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VALUATIONS AND PRUFER RINGS 

MALCOLM G R I F F I N 

1. Introduction. The word ring is used to mean commutative ring. 
Just as valuations on fields are used to study domains, so valuations on rings 

can be used to study rings; these rings need not have units [12]. We introduce 
slightly weaker conditions than having identity in order to get a more general 
theory. A Prufer ring A is one in which every finitely generated regular ideal 
is invertible. If we replace invertibility in the total quotient ring K, by 
invertibility in a ring R where A CZ R C K we get an i^-Prufer ring. These 
rings do occur, for example the Witt ring of a non-Pythagorean field or a 
ring of bounded continuous functions. 

This paper is devoted to the questions: To what extent do the properties of 
valuations on fields and Prufer domains extend to valuations on rings? What 
properties on a ring ensure that valuations on it will have desirable properties? 

2. Idempotents and fixing elements. A commutative ring A is called 
a ring with fixing elements if for every element x in A there exists y in A such 
that xy — x. If y can be chosen so that y2 = y then A is said to be generated by 
idempotents. 

Rings with fixing elements inherit many of the properties of rings with 
identity; the following properties of rings with fixing elements A either may 
be found in Gilmer [8] or may be easily deduced. Each ideal is contained in a 
maximal ideal, and all maximal ideals are prime. If M ^ A is any ideal and a 
is any element then there exists y £ A\M such that ay = a. If Ax = 0 then 
x = 0. If A is a noetherian, or contains a nonzero divisor, or is local (a ring is 
local if an element not in the maximal ideal generates A), then A has an 
identity. In particular the localization at any maximal ideal of A has an 
identity. Any ideal of A is completely determined by its extensions to the 
localization of A at its maximal ideals. Let B be any ring which is integral over 
A and has fixing elements in A. The "lying over" and "going up" theorems of 
Krull-Cohen-Seidenberg hold for the prime ideals of A and B. Any ideal which 
has a maximal ideal as radical is primary. 

If A is a ring with fixing elements (respectively generated by idempotents, 
with unit) we use the expression B is a subring of A to mean that B contains 
a set of fixing elements (respectively generating idempotents, unit) of A. 

We now define the analogue of the total quotient ring for a ring generated 
by idempotents. 

Let A be a ring containing the idempotent e. a £ A is called e-regular if 
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ae = a, and ax = 0 implies ex = 0. Let A be a ring generated by idempotents. 
A ring K containing A is called a total quotient ring of A provided that: 

(i) If x Ç K then there exist e, a, b £ A with ex = x, e2 = e, b ^-regular 
and bx = a; 

(ii) If a £ A is ^-regular then there exists x in K such that ax = e. 

PROPOSITION 1. Any ring A generated by idempotents has a total quotient ring 
which is unique up to an isomorphism. 

Proof. Let E be the family of idempotents of A. Order E by setting e ^ / if 
ef = e. E is a directed set since e ^ g, f ^ g where g = e + / — ef. If e ^ / 
define hf>e:Ae —» ^4/ by the inclusion map. Then 

Each ring ,4 e has a unit and has a natural embedding in a total quotient ring 
Ke. There is a natural injection Ke —» i£/ making the diagram 

commutative given by a/6 —» a/ (b + / ~ 0). Then if 

it is easily seen that K is a total quotient ring for A. If T is any other total 
quotient ring of A then the isomorphism can be established with K by noting 
that Ke ~ Te for each idempotent e. 

If A has an identity the total quotient ring defined above is identical to 
the usual one. 

Let A, a subring of the ring generated by idempotents R, have total quotient 
ring K. R is called a sub-quotient ring of A if A C i£ Ç K. An element of i? is 
called R-e-regular if it has an ^-inverse in i£. An ideal (of A or R) is called 
R-e-regular if it contains an .R-e-regular element and R-regular if it contains an 
i?-e-regular element for every idempotent e in R. A i^-regular ideal is called 
regw/ar. 

The following results may be proved relating ideals in K and A. 
(i) A prime (or primary) ideal Q is a contracted ideal if and only if it is 

not regular. 
(ii) There is a one-to-one correspondence between the contracted ideals 

(respectively prime ideals, P-primary ideals) of A and the ideals (respectively 
prime ideals, P-primary ideals) of K. This correspondence preserves radical, 
intersection and quotients. 

(iii) If P is a non-regular prime ideal then A P is naturally isomorphic to KKP. 
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3. Valuations and ideals. A valuation v on a commutative ring with 
fixing elements R is a map from R onto a totally ordered group I\ called the 
value group, together with a symbol oo (such that oo > y for all y Ç T and 
oo + 7 = °° ) with the following properties: v(ab) = v(a) + z;(&) and 
v(a + 6) è niin {v(a), *>(&)}• The ring ^4P = {x £ i^|y(x) ^ 0} is called the 
valuation ring of v; Pv — \x Ç R\v(x) > 0} is called the prime of v and y_1(oo ), 
which is a prime ideal of both A and i?, is called the infinite prime of v. If the 
value group of v is trivial then y_1(oo ) = PVJ Av — R and v is called a trivial 
valuation. There is a one-to-one correspondence between trivial valuations and 
prime ideals of R. If Av has an identity e, then e is the identity for R. For if 
y G i?V4fl and ^x = y, then ?;(#) = 0 so x £ ^ implying ey = ex^ = xy = y. 
\i Av9

£ R then Pv = {x Ç i^|x^ Ç 4̂„ for some 3/ Ç 7^4^}. Consequently it 
follows by the next proposition that a nontrivial valuation is determined by 
its valuation ring. 

PROPOSITION 2 [18]. Let Rbe a ring with fixing elements. Let A be a subring of 
R with a prime ideal P. The following conditions are equivalent: 

(1) If B is a ring such that A C B C R and M is a prime ideal of B such 
that M C\A = P then A = B. 

(2) For all x in R\A there exists y in P such that xy Ç A\P. 
(3) There is a valuation v on R such that A = Av, P = Pv. 

Proof. This follows as in [18] using properties of rings with fixing elements. 

Let A and B be rings with fixing elements and l e t / : A —» B be a surjective 
ring homomorphism with kernel N. A valuation on B can be lifted by / to one 
on A, and a valuation on A with infinite prime containing N gives an image 
valuation on B. 

Let v be a valuation ring on a ring R, and 4̂ be any subring of R; then v is 
called independent of A if for any element 7 in the group of v there exists an 
a Ç 4̂ such that v{a) = 7. 

PROPOSITION 3. Le/ Q £e any prime ideal of the ring with fixing elements R. 
Let K be the quotient field of the domain R/Q. The valuations of R with infinite 
prime Q correspond to the valuations of K independent of R/Q. 

Proof. The proof is easily checked. 

With the aid of Proposition 3 it is straightforward to construct many 
examples of valuation rings. (A finite direct sum of fields is the easiest situa
tion to deal with.) 

Example 1A. The following example of a valuation ring uses the notation of 
Gillman and Jerrison [17]. 

Let C(X) be the ring of continuous functions from a completely regular 
(non-compact) Hausdorff space to the real numbers. Let U be a free ultrafilter 
on the set of zeros of continuous functions. (Thus U corresponds to some point 
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p in the Stone-Cech compactification of X which is not in X.) The set of all 
elements bounded on some elements of U form a valuation ring A v. Pv consists 
of the functions which take values arbitrarily close to zero on each element of 
U. For if / 6 C(X)\A, define g(x) = | 1 / / (* ) | on V = {x | | / ( x ) | è 1} and 
g(x) = lonW={x\ \f(x)\ ^ 1}. Since W $ U, V £ U so fg G A\PV. Pv con
sists of functions which are zero on some S £ U. The valuation is nontrivial if 
p does not belong to the real compactification of X. 

Let A be a subring of the ring with fixing elements R. For each prime ideal P 
of A define 

A[P] = {a £ R\ da £ A for some d Ç ^4\P}. 

The ideals ikf of 4̂ map naturally into extended ideals M* of A[P] where 
if* = {a e R\da G M for some d G A\P}. It is easily checked that if* 3 
MA[p]. * defines a one-to-one inclusion preserving correspondence between 
prime (respectively primary) ideals of A contained in P and the prime (re
spectively primary) ideals of A[P] contained in P*. 

Let (v, r ) and (w, A) be two valuations of R. If there exists an order homo-
morphism/ from (T, oo ) onto (A, oo ) such that w = f o v then call w coarser 
than v and write w ^ u. If y and w are valuations such that there is no nontrivial 
valuation coarser than both of them, v and w are called independent. 

An ideal Q of a valuation pair (̂ 4C, P c) is called v-closed if a in Q and & in Av 

with p(6) ^ #(a) implies b € Ç. A subset J7 of the positive elements of a totally 
ordered group T is called an upper class if a £ U, y G r and 7 > « imply 

T e u. 
PROPOSITION 4 [18]. Let v be a valuation on the ring with fixing elements R. 

The v-closed ideals of Av are in one-to-one order preserving correspondence with 
the upper classes of Tv. The v-closed prime ideals are v~l(co ), together with those 
prime ideals Q such that Q Ç Pv and Q Çt v~l (00). The nontrivial valuations 
coarser than v are given by the rings Av[Q] where Q is any prime of the latter type. 

Proof. This is essentially Propositions 3 and 4 of [18]. 

Note that if Q C PV} Q (£ v~1(co ) and Q is prime, then Q is z/-closed. For 
if x Ç (?Vr~1(00) a n d v{y) > v(x) then if dx £ A\PVJ dy £ Av so dyx G Q 
and since dx (•? Q C P r , 3; £ Ç. 

This proposition implies that if ze/ is non trivial then v ^ w if and only if 
P w Ç P c and Av C ^4W. The necessity of imposing the condition P w C P„ 
can be seen from the following example on the ring R = &[X, F, Z, X - 1 ] . 
Define 0 and w by setting w(XzFmZw) = / + m + n and z/(X*FwZw) = / + w, 
and extending to valuations of R. Then A v Q Aw, but v ^ w. H Av Ç1 Aw with 
z; any rank one valuation and w non trivial, then Pv C ? w , for if a G P» and 
x d Aw then anx Ç 4̂W for sufficiently large ^ so that awx G ̂ 4«, and a G Pw . 
However by extending zi toa rank two valuation u it is easy to get Au Q Aw, 
Pu <£ Pw and P„ £ Pu. 
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Clearly the valuation can not give any information about ideals contained 
in y -1(oo). The following proposition shows that only when R is a local ring 
can we get all the information about ideals not contained in Z;_1(GO). 

PROPOSITION 5. The following conditions are equivalent for a valuation pair 
(Av, Pv) of a ring with fixing elements R. 

(1) (Av, Pv) is local. 
(2) (R, i r ^oo) ) is local. 
(3) All ideals of Av not contained in v~1(co ) are v-closed. 
(4) R has an identity and all ideals of Av not contained in v~l (oo ) are R-regular. 

Proof. (1) => (2) Let a G R\v~l{co), and b G R be such that ab G A\PV. 
Then ab has an inverse in A v and also in R. 

(2) =» (3) Let Q be an ideal of Av with a G Q, and v(b) è v(a). Since 
Pœ 2 (? w e niay assume y (a) < oo so ba~l G ̂ 4 and 6 = ba~la G Q. 

(3) =» (4) Let (J be an ideal of 4̂„ with a £ Q, a Q v~l{co) and 6 G -R such 
that ba G A\PV; then (&a) = ^4P so that the element which fixes ba is the 
identity and a is ^-regular. 

(4) => (1) Let a G A\PV; since <2 $ y_1(oo ), (a), and hence a is ^-regular; 
thus Av has a unit and v(a) + z;(a-1) = v(l) = 0 so a-1 (z Av. 

We omit the proof of the following observation: 

Let P be any ideal of A v which contains v~l (oo ) properly (v must be non 
trivial). Each of (3) and (4) above may be weakened to the corresponding 
conditions for ideals of Av contained in P but not in z;_1(oo ). 

4. i?-Prufer rings and valuations. Let A be a subring of the ring with 
fixing elements R. If A [P] is a valuation ring of R for every maximal ideal P of 
A then A is called an R-Prufer ring; if R is the total quotient ring of A then A 
is called Prufer. Let A[P] ^ Rbe a, valuation ring corresponding to the valua
tion v with Q' C P a prime ideal of ^4. It is not difficult to check that PVC\ A = 
P, Pv = P* and that 4̂ [Q] is a valuation ring of R. A subring of R containing A 
is called an R-overring of A. 

PROPOSITION 6. Let A be a subring of the ring with fixing elements R, such that 
for each x G R there is some y G A with xy G A, xy 5* 0. The following conditions 
are equivalent: 

(1) A is an R-Prufer ring. 
(2) / / B is any R-overring of A then for all z in B, (A:z)B = B. 
(3) Every R-overring of A is integrally closed. 

Proof. This follows by generalizations of [20] and [4] or of Proposition 10 
and Theorem 13 of [10]. 

Let A be a ring generated by idempotents. Let R be a subquotient ring of A. 
An ideal M of A is called quasi-finitely generated if eM is finitely generated for 
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every idempotent e of A. An A -submodule L of R is called an R-fractionary 
ideal if for each idempotent em A there exists an ^-regular element a such that 
aLe C ^4. An ideal M of A is called R-invertible if there is an ^-fractionary 
ideal L such that LAT = A. It is easily seen that an .R-invertible ideal must be 
quasi-finitely generated and irregular. 

THEOREM 7. Let R be a subquotient ring of a ring A, with A generated by 
idempotents. The following conditions are equivalent: 

(1) A is an R-Prufer ring. 
(2) Every R-overring of A is A-flat. 
(3) Every R-regular, quasi-finitely generated ideal of A is R-invertible. 
(4) If L is a quasi-finitely generated R-regular ideal then LM = LN implies 

M = N. 
(5) If L, M and N are any three ideals of A, at least one of which is R-regular, 

then LC\ (M + N) = L H M + L n N. 
(6), (7), (8) and (9) Each of conditions (6), (7), (13) and (14) of Theorem 13 

of [10] holds with the word regular changed to R-regular and finitely generated 
changed to quasi-finitely generated. 

The proof of this theorem is omitted. The proof consists of generalizing the 
proof and lemmas of [10] or of [16] and using the following lemma: 

LEMMA 8. Let A be a ring generated by idempotents having a subquotient ring R. 
An ideal Q is R-invertible if and only if eQ is an Re-invertible ideal in eA for 
every idempotent e of A. 

Example IB. As in Example 1A let C(X) denote the ring of continuous 
functions. Let C*(X) be the ring of bounded continuous functions. Then 
C*(X) is a C(X)-Prufer ring. Note that C(X) is not a total quotient ring. 

The notation is in Example 1A. The maximal ideals of C*(X) are of the 
form P' — PVC\ C*(X), the set of functions which take arbitrarily small 
values on the elements of some ultrafilter U. We need to show that C* (X)[P^ = 
A. v. 

L e t / 6 C*(X)[P>]; then there exists g Ç C*(X)\P' such that gf G C*(X), 
so for some F f U and some e > 0, \g(x)\ > e for all x G V, and \gf(x)\ < n 
for some integer n. Thus | f(x)\ < n/e for x £ V a n d / G Av. 

L e t / G Av; then for some V G U, and some integer n, \f(x)\ < n for all 
x e V. Let 

g(x) = max {\f(x)\, n}~1 

and since* Ç F implies^*) = 1/n, g G C* (X)\P\ Since | fg \ ^ 1,/g G C*(X); 
t h u s / e C*(X)[P>}. 

PROPOSITION 9. Let A be a subring of the ring with fixing elements R. Let Œ 
be the family of maximal ideals of A. If Q is any ideal of A, 

Q = n QAIP] = n Q*. 
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Proof. Since QA[P] Ç Q*, 

QQ H QA[P1Q H Q*. 
P£fi P€« 

Suppose x G PlpeaC?*- Let P Ç 1Î; then xd £ Q for some d G ̂ 4\P. Thus 
d G (Q*. (x)); so Q: (x) Çt P . Since this holds for each maximal ideal P G Œ, 
<2: (x) = ^4. Let y G ̂ 4 fix x, then x = yx G Ç. 

LEMMA 10. Let A be an R-Prufer ring with a maximal ideal P such that for any 
other maximal ideal M, A[P] C A[M],m then A is a valuation ring. 

Proof. A = D A[M] = A[P], where the intersection is over all maximal 
ideals M. 

A particular case of the above lemma is when R is a subquotient ring of A 
and A has a unique maximal P-regular ideal. 

PROPOSITION 11. Let A be an R-Prufer ring having prime ideals P ui = 1 , . . . , « 
such that 

A = O A[Pi]. 

If M is a prime ideal contained in no P t then A[M] = P . 

Proof. Suppose that A[M] corresponds to the non trivial valuation v. Let 
v-1^ ) C\ A = P. Let Vi, . . . , vm, m S n be the non trivial valuations cor
responding to Piy . . . , Pn. Since A[P] = R and vt is nontrivial, Pt $£ P, 
1 ^ i :g m. Let 

a = E [ a*> 

where ate Pu at £ P, 1 ^ i ^ m and a0 G i ^ \ P . Since AT £ Pu 

M ÇL Ui<i<nPi, so there exists b G M, b G Pu i ^ i g m. We may assume 
that 6 € P , for if b G P then a + b G P , and since a + 6 G M, a + b G P i , 
i = 1, . . . , m, a + b will serve in place of 6. Thus oo > v(b) > 0, and there 
exists d G PV4 with z;(<Zfr) = 0, implying db G ̂ 4 [ m , so cdfr G 4̂ for some 
c G ̂ 4\M. Since v(cd) < 0, cd (i A, so that ^(cd) < 0 for some i, 1 ^ i ^ m. 
Since b G -4\P*, fl*(&) = 0 and so Vi(bcd) < 0, a contradiction to bed G A. 

PROPOSITION 12. Let A = Av, P = Pv where v is a valuation on the ring with 
fixing elements R. Then A is R-Prufer if and only if for each maximal ideal M 
of Ay M 7e P; all primes contained in M C\ P are contained in z;_1(oo ). 

Proof. If A is P-Prufer and M 9^ P is maximal, then by the previous prop
osition A[M] = R. If Q C M Pi P is a prime ideal, then A[Q] Z) A [M] = P ; 
and Q C y - 1 (oo ) by the remark after Proposition 4. 

To show A is P-Prufer it suffices to show that M maximal, M 5* P, implies 
A[M] = P . This is trivial if A = P . Let a G R\A. Let 

Q = {x G ^4|z>(xw) + fl(a) > 0 for some positive integer n}. 
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Then Q is a prime ideal and since v-1^) Ç Ç Ç P , Q (£ M. Thus there 
exists d Ç Ç, d g M such that dna G A. Since dn G A\M, a G 4 [ M ] . 

PROPOSITION 13. Pe/ .4 Je aw R-Prufer ring which is also the ring of a valua
tion v. If B is an R-overring of A, then B is R-Prufer and is the ring of a valua
tion coarser than v. 

Proof. We may take B ^ R, for if B = R take Pw = v~l{<x> ) ; then w ^ v. 
Since every P-overring of B is integrally closed, B is a Prufer ring. Let 12 be 
the family of maximal ideals M of B such that 

B[M] ^R($i^$ since R^B = nMevB[M]). 

Let M € Û and P = M H A. Since 4 [ P r ] = 4 , P C P„ by Proposition 11, 
and 4̂ C J4 [ P ] C P [ M ] =̂  P , so ^ ( o o ) ^ P . Consequently by Proposition 4, 
-4 [P] is the ring of a valuation coarser than v. Further B C 4̂ [P] ; for if x Ç P\^4 
there exists 3> € P» such that xy £ ^4\P„ Ç ^4\P, and y Q P , (for if y Ç P 
then x ^ I H i Ç P , ) . Thus 

B c n ^4[MnA] c n P M = p. 

Let P = \JM<içi(M C\ A); since the prime ideals between y_1(oo) and P 8 are 
totally ordered by inclusion, D is a prime ideal. A[D] = P l ¥ ^ i [ M n A ] 
and A [D] is the ring of a valuation coarser than v. 

COROLLARY. Let Q be a prime ideal of the R-Prufer ring A contained in the 
maximal ideal P . Then if A[Q] 9e R it is the ring of a valuation coarser than A[P]. 

Proof. Suppose A[Q] y^ R. Let * denote extensions to A[P] = B, which is 
P-Prufer and the ring of a nontrivial valuation v. Since A[Q] = P[Q*] 3 B 
the result follows from the Proposition. 

PROPOSITION 14. Let A be a ring generated by idempotents and let R be a sub-
quotient ring of A. Let (A, P) be the valuation pair of a nontrivial valuation v on 
R. The following conditions are equivalent: 

(!) A is an R-Prufer ring. 
(2) Each R-regular ideal of A is v-closed. 
(3) P is maximal and the R-regular ideals of A are totally ordered by inclusion, 
(4) P is the unique maximal R-regular ideal of A. 

Proof. (1) => (2) Let Q be any P-regular ideal of A. Let a £ Q, and let 
b G A be such that v(b) ^ v(a). We must show b £ Q. 

Let e be an idempotent of A such that ea = a and eb = b. Let E be the 
ideal generated by all idempotents / in A such that ef = 0. Let r be an R-e-
regular element of Q. Since the ideal (E, r, a, b) is P-regular and quasi-finitely 
generated it has an P-inverse D. Suppose that e G (E, ry a)D = F. I t follows 
that F is contained in some maximal ideal M which does not contain e. Since F 
contains an element of value zero, M <£ Mv and so by Proposition 11, A[M] = 
P . This leads to a contradiction, since r £ M, e (l M implies r~l Ç R\A[M]. 
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Thus (e) = eF and 

(r,a) = (r1a)e(E,r,a,b)D = (E,r,a)e(r,a,b)D = (r,a,b)eF = (r,a,b)% 

So b e (a, r) Ç Q. 
(2) => (3) P is an ^-regular ideal ; let e be any idempotent and let a/b £ PV4 

with b /-regular; then e — ef + 6e/ is an ^-regular element of P since 
(e — ef + &e/ )(e — ef + efb~l) = e. The result now follows from (2), since 
any ideal of A containing F is P-regular and the z;-closed ideals are totally 
ordered by inclusion. 

(3) => (4) This is trivial. 
(4) => (1) A[P] = A and if M is any other maximal ideal, A[M] = R. 

In the last section we provide an example of a valuation ring which has a 
unique maximal R regular ideal but is not Prufer. In relation to (1) <=> (4) 
above, and examples of valuation rings which are not Prufer, see [2] and [9]. 

5. Witt rings as Prufer rings. To supplement the results summarized here 
the reader is referred to Lorenz [17]. 

Let H be a field of characteristic different from two. Let A = W(H) be its 
Witt ring. Elements of W(H) correspond to anisotropic quadratic forms 
(ai, . . . , an). The even dimensional quadratic forms form a maximal ideal M 
of W(H). The other prime ideals of W(H) correspond to the total orderings of 
H as follows. If P is the positive elements of an ordering define sgP\H —> Z as 
follows: sgP(0) = 0, sgP(a) = 1 if a Ç P and —1 otherwise. Extend sgP to 
W(H) by defining 

n 

sgp(4>) = Z) sZp(ai) where <j> = (ai. . . an). 

For each odd prime q there is a maximal ideal PQ = {<£ Ç W(H)\sgP(<l>) G (g)}, 
and there is a unique minimal prime QP = {<£ Ç PF(ff)|5gp(0) = 0}. 

A field is called Pythagorean if every sum of squares is a square. Let Z(H) 
denote the zero divisors of W(H). If H is not Pythagorean or has no total 
ordering then Z(H) = M; otherwise 

Z(H) = UQP^M. 
p 

Since all primes of W(H) are either maximal or minimal, Z(H) is not prime if 
and only if H is Pythagorean with more than one ordering. 

PROPOSITION 15. W(H) is not a Prufer ring if and only if H is Pythagorean 
with at least two orderings. 

Proof. Let K be the total quotient ring of A = W(H). 
Let P be the positive elements in some ordering and q be an odd prime; 

then A[Pq] is a valuation ring. By [5, Theorem 2.2] it suffices to check that 
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APq is a valuation ring of its total quotient ring. Let 0 G Qp, so 

n 

0 = ® (a«, — &<) where a<, i* > 0. 
i=i 

Let 

P = ® <a„ bi). 

Then <£p = 0 and since the dimension of p is 2n, p G -<4V%, and it follows that 
QP is the kernel of the homomorphism h'.A ~^APq. Thus h {A) = Z and 
APq = Z(ff), a valuation domain. 

Thus A is a Prufer ring if and only if A[M] is a valuation ring of K. Since 
A[M] = K unless H is Pythagorean with at least one ordering, and A = Z 
if H is Pythagorean with exactly one ordering, it suffices to prove that if 
Z(H) is not prime then A[M] is not a valuation ring. Suppose A[M] is a valua
tion ring. Since Z(H) Ç M, A[M] is local, for if a G ^4[M]\^f* then for 
some d Ç ^4\M, ad G ^4\ikf and has an inverse (ad)~l in X. Consequently 
d(ad)~1 G A[M], and a has an inverse. By Proposition 5, K must be local, but 
this cannot be so since Z(H) is not prime. 

6. Arithmetical, semi-hereditary and Dedekind rings. A ring is called 
arithmetical if for any three ideals, L, M and N, L C\ (M + N) = L H M + 
L C\ N. The following are easy generalizations of [14] and [10]. 

PROPOSITION 16. A ring A with foxing elements is arithmetical if and only if 
for each maximal ideal M, A M has its ideals totally ordered by inclusion. If A is 
generated by idempotents, each of the following conditions is equivalent to being 
arithmetical: 

(1) If M and N are ideals with M Ç N and N quasi-finitely generated then 
there exists an ideal L such that M = LN. 

(2) A is a Prufer ring, and some subquotient ring of A is arithmetical. 

Example 1C. We see immediately that C*(X) is arithmetical if and only if 
C(X) is. With the notation of examples 1A and IB, define 

Of = {/ 6 C(X)\fg = 0 for some g G C(X)\MV}. 

A ring is called Bezout if every finitely generated ideal is principal. 
The following conditions are equivalent: 
(1) C(X) is arithmetical; 
(2) Ov is a prime ideal for all maximal ideals Mv; 
(3) C(X) is a Bezout ring. 

(1) =» (2) This follows since Ov is the intersection of all prime ideals con
tained in Mv [7, p. 110], and the prime ideals contained in Mv are totally 
ordered by inclusion. 
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(2) =» (3) See [7, p. 208]. 
(3) => (1) It is easily seen that every Bezout ring is arithmetical. 

A ring is called semi-hereditary if every finitely generated ideal is projective. 
It is not hard to show that a semi-hereditary ring with fixing elements is 
generated by idempotents and contains no nilpotents. Generalizing [6] and 
using the fact that a zero dimensional ring without nilpotents is von Neumann 
regular one can show: 

PROPOSITION 17. Let A be a ring generated by idempotents with total quotient 
ring K. The following are equivalent: 

(1) A is semi-hereditary; 
(2) K has dimension zero and A M is a valuation domain for every maximal 

ideal M; 
(3) K is von Neumann regular and A is Prufer. 

A ring generated by idempotents is called r-Noetherian if every regular ideal 
is quasi-finitely generated. This is equivalent to every regular ideal of Ae being 
finitely generated for each idempotent e of A, The following proposition 
generalizes a result of Maranda [19], and can be obtained from Proposition 17 
of [10]. 

PROPOSITION 18. The following conditions are equivalent for a ring A which is 
generated by idempotents: 

(1) All regular prime ideals are invertible. 
(2) All regular ideals are invertible. 
(3) A is Prufer and r-Noetherian. 
(4) For each idempotent e of A the regular ideals of Ae have a unique repre

sentation as a product of prime ideals. 

Rings satisfying these equivalent conditions are called Dedekind rings. We 
note the following additional properties: 

(i) Every regular prime ideal is maximal. 
(ii) If a is a regular element then it is contained in only a finite number of 

maximal ideals (only finitely many non zero valuations at a). 
(iii) Each regular ideal can be represented as the intersection of powers of 

non equal prime ideals (the primes are also maximal, quasi-finite and regular) 
and such a representation is unique. 

7. Rings with large Jacobson radical and valuations. In this section we 
introduce a condition on a commutative ring which ensures good behavior of 
valuations. This condition also ensures that many different generalizations of 
valuation coincide [11]. 

The Jacobson radical, J, is the intersection of the maximal ideals. It is a well-
known property of a ring with identity that a £ / if and only if 1 + 6a is 
a unit for all elements b of the ring. 
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PROPOSITION 19. Let A be a ring with identity having Jacobson radical J. 
The following conditions are equivalent: 

(1) any prime ideal containing J is maximal; 
(2) for each a in A there exists b in A such that for all din A and for all units r, 

a + TO and 1 + dab are both units; 
(3) for each a in A there exists b in A such that a + b is a unit and ab G J. 

Proof. (1) =» (2) Let <j>:A —> A/J. Each prime of <t>(A) is maximal and 4>(A) 
has no nilpotents. It follows that there exists b G A such that <j>{a)<t>(b) = 0 
and 0(a) + <t>(b) is a unit; see for example the corollary to Proposition 1 of [12]. 
Thus ab G J and c(a + b) = 1 + / , where/ G J] since 1 + / is a unit in A so 
is (a + b). Thus exactly one element of the pair a, b belongs to each maximal 
ideal. Since the same is true of the pair a} rb where r is a unit, a + rb is a unit. 
Since ab G J, 1 + â& is a unit for all d G ^4. 

(2) => (3) This follows immediately by the above characterization of J. 
(3) => (1) Suppose that P and ikf are prime ideals with J CL P CL M. Let 

x G M\P. Let y be such that # + 3> is a unit and x;y G / . Since xy £ J Q P, 
y G -P; thus x + 3/ G itf, a contradiction, since x + 3> is a unit. 

Rings satisfying the conditions of Proposition 19 are said to have large 
Jacobson radical. The principal examples are rings in which every prime ideal 
is maximal and rings with only a finite number of maximal ideals. A Noetherian 
ring has large Jacobson radical if and only if it is semi-local. (For if J = 
Cii^i^nQi with VQt = Pu and M is a maximal ideal, then J C M so for 
some i, Qt C M\ thus Pt Ç ikf, and since / C P< Ç M, i\- = Jkf.) If / 
consists of nilpotents then the ring must have Krull dimension zero; in par
ticular when / = 0 a ring has large Jacobson radical if and only if it is von 
Neumann regular. 

Example 2. A ring with large Jacobson radical which is neither zero dimen
sional nor semi-local. 

Let K be a field which has a non trivial valuation v with a maximal ideal P. 
Let R be the subring of ]H[T=i K generated by the constant functions with 
values in K and 0?=ii£. Let A be the ring of the valuation obtained by 
trivially extending v on the first copy of K to the whole of R. It is easily checked 
that only maximal ideals contain the Jacobson radical which is (P, 0, 0, . . .) . 
The maximal ideals consist of: (i) all elements which have first components in 
P; (ii) all elements with zero in the ith place i > 1; (iii) elements with only a 
finite number of nonzero components. The non-maximal prime ideal consists of 
all elements with zero in the first place. 

That there are total quotient rings which are not rings with large Jacobson 
radical may be easily seen using the construction outlined in Section 9. 

LEMMA 20. Let A be a valuation ring of a ring with large Jacobson radical R; 
R is a subquotient ring of A. 
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Proof. Let x Ç R\A. By Proposition 19, (x + y)d = 1 and (1 + rry)è = 1 
for some y Ç R. H y £ A, then x + 3>$^4, d £ A and dx = 1 — dy £ ^4. 
If 3/ $ ^4, then 1 + #3> € ^4, so b £ A and 6x3; = 1 — b G ̂ 4, since y (£ A, 
bx 6 A. 

A polynomial of the form 1 + n{X + . . . + nk-i X*~l + Xk with nt an 
integer for 1 g i g fe — 1, is called strongly integral. 

LEMMA 21. Le£ vt, \ S i S n be valuations on the ring with identity R. Let x 
be any element of R. There exists a strongly integral polynomial f {X) such that 
Vi(f(x)) = 0 for all those i for which vt(x) ^ 0 and vt(x) — vt(f(x)) > 0 if 
vt{x) < 0. 

Proof. This is almost identical to § 7, Lemma 1 of [1]. 

PROPOSITION 22. Let R be a ring with unit having large Jacobson radical. Let 
Aiy 1 ^ i S n, be valuation rings of R. Then 

A = n At 

is a Prufer ring and R is a subquotient ring of A. 

Proof. Let viy the valuation corresponding to A u have prime ideal Mt in A. 
Let Pi be the prime ideal of A at which vt takes infinite value. Let / be the 
Jacobson radical of R. 

(i) If J is not contained in Pi, then there are R-regular elements in Mt at 
which Vi takes arbitrarily large values. Given a in J but not in P i and any a 
(which may be taken positive) in the group of vu there exists b in R such that 
Vi(ba) < — a. By Lemma 21 there exists a strongly integral polynomial f(X) 
such that Vj(f(ab)) ^ 0 for 1 ^ j ^ n and vt(f(ab)) ^ — a. Now f(ab) is of 
the form 1 + da, and since a is in J , 1 + da is a unit in R. The inverse of 
1 + da is in A and has value greater than a. 

(ii) Given any element a in R, there exists a unit of R, b in A such that ab is 
in A and vt(b) = 0 if vt(a) ^ 0. Let y be an element/(a) determined as in 
Lemma 21. Since R has large Jacobson radical there exists d in R such that 
y + d is a unit and yd is in J. If vt{yd) is finite then J is not contained in Pt, 
and there exists a unit of R, di in A such that vt(y) < Vi{dtd). If vt(yd) is 
infinite then so is Vi(d). I t follows that there exists a unit r such that vt(rd) > 
Viiy) for 1 ^ i ^ w, and that i/*(;y + rd) = vt(y) ^ 0. Since y + rd is unit 
take & to be its inverse. 

(iii) For each i, At = A[Mi]. Let a be any element of A t. Let b be chosen as 
in (ii) above. Since b is in A\MU and ab is in A, a = ab/b is in A[Ml]. Since i^ 
is a subquotient ring of 4̂ * by Lemma 22, R is a subquotient ring of A. 

(iv) The Mi, 1 g i g n, exhaust the maximal R-regular ideals of A. Let Q 
be a maximal ideal of A containing a unit r. Suppose that there exists an 
element d in Q with vt(d) = 0 for alH, 1 ^ i ^ n. Since R has large Jacobson 
radical, there exists tin R such that d + / is unit and J/ is in J. By the previous 
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result there exists a unit a such that Vt(at) > 0 for all i, 1 ^ i ^ n. Since ar 
is a unit, d + art is a unit of R, and since vt(d + ar£) = Vi(d) = 0, d + ar£ is 
a unit of A. Since d and r are in Q, so is d + ar£, a contradiction. It follows that 
Q is contained in the union of the finite set of maximal ideals Mu 1 ^ i ^ n, 
and so must equal one of them. 

This proposition implies in particular that valuation rings of rings with large 
Jacobson radical are Prufer rings. Such rank one discrete valuation rings are 
Dedekind rings. (The latter result was proved by Maranda [19] in the case of 
zero dimensional rings and rings with few zero divisors.) 

In the case of rings with few zero divisors this proposition has been proved 
by Harui [13] and Larsen [15]. 

8. The approximation theorem. It is not hard to show that the fifth 
characterization of i^-Prufer rings given in Theorem 7 is equivalent to the 
version of the Chinese Remainder Theorem given below (see [21, p. 279]). 

C.R.T. Let A be a ring generated by idempotents. 
Let R be a subquotient ring of the ring A. Given any finite family of ideals Miy 

1 ^ i ^ n, with at most one ideal not R-regular, and elements xt £ A, 1 ^ i ^ n, 
the system of congruences x = xt (mod M*) admits a solution x in A if and only if 
Xi = Xj (mod (Mi + Mj)) for all i and j . 

It is now possible to deduce a form of the approximation theorem. For 
simplicity we deal only with the case where all valuations are independent. 

PROPOSITION 23. Let A be an R-Prufer ring generated by idempotents where R 
is a subquotient ring of A. Let M\, . . . , Mn be maximal R-regular ideals of A 
which have associated valuations vi, . . . , vn that are pairwise independent, and 
have groups Ti, . . . , Tn. If for each iy 1 ^ i ^ n, at is in A and ji is in Yu then 
there exists a in A such that v(a — at) ^ ytfor all i, 1 ;§ i ^ n. 

Proof. Clearly yt may be taken positive. Let 

<2*- = {b eA\vt(b) >yi} 

and let Pt be the radical of QÙ then Pt is a prime ideal. Suppose that Qt + Qj 
(with i 9e j) is contained in a maximal ideal M of A. Then Pt + Pjf Ç M so 
that A[M] Ç A[Pi] C R, and since i>i-1(oo) P\ A ^ Pu A[Pi] is nontrivial. 
Thus by Proposition 13, if wu Wj and w correspond to Pu Pj and ikf, we must 
have Wi S w, Wj S w so either wt ^ Wj or Wj ^ wt and in either case vt and Vj 
are not independent. Thus Qt + Qj = A, so at = aô (mod (Qt + Qj)), and 
by C.R.T. there exists a G A such that a = a*(mod Qt), that is vt(a — af) ^ 
7 i for 1 ^ i S n. 

If Vi, V2, . . • t vn
 a r e a family of valuations on R such that A = C\i^i^nAvi is 

an i^-Prufer ring and R is a subquotient ring of A, then we say that v\, V2, • • • , vn 

is an approximation family on R. Proposition 22 shows that if R is a ring with 
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large Jacobson radical then any finite family of valuations is an approximation 
family. 

COROLLARY 1. Let vi, v2j . . . , vn be a pairwise independent approximation 
family on R, and for 1 ^ i ^ n let y t be any element in the group of vt and xt 

be any element in R. Then there exists z in R such that vt(z — xf) ^ yiy for 
1 rg i g n, and there exists y in R such that vt(y) = yifor 1 ^ i ^ n. 

Proof. Let A be the intersection of the valuation rings. Let e be an idem-
potent such that ext = xt for 1 ^ i ^ n. Let s be ^-regular in A such that 
sxt = bi G A. 

Use the above proposition to choose x in A such that vt(x) è 7t + *>*($)»' 
let z = ex/s. To prove the final statement let at be such that Vi(at) = yù then 
choose y such that vt(y — at) > y t. 

COROLLARY 2. Let R be a ring with large Jacobson radical. Let vt and yu 

1 ^ i ^ n be as in Corollary 1. If no yt = oo then there exists a regular element t 
such that Vi(t) — yi} 1 ^ i 5̂  n. Every finitely generated regular ideal of A — 
n"=i Avi is principal. 

Proof. By Corollary 1 there exists y such that vt(y) = yt for all i, 1 ^ i ^ n. 
By Proposition 19 there exists z £ R such that yz (z J and 3> + rz is a unit of R 
for all units r ^ R. We can choose r* G A such that ^(r^z) > ^*(y) for if 
flj-^oo ) jb J the existence of such an element is shown in Proposition 22, and 
if v{~l(co) 3 / , then vt(yz) = co so vt(z) = GO and we can take rt = 1. Let 
r = r i l - i r* and set t = y + rz. 

vt(t) = min {Vi(y),Vi(rz)\ = 7*. 

To prove that every finitely generated regular ideal of A is principal it 
suffices to prove that if r is regular then (r, a) is principal. Let b Ç K be a 
regular element such that *;*(&) = min {vt(a), Vi(r)\. The ideal b~l(a, r) is a 
regular ideal of A contained in no maximal R regular ideal. Since A is Prufer 
b~l(a, r)A = A so (a, r) = (i). 

COROLLARY 3. Let A be the intersection of a finite family of pairwise indepen
dent valuations on a von Neumann regular ring with identity R. A is Bezout and 
semi-hereditary. 

Proof. Let Q = (ai, . . . , am) be a finitely generated ideal. Let 

yt = min Vi{af). 

Let dj = yi if yt < 00 , and 0 otherwise. Since RQ is a finitely generated ideal 
of a von Neumann regular ring, RQ — eR where e2 = e and RQ C\ A — eA. 
By [12, Lemma 12], Q = EeA where £ = K R\vM) è 7*, 1 ^ ^ n). Let 
b £ A be regular such that z>i(6) = a*. Clearly be £ E and E Ç^bA; thus 
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Q = EeA C bAe = be2 C EeA = Q, so <2 = è&4 is principal. Since A is 
Prufer it is semihereditary by Proposition 17. 

It is easily seen that a valuation ring with identity which is Prufer has the 
property that every regular finitely generated ideal is principal if and only if 
v maps the regular elements of A v onto the value group. It seems unlikely that 
for all Prufer valuation rings every finitely generated regular ideal is principal. 

9. Examples. The purpose of the first half of this section is to construct a 
total quotient ring which has ideal structure similar to a given ring. This 
shows that little is gained in terms of good behaviour by restricting the study 
of valuations to valuations of total quotient rings, and this is used to construct 
examples of valuation rings which fail to be Prufer rings for various reasons. 

Let A be a ring with identity. Let {Mh, h £ H} be the family of maximal 
ideals of A and let fh:A —» A/Mh = kh. Let I = H X N, where N denotes 
the natural numbers. For i = (h, n) Ç / define kf = kh. Define 

K = I I &*andF= © kt. 

Let B be the image of A in K under the m a p / defined by (/(ff))(a,n) = fnW-
Let R = B + F. Let Pt denote the projection onto the ith component. 

The following facts can be easily checked: 
(i) B H F = 0. 

(ii) The prime ideals of R which do not contain F are of the form Pt — 
{a G R\pi(a) = 0} and are both minimal and maximal, 

(iii) R is its own total quotient ring, 
(iv) R/F = A/J where J is the Jacobson radical of A. 
(v) The valuations of R are either valuations of kf lifted by P t for some 

i G I or the valuations of A/J lifted by g, where g:R -» R/F = A/J. 
(vi) If J = 0 and a valuation won A lifts by g to t; on i?, then A v = f(Aw) + 

ff pv = / ( p j + j7 tr-i(oo) = / (w-^oo)) + F and ikf is a maximal regular 
ideal of Av if and only if ilf7 = f(M) + ^ where M is maximal ^4-regular ideal 
of Aw. R is the total quotient ring of Av if and only if 4̂ is a subquotient ring 
of Aw. 

(vii) If A is arithmetical then so is R. 

If 4̂ is an arithmetical domain but not a field, with J = 0, then i? is a total 
quotient ring such that RM is a valuation domain for every maximal ideal My 

but R is not a von Neumann regular ring. The construction of such rings has 
been attributed to Nagata [2]. 

We call R the total quotient ring like A. In the following three examples R 
is a total quotient ring and v is a valuation on R. 

Example 3. Av has a unique maximal regular ideal, and has total quotient 
ring R but is not Prufer. Let 

A = {q(X, Y)/g(Y)X* € k(X, 7 ) | 7 f g(7)} 
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where k is a field. Define w on A by extending w(Xn) = n. Then 

Aw = {g(X, Y)/q(Y) € * ( * , F ) | F ^ g ( F ) ( 

and Pw = XAW. It is easily checked that: Mw = (X, F)^4W is the unique 
maximal A -regular ideal of Aw, A is a subquotient ring of Aw and A has 
Jacobson radical zero. Let R be the total quotient ring like A and v the valua
tion corresponding to w. f(Mw) + F is the unique maximal regular ideal of A v 

and it properly contains Pv = f(Pw) + F, so ^ is not Prufer. 

Example 4. P„ is a maximal regular ideal but A v is not Prufer. Define a rank 
two discrete valuation on 

A = {<z(X, Y)/r(X).s(Y) G MX, F)} 

by extending w(XmYn) = (m,n). 

Aw = {p(X, Y)XY~n + a{Y) 6 £(X, F)} 

and P w = YAW. Pw is maximal, but there are other maximal regular ideals in 
AW1 for example ( F + 1, I F - 1 , . . . , XY~n, . . .). Extending w to t; on the 
total quotient ring like A we get the required example. A v cannot be Prufer 
since it does not have a unique maximal regular ideal. 

These examples show that Proposition 14 cannot be substantially weakened. 
From the results on rings with large Jacobson radical one might conjecture 
that Av should be a Prufer ring if v~l{co) is a maximal ideal of R and Pv is 
also large. The following example shows that this is not the case: 

Example 5. Let A = K[X][Xa]aeK where K is an algebraically closed field. 
L e t / M ->K(Y) be the linear map given by f(X) = Y,f(Xa) = ( F - a)~\ 
/ - 1 ( 0 ) = Q is a maximal ideal. Let u be the valuation on K(Y) given by the 
polynomial F and let u lift v i a / to 70 on A. Then 

Aw = K[X][Xk]kiK,k^ + Q and P„ = (X) + Q. 

Clearly Pw contains no units of A (i.e. no element of K). The image of Xk + 1/k 
in K(Y) is the same as the image of X Xk 1/k, and since the latter element is 
in Pw so is the former; thus Pw is a maximal ideal of Aw. The Jacobson radical 
of A is zero. Lifting to R the total quotient ring like A, we see that v~l (00 ) is a 
maximal ideal of R and Pv is a maximal ideal of A V1 but since Pv is not regular, 
A v is not Prufer. 
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