fields and Prufer domains extend to valuations on rings? What properties on a ring ensure that valuations on it will have desirable properties?
2. Idempotents and fixing elements. A commutative ring A is called a ring with fixing elements if for every element x in A there exists y in A such that $x y=x$. If y can be chosen so that $y^{2}=y$ then A is said to be generated by idempotents.

Rings with fixing elements inherit many of the properties of rings with identity; the following properties of rings with fixing elements A either may be found in Gilmer [8] or may be easily deduced. Each ideal is contained in a maximal ideal, and all maximal ideals are prime. If $M \neq A$ is any ideal and a is any element then there exists $y \in A \backslash M$ such that $a y=a$. If $A x=0$ then $x=0$. If A is a noetherian, or contains a nonzero divisor, or is local (a ring is local if an element not in the maximal ideal generates A), then A has an identity. In particular the localization at any maximal ideal of A has an identity. Any ideal of A is completely determined by its extensions to the localization of A at its maximal ideals. Let B be any ring which is integral over A and has fixing elements in A. The "lying over" and "going up" theorems of Krull-Cohen-Seidenberg hold for the prime ideals of A and B. Any ideal which has a maximal ideal as radical is primary.

If A is a ring with fixing elements (respectively generated by idempotents, with unit) we use the expression B is a subring of A to mean that B contains a set of fixing elements (respectively generating idempotents, unit) of A.

We now define the analogue of the total quotient ring for a ring generated by idempotents.

Let A be a ring containing the idempotent $e . a \in A$ is called e-regular if
Received November 3, 1972 and in revised form, August 8, 1973.
$a e=a$, and $a x=0$ implies $e x=0$. Let A be a ring generated by idempotents. A ring K containing A is called a total quotient ring of A provided that:
(i) If $x \in K$ then there exist $e, a, b \in A$ with $e x=x, e^{2}=e, b$-regular and $b x=a$;
(ii) If $a \in A$ is e-regular then there exists x in K such that $a x=e$.

Proposition 1. Any ring A generated by idempotents has a total quotient ring which is unique up to an isomorphism.

Proof. Let E be the family of idempotents of A. Order E by setting $e \leqq f$ if $e f=e . E$ is a directed set since $e \leqq g, f \leqq g$ where $g=e+f-e f$. If $e \leqq f$ define $h_{f, e}: A e \rightarrow A f$ by the inclusion map. Then

$$
A=\xrightarrow[e \in E]{\lim } A e .
$$

Each ring $A e$ has a unit and has a natural embedding in a total quotient ring K_{e}. There is a natural injection $K_{e} \rightarrow K_{f}$ making the diagram

commutative given by $a / b \rightarrow a /(b+f-e)$. Then if

$$
K=\xrightarrow[e \in E]{\lim } K_{e}
$$

it is easily seen that K is a total quotient ring for A. If T is any other total quotient ring of A then the isomorphism can be established with K by noting that $K_{e} \cong T e$ for each idempotent e.

If A has an identity the total quotient ring defined above is identical to the usual one.

Let A, a subring of the ring generated by idempotents R, have total quotient ring $K . R$ is called a sub-quotient ring of A if $A \subseteq R \subseteq K$. An element of R is called R-e-regular if it has an e-inverse in R. An ideal (of A or R) is called R-e-regular if it contains an R-e-regular element and R-regular if it contains an R-e-regular element for every idempotent e in R. A K-regular ideal is called regular.

The following results may be proved relating ideals in K and A.
(i) A prime (or primary) ideal Q is a contracted ideal if and only if it is not regular.
(ii) There is a one-to-one correspondence between the contracted ideals (respectively prime ideals, P-primary ideals) of A and the ideals (respectively prime ideals, P-primary ideals) of K. This correspondence preserves radical, intersection and quotients.
(iii) If P is a non-regular prime ideal then A_{P} is naturally isomorphic to $K_{K P}$.
3. Valuations and ideals. A valuation v on a commutative ring with fixing elements R is a map from R onto a totally ordered group Γ, called the value group, together with a symbol ∞ (such that $\infty>\gamma$ for all $\gamma \in \Gamma$ and $\infty+\gamma=\infty$) with the following properties: $v(a b)=v(a)+v(b)$ and $v(a+b) \geqq \min \{v(a), v(b)\}$. The ring $A_{v}=\{x \in R \mid v(x) \geqq 0\}$ is called the valuation ring of $v ; P_{v}=\{x \in R \mid v(x)>0\}$ is called the prime of v and $v^{-1}(\infty)$, which is a prime ideal of both A and R, is called the infinite prime of v. If the value group of v is trivial then $v^{-1}(\infty)=P_{v}, A_{v}=R$ and v is called a trivial valuation. There is a one-to-one correspondence between trivial valuations and prime ideals of R. If A_{v} has an identity e, then e is the identity for R. For if $y \in R \backslash A_{v}$ and $y x=y$, then $v(x)=0$ so $x \in A_{v}$ implying ey $=e x y=x y=y$. If $A_{v} \neq R$ then $P_{v}=\left\{x \in R \mid x y \in A_{v}\right.$ for some $\left.y \in R \backslash A_{v}\right\}$. Consequently it follows by the next proposition that a nontrivial valuation is determined by its valuation ring.

Proposition 2 [18]. Let R be a ring with fixing elements. Let A be a subring of R with a prime ideal P. The following conditions are equivalent:
(1) If B is a ring such that $A \subseteq B \subseteq R$ and M is a prime ideal of B such that $M \cap A=P$ then $A=B$.
(2) For all x in $R \backslash A$ there exists y in P such that $x y \in A \backslash P$.
(3) There is a valuation v on R such that $A=A_{v}, P=P_{v}$.

Proof. This follows as in [18] using properties of rings with fixing elements.
Let A and B be rings with fixing elements and let $f: A \rightarrow B$ be a surjective ring homomorphism with kernel N. A valuation on B can be lifted by f to one on A, and a valuation on A with infinite prime containing N gives an image valuation on B.

Let v be a valuation ring on a ring R, and A be any subring of R; then v is called independent of A if for any element γ in the group of v there exists an $a \in A$ such that $v(a)=\gamma$.

Proposition 3. Let Q be any prime ideal of the ring with fixing elements R. Let K be the quotient field of the domain R / Q. The valuations of R with infinite prime Q correspond to the valuations of K independent of R / Q.

Proof. The proof is easily checked.
With the aid of Proposition 3 it is straightforward to construct many examples of valuation rings. (A finite direct sum of fields is the easiest situation to deal with.)

Example 1A. The following example of a valuation ring uses the notation of Gillman and Jerrison [17].

Let $C(X)$ be the ring of continuous functions from a completely regular (non-compact) Hausdorff space to the real numbers. Let \mathbf{U} be a free ultrafilter on the set of zeros of continuous functions. (Thus \mathbf{U} corresponds to some point
p in the Stone-Čech compactification of X which is not in X.) The set of all elements bounded on some elements of \mathbf{U} form a valuation ring $A_{v} . P_{v}$ consists of the functions which take values arbitrarily close to zero on each element of U. For if $f \in C(X) \backslash A$, define $g(x)=|1 / f(x)|$ on $V=\{x| | f(x) \mid \geqq 1\}$ and $g(x)=1$ on $W=\{x| | f(x) \mid \leqq 1\}$. Since $W \notin \mathbf{U}, V \in \mathbf{U}$ so $f g \in A_{v} \backslash P_{v} . P_{v}$ consists of functions which are zero on some $S \in \mathbf{U}$. The valuation is nontrivial if p does not belong to the real compactification of X.

Let A be a subring of the ring with fixing elements R. For each prime ideal P of A define

$$
A_{[P]}=\{a \in R \mid d a \in A \text { for some } d \in A \backslash P\} .
$$

The ideals M of A map naturally into extended ideals M^{*} of $A_{[P]}$ where $M^{*}=\{a \in R \mid d a \in M$ for some $d \in A \backslash P\}$. It is easily checked that $M^{*} \supseteq$ $M A_{[P]} .^{*}$ defines a one-to-one inclusion preserving correspondence between prime (respectively primary) ideals of A contained in P and the prime (respectively primary) ideals of $A_{[P]}$ contained in P^{*}.

Let (v, Γ) and (w, Λ) be two valuations of R. If there exists an order homomorphism f from (Γ, ∞) onto (Λ, ∞) such that $w=f \circ v$ then call w coarser than v and write $w \leqq v$. If v and w are valuations such that there is no nontrivial valuation coarser than both of them, v and w are called independent.

An ideal Q of a valuation pair $\left(A_{v}, P_{v}\right)$ is called v-closed if a in Q and b in A_{v} with $v(b) \geqq v(a)$ implies $b \in Q$. A subset U of the positive elements of a totally ordered group Γ is called an upper class if $\alpha \in U, \gamma \in \Gamma$ and $\gamma>\alpha$ imply $\gamma \in U$.

Proposition 4 [18]. Let v be a valuation on the ring with fixing elements R. The v-closed ideals of A_{0} are in one-to-one order preserving correspondence with the upper classes of Γ_{r}. The v-closed prime ideals are $v^{-1}(\infty)$, together with those prime ideals Q such that $Q \subseteq P_{v}$ and $Q \nsubseteq v^{-1}(\infty)$. The nontrivial valuations coarser than v are given by the rings $A_{v[Q]}$ where Q is any prime of the latter type.

Proof. This is essentially Propositions 3 and 4 of [18].
Note that if $Q \subseteq P_{v}, Q \nsubseteq v^{-1}(\infty)$ and Q is prime, then Q is v-closed. For if $x \in Q \backslash v^{-1}(\infty)$ and $v(y)>v(x)$ then if $d x \in A_{v} \backslash P_{v}, d y \in A_{v}$ so $d y x \in Q$ and since $d x \notin Q \subseteq P_{v}, y \in Q$.

This proposition implies that if w is non trivial then $v \geqq w$ if and only if $P_{w} \subseteq P_{v}$ and $A_{v} \subseteq A_{w}$. The necessity of imposing the condition $P_{w} \subseteq P_{v}$ can be seen from the following example on the ring $R=k\left[X, Y, Z, X^{-1}\right]$. Define v and w by setting $w\left(X^{l} Y^{m} Z^{n}\right)=l+m+n$ and $v\left(X^{l} Y^{m} Z^{n}\right)=l+m$, and extending to valuations of R. Then $A_{v} \subseteq A_{w}$, but $v \nexists w$. If $A_{v} \subseteq A_{w}$ with v any rank one valuation and w non trivial, then $P_{v} \subseteq P_{w}$, for if $a \in P_{v}$ and $x \notin A_{w}$ then $a^{n} x \in A_{v}$ for sufficiently large n so that $a^{n} x \in A_{w}$ and $a \in P_{w}$. However by extending v to a rank two valuation u it is easy to get $A_{u} \subseteq A_{w}$, $P_{u} \nsubseteq P_{w}$ and $P_{w} \nsubseteq P_{u}$.

Clearly the valuation can not give any information about ideals contained in $v^{-1}(\infty)$. The following proposition shows that only when R is a local ring can we get all the information about ideals not contained in $v^{-1}(\infty)$.

Proposition 5. The following conditions are equivalent for a valuation pair $\left(A_{v}, P_{v}\right)$ of a ring with fixing elements R.
(1) $\left(A_{v}, P_{v}\right)$ is local.
(2) $\left(R, v^{-1}(\infty)\right)$ is local.
(3) All ideals of A_{v} not contained in $v^{-1}(\infty)$ are v-closed.
(4) R has an identity and all ideals of A_{v} not contained in $v^{-1}(\infty)$ are R-regular.

Proof. (1) \Rightarrow (2) Let $a \in R \backslash v^{-1}(\infty)$, and $b \in R$ be such that $a b \in A_{v} \backslash P_{v}$. Then $a b$ has an inverse in A_{v} and also in R.
$(2) \Rightarrow(3)$ Let Q be an ideal of A_{v} with $a \in Q$, and $v(b) \geqq v(a)$. Since $P_{\infty} \nsupseteq Q$ we may assume $v(a)<\infty$ so $b a^{-1} \in A$ and $b=b a^{-1} a \in Q$.
(3) \Rightarrow (4) Let Q be an ideal of A_{v} with $a \in Q, a \notin v^{-1}(\infty)$ and $b \in R$ such that $b a \in A_{v} \backslash P_{v}$; then $(b a)=A_{v}$ so that the element which fixes $b a$ is the identity and a is R-regular.
(4) \Rightarrow (1) Let $a \in A_{v} \backslash P_{v}$; since $a \notin v^{-1}(\infty),(a)$, and hence a is R-regular; thus A_{v} has a unit and $v(a)+v\left(a^{-1}\right)=v(1)=0$ so $a^{-1} \in A_{v}$.

We omit the proof of the following observation:
Let P be any ideal of A_{v} which contains $v^{-1}(\infty)$ properly (v must be non trivial). Each of (3) and (4) above may be weakened to the corresponding conditions for ideals of A_{v} contained in P but not in $v^{-1}(\infty)$.
4. R-Prufer rings and valuations. Let A be a subring of the ring with fixing elements R. If $A_{[P]}$ is a valuation ring of R for every maximal ideal P of A then A is called an R-Prufer ring; if R is the total quotient ring of A then A is called Prufer. Let $A_{[P]} \neq R$ be a valuation ring corresponding to the valuation v with $Q \subseteq P$ a prime ideal of A. It is not difficult to check that $P_{v} \cap A=$ $P, P_{0}=P^{*}$ and that $A_{[Q]}$ is a valuation ring of R. A subring of R containing A is called an R-overring of A.

Proposition 6. Let A be a subring of the ring with fixing elements R, such that for each $x \in R$ there is some $y \in A$ with $x y \in A, x y \neq 0$. The following conditions are equivalent:
(1) A is an R-Prufer ring.
(2) If B is any R-overring of A then for all z in $B,(A: z) B=B$.
(3) Every R-overring of A is integrally closed.

Proof. This follows by generalizations of [20] and [4] or of Proposition 10 and Theorem 13 of [10].

Let A be a ring generated by idempotents. Let R be a subquotient ring of A. An ideal M of A is called quasi-finitely generated if $e M$ is finitely generated for
every idempotent e of A. An A-submodule L of R is called an R-fractionary ideal if for each idempotent e in A there exists an e-regular element a such that $a L e \subseteq A$. An ideal M of A is called R-invertible if there is an R-fractionary ideal L such that $L M=A$. It is easily seen that an R-invertible ideal must be quasi-finitely generated and R-regular.

Theorem 7. Let R be a subquotient ring of a ring A, with A generated by idempotents. The following conditions are equivalent:
(1) A is an R-Prufer ring.
(2) Every R-overring of A is A-flat.
(3) Every R-regular, quasi-finitely generated ideal of A is R-invertible.
(4) If L is a quasi-finitely generated R-regular ideal then $L M=L N$ implies $M=N$.
(5) If L, M and N are any three ideals of A, at least one of which is R-regular, then $L \cap(M+N)=L \cap M+L \cap N$.
(6), (7), (8) and (9) Each of conditions (6), (7), (13) and (14) of Theorem 13 of $[\mathbf{1 0}]$ holds with the word regular changed to R-regular and finitely generated changed to quasi-finitely generated.

The proof of this theorem is omitted. The proof consists of generalizing the proof and lemmas of $[\mathbf{1 0}]$ or of [16] and using the following lemma:

Lemma 8. Let A be a ring generated by idempotents having a subquotient ring R. An ideal Q is R-invertible if and only if $e Q$ is an Re-invertible ideal in eA for every idempotent e of A.

Example 1B. As in Example 1A let $C(X)$ denote the ring of continuous functions. Let $C^{*}(X)$ be the ring of bounded continuous functions. Then $C^{*}(X)$ is a $C(X)$-Prufer ring. Note that $C(X)$ is not a total quotient ring.

The notation is in Example 1A. The maximal ideals of $C^{*}(X)$ are of the form $P^{\prime}=P_{v} \cap C^{*}(X)$, the set of functions which take arbitrarily small values on the elements of some ultrafilter \mathbf{U}. We need to show that $C^{*}(X)_{\left[P^{\prime}\right]}=$ A_{v}.

Let $f \in C^{*}(X)_{\left[P^{\prime}\right]}$; then there exists $g \in C^{*}(X) \backslash P^{\prime}$ such that $g f \in C^{*}(X)$, so for some $V \in \mathbf{U}$ and some $\epsilon>0,|g(x)|>\epsilon$ for all $x \in V$, and $|g f(x)|<n$ for some integer n. Thus $|f(x)|<n / \epsilon$ for $x \in V$ and $f \in A_{v}$.

Let $f \in A_{v}$; then for some $V \in \mathbf{U}$, and some integer $n,|f(x)|<n$ for all $x \in V$. Let

$$
g(x)=\max \{|f(x)|, n\}^{-1}
$$

and since $x \in V$ implies $g(x)=1 / n, g \in C^{*}(X) \backslash P^{\prime}$. Since $|f g| \leqq 1, f g \in C^{*}(X)$; thus $f \in C^{*}(X)_{\left[P^{\prime}\right]}$.

Proposition 9. Let A be a subring of the ring with fixing elements R. Let Ω be the family of maximal ideals of A. If Q is any ideal of A,

$$
Q=\bigcap_{P \in \Omega} Q A_{[P]}=\bigcap_{P \in \Omega} Q^{*}
$$

Proof. Since $Q A_{[P]} \subseteq Q^{*}$,

$$
Q \subseteq \bigcap_{P \in \Omega} Q A_{[P]} \subseteq \bigcap_{P \in \Omega} Q^{*}
$$

Suppose $x \in \cap_{P \in \Omega} Q^{*}$. Let $P \in \Omega$; then $x d \in Q$ for some $d \in A \backslash P$. Thus $d \in(Q:(x))$; so $Q:(x) \nsubseteq P$. Since this holds for each maximal ideal $P \in \Omega$, $Q:(x)=A$. Let $y \in A$ fix x, then $x=y x \in Q$.

Lemma 10. Let A be an R-Prufer ring with a maximal ideal P such that for any other maximal ideal $M, A_{[P]} \subseteq A_{[M]}$; then A is a valuation ring.

Proof. $A=\cap A_{[M]}=A_{[P]}$, where the intersection is over all maximal ideals M.

A particular case of the above lemma is when R is a subquotient ring of A and A has a unique maximal R-regular ideal.

Proposition 11. Let A be an R-Prufer ring having prime ideals $P_{i}, i=1, \ldots, n$ such that

$$
A=\bigcap_{1 \leqq i \leqq n} A_{\left[P_{i}\right]}
$$

If M is a prime ideal contained in no P_{i} then $A_{[M]}=R$.
Proof. Suppose that $A_{[M]}$ corresponds to the non trivial valuation v. Let $v^{-1}(\infty) \cap A=P$. Let $v_{1}, \ldots, v_{m}, m \leqq n$ be the nontrivial valuations corresponding to P_{1}, \ldots, P_{n}. Since $A_{[P]}=R$ and v_{i} is nontrivial, $P_{i} \nsubseteq P$, $1 \leqq i \leqq m$. Let

$$
a=\prod_{0 \leqq} i \leq m m i
$$

where $a_{i} \in P_{i}, \quad a_{i} \notin P, \quad 1 \leqq i \leqq m$ and $a_{0} \in M \backslash P$. Since $M \nsubseteq P_{i}$, $M \nsubseteq \cup_{1<i<n} P_{i}$, so there exists $b \in M, b \notin P_{i}, i \leqq i \leqq m$. We may assume that $b \notin P$, for if $b \in P$ then $a+b \notin P$, and since $a+b \in M, a+b \notin P_{i}$, $i=1, \ldots, m, a+b$ will serve in place of b. Thus $\infty>v(b)>0$, and there exists $d \in R \backslash A$ with $v(d b)=0$, implying $d b \in A_{[M]}$, so $c d b \in A$ for some $c \in A \backslash M$. Since $v(c d)<0, c d \notin A$, so that $v_{i}(c d)<0$ for some $i, 1 \leqq i \leqq m$. Since $b \in A \backslash P_{i}, v_{i}(b)=0$ and so $v_{i}(b c d)<0$, a contradiction to $b c d \in A$.

Proposition 12. Let $A=A_{v}, P=P_{v}$ where v is a valuation on the ring with fixing elements R. Then A is R-Prufer if and only if for each maximal ideal M of $A, M \neq P$; all primes contained in $M \cap P$ are contained in $v^{-1}(\infty)$.

Proof. If A is R-Prufer and $M \neq P$ is maximal, then by the previous proposition $A_{[M]}=R$. If $Q \subseteq M \cap P$ is a prime ideal, then $A_{[Q]} \supseteq A_{[M]}=R$; and $Q \subseteq v^{-1}(\infty)$ by the remark after Proposition 4.

To show A is R-Prufer it suffices to show that M maximal, $M \neq P$, implies $A_{[M]}=R$. This is trivial if $A=R$. Let $a \in R \backslash A$. Let

$$
Q=\left\{x \in A \mid v\left(x^{n}\right)+v(a)>0 \text { for some positive integer } n\right\} .
$$

Then Q is a prime ideal and since $v^{-1}(\infty) \subseteq Q \subseteq P, Q \nsubseteq M$. Thus there exists $d \in Q, d \notin M$ such that $d^{n} a \in A$. Since $d^{n} \in A \backslash M, a \in A_{[M]}$.

Proposition 13. Let A be an R-Prufer ring which is also the ring of a valuation v. If B is an R-overring of A, then B is R-Prufer and is the ring of a valuation coarser than v.

Proof. We may take $B \neq R$, for if $B=R$ take $P_{w}=v^{-1}(\infty)$; then $w \leqq v$. Since every R-overring of B is integrally closed, B is a Prufer ring. Let Ω be the family of maximal ideals M of B such that

$$
B_{[M]} \neq R\left(\Omega \neq \phi \text { since } R \neq B=\cap_{M \in \Omega} B_{[M]}\right)
$$

Let $M \in \Omega$ and $P=M \cap A$. Since $A_{\left[P_{v}\right]}=A, P \subseteq P_{v}$ by Proposition 11, and $A \subseteq A_{[P]} \subseteq B_{[M]} \neq R$, so $v^{-1}(\infty) \nsubseteq P$. Consequently by Proposition 4, $A_{[P]}$ is the ring of a valuation coarser than v. Further $B \subseteq A_{[P]}$; for if $x \in B \backslash A$ there exists $y \in P_{v}$ such that $x y \in A \backslash P_{v} \subseteq A \backslash P$, and $y \notin P$, (for if $y \in P$ then $x y \in M \cap A \subseteq P_{v}$). Thus

$$
B \subseteq \bigcap_{M \in \Omega} A_{[M \cap A]} \subseteq \bigcap_{M \in \Omega} B_{[M]}=B
$$

Let $D=\cup_{M \in \Omega}(M \cap A)$; since the prime ideals between $v^{-1}(\infty)$ and P_{v} are totally ordered by inclusion, D is a prime ideal. $A_{[D]}=\cap_{M \in \Omega} A_{[M \cap A]}=B$, and $A_{[D]}$ is the ring of a valuation coarser than v.

Corollary. Let Q be a prime ideal of the R-Prufer ring A contained in the maximal ideal P. Then if $A_{[Q]} \neq R$ it is the ring of a valuation coarser than $A_{[P]}$.

Proof. Suppose $A_{[Q]} \neq R$. Let * denote extensions to $A_{[P]}=B$, which is R-Prufer and the ring of a nontrivial valuation v. Since $A_{[Q]}=B_{\left[Q^{*}\right]} \supseteq B$ the result follows from the Proposition.

Proposition 14. Let A be a ring generated by idempotents and let R be a subquotient ring of A. Let (A, P) be the valuation pair of a nontrivial valuation v on R. The following conditions are equivalent:
(1) A is an R-Prufer ring.
(2) Each R-regular ideal of A is v-closed.
(3) P is maximal and the R-regular ideals of A are totally ordered by inclusion.
(4) P is the unique maximal R-regular ideal of A.

Proof. (1) \Rightarrow (2) Let Q be any R-regular ideal of A. Let $a \in Q$, and let $b \in A$ be such that $v(b) \geqq v(a)$. We must show $b \in Q$.

Let e be an idempotent of A such that $e a=a$ and $e b=b$. Let E be the ideal generated by all idempotents f in A such that ef $=0$. Let r be an $R-e-$ regular element of Q. Since the ideal (E, r, a, b) is R-regular and quasi-finitely generated it has an R-inverse D. Suppose that $e \notin(E, r, a) D=F$. It follows that F is contained in some maximal ideal M which does not contain e. Since F contains an element of value zero, $M \nsubseteq M_{v}$ and so by Proposition 11, $A_{[M]}=$ R. This leads to a contradiction, since $r \in M, e \notin M$ implies $r^{-1} \in R \backslash A_{[M]}$.

Thus $(e)=e F$ and

$$
(r, a)=(r, a) e(E, r, a, b) D=(E, r, a) e(r, a, b) D=(r, a, b) e F=(r, a, b)
$$

So $b \in(a, r) \subseteq Q$.
(2) \Rightarrow (3) P is an R-regular ideal; let e be any idempotent and let $a / b \in R \backslash A$ with $b f$-regular; then $e-e f+b e f$ is an e-regular element of P since $(e-e f+b e f)\left(e-e f+e f b^{-1}\right)=e$. The result now follows from (2), since any ideal of A containing P is R-regular and the v-closed ideals are totally ordered by inclusion.
$(3) \Rightarrow(4)$ This is trivial.
(4) \Rightarrow (1) $A_{[P]}=A$ and if M is any other maximal ideal, $A_{[M]}=R$.

In the last section we provide an example of a valuation ring which has a unique maximal R regular ideal but is not Prufer. In relation to $(1) \Leftrightarrow(4)$ above, and examples of valuation rings which are not Prufer, see [2] and [9].
5. Witt rings as Prufer rings. To supplement the results summarized here the reader is referred to Lorenz [17].

Let H be a field of characteristic different from two. Let $A=W(H)$ be its Witt ring. Elements of $W(H)$ correspond to anisotropic quadratic forms $\left\langle a_{1}, \ldots, a_{n}\right\rangle$. The even dimensional quadratic forms form a maximal ideal M of $W(H)$. The other prime ideals of $W(H)$ correspond to the total orderings of H as follows. If P is the positive elements of an ordering define $s g_{P}: H \rightarrow Z$ as follows: $s g_{P}(0)=0, s g_{P}(a)=1$ if $a \in P$ and -1 otherwise. Extend $s g_{P}$ to $W(H)$ by defining

$$
s g_{P}(\phi)=\sum_{i=1}^{n} s g_{P}\left(a_{i}\right) \quad \text { where } \phi=\left\langle a_{1} \ldots a_{n}\right\rangle
$$

For each odd prime q there is a maximal ideal $P_{q}=\left\{\phi \in W(H) \mid s g_{P}(\phi) \in(q)\right\}$, and there is a unique minimal prime $Q_{P}=\left\{\phi \in W(H) \mid s g_{P}(\phi)=0\right\}$.

A field is called Pythagorean if every sum of squares is a square. Let $Z(H)$ denote the zero divisors of $W(H)$. If H is not Pythagorean or has no total ordering then $Z(H)=M$; otherwise

$$
Z(H)=\bigcup_{P} Q_{P} \subsetneq M
$$

Since all primes of $W(H)$ are either maximal or minimal, $Z(H)$ is not prime if and only if H is Pythagorean with more than one ordering.

Proposition 15. $W(H)$ is not a Prufer ring if and only if H is Pythagorean with at least two orderings.

Proof. Let K be the total quotient ring of $A=W(H)$.
Let P be the positive elements in some ordering and q be an odd prime; then $A_{\left[P_{q}\right]}$ is a valuation ring. By [5, Theorem 2.2] it suffices to check that
$A_{P_{q}}$ is a valuation ring of its total quotient ring. Let $\phi \in Q_{P}$, so

$$
\phi=\bigotimes_{i=1}^{n}\left\langle a_{i},-b_{i}\right\rangle \quad \text { where } a_{i}, b_{i}>0 .
$$

Let

$$
\rho=\bigotimes_{i=1}^{n}\left\langle a_{i}, b_{i}\right\rangle .
$$

Then $\phi \rho=0$ and since the dimension of ρ is $2^{n}, \rho \in A \backslash P_{q}$, and it follows that Q_{P} is the kernel of the homomorphism $h: A \rightarrow A_{P_{q}}$. Thus $h(A)=Z$ and $A_{P_{q}}=Z_{(q)}$, a valuation domain.

Thus A is a Prufer ring if and only if $A_{[M]}$ is a valuation ring of K. Since $A_{[M]}=K$ unless H is Pythagorean with at least one ordering, and $A=Z$ if H is Pythagorean with exactly one ordering, it suffices to prove that if $Z(H)$ is not prime then $A_{[M]}$ is not a valuation ring. Suppose $A_{[M]}$ is a valuation ring. Since $Z(H) \subseteq M, A_{[M]}$ is local, for if $a \in A_{[M]} \backslash M^{*}$ then for some $d \in A \backslash M, a d \in A \backslash M$ and has an inverse $(a d)^{-1}$ in K. Consequently $d(a d)^{-1} \in A_{[M]}$, and a has an inverse. By Proposition $5, K$ must be local, but this cannot be so since $Z(H)$ is not prime.
6. Arithmetical, semi-hereditary and Dedekind rings. A ring is called arithmetical if for any three ideals, L, M and $N, L \cap(M+N)=L \cap M+$ $L \cap N$. The following are easy generalizations of [14] and [10].

Proposition 16. A ring A with fixing elements is arithmetical if and only if for each maximal ideal M, A_{M} has its ideals totally ordered by inclusion. If A is generated by idempotents, each of the following conditions is equivalent to being arithmetical:
(1) If M and N are ideals with $M \subseteq N$ and N quasi-finitely generated then there exists an ideal L such that $M=L N$.
(2) A is a Prufer ring, and some subquotient ring of A is arithmetical.

Example 1C. We see immediately that $C^{*}(X)$ is arithmetical if and only if $C(X)$ is. With the notation of examples 1 A and 1 B , define

$$
O_{v}=\left\{f \in C(X) \mid f g=0 \text { for some } g \in C(X) \backslash M_{v}\right\} .
$$

A ring is called Bezout if every finitely generated ideal is principal.
The following conditions are equivalent:
(1) $C(X)$ is arithmetical;
(2) O_{v} is a prime ideal for all maximal ideals M_{v};
(3) $C(X)$ is a Bezout ring.
(1) $\Rightarrow(2)$ This follows since O_{0} is the intersection of all prime ideals contained in $M_{0}[7, \mathrm{p} .110]$, and the prime ideals contained in M_{0} are totally ordered by inclusion.
$(2) \Rightarrow(3)$ See [7, p. 208].
$(3) \Rightarrow(1)$ It is easily seen that every Bezout ring is arithmetical.
A ring is called semi-hereditary if every finitely generated ideal is projective. It is not hard to show that a semi-hereditary ring with fixing elements is generated by idempotents and contains no nilpotents. Generalizing [6] and using the fact that a zero dimensional ring without nilpotents is von Neumann regular one can show:

Proposition 17. Let A be a ring generated by idempotents with total quotient ring K. The following are equivalent:
(1) A is semi-hereditary;
(2) K has dimension zero and A_{M} is a valuation domain for every maximal ideal M;
(3) K is von Neumann regular and A is Prufer.

A ring generated by idempotents is called r-Noetherian if every regular ideal is quasi-finitely generated. This is equivalent to every regular ideal of $A e$ being finitely generated for each idempotent e of A. The following proposition generalizes a result of Maranda [19], and can be obtained from Proposition 17 of [10].

Proposition 18. The following conditions are equivalent for a ring A which is generated by idempotents:
(1) All regular prime ideals are invertible.
(2) All regular ideals are invertible.
(3) A is Prufer and r-Noetherian.
(4) For each idempotent e of A the regular ideals of $A e$ have a unique representation as a product of prime ideals.

Rings satisfying these equivalent conditions are called Dedekind rings. We note the following additional properties:
(i) Every regular prime ideal is maximal.
(ii) If a is a regular element then it is contained in only a finite number of maximal ideals (only finitely many non zero valuations at a).
(iii) Each regular ideal can be represented as the intersection of powers of non equal prime ideals (the primes are also maximal, quasi-finite and regular) and such a representation is unique.
7. Rings with large Jacobson radical and valuations. In this section we introduce a condition on a commutative ring which ensures good behavior of valuations. This condition also ensures that many different generalizations of valuation coincide [11].

The Jacobson radical, J, is the intersection of the maximal ideals. It is a wellknown property of a ring with identity that $a \in J$ if and only if $1+b a$ is a unit for all elements b of the ring.

Proposition 19. Let A be a ring with identity having Jacobson radical J. The following conditions are equivalent:
(1) any prime ideal containing J is maximal;
(2) for each a in A there exists b in A such that for all d in A and for all units r, $a+r b$ and $1+d a b$ are both units;
(3) for each a in A there exists b in A such that $a+b$ is a unit and $a b \in J$.

Proof. (1) $\Rightarrow(2)$ Let $\phi: A \rightarrow A / J$. Each prime of $\phi(A)$ is maximal and $\phi(A)$ has no nilpotents. It follows that there exists $b \in A$ such that $\phi(a) \phi(b)=0$ and $\phi(a)+\phi(b)$ is a unit; see for example the corollary to Proposition 1 of [12]. Thus $a b \in J$ and $c(a+b)=1+f$, where $f \in J$; since $1+f$ is a unit in A so is $(a+b)$. Thus exactly one element of the pair a, b belongs to each maximal ideal. Since the same is true of the pair $a, r b$ where r is a unit, $a+r b$ is a unit. Since $a b \in J, 1+d a b$ is a unit for all $d \in A$.
(2) \Rightarrow (3) This follows immediately by the above characterization of J.
(3) \Rightarrow (1) Suppose that P and M are prime ideals with $J \subseteq P \subseteq M$. Let $x \in M \backslash P$. Let y be such that $x+y$ is a unit and $x y \in J$. Since $x y \in J \subseteq P$, $y \in P$; thus $x+y \in M$, a contradiction, since $x+y$ is a unit.

Rings satisfying the conditions of Proposition 19 are said to have large Jacobson radical. The principal examples are rings in which every prime ideal is maximal and rings with only a finite number of maximal ideals. A Noetherian ring has large Jacobson radical if and only if it is semi-local. (For if $J=$ $\cap_{1 \leqq i \leqq n} Q_{i}$ with $\sqrt{ } Q_{i}=P_{i}$, and M is a maximal ideal, then $J \subseteq M$ so for some $i, Q_{i} \subseteq M$; thus $P_{i} \subseteq M$, and since $J \subseteq P_{i} \subseteq M, P_{i}=M$.) If J consists of nilpotents then the ring must have Krull dimension zero; in particular when $J=0$ a ring has large Jacobson radical if and only if it is von Neumann regular.

Example 2. A ring with large Jacobson radical which is neither zero dimensional nor semi-local.

Let K be a field which has a non trivial valuation v with a maximal ideal P. Let R be the subring of $\prod_{i=1}^{\infty} K$ generated by the constant functions with values in K and $\oplus_{i=1}^{\infty} K$. Let A be the ring of the valuation obtained by trivially extending v on the first copy of K to the whole of R. It is easily checked that only maximal ideals contain the Jacobson radical which is $(P, 0,0, \ldots)$. The maximal ideals consist of: (i) all elements which have first components in P; (ii) all elements with zero in the i th place $i>1$; (iii) elements with only a finite number of nonzero components. The non-maximal prime ideal consists of all elements with zero in the first place.

That there are total quotient rings which are not rings with large Jacobson radical may be easily seen using the construction outlined in Section 9.

Lemma 20. Let A be a valuation ring of a ring with large Jacobson radical R; R is a subquotient ring of A.

Proof. Let $x \in R \backslash A$. By Proposition 19, $(x+y) d=1$ and $(1+x y) b=1$ for some $y \in R$. If $y \in A$, then $x+y \notin A, d \in A$ and $d x=1-d y \in A$. If $y \notin A$, then $1+x y \notin A$, so $b \in A$ and $b x y=1-b \in A$, since $y \notin A$, $b x \in A$.

A polynomial of the form $1+n_{1} X+\ldots+n_{k-1} X^{k-1}+X^{k}$ with n_{i} an integer for $1 \leqq i \leqq k-1$, is called strongly integral.

Lemma 21. Let $v_{i}, 1 \leqq i \leqq n$ be valuations on the ring with identity R. Let x be any element of R. There exists a strongly integral polynomial $f(X)$ such that $v_{i}(f(x))=0$ for all those i for which $v_{i}(x) \geqq 0$ and $v_{i}(x)-v_{i}(f(x))>0$ if $v_{i}(x)<0$.

Proof. This is almost identical to § 7, Lemma 1 of [1].
Proposition 22. Let R be a ring with unit having large Jacobson radical. Let $A_{i}, 1 \leqq i \leqq n$, be valuation rings of R. Then

$$
A=\bigcap_{1 \leqq i \leqq n} A_{i}
$$

is a Prufer ring and R is a subquotient ring of A.
Proof. Let v_{i}, the valuation corresponding to A_{i}, have prime ideal M_{i} in A. Let P_{i} be the prime ideal of A at which v_{i} takes infinite value. Let J be the Jacobson radical of R.
(i) If J is not contained in P_{i}, then there are R-regular elements in M_{i} at which v_{i} takes arbitrarily large values. Given a in J but not in P_{i} and any α (which may be taken positive) in the group of v_{i}, there exists b in R such that $v_{i}(b a)<-\alpha$. By Lemma 21 there exists a strongly integral polynomial $f(X)$ such that $v_{j}(f(a b)) \leqq 0$ for $1 \leqq j \leqq n$ and $v_{i}(f(a b)) \leqq-\alpha$. Now $f(a b)$ is of the form $1+d a$, and since a is in $J, 1+d a$ is a unit in R. The inverse of $1+d a$ is in A and has value greater than α.
(ii) Given any element a in R, there exists a unit of R, b in A such that $a b$ is in A and $v_{i}(b)=0$ if $v_{i}(a) \geqq 0$. Let y be an element $f(a)$ determined as in Lemma 21. Since R has large Jacobson radical there exists d in R such that $y+d$ is a unit and $y d$ is in J. If $v_{i}(y d)$ is finite then J is not contained in P_{i}, and there exists a unit of R, d_{i} in A such that $v_{i}(y)<v_{i}\left(d_{i} d\right)$. If $v_{i}(y d)$ is infinite then so is $v_{i}(d)$. It follows that there exists a unit r such that $v_{i}(r d)>$ $v_{i}(y)$ for $1 \leqq i \leqq n$, and that $v_{i}(y+r d)=v_{i}(y) \leqq 0$. Since $y+r d$ is unit take b to be its inverse.
(iii) For each $i, A_{i}=A_{[M i]}$. Let a be any element of A_{i}. Let b be chosen as in (ii) above. Since b is in $A \backslash M_{i}$, and $a b$ is in $A, a=a b / b$ is in $A_{\left[M_{i}\right]}$. Since R is a subquotient ring of A_{i} by Lemma $22, R$ is a subquotient ring of A .
(iv) The $M_{i}, 1 \leqq i \leqq n$, exhaust the maximal R-regular ideals of A. Let Q be a maximal ideal of A containing a unit r. Suppose that there exists an element d in Q with $v_{i}(d)=0$ for all $i, 1 \leqq i \leqq n$. Since R has large Jacobson radical, there exists t in R such that $d+t$ is unit and $d t$ is in J. By the previous
result there exists a unit a such that $v_{i}(a t)>0$ for all $i, 1 \leqq i \leqq n$. Since ar is a unit, $d+a r t$ is a unit of R, and since $v_{i}(d+a r t)=v_{i}(d)=0, d+a r t$ is a unit of A. Since d and r are in Q, so is $d+a r t$, a contradiction. It follows that Q is contained in the union of the finite set of maximal ideals $M_{i}, 1 \leqq i \leqq n$, and so must equal one of them.

This proposition implies in particular that valuation rings of rings with large Jacobson radical are Prufer rings. Such rank one discrete valuation rings are Dedekind rings. (The latter result was proved by Maranda [19] in the case of zero dimensional rings and rings with few zero divisors.)

In the case of rings with few zero divisors this proposition has been proved by Harui [13] and Larsen [15].
8. The approximation theorem. It is not hard to show that the fifth characterization of R-Prufer rings given in Theorem 7 is equivalent to the version of the Chinese Remainder Theorem given below (see [21, p. 279]).
C.R.T. Let A be a ring generated by idempotents.

Let R be a subquotient ring of the ring A. Given any finite family of ideals M_{i}, $1 \leqq i \leqq n$, with at most one ideal not R-regular, and elements $x_{i} \in A, 1 \leqq i \leqq n$, the system of congruences $x \equiv x_{i}\left(\bmod M_{i}\right)$ admits a solution x in A if and only if $x_{i} \equiv x_{j}\left(\bmod \left(M_{i}+M_{j}\right)\right)$ for all i and j.

It is now possible to deduce a form of the approximation theorem. For simplicity we deal only with the case where all valuations are independent.

Proposition 23. Let A be an R-Prufer ring generated by idempotents where R is a subquotient ring of A. Let M_{1}, \ldots, M_{n} be maximal R-regular ideals of A which have associated valuations v_{1}, \ldots, v_{n} that are pairwise independent, and have groups $\Gamma_{1}, \ldots, \Gamma_{n}$. If for each $i, 1 \leqq i \leqq n, a_{i}$ is in A and γ_{i} is in Γ_{i}, then there exists a in A such that $v\left(a-a_{i}\right) \geqq \gamma_{i}$ for all $i, 1 \leqq i \leqq n$.

Proof. Clearly γ_{i} may be taken positive. Let

$$
Q_{i}=\left\{b \in A \mid v_{i}(b)>\gamma_{i}\right\}
$$

and let P_{i} be the radical of Q_{i}; then P_{i} is a prime ideal. Suppose that $Q_{i}+Q_{j}$ (with $i \neq j$) is contained in a maximal ideal M of A. Then $P_{i}+P_{j} \subseteq M$ so that $A_{[M]} \subseteq A_{\left[P_{i}\right]} \subseteq R$, and since $v_{i}^{-1}(\infty) \cap A \neq P_{i}, A_{\left[P_{i}\right]}$ is nontrivial. Thus by Proposition 13, if w_{i}, w_{j} and w correspond to P_{i}, P_{j} and M, we must have $w_{i} \leqq w, w_{j} \leqq w$ so either $w_{i} \geqq w_{j}$ or $w_{j} \geqq w_{i}$ and in either case v_{i} and v_{j} are not independent. Thus $Q_{i}+Q_{j}=A$, so $a_{i} \equiv a_{j}\left(\bmod \left(Q_{i}+Q_{j}\right)\right)$, and by C.R.T. there exists $a \in A$ such that $a \equiv a_{i}\left(\bmod Q_{i}\right)$, that is $v_{i}\left(a-a_{i}\right) \geqq$ γ_{i} for $1 \leqq i \leqq n$.

If $v_{1}, v_{2}, \ldots, v_{n}$ are a family of valuations on R such that $A=\bigcap_{1 \leqq i \leqq n} A_{v_{i}}$ is an R-Prufer ring and R is a subquotient ring of A, then we say that $v_{1}, v_{2}, \ldots, v_{n}$ is an approximation family on R. Proposition 22 shows that if R is a ring with
large Jacobson radical then any finite family of valuations is an approximation family.

Corollary 1. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a pairwise independent approximation family on R, and for $1 \leqq i \leqq n$ let γ_{i} be any element in the group of v_{i} and x_{i} be any element in R. Then there exists z in R such that $v_{i}\left(z-x_{i}\right) \geqq \gamma_{i}$, for $1 \leqq i \leqq n$, and there exists y in R such that $v_{i}(y)=\gamma_{i}$ for $1 \leqq i \leqq n$.

Proof. Let A be the intersection of the valuation rings. Let e be an idempotent such that $e x_{i}=x_{i}$ for $1 \leqq i \leqq n$. Let s be e-regular in A such that $s x_{i}=b_{i} \in A$.

Use the above proposition to choose x in A such that $v_{i}(x) \geqq \gamma_{i}+v_{i}(s)$; let $z=e x / s$. To prove the final statement let a_{i} be such that $v_{i}\left(a_{i}\right)=\gamma_{i}$; then choose y such that $v_{i}\left(y-a_{i}\right)>\gamma_{i}$.

Corollary 2. Let R be a ring with large Jacobson radical. Let v_{i} and γ_{i}, $1 \leqq i \leqq n$ be as in Corollary 1. If no $\gamma_{i}=\infty$ then there exists a regular element t such that $v_{i}(t)=\gamma_{i}, 1 \leqq i \leqq n$. Every finitely generated regular ideal of $A=$ $\bigcap_{i=1}^{n} A_{v_{i}}$ is principal.

Proof. By Corollary 1 there exists y such that $v_{i}(y)=\gamma_{i}$ for all $i, 1 \leqq i \leqq n$. By Proposition 19 there exists $z \in R$ such that $y z \in J$ and $y+r z$ is a unit of R for all units $r \in R$. We can choose $r_{i} \in A$ such that $v_{i}\left(r_{i} z\right)>v_{i}(y)$ for if $v_{i}{ }^{-1}(\infty) \nsupseteq J$ the existence of such an element is shown in Proposition 22, and if $v_{i}^{-1}(\infty) \supseteq J$, then $v_{i}(y z)=\infty$ so $v_{i}(z)=\infty$ and we can take $r_{i}=1$. Let $r=\prod_{i=1}^{n} r_{i}$ and set $t=y+r z$.

$$
v_{i}(t)=\min _{1 \leqq i \leqq n}\left\{v_{i}(y), v_{i}(r z)\right\}=\gamma_{i} .
$$

To prove that every finitely generated regular ideal of A is principal it suffices to prove that if r is regular then (r, a) is principal. Let $b \in K$ be a regular element such that $v_{i}(b)=\min \left\{v_{i}(a), v_{i}(r)\right\}$. The ideal $b^{-1}(a, r)$ is a regular ideal of A contained in no maximal R regular ideal. Since A is Prufer $b^{-1}(a, r) A=A$ so $(a, r)=(b)$.

Corollary 3. Let A be the intersection of a finite family of pairwise independent valuations on a von Neumann regular ring with identity R. A is Bezout and semi-hereditary.

Proof. Let $Q=\left(a_{1}, \ldots, a_{m}\right)$ be a finitely generated ideal. Let

$$
\gamma_{i}=\min _{1 \leqq j \leqq m} v_{i}\left(a_{j}\right) .
$$

Let $\alpha_{i}=\gamma_{i}$ if $\gamma_{i}<\infty$, and 0 otherwise. Since $R Q$ is a finitely generated ideal of a von Neumann regular ring, $R Q=e R$ where $e^{2}=e$ and $R Q \cap A=e A$. By [12, Lemma 12], $Q=E e A$ where $E=\left\{a \in R \mid v_{i}(a) \geqq \gamma_{i}, 1 \leqq i \leqq n\right\}$. Let $b \in A$ be regular such that $v_{i}(b)=\alpha_{i}$. Clearly $b e \in E$ and $E \subseteq b A$; thus
$Q=E e A \subseteq b A e=b e^{2} \subseteq E e A=Q$, so $Q=b e A$ is principal. Since A is Prufer it is semihereditary by Proposition 17.

It is easily seen that a valuation ring with identity which is Prufer has the property that every regular finitely generated ideal is principal if and only if v maps the regular elements of A_{v} onto the value group. It seems unlikely that for all Prufer valuation rings every finitely generated regular ideal is principal.
9. Examples. The purpose of the first half of this section is to construct a total quotient ring which has ideal structure similar to a given ring. This shows that little is gained in terms of good behaviour by restricting the study of valuations to valuations of total quotient rings, and this is used to construct examples of valuation rings which fail to be Prufer rings for various reasons.

Let A be a ring with identity. Let $\left\{M_{h}, h \in H\right\}$ be the family of maximal ideals of A and let $f_{h}: A \rightarrow A / M_{h}=k_{h}$. Let $I=H \times N$, where N denotes the natural numbers. For $i=(h, n) \in I$ define $k_{i}=k_{h}$. Define

$$
K=\prod_{i \in I} k_{i} \text { and } F=\bigoplus_{i \in I} k_{i} .
$$

Let B be the image of A in K under the map f defined by $(f(x))_{(n, n)}=f_{h}(x)$. Let $R=B+F$. Let P_{i} denote the projection onto the i th component.

The following facts can be easily checked:
(i) $B \cap F=0$.
(ii) The prime ideals of R which do not contain F are of the form $P_{i}=$ $\left\{a \in R \mid p_{i}(a)=0\right\}$ and are both minimal and maximal.
(iii) R is its own total quotient ring.
(iv) $R / F \cong A / J$ where J is the Jacobson radical of A.
(v) The valuations of R are either valuations of k_{i} lifted by P_{i} for some $i \in I$ or the valuations of A / J lifted by g, where $g: R \rightarrow R / F \cong A / J$.
(vi) If $J=0$ and a valuation w on A lifts by g to v on R, then $A_{v}=f\left(A_{w}\right)+$ $F, P_{v}=f\left(P_{w}\right)+F, v^{-1}(\infty)=f\left(w^{-1}(\infty)\right)+F$ and M^{\prime} is a maximal regular ideal of A_{v} if and only if $M^{\prime}=f(M)+F$ where M is maximal A-regular ideal of A_{w}. R is the total quotient ring of A_{v} if and only if A is a subquotient ring of A_{w}.
(vii) If A is arithmetical then so is R.

If A is an arithmetical domain but not a field, with $J=0$, then R is a total quotient ring such that R_{M} is a valuation domain for every maximal ideal M, but R is not a von Neumann regular ring. The construction of such rings has been attributed to Nagata [2].

We call R the total quotient ring like A. In the following three examples R is a total quotient ring and v is a valuation on R.

Example 3. A_{v} has a unique maximal regular ideal, and has total quotient ring R but is not Prufer. Let

$$
A=\left\{q(X, Y) / g(Y) X^{n} \in k(X, Y) \mid Y \nmid g(Y)\right\}
$$

where k is a field. Define w on A by extending $w\left(X^{n}\right)=n$. Then

$$
A_{w}=\{g(X, Y) / q(Y) \in k(X, Y) \mid Y \nmid g(Y)\}
$$

and $P_{w}=X A_{w}$. It is easily checked that: $M_{w}=(X, Y) A_{w}$ is the unique maximal A-regular ideal of A_{w}, A is a subquotient ring of A_{w} and A has Jacobson radical zero. Let R be the total quotient ring like A and v the valuation corresponding to $w . f\left(M_{w}\right)+F$ is the unique maximal regular ideal of A_{v} and it properly contains $P_{v}=f\left(P_{w}\right)+F$, so A_{v} is not Prufer.

Example 4. P_{v} is a maximal regular ideal but A_{v} is not Prufer. Define a rank two discrete valuation on

$$
A=\{q(X, Y) / r(X) \cdot s(Y) \in k(X, Y)\}
$$

by extending $w\left(X^{m} Y^{n}\right)=(m, n)$.

$$
A_{w}=\left\{p(X, Y) X Y^{-n}+q(Y) \in k(X, Y)\right\}
$$

and $P_{w}=Y A_{w} . P_{w}$ is maximal, but there are other maximal regular ideals in A_{w}, for example $\left(Y+1, X Y^{-1}, \ldots, X Y^{-n}, \ldots\right)$. Extending w to v on the total quotient ring like A we get the required example. A_{0} cannot be Prufer since it does not have a unique maximal regular ideal.

These examples show that Proposition 14 cannot be substantially weakened. From the results on rings with large Jacobson radical one might conjecture that A_{v} should be a Prufer ring if $v^{-1}(\infty)$ is a maximal ideal of R and P_{v} is also large. The following example shows that this is not the case:

Example 5. Let $A=K[X]\left[X_{a}\right]_{a \in K}$ where K is an algebraically closed field. Let $f: A \rightarrow K(Y)$ be the linear map given by $f(X)=Y, f\left(X_{a}\right)=(Y-a)^{-1}$. $f^{-1}(0)=Q$ is a maximal ideal. Let u be the valuation on $K(Y)$ given by the polynomial Y and let u lift via f to w on A. Then

$$
A_{w}=K[X]\left[X_{k}\right]_{k \in K, k \neq 0}+Q \quad \text { and } \quad P_{w}=(X)+Q
$$

Clearly P_{w} contains no units of A (i.e. no element of K). The image of $X_{k}+1 / k$ in $K(Y)$ is the same as the image of $X X_{k} 1 / k$, and since the latter element is in P_{w} so is the former; thus P_{w} is a maximal ideal of A_{w}. The Jacobson radical of A is zero. Lifting to R the total quotient ring like A, we see that $v^{-1}(\infty)$ is a maximal ideal of R and P_{v} is a maximal ideal of A_{v}, but since P_{v} is not regular, A_{v} is not Prufer.

References

1. N. Bourbaki, Algèbre commutative, Chapitre 6 (Hermann, Paris, 1964).
2. M. B. Boisen and M. D. Larsen, Prufer and valuation rings with zero divisors, Pacific J. Math. 40 (1972), 7-12.
3. H. S. Butts and W. Smith, Prufer rings, Math. Z. 95 (1967), 196-211.
4. E. D. Davis, Overrings of commutative rings, II. Integrally closed overrings, Trans. Am. Math. Soc. 110 (1964), 196-211.
5. N. Eggert and H. Rutherford, A local characterization of Prufer rings, J. Reine Angew. Math. 250 (1971), 109-112.
6. S. Endo, On semi-hereditary rings, J. Math. Soc. Japan 13 (1961), 109-119.
7. L. Gillman and M. Jerison, Rings of continuous functions (Princeton Univ. Press, Princeton 1960).
8. R. W. Gilmer, Eleven non-equivalent conditions on a commutative ring, Nagoya Math. J. 26 (1966), 183-194.
9. - On Prufer Rings (to appear).
10. M. P. Griffin, Prufer rings with zero divisors, J. Reine Angew. Math. 239/240 (1970), 55-67.
11. -_Generalizing valuations to commutative rings, Queen's Preprint, 1970-40.
12. -_Multiplication rings via total quotient rings, Can. J. Math. 26 (1974),430-449.
13. H. Harui, Notes on quasi-valuation rings, J. Sci. Hiroshima Univ. Ser. A-1 Math. 32 (1968), 237-240.
14. C. U. Jensen, Arithmetical rings, Acta. Math. Acad. Sci. Hungar. 17 (1966), 115-123.
15. M. D. Larsen, Containment relations between classes of regular ideals in a ring with few zero divisors, J. Sci. Hiroshima Univ. Ser. A-1 Math. 32 (1968), 241-246.
16. M. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals (Academic Press, New York, 1971).
17. F. Lorenz, Ouadratische Formen uber Korpern, Lecture notes in Mathematics 130 (SpringerVerlag, Berlin, 1970).
18. M. E. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc. 20 (1969), 193-198.
19. J.-M. Maranda, Factorization rings, Can. J. Math. 9 (1957), 597-623.
20. F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.
21. O. Zariski and P. Samuel, Commutative algebra, volume 1 (van Nostrand, New York, 1958).

Queen's University, Kingston, Ontario

