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Abstract We carry out a thorough study of weight-shifting operators on Hilbert modular forms in
characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified
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geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial
positivity result for minimal weights of mod p Hilbert modular forms.
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1. Introduction

The study of weight-shifting operations on modular forms has a rich and fruitful history.
Besides those naively obtained from the graded algebra structure on the space of classical

modular forms of all weights, there is a deeper construction due to Ramanujan [30]

which shifts the weight by two using differentiation, leading to a more general theory
of Maass–Shimura operators. Analogous weight-shifting operations in characteristic p,

first studied by Swinnerton-Dyer and Serre [34], take on special significance in the

context of congruences between modular forms and the implications for associated Galois

representations. In particular, one has the following linear maps from the space of mod p
modular forms of weight k and some fixed level N prime to p:

• multiplication by a Hasse invariant H, to forms of weight k+p−1;
• a differential operator Θ, to forms of weight k+p+1;
• a linearised p-power map V, to forms of weight pk.

These maps all have simple descriptions in terms of associated q-expansions: if f has
q-expansion

∑
anq

n, then that of Hf (respectively Θf , V f) is
∑

anq
n (respectively∑

nanq
n,
∑

anq
pn). Following the work of Swinnerton-Dyer and Serre, there were further

significant developments to the theory due to Katz [23, 24] (interpreting the constructions
more geometrically), Jochnowitz [21, 22] (on the weight filtration and Tate’s Θ-cycles) and
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1872 F. Diamond

Gross [20] (in the study of companion forms), providing crucial ingredients for Edixhoven’s

proof of the weight part of Serre’s conjecture in [14].

Suppose now that F is a totally real field of degree d = [F : Q] and consider spaces
of Hilbert modular forms of weight k ∈ ZΣ and fixed level prime to p, where Σ denotes

the set of embeddings {σ : F ↪→ Qp}. For such spaces of p-adic modular forms, Katz

[25] constructed a family of commuting differential operators Θσ, indexed by the d -
embeddings σ ∈ Σ. The theory was further developed by Andreatta and Goren [1], who,

building on Katz’s work and Goren’s definition of partial Hasse invariants in [18, 19] (if p is

unramified in F ), defined partial Θ-operators on spaces of mod p Hilbert modular forms.
Under the assumption that p is unramified in F, some aspects of the construction

of partial Θ-operators in [1] were simplified in [12], which also went on to define partial

Frobenius operators (generalising V ) geometrically and use their image to describe kernels

of partial Θ-operators. When p is ramified in F, the effectiveness of the approach in [1]
was limited by the singularities of the available (Deligne–Pappas) model for the Hilbert

modular variety. Since then, however, a smooth integral model was constructed by Pappas

and Rapoport [29], and the theory of partial Hasse invariants was further developed in
this context by Reduzzi and Xiao in [32]. The theory of partial Θ-operators was revisited

in that light by Deo, Dimitrov and Wiese in [8], where they closely follow [1]. Here we

instead exploit the observations and techniques introduced in [12], applying them directly
to the special fibre of the Pappas–Rapoport model to construct and relate partial Θ and

Frobenius operators. In particular, this eliminates extraneous multiples of partial Hasse

invariants that appear in [8] and yields results whose implications for minimal weights are

motivated by the forthcoming generalisation to the ramified case of the geometric Serre
weight conjectures of [12]. The main contributions of this article may be summarised as

follows:

• a construction of operators Θτ with optimal effect on weight (Theorem 5.2.1);
• a geometric construction of partial Frobenius operators Vp (see Subsection 6.2);
• a description of the kernel of Θτ in terms of the image of Vp (see Subsection 9.1);
• an application to positivity of minimal weights (Theorem 9.2.1).

We should emphasise that the focus of this article is entirely on Hilbert modular forms

in characteristic p. There is also a rich theory of Θ-operators on p-adic automorphic

forms which has seen major progress recently in the work of de Shalit and Goren [7] and
Eischen, Fintzen et al. [15], which in turn has implications in the characteristic p setting

[6, 7, 16, 17]. Another advance in characteristic p has been Yamauchi’s construction [36]

of Θ-operators for mod p Siegel modular forms of degree 2. We remark, however, that all
of the work just mentioned only considers automorphic forms on reductive groups which

are unramified at p; the novelty of this article is largely in the treatment of ramification

at p.
We now describe the contents in more detail.

We first set out some basic notation and constructions in Subsection 2.1. In particular,

we fix a prime p, a totally real field F of degree1 d= [F :Q]> 1, and let OF denote the

1Including the case F = Q would introduce different complications in the treatment of cusps
and provide no new results.
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ring of integers of F and Sp the set of prime ideals of OF dividing p. For each p ∈ Sp,
let Σp,0 denote the set of fp embeddings OF /p→ Fp and Σp the set of epfp embeddings

Fp → Qp, where fp (respectively ep) is the residual (respectively ramification) degree of

p. We let

Σ0=
∐

p∈Sp
Σp,0 = {τp,i |p ∈ Sp,i ∈ Z/fpZ}

and Σ =
∐

p∈Sp
Σp = {θp,i,j |p ∈ Sp,i ∈ Z/fpZ,j = 1, . . . ,ep },

where each τp,0 ∈ Σp,0 is chosen arbitrarily, and τp,i = τp
i

p,0 and θp,i,1, . . . ,θp,i,ep are any
ordering of the lifts of τp,i to Σp. We also define a ‘right-shift’ permutation σ of Σ by

σ(θp,i,j) =

{
θp,i,j+1, if j < ep;
θp,i+1,1, if j = ep.

In Subsection 2.2 we recall the definition of the Pappas–Rapoport model YU for the

Hilbert modular variety of level U, where U is any sufficiently small open compact
subgroup of GL2(AF,f ) of level prime to p. This may be viewed as a coarse moduli space

for Hilbert–Blumenthal abelian varieties with additional structure, where this additional

structure includes a suitable collection of filtrations on direct summands of its sheaf of
invariant differentials. The scheme YU is then smooth of relative dimension d over O,

where O is the ring of integers of a finite extension of Qp in Qp. Since the main results of

the article concern Hilbert modular forms in characteristic p, we will restrict our attention

to this setting for the remainder of the Introduction and let Y U = YU,F where F is the
residue field of O.

In Subsections 3.1–3.2 we construct the automorphic line bundles Ak,l on Y U for all

k, l ∈ ZΣ and sufficiently small U (of level prime to p) and define the space of Hilbert
modular forms of weight (k,l) and level U over F to be

Mk,l(U ;F) =H0(Y U,Ak,l).

The spaces are equipped with a natural Hecke action making

Mk,l(F) := lim−→
U

Mk,l(U ;F)

a smooth admissible representation of GL2(AF,f ) over F. A key point, as already observed

in [12] in the unramified case, is that the parity condition on k imposed in the definition

of Hilbert modular forms in characteristic zero (for the group ResF/QGL2) disappears in
characteristic p. We remark also that the effect of the weight parameter l (in characteristic

p) is to introduce twists by torsion bundles that make various constructions, in particular,

that of partial Θ-operators, compatible with the natural Hecke action.
In Subsections 3.3–4.2 we recall results of Reduzzi and Xiao [32] that will underpin our

construction of partial Θ-operators. Firstly, there is a natural Kodaira–Spencer filtration

on direct summands of Ω1
Y U/F

whose graded pieces are isomorphic to the automorphic

line bundles A2eθ,−eθ
(where eθ denotes the basis element of ZΣ indexed by θ). Secondly,

for each θ = θp,i,j ∈ Σ, there is a partial Hasse invariant

Hθ ∈Mhθ,0(U ;F), where hθ = nθeσ−1θ−eθ
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with nθ = p if θp,i,1 for some p,i, and nθ =1 otherwise. Multiplication by the partial Hasse
invariant Hθ thus defines a map

·Hθ :Mk,l(U ;F)−→Mk+hθ,l(U ;F)

which is easily seen to be Hecke-equivariant. We also analogously define invariants Gθ ∈
M0,hθ

(U ;F) which trivialise the bundles A0,hθ
. The partial Hasse invariants Hθ refine

the ones defined by Andreatta and Goren in [1] and give rise to a natural stratification on
Y U and a notion of minimal weight kmin(f) for nonzero f ∈Mk,l(U ;F), which the main

result of [10] shows lies in a certain cone Ξmin ⊂ ZΣ
≥0 (see (10)).

We then follow the approach of [12, §8] to define partial Θ-operators in Section 5. For
each τ = τp,i ∈ Σ0, this gives a Hecke-equivariant operator

Θτ :Mk,l(U ;F)−→Mk+hθ+2eθ,l−eθ
(U ;F)

where θ = θp,i,ep . Note in particular that if p is ramified, then the shift2 in the weight

parameter k is by eσ−1θ+eθ. The idea of the construction, inspired by the one in [1, §12],
is to divide by fundamental Hasse invariants to get a rational function on the Igusa cover

of Y U , differentiate, project to the top graded piece of the τ -component of the Kodaira–

Spencer filtration and, finally, multiply by fundamental Hasse invariants to descend to

Y U and eliminate poles. The argument also gives a direct (albeit local) definition of the
Θ-operator without reference to the Igusa cover in (12) and establishes the following

result (Theorem 5.2.1) generalising [12, Thm. 8.2.2].

Theorem A. Let τ = τp,i and θ = θp,i,ep . Then Θτ (f) is divisible by Hθ if and only if

either f is divisible by Hθ or p|kθ.

We turn to the construction of partial Frobenius operators Vp in Section 6. This

essentially generalises a definition in [12, §9.8] but requires significantly more work to

actualise if p is ramified. We do this using Dieudonné theory to define a partial Frobenius
endomorphism Φp of Y U and an isomorphism Φ∗

pAk,l
∼=Ak′′,l′′ , where

k′′ = k+
∑
θ∈Σp

kθhθ and l′′ = l+
∑
θ∈Σp

lθhθ,

in order to obtain, for p ∈ Sp, commuting Hecke-equivariant operators

Vp :Mk,l(U ;F)−→Mk′′,l′′(U ;F).

We will use q-expansions to relate the kernel of Θτ to the image of Vp for τ ∈ Σp,0, so

we recall the theory in Section 7. This is a straightforward adaptation to our setting of

results and methods developed in [31, 4, 13, 5]. In Section 8 we compute the (constant)
q-expansions of the invariants Hθ and Gθ at each cusp of Y U , and we obtain formulas

generalising the classical ones for the effect of the operators Θτ and Vp on all q-expansions.

In particular, this shows that the operators Θτ for varying τ commute.

2This precise shift is predictable from the point of view of forthcoming work with Sasaki
generalising the geometric Serre weight conjectures of [12] to the ramified case.
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In Subsection 9.1 we turn our attention to the description of the kernel of Θτ . The
q-expansion formulas also show that Θτ ◦Vp = 0 if τ ∈Σp,0 and that ker(Θτ ) is the same

for all τ ∈ Σp,0. Theorem A then reduces the study of the kernel to the case of weights

of the form (k′′,l′′) where k′′,l′′ are as in the definition of Vp, for which the argument
proving [12, Thm. 9.8.2] gives the following.3

Theorem B. If k,l ∈ ZΣ and τ = τp,i and θ = θp,i,ep , then the sequence

0−→Mk,l(U,F)
Vp−→Mk′′,l′′(U ;F)

Θτ−→Mk′′+hθ+2eθ,l′′−eθ
(U ;F)

is exact.

Before discussing the application to positivity of minimal weights, we remark that a

less precise relation among the weight-shifting operations can be neatly encapsulated in
terms of the algebra of modular forms of all weights

Mtot(U ;F) :=
⊕

k,l∈ZΣ

Mk,l(U ;F),

or even its direct limit Mtot(F) := lim−→U
Mtot(U ;F) (over all sufficiently small levels prime

to p). It follows from its definition that the operator Vp (respectively Θτ ) on the direct

sum is an F-algebra endomorphism (respectively F-derivation) of Mtot(F). One also finds

that Vp maps the ideal

I= 〈H ′
θ−1,G′

θ−1〉θ∈Σ

to itself.4 Furthermore, Θτ (H
′
θ) =Θτ (G

′
θ) = 0 for all θ ∈Σ, so Vp (respectively Θτ ) induces

an F-algebra endomorphism (respectively F-derivation) of the quotient Mtot(F)/I. We

then have the following consequence of Theorem B (see Theorem 9.3.4).

Theorem C. If τ ∈ Σp,0, then the sequence

0−→Mtot(F)/I
Vp−→Mtot(F)/I

Θτ−→Mtot(F)/I

is exact.

In Subsection 9.2 we apply our results to refine the main result of [10], which we

recall states that minimal weights of nonzero forms always lie in Ξmin. The geometric
Serre weight conjectures of [12] (and its forthcoming generalisation to the ramified case)

predict that if f is a mod p Hecke eigenform which is non-Eisenstein (in the sense that the

associated Galois representation is irreducible), then kmin(f) should be totally positive.

We use Theorems A and B to prove a partial result in this direction (Theorem 9.2.1).

Theorem D. Suppose that p ∈ Sp is such that Fp 	= Qp and pfp > 3. Suppose that f ∈
Mk,l(U ;F) is nonzero and k= kmin(f). If kθ = 0 for some θ ∈ Σp, then k= 0.

3This is a slight reformulation of Theorem 9.1.1.
4The H ′

θ and G′
θ are slight modifications of the Hθ and Gθ obtained by rescaling those for

which j = 1; see Subsection 9.3.
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Since the Hecke action on forms of weight (0,l) is Eisenstein (see Proposition 3.2.2), the

theorem implies the total positivity of minimal weights of non-Eisenstein eigenforms in

many situations—for example, if p > 3 and there are no primes p ∈ Sp such that Fp =Qp.
We remark that the hypothesis Fp 	=Qp cannot be removed from Theorem D: if Σp = {θ},
then there are nonzero forms whose minimal weight k satisfies kθ = 0 and kθ′ > 0 for some

θ′ 	= θ. However, forthcoming work with Kassaei will show that the Hecke action on such
forms is Eisenstein; like in [9, 10], the case of split primes seems to require a completely

different method. Unfortunately, the case of p≤ 3, fp = 1, ep > 1 slips through the crack

between the two methods. We do not know whether Theorem D should hold in this case,
but we still at least conjecture that the failure is Eisenstein.

2. Preliminaries

2.1. Embeddings and decompositions

We first set out notation and conventions for various constructions associated to the

set of embeddings of a totally real field F, which together with a prime p will be fixed

throughout the article.
We assume that F has degree d = [F : Q] > 1, let OF denote its ring of integers, d its

different and Σ the set of embeddings F →Q, where Q is the algebraic closure of Q in C.

We also fix an embedding Q→Qp. We let Sp denote the set of primes of OF dividing
p and identify Σ with

∐
p∈Sp

Σp under the natural bijection, where Σp denotes the set of

embeddings Fp →Qp.
For each p ∈ Sp, we let Fp,0 denote the maximal unramified subextension of Fp, which

we identify with the field of fractions ofW (OF /p). We also let fp denote the residue degree

[Fp,0 : Qp], ep the ramification index [Fp : Fp,0], and Σp,0 the set of embeddings Fp,0 →
Qp, which we may identify with the set of embeddings OF /p → Fp or homomorphisms

W (OF /p)→W (Fp). For each p ∈ Sp, we fix a choice of embedding τp,0 ∈ Σp,0, and for

i ∈ Z/fpZ, we let τp,i = φi ◦τp,0 where φ is the Frobenius automorphism of Fp (or W (Fp)
or its field of fractions), so that Σp,0 = {τp,1,τp,2, . . . ,τp,fp}. We also let Σ0 =

∐
p∈Sp

Σp,0.

Letting q =
∏

p∈Sp
p denote the radical of p in OF , note that Σ0 may also be identified

with the set of ring homomorphisms OF /q→ Fp (or, indeed, OF → Fp).

For each τ = τp,i ∈ Σ0, we let Στ ⊂ Σp denote the set of embeddings restricting to τ ,

for which we choose an ordering θp,i,1,θp,i,2, . . . ,θp,i,ep , so that

Σ =
∐
τ∈Σ0

Στ = {θp,i,j |p ∈ Sp,i ∈ Z/fpZ,1≤ j ≤ ep }.

We also define a permutation σ of Σ whose restriction to each Σp is the epfp-cycle
corresponding to the right shift of indices with respect to the lexicographic ordering;

that is,

(1,1) �→ (1,2) �→ · · · �→ (1,ep) �→
(2,1) �→ (2,2) �→ · · · �→ (2,ep) �→

...

(fp,1) �→ (fp,2) �→ · · · �→ (fp,ep) �→ (1,1).
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Let E ⊂ Q be a number field containing the image of θ for all θ ∈ Σ, let O be the

completion of OE at the prime determined by the choice of Q→Qp and let F be its residue
field. For any OF,p =OF ⊗Zp-module M, we write M =

⊕
p∈Sp

Mp for the decomposition

obtained from that of

OF,p
∼=
∏
p∈Sp

OF,p.

Similarly, for any W (OF /p)⊗Zp
O-module N, we have a decomposition N =

⊕
τ∈Σp,0

Nτ

obtained from

W (OF /p)⊗Zp
O ∼=

∏
τ∈Σp,0

O.

In particular, for any OF ⊗O-module M, we have the decomposition

M =
⊕
p∈Sp

Mp =
⊕
τ∈Σ0

Mτ ,

where we simply write Mτ for Mp,τ . We also write Mp,i for Mτ if τ = τp,i; thus, Mp,i is

the summand of the OF,p⊗Zp
O-module Mp on which W (OF /p) acts via τp,i.

We also fix a choice of uniformiser �p for each p ∈ Sp. We let fp(u) denote the minimal

polynomial of �p over W (OF /p) and let fτ denote its image in O[u] for each τ ∈ Σp,0;

thus, u �→�p⊗1 induces an isomorphism

O[u]/(fτ (u))
∼−→OF,p⊗W (OF /p),τ O.

Furthermore, we have fτ (u) =
∏

θ∈Στ
(u−θ(�p)), and we define elements

sτ,j = (u−θp,i,1(�p)) · · ·(u−θp,i,j(�p))
and tτ,j = (u−θp,i,j+1(�p)) · · ·(u−θp,i,ep(�p))

(1)

of O[u]/(fτ (u)) for j = 0, . . . ,ep (with the obvious convention that sτ,0 = tτ,ep = 1).

Note that each of the ideals (sτ,j) and (tτ,j) is the other’s annihilator; furthermore, the

quotients of O[u]/(fτ (u)) by these ideals are free over O, and the corresponding ideals in

OF,p⊗W (OF /p),τ O may be described as kernels of projection maps to products of copies
of O, and hence depend only on j and the ordering of embeddings and not on the choice

of uniformiser �p.

For an invertible OF -module L and an embedding θ = θp,i,j ∈ Στ , we define Lθ to be
the free rank 1 O-module

Lθ = tτ,j(L⊗O)τ ⊗O[u],θO. (2)

Note that Lθ is not to be identified with L⊗OF ,θ O; rather, there is a canonical map

Lθ → L⊗OF ,θO which is an isomorphism if and only if j = ep. If L and L′ are invertible
OF -modules, we will write LL′ for L⊗OF

L′ and L−1 for HomOF
(L,OF ). Note that there

are natural maps Lθ ⊗O L′
θ → (LL′)θ and (L−1)θ → HomO(Lθ,O) but, again, these are

isomorphisms if and only if j = ep.
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2.2. Pappas–Rapoport models

In this section we recall the description of the Hilbert modular variety as a coarse moduli

space for abelian varieties with additional structure, along with the construction by

Pappas and Rapoport of a smooth integral model (see [29] and [33]).

Let G = ResF/QGL2 and let U be an open compact subgroup of GL2(ÔF ) ⊂
GL2(AF,f ) = G(Af ) of the form UpU

p, where Up = GL2(OF,p) and Up ⊂ GL2(A
(p)
F,f ) is

sufficiently small, in a sense to be specified below.
We consider the functor which associates, to a locally Noetherian O-scheme S, the set

of isomorphism classes of data (A,ι,λ,η,F•), where:

• s :A→ S is an abelian scheme of relative dimension d ;
• ι : OF → EndS(A) is an embedding such that (s∗Ω

1
A/S)p is, locally on S, free of

rank ep over W (OF /p)⊗Zp
OS for each p ∈ Sp;

• λ is an OF -linear quasi-polarisation of A such that for each connected component
Si of S, λ induces an isomorphism cid⊗OF

ASi
→A∨

Si
for some fractional ideal ci

of F prime to p;
• η is a level Up structure on A; that is, for a choice of geometric point si on

each connected component Si of S, the data of a π1(Si,si)-invariant Up-orbit of

Ô(p)
F =OF ⊗ Ẑ(p)-linear isomorphisms5

ηi : (Ô(p)
F )2 → d⊗OF

T (p)(Asi),

where T (p) denotes the product over � 	= p of the �-adic Tate modules and g ∈ Up

acts on ηi by pre-composing with right multiplication by g−1;
• F• is a collection of Pappas–Rapoport filtrations; that is, for each τ = τp,i ∈ Σ0,

an increasing filtration of OF,p⊗W (OF /p),τ OS-modules

0 = F (0)
τ ⊂F (1)

τ ⊂ ·· · ⊂ F (ep−1)
τ ⊂F (ep)

τ = (s∗Ω
1
A/S)τ

such that for j = 1, . . . ,ep, the quotient

Lp,i,j := F (j)
τ /F (j−1)

τ

is a line bundle on S on which OF acts via θp,i,j .

The proof of [12, Lemma 2.4.1] does not assume p is unramified in F and shows that

if Up is sufficiently small and α is an automorphism of a triple (A,ι,η) over a connected
scheme S, then α = ι(μ) for some μ ∈ U ∩O×

F . If we assume further that −1 	∈ U ∩O×
F ,

then it follows from standard arguments that the functor above is representable by an

infinite disjoint union of quasi-projective schemes over O, which we denote by ỸU , and
the argument in the proof of [33, Prop. 6] shows that ỸU is smooth of relative dimension

d over O. Furthermore, defining an action of O×
F,(p),+ on ỸU by

ν · (A,ι,λ,η,F•) = (A,ι,νλ,η,F•)

5Note the conventions in place with respect to the different, which are motivated by the point of
view that we wish to systematically trivialise modules defined by cohomological constructions.
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(as in [11, §2.1.3]), we see that the resulting action of O×
F,(p),+/(U ∩O×

F )
2 is free and the

quotient is representable by a smooth quasi-projective scheme over O, which we denote

by YU .
We also have a natural right action of GL2(A

(p)
F,f ) on the inverse system of schemes YU

induced by pre-composing the level structure η with right multiplication by g−1. More
precisely, suppose that U1 and U2 are as above (with Up

1 and Up
2 sufficiently small) and

g ∈GL2(A
(p)
F,f ) is such that g−1U1g⊂U2. Letting (A,ι,λ,η,F•) denote the universal object

over ỸU1
, there is a prime-to-p quasi-isogeny A→A′ of abelian varieties with OF -action

inducing isomorphisms d⊗OF
T (p)(A′

si
)∼= ηi((Ô(p)

F )2g−1) for each i, from which we obtain
a level U2-structure η′ = η ◦rg−1 on A′ (where rg−1 denotes right multiplication by g−1).

Together with the other data inherited from A, we obtain an object (A′,ι′,λ′,η′,F ′•)
corresponding to a morphism ρ̃g : ỸU1

→ ỸU2
and descending to a morphism YU1

→ YU2

which we denote ρg. These morphisms satisfy the evident compatibility ρg2 ◦ρg1 = ρg1g2
whenever g−1

1 U1g1 ⊂ U2 and g−1
2 U2g2 ⊂ U3.

Finally, we remark that the schemes YU define smooth integral models over O for the
Hilbert modular varieties associated to the group G (with the usual choice of Shimura

datum), and their generic fibres and resulting GL2(A
(p)
F,f )-action may be identified with

those obtained from a system of canonical models. In particular, for any O→C, we have
isomorphisms

YU (C)∼=GL2(F )+\(HΣ×GL2(AF,f )/U)∼=GL2(OF,(p))+\(HΣ×GL2(A
(p)
F,f )/U

p)

compatible with the right action of GL2(A
(p)
F,f ) on the inverse system and inducing a

bijection between the set of geometric components of YU and

A×
F,f/F

×
+ det(U)∼= (A

(p)
F,f )

×/O×
F,(p),+det(Up).

These isomorphisms arise in turn from ones of the form

ỸU (C)∼= SL2(OF,(p))\(HΣ×GL2(A
(p)
F,f )/U

p),

under which the set of geometric components of ỸU is described by (A
(p)
F,f )

×/det(Up).

3. Automorphic bundles

3.1. Pairings and duality

Before introducing the line bundles whose sections define the automorphic forms of
interest in the article, we present a plethora of perfect pairings provided by Poincaré

duality.

We fix a sufficiently small U as in Subsection 2.2 and consider the de Rham cohomology

sheaves H1
dR(A/S) = R1s∗Ω

•
A/S on the universal abelian scheme A over S = ỸU . Recall
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that these sheaves are locally free of rank 2 over OF ⊗OS . Furthermore, Poincaré duality
and the polarisation λ induce an OF ⊗OS-linear isomorphism

H1
dR(A/S)

∼−→ HomOS
(H1

dR(A
∨/S),OS)

∼←− HomOS
(H1

dR(cd⊗OF
A)/S),OS)

� ‖
HomOS

(d−1⊗OF
H1

dR(A/S),OS)

(where c depends on the connected component of S and disappears from the last

expression since it is prime to p). This in turn induces OF,p ⊗W (OF /p),τ OS-linear
isomorphisms

H1
dR(A/S)τ

∼=HomOS
(d−1

p ⊗OF,p
H1

dR(A/S)τ ,OS) (3)

which we view as defining a perfect OS-bilinear pairing 〈·,·〉0τ between Hτ :=H1
dR(A/S)τ

and d
−1
p ⊗OF,p

Hτ for τ ∈ Σp,0. Furthermore, the pairing is alternating in the sense that

〈x,c⊗y〉0τ =−〈y,c⊗x〉0τ on sections. Alternatively, we may apply the canonical OF ⊗R-
linear isomorphism

HomOF⊗R(M,OF ⊗R)
∼−→HomR(d

−1⊗OF
M,R)

induced by the trace for any OF ⊗ R-module M to obtain an OF ⊗ OS-linear

isomorphism

H1
dR(A/S)

∼−→HomOF⊗OS
(c−1⊗OF

H1
dR(A/S),OF ⊗OS), (4)

and hence a perfect alternating OF,p⊗W (OF /p),τ OS-bilinear pairing 〈·,·〉τ on Hτ .

Note that Hτ is locally free of rank 2 over OF,p ⊗W (OF /p),τ OS and hence a vector
bundle of rank 2ep over OS . Furthermore, (s∗Ω

1
A/S)τ is a subbundle of Hτ of rank ep

but is not locally free over OF,p⊗W (OF /p),τ OS if ep > 1 (in which case the failure is on

a closed subscheme of codimension 1) and, more generally, F (j)
τ is a subbundle of rank j

for j = 0,1, . . . ,ep.

Recall that for j = 0,1, . . . ,ep, we defined (see (1)) elements sτ,j and tτ,j of the ring

OF,p ⊗W (OF /p),τ O ∼= O[u]/(fτ (u)), where fτ is the image under τ of the Eisenstein
polynomial associated to our choice of uniformiser �p. In the following, we shall fix

τ and omit the subscripts τ , p and i to disencumber the notation; we also write simply W

for W (OF /p). Note that since H is locally free over OF,p⊗W OS and F (j) is annihilated
by sj , we have that F (j) is in fact a subbundle of tjH.

For a subsheaf E ⊂ H of OF,p⊗W OS-submodules, we define E⊥ to be its orthogonal

complement under the pairing 〈·,·〉; that is, the kernel of the morphism

H ∼−→HomOF,p⊗WOS
(H,OF,p⊗W OS)−→HomOF,p⊗WOS

(E,OF,p⊗W OS)

or, equivalently, the orthogonal complement of d−1
p ⊗OF,p

E under the pairing 〈·,·〉0. Note
from the latter description that if E is an OS-subbundle of H, then so is E⊥.

Lemma 3.1.1. We have the equality (F (j))⊥ = t−1
j F (j) for j =0,1, . . . ,e, where t−1

j F (j) =

ker(H tj−→ tjH−→ tjH/F (j)) is the pre-image sheaf of F (j) under tj.

Proof. We prove the lemma by induction on j, the case of j = 0 being obvious.
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Suppose then that 1 ≤ j ≤ e and that (F (j−1))⊥ = t−1
j−1F (j−1). Note that (F (j))⊥ and

t−1
j F (j) are both kernels of surjective morphisms from H to vector bundles of rank j
on S, so each is a subbundle of rank 2e− j, and hence it suffices to prove the inclusion

t−1
j F (j) ⊂ (F (j))⊥. To do so, we may work locally on S and assume that F (j)(V ) =

F (j−1)(V )⊕Rxj where V = SpecR is a Noetherian open subscheme of ỸU such that H|V
is free over OF,p⊗W OV and xj ∈H(V ) satisfies (u−θj(�))xj ∈F (j−1)(V ). In particular,

xj = tjyj for some yj ∈ t−1
j−1F (j−1)(V ), so that

t−1
j F (j)(V ) = t−1

j F (j−1)(V )⊕Ryj and (F (j)(V ))⊥ = (F (j−1)(V ))⊥∩ (Rxj)
⊥.

Note that if w ∈ t−1
j F (j)(V ), then

tj−1w = (u−θj(�))tjw ∈ (u−θj(�))F (j)(V )⊂F (j−1)(V ),

so that w ∈ t−1
j−1F (j−1)(V ) = (F (j−1))(V ))⊥. Furthermore, if w ∈ t−1

j F (j−1)(V ), then

〈w,xj〉= 〈w,tjyj〉= 〈tjw,yj〉

since tjw ∈ F (j−1) and yj ∈ t−1
j−1F (j−1)(V ) = (F (j−1)(V ))⊥. Finally, since the pairing is

alternating, we have

〈yj,xj〉= 〈yj,tjyj〉= 〈tjyj,yj〉= 〈xj,yj〉=−〈yj,xj〉,

which implies that 〈yj,xj〉= 0 (since ỸU is flat over Z2 if p= 2).

We have now shown that t−1
j F (j)(V ) ⊂ (F (j−1)(V ))⊥ ∩ (Rxj)

⊥ = (F (j)(V ))⊥, as

required.

We now define G(j) = (u− θj(�))−1F (j−1) for j = 1, . . . ,e. Thus, G(j) is a rank j+1

subbundle of H, and we have inclusions of subbundles F (j−1) ⊂ F (j) ⊂ G(j), so that

Lj := F (j)/F (j−1) is a rank 1 subbundle of the rank 2 vector bundle Pj := G(j)/F (j−1).

Furthermore, all of the inclusions are morphisms of OF,p⊗W OS-modules, and OF acts
on Pj via θj .

Note that G(j) is annihilated by sj , so that G(j) ⊂ tjH, and we have t−1
j G(j) =

t−1
j−1F (j−1) = (F j−1)⊥ by Lemma 3.1.1, from which it follows also that

t−1
j F (j−1) = t−1

j (t−1
j G(j))⊥ = (G(j))⊥.

(The last equality can be seen by arguing locally on sections or by noting that the diagram

H ��

��

HomOF,p⊗WOS
(H,OF,p⊗W OS) ��

��

HomOF,p⊗WOS
(G(j),OF,p⊗W OS)

��

H �� HomOF,p⊗WOS
(H,OF,p⊗W OS) �� HomOF,p⊗WOS

(t−1
j G(j),OF,p⊗W OS)

commutes, where the left horizontal morphisms are defined by the pairing, the right by
restriction and all of the vertical morphisms by tj . The kernel of the composite along

the top is (G(j))⊥, whereas t−1
j (t−1

j G(j))⊥ is the kernel of the composite along the left

and bottom. Since tj : t
−1
j G(j) → G(j) is a surjective morphism of vector bundles, the
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leftmost vertical arrow is injective, so these kernels coincide.) Therefore, multiplication by

tj defines an isomorphism (F (j−1))⊥/(G(j))⊥
∼−→G(j)/F (j−1), and composing its inverse

with the isomorphism

(F (j−1))⊥/(G(j))⊥
∼−→HomOF,p⊗WOS

(G(j)/F (j−1),OF,p⊗W OS)

induced by the pairing on H, we obtain an alternating (OF,p⊗W OS)-valued pairing 〈·,·〉j
on Pj := G(j)/F (j−1), whose description on sections is given in terms of (4) by

〈tjx,tjy〉j = 〈x,tjy〉= 〈tjx,y〉.

Note that since OF,p acts via τj on Pj , we in fact have the identification

HomOF,p⊗WOS
(Pj,OF,p⊗W OS) =HomOS

(Pj,Ij)

where Ij is the sheaf of ideals, and trivial rank 1 OS-subbundle, of OF,p⊗W OS generated
by the global section

∏
j′ 
=j(u− τj′(�p)). We thus obtain a trivialisation of ∧2

OS
Pj

corresponding to a perfect OS-valued pairing 〈·,·〉0j , which an unravelling of definitions
shows is given in terms of the original pairing 〈·,·〉0 of (3) by the formula

〈tjx,y〉0j = 〈x,f ′(�πp
)−1⊗y〉0

on sections (where f ′ is the derivative of the Eisenstein polynomial f ).

3.2. Automorphic line bundles

Recall that the Pappas–Rapoport model ỸU is equipped with line bundles6 Lj , which we

described in Subsection 3.1 as subbundles of the rank 2 vector bundles Pj . It is natural

and convenient to consider also the twists of Lj by powers of the determinant bundle
of Pj :

Nj = ∧2
OS

Pj
∼= Lj ⊗OS

Mj,

where Mj is the line bundle Pj/Lj . Note that the pairing 〈·,·〉0j defines an isomorphism

Mj
∼−→L−1

j and a trivialisation OS
∼−→Nj (which depends on the choice of �).

As we will now consider these bundles for varying τ , we resume writing the indicative

subscripts; thus, for τ = τp,i, we will denote G(j) by G(j)
τ , Pj by Pp,i,j and similarly for

Mj and Nj . We also freely replace the subscript ‘p,i,j’ by θ, where θ = θp,i,j , so that for

each θ ∈Σ, we have now defined a rank 2 vector bundle Pθ and line bundles Lθ, Mθ, Nθ

on S = ỸU , along with exact sequences

0−→Lθ −→Pθ −→Mθ −→ 0 (5)

and a trivialisation of Nθ = ∧2
OS

Pθ
∼= Lθ ⊗OS

Mθ. Furthermore, the bundles Pθ, Lθ and
Mθ are OF ⊗OS-subquotients of H1

dR(A/S) on which OF acts via θ.

Recall that we have an action of O×
F,(p),+ on ỸU defined by multiplication on the quasi-

polarisation. In particular, if ν ∈O×
F,(p),+, then the identification of ν∗A with A induces an

OF ⊗OS-linear isomorphism ν∗H1
dR(A/S)

∼=H1
dR(A/S) under which ν∗F• corresponds to

6For the moment, we continue to suppress the fixed τ = τp,i ∈ Σ0 from the notation.
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F•, and we thus obtain isomorphisms αν : ν
∗Pθ

∼−→Pθ compatible with (5) and satisfying
αν′ν = αν ◦ ν∗(αν′) (for ν,ν′ ∈ O×

F,(p),+). Recall also that the action of O×
F,(p),+ on ỸU

factors through O×
F,(p),+/(U ∩O×

F )
2, the isomorphism A

∼−→ ν∗A being defined by ι(μ−1)

if ν = μ2 for μ ∈ U ∩O×
F , and one finds that the automorphism of Pθ obtained from αν

is multiplication by θ(μ), so the natural action of O×
F,(p),+ on the bundles fails to define

descent data with respect to the cover ỸU → YU . We do, however, obtain descent data
after taking suitable tensor products or base changes of these bundles, which we now

consider.

For any O-algebra R, we will use ·R to denote the base change to R of an O-scheme X,
as well as the pullback to XR of a quasi-coherent sheaf on X. Let {eθ |θ ∈Σ} denote the

standard basis of ZΣ. For k=
∑

kθeθ and l=
∑

lθeθ ∈ ZΣ, we define the line bundle

Ãk,l =
⊗
θ∈Σ

(
L⊗kθ

θ ⊗N⊗lθ
θ

)
∼=
⊗
θ∈Σ

(
L⊗kθ+lθ
θ ⊗M⊗lθ

θ

)
on S = ỸU , where all tensor products are over OS . For n =

∑
nθeθ ∈ ZΣ, we let χn :

O×
F → O× denote the character defined by χn(μ) =

∏
θ θ(μ)

nθ , and we let χn,R denote

the associated R×-valued character. If k, l, R and U are such that χk+2l,R is trivial on

O×
F ∩U , then the action of O×

F,(p),+ on Ãk,l,R (over its action on ỸU,R) factors through

O×
F,(p),+/(U ∩O×

F )
2 and hence defines descent data, in which case we denote the resulting

line bundle on YU,R by Ak,l,R.

Definition 3.2.1. For k, l, U and R as above, we call Ak,l,R the automorphic line bundle

of weight (k,l) on YU,R, and we define the space of Hilbert modular forms of weight (k,l)

and level U with coefficients in R to be

Mk,l(U ;R) :=H0(YU,R,Ak,l,R).

We note some general situations in which this space is defined:

• The paritious setting: if w = kθ + 2lθ is independent of θ, then χk+2l(μ) =
NmF/Q(μ)

w = 1 for all μ ∈U ∩O×
F (assuming only U is small enough that U ∩O×

F

has no elements of norm −1 if w is odd).
• The mod p setting: if R is any F=O/mO-algebra and U is sufficiently small that

μ≡ 1 mod p for all μ ∈ U ∩O×
F and p ∈ Sp, then θ(μ)≡ 1 mod mO for all θ ∈Σ, so

χk+2l,F is trivial on U ∩O×
F , and hence so is χk+2l,R.

• The torsion setting: if R is an O/pNO-algebra and U is sufficiently small that
μ ≡ 1 mod pNOF for all μ ∈ U ∩O×

F , then χk+2l,O/pNO is trivial on U ∩O×
F , and

hence so is χk+2l,R.

We also have a natural left action of GL2(A
(p)
F,f ) on the direct limit over U of the spaces

Mk,l(U ;R). More precisely, suppose that U1 and U2 are as above and g ∈ GL2(A
(p)
F,f )

is such that g−1U1g ⊂ U2, in which case recall that in Subsection 2.2 we defined a
morphism ρ̃g : ỸU1

→ ỸU2
descending to a morphism ρg : YU1

→ YU2
. Furthermore, the

morphism ρ̃g is obtained from a prime-to-p quasi-isogeny A→A′ where A is the universal

abelian scheme over ỸU1
and A′ is the pullback of the universal abelian scheme. We
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thus obtain isomorphisms ρ̃∗gPθ,2 →Pθ,1 compatible with (5) and the action of O×
F,(p),+

(augmenting the notation for the automorphic bundles on ỸUi
and YUi,R with the

subscript i). Note that U1∩O×
F ⊂ U2∩O×

F , so if Ãk,l,R,2 descends to YU2,R, then Ãk,l,R,1

descends to YU1,R, and we obtain an isomorphism ρ∗gAk,l,R,2
∼= Ak,l,R,1. We then define

[g] = [g]U1,U2
:Mk,l(U2;R)→Mk,l(U1;R) as the composite

H0(YU2
,Ak,l,R,2)

ρ∗
g−→H0(YU1

,ρ∗gAk,l,R,2)
∼−→H0(YU1

,Ak,l,R,1).

These maps satisfy the obvious compatibility, namely, that

[g1]U1,U2
◦ [g2]U2,U3

= [g1g2]U1,U3

whenever g−1
1 U1g1 ⊂ U2 and g−1

2 U2g2 ⊂ U3, and hence define an action of GL2(A
(p)
F,f ) on

Mk,l(R) := lim−→
U

Mk,l(U ;R) (6)

(where the limit is over sufficiently small open compact U with respect to the maps

[1]U1,U2
). For paritious k, l and any choice ofO→C, we may identify the spacesMk,l(U ;C)

with those of holomorphic Hilbert modular forms, compatibly with the usual action (up
to normalisation by a factor of ||detg|| depending on conventions).

Finally, we remark that the action of ν ∈ O×
F,(p),+ on the trivialisation of Nθ is given

by multiplication by θ(ν), so their products do not descend to trivialisations of line
bundles on YU,R. However, since the stabiliser of each geometric connected component

of ỸU is O×
F,+ ∩ det(U), we can obtain a (noncanonical) trivialisation of A0,l,R as in

[12, Prop. 3.6.1], provided χl,R is trivial on O×
F,+∩det(U) and the geometric connected

components of YU are defined over R. Furthermore, the same argument as in the proof
of [12, Lemma 4.5.1] shows the following.

Proposition 3.2.2. If pNR=0, then the action of GL2(A
(p)
F,f ) on M0,l(R) factors through

det : GL2(A
(p)
F,f ) → (A

(p)
F,f )

×; Furthermore, as a representation of (A
(p)
F,f )

×, M0,l(R) is

isomorphic to the smooth induction of the character O×
F,(p),+ → R× defined by α �→∏

θ θ(α)
lθ .

3.3. The Kodaira–Spencer filtration

In this section we define a filtration on Ω1
YU/O whose pieces are described by automorphic

bundles with weight components kθ = 2, lθ = −1. The construction of the filtration is

due to Reduzzi and Xiao (see [32, §2.8]), but their presentation is complicated by the

fact that they wish to prove smoothness simultaneously, and it obscures the fact that the
bundles we denoted G(j) automatically satisfy the orthogonality condition appearing in

the definition of their counterparts in [32]. We will show below that, with smoothness

already established, one can give a more direct conceptual description of the filtration
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and its properties.7 Furthermore, in the case p= 2, the argument in [32] appeals to a very
general flatness assertion for divided power envelopes for which we could not find a proof

or reference, so it is not used here.

Theorem 3.3.1 (Reduzzi–Xiao). There exists a decomposition

Ω1
YU/O =

⊕
p∈Sp

fp⊕
i=1

Ω1
YU/O,p,i,

together with an increasing filtration

0 = Fil0(Ω1
YU/O,p,i) ⊂ Fil1(Ω1

YU/O,p,i) ⊂ ·· ·
⊂ Filep−1(Ω1

YU/O,p,i) ⊂ Filep(Ω1
YU/O,p,i) = Ω1

YU/O,p,i

for each p ∈ Sp and i = 1, . . . ,fp, such that for each j = 1, . . . ,ep, gr j(Ω1
YU/O,p,i) is

isomorphic to the automorphic bundle A2eθ,−eθ,O, where θ = θp,i,j.

Proof. As usual, we first prove the analogous result for S := ỸU and then descend to YU .

We let δ0 : S
∼−→ Δ ↪→ Z0 denote the first infinitesimal thickening of the diagonal

embedding, and we view Ω1
S/O as δ∗0I, where I denotes the sheaf of ideals defining Δ in

Z0. Letting s : A→ S denote the universal abelian scheme, the transition maps for the

crystal R1scris,∗OA/Zp
and canonical isomorphisms with de Rham cohomology yield an

OF ⊗OZ0
-linear isomorphism

α : p∗0H1
dR(A/S)

∼−→ q∗0H1
dR(A/S)

extending the identity on S∼=Δ, where p0,q0 :Z0 →S are the two projection maps Z0 →S.

Since α is OF -linear, it follows from the definition of Pτ,1 = G(1)
τ that α restricts to an

isomorphism

ατ,1 : p
∗
0Pτ,1

∼−→ q∗0Pτ,1

for each p ∈ Sp and τ ∈ Σp,0. Furthermore, since the composite

p∗0Lτ,1 ↪→ p∗0Pτ,1
∼−→ q∗0Pτ,1 � q∗0Mτ,1

has trivial pullback to S ∼=Δ, it factors through a morphism

δ0,∗Lτ,1 = p∗0Lτ,1⊗OZ0
(OZ0

/I)−→ q∗0Mτ,1⊗OZ0
I = δ0,∗Mτ,1⊗OZ0

I

and hence induces a morphism

βτ,1 : δ0,∗(Lτ,1⊗OS
M−1

τ,1)−→ I.

7The simultaneous treatment in [32] seems natural in view of the inherent overlap in the analysis
of deformations needed for both results. However, the decision not to appeal to the results in
[35] and [33] also makes reference to a perceived minor gap in the proof of [35, Prop 2.11];
we found no such gap, nor is that result even needed, but we remark that we made implicit

use of [35, Cor. 2.10] when invoking the proof of [33, Prop. 6] to conclude that ˜YU is smooth
over O.
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We then define the sheaf of ideals Iτ,1 on Z0 to be the image of βτ,1, and we let Zτ,1

denote the subscheme of Z0 defined by Iτ,1, and pτ,1 and qτ,1 the resulting projection

maps Zτ,1 → S. By construction, the pullback of βτ,1 to Zτ,1 is trivial, and hence so

is that of the morphism p∗0Lτ,1 → q∗0Mτ,1, which implies that the pullback of α maps

p∗τ,1Lτ,1 = p∗τ,1F
(1)
τ isomorphically to q∗τ,1Lτ,1 = q∗τ,1F

(1)
τ . It follows from OF -linearity that

α induces an isomorphism p∗τ,1G
(2)
τ

∼−→ q∗τ,1G
(2)
τ (if ep > 1), and hence an isomorphism

ατ,2 : p
∗
τ,1Pτ,2

∼−→ q∗τ,1Pτ,2.

The same argument as above now yields a morphism

βτ,2 : δ0,∗(Lτ,2⊗OS
M−1

τ,2)−→ I/Iτ,1,

whose image is that of a sheaf of ideals on Z0 we denote by Iτ,2.
Iterating the above construction thus yields, for each τ ∈ Σp,0, a chain of sheaves of

ideals

0 = Iτ,0 ⊂ Iτ,1 ⊂ ·· · ⊂ Iτ,ep
on Z0 such that α induces

• isomorphisms p∗τ,jF
(j)
τ

∼−→ q∗τ,jF
(j)
τ

• and surjections δ0,∗(Lτ,j ⊗OS
M−1

τ,j)� Iτ,j/Iτ,j−1,

for j = 1, . . . ,ep, where Zτ,j denotes the closed subscheme of Z0 defined by Iτ,j and pτ,j ,
qτ,j are the projections Zτ,j → S.

Furthermore, we claim that the map⊕
p∈Sp

⊕
τ∈Σp,0

Iτ,ep →I

is surjective. Indeed, let J denote the image and let T denote the corresponding closed

subscheme of Z0, so T is the scheme-theoretic intersection of the Zτ,ep , and let8 p,
q : T → S denote the projection maps. By construction, α pulls back to an isomorphism

p∗H1
dR(A/S)

∼−→ q∗H1
dR(A/S) under which p∗F (j)

τ
∼−→ q∗F (j)

τ for all τ and j. In particular,

t∗Ω
1
p∗A/T = p∗(s∗Ω

1
A/S)

∼−→ q∗(s∗Ω
1
A/S) = u∗Ω

1
q∗A/T (where t : p∗A → T and u : q∗A →

T are the structure morphisms), which the Grothendieck–Messing theorem implies is

induced by an isomorphism p∗A ∼= q∗A of abelian schemes lifting the identity over S.

Since the isomorphism respects the filtrations F• and the lifts of the universal auxiliary

structures ι, λ and η over T are unique, it follows that p∗A ∼= q∗A, which means that
p= q ∈ S(T ), so T =Δ.

Now defining Ω1
S/O,p,i = δ∗0Iτp,i,ep and Fil j(Ω1

S/O,p,i) = δ∗0Iτp,i,j for p ∈ Sp, 1≤ i ≤ fp,

1≤ j ≤ ep, we obtain surjective morphisms

Lτp,i,j ⊗OS
M−1

τp,i,j
� gr j(Ω1

S/O,p,i) and
⊕
p,i

Ω1
S/O,p,i � Ω1

S/O.

Since the Lτp,i,j⊗OS
M−1

τp,i,j
are line bundles and Ω1

S/O is locally free of rank d, it follows

that all of the maps are isomorphisms.

8With apologies for the temporary dual use of p.
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Finally, the constructions above are independent of the polarisation λ and hence are
compatible with the action of ν ∈ O×

F,(p),+ on S = ỸU . More precisely, the pullback of α

via the diagonal map (ν,ν) is compatible with the canonical isomorphism ν∗H1
dR(A/S)

∼=
H1

dR(A/S) induced by the identification of ν∗A with A, from which it follows easily that
the morphisms in the construction of the filtration are invariant under the action of

O×
F,(p),+ and hence descend to give the decomposition, filtrations and isomorphisms in

the statement of the theorem.

Let us also note the interpretation of the Kodaira–Spencer filtration in terms of tangent
spaces. For a closed point y of S corresponding to the data A0 = (A0,ι0,λ0,η0,F•

0 ) over

a finite extension k of the residue field of O, the fibre Ty(S) of HomOS
(Ω1

S/O,OS) is

canonically identified with the set of isomorphism classes of data A1 over k[ε] lifting

A0, and the decomposition and filtrations of the theorem yield dual decompositions of
Ty(S) into components Ty(S)τ with decreasing filtrations Fil j(Ty(S)τ ). From the proof

of the theorem one sees immediately that
⊕

τ Fil
jτ (Ty(S)τ ) corresponds to the set of

(A1,ι1,λ1,η1,F•
1 ) such that F (j)

1,τ is the image of F (j)
0,τ ⊗k k[ε] for all τ and j ≤ jτ under the

canonical isomorphism

H1
dR(A1/k[ε])∼=H1

cris(A0/k[ε])∼=H1
dR(A0/k)⊗k k[ε].

We note also that the theorem yields a canonical (Kodaira–Spencer) isomorphism

Ωd
YU/O

∼= ∧d
OYU

Ω1
YU/O

∼=A2,−1,O

(writing
∑

meθ as m for m ∈ Z). Furthermore, the decomposition, filtrations and
isomorphisms of the theorem (and hence also the Kodaira–Spencer isomorphism) are

Hecke-equivariant in the obvious sense. More precisely, the same argument as for the

compatibility with the O×
F,(p),+-action, but using the quasi-isogeny in the construction

of ρg, shows that if U1, U2 and g ∈ GL2(A
(p)
F,f ) are such that g−1U1g ⊂ U2, then

ρ∗gFil
j(Ω1

YU2
/O,p,i) corresponds to Fil j(Ω1

YU1
/O,p,i) for all p,i,j under the canonical

isomorphism ρ∗gΩ
1
YU2

/O
∼−→ Ω1

YU1
/O, and the resulting diagrams

ρ∗gA2eθ,−eθ,O,2
∼ ��

�
��

A2eθ,−eθ,O,1

�
��

ρ∗ggr
j(Ω1

YU2
/O,p,i)

∼ �� gr j(Ω1
YU1

/O,p,i)

commute (where the top arrow is defined in the discussion preceding (6)).

4. Partial Hasse invariants

4.1. Construction of Hθ and Gθ

We now recall the definition, due to Reduzzi and Xiao [32], of generalised partial

Hasse invariants on Pappas–Rapoport models. These will be, for each θ = θp,i,j ∈ Σ,

a Hilbert modular form Hθ of weight (hθ,0) with coefficients in F = O/mO, where
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hθ := nθeσ−1θ − eθ, with nθ = p if j = 1 and nθ = 1 if j > 1. We also define below a(n

in)variant Gθ of weight (0,hθ).

We will now be working in the mod p setting, so until further notice S will denote ỸU,F,
and s :A→ S the universal abelian scheme over it. Thus, H1

dR(A/S) is a locally free sheaf

of rank 2 over

OF ⊗OS
∼=
⊕
p∈Sp

⊕
τ∈Σp,0

OS [u]/(u
ep),

where u acts via ι(�p)
∗ on the p-component of

H1
dR(A/S) =

⊕
p∈Sp

Hp =
⊕
p∈Sp

⊕
τ∈Σp,0

Hτ .

We will also now be working with a fixed p and omit the subscript from the notation,

so that

H=H1
dR(A/S)p =

⊕
τ∈Σp,0

Hτ =
⊕

i∈Z/fZ

Hi

with each Hi locally free of rank 2 over OS [u]/(u
e) (where we have also abbreviated the

subscript τp,i by i). Furthermore, for each i ∈ Z/fZ, we have a filtration

0 = F (0)
i ⊂F (1)

i ⊂ ·· · ⊂ F (e−1)
i ⊂F (e)

i = (s∗Ω
1
A/S)i

by sheaves of OS [u]/(u
e)-modules such that the quotients Li,j = F (j)

i /F (j−1)
i are line

bundles annihilated by u.
Firstly, note that if j > 1, then u : F (j)

i → F (j−1)
i induces a morphism Li,j → Li,j−1.

On the other hand, if j = 1, then the Verschiebung morphism φ∗
SA→ A over S induces

OS [u]/(u
e)-linear morphisms

Ver∗i :Hi =Hτi −→H1
dR(φ

∗
S(A)/S)τi

∼= φ∗
S(Hτi−1

) = φ∗
S(Hi−1)

with image φ∗
S(F

(e)
i−1) (where φS denotes the absolute Frobenius on S ). Note that Li,1 =

F (1)
i ⊂ ue−1Hi, so that ue−1 defines an isomorphism

u1−eLi,1/uHi
∼−→F (1)

i

and that Ver∗i (uHi) = uφ∗
S(F

(e)
i−1) ⊂ φ∗

S(F
(e−1)
i−1 ), so we obtain a well-defined OS-linear

morphism ‘Ver∗i ◦u1−e’

Li,1
∼←− u1−eLi,1/uHi −→ φ∗

S(Li−1,e)∼= L⊗p
i−1,e.

We have now defined a morphism Lθ −→ L⊗nθ

σ−1θ for all θ and hence a section of Ãhθ,0,F

over S. Furthermore, it is straightforward to check that the section is invariant under the

action of O×
F,(p),+ and therefore descends to an element

Hθ ∈Mhθ,0(U ;F) =H0(YU,F,Ahθ,0,F),
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which we call the partial Hasse invariant (indexed by θ). Furthermore, the partial Hasse

invariants are stable under the Hecke action, in the sense that if U1, U2 and g ∈GL2(A
(p)
F,f )

are such that g−1U1g ⊂ U2, then [g]Hθ,2 = Hθ,1. (Note also that the partial Hasse

invariants are dependent on the choice of uniformiser � = �p only up to a scalar in

F×: if � is replaced by a� for some a ∈O×
F,p, then Hθ is replaced by τ(a)Hθ if j > 1 and

by τ(a)1−eHθ if j = 1.)

We remark also that the line bundles A0,hθ,F have canonical trivialisations. Indeed, for

each i ∈ Z/fZ and j = 2, . . . ,e, we have the exact sequence

0→G(j−1)
i /F (j−1)

i −→G(j)
i /F (j−1)

i
u−→F (j−1)

i /F (j−2)
i → 0

over S ; that is, 0→Mi,j−1 →Pi,j →Ni,j−1 → 0, inducing an isomorphism

Ni,j−1 = Li,j−1⊗OS
Mi,j−1

∼= ∧2
OS

Pi,j =Ni,j

and hence OS � N−1
i,j−1 ⊗OS

Ni,j = Ã0,hθ,F for θ = θp,i,j , which it is straightforward to

check descends to YU,F. Similarly, we have the exact sequence

0→ φ∗
S(G

(e)
i−1/F

(e)
i−1)

Frob∗
A−→ G(1)

i

Ver∗Au1−e

−→ φ∗
S(F

(e)
i−1/F

(e−1)
i−1 )→ 0

inducing an isomorphism φ∗
S(Ni−1,e) ∼= Ni,1 and hence OS � Ã0,hθ,F for θ = θp,i,1

descending to YU,F. Furthermore, these isomorphisms are Hecke-equivariant in the usual

sense, but note that they depend via u on the choice of �p. For each θ, we let

Gθ ∈M0,hθ
(U ;F) denote the canonical trivialising section.

4.2. Stratification

We also recall how the partial Hasse invariants define a stratification of the Hilbert

modular variety in characteristic p. For any θ ∈ Θ, we define Z̃θ (respectively Zθ) to be

the closed subscheme of S = ỸU,F (respectively YU,F) defined by the vanishing of Hθ, and
for any subset T ⊂ Σ, we let

Z̃T =
⋂
θ∈T

Z̃θ and ZT =
⋂
θ∈T

Zθ.

Note that the schemes ZT are stable under the Hecke action, in the strong sense that

ZT,1 is the pullback of ZT,2 under ρg : YU1
→ YU2

.

We then have the following consequence ([32, Thm. 3.10]) of the description of the
Kodaira–Spencer filtration on tangent spaces at closed points; we give a proof here as

some of the details are relevant to the construction of Θ-operators in Subsection 5.2.

Proposition 4.2.1. The schemes Z̃T and ZT are smooth over F of dimension |Σ−T |.

Proof. We prove the result for Z̃T , from which the result for ZT is immediate.

Let y be a closed point of S with local ring R=OS,y, maximal ideal m and residue field

k = R/m. For each θ ∈ Σ, choose a basis bθ for Lθ,y over R and write Hθ,ybθ = xθb
nθ

σ−1θ.

Thus, if y ∈ Z̃θ, then xθ ∈m, and we let xθ denote its image in m/m2.
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Identifying m/m2 with the fibre of Ω1
ỸU/O at y and writing Fil j(m/m2)τ for the

subspaces obtained from the Kodaira–Spencer filtration, we claim that if y ∈ Zθ, then

Fil j(m/m2)τ = kxθ+Fil j−1(m/m2)τ , (7)

where τ = τp,i and θ = θp,i,j . Comparing dimensions, we see it suffices to prove the

inclusion of the left-hand side in the right or, equivalently, that if

v ∈ Ty(S) =
⊕

τ ′∈Σ0

Ty(S)τ ′

is such that its τ -component vτ lies in Fil j−1Ty(S)τ and v is orthogonal to xθ, then

in fact vτ ∈ Fil j(Ty(S)τ ) (using the notation of the discussion following the proof of
Theorem 3.3.1).

Let A0 = (A0,ι0,λ0,η0,F•
0 ) denote the data corresponding to the point y ∈ S(k) and

A1 = (A1,ι1,λ1,η1,F•
1 ) that of its lift v ∈ S(k[ε]). With τ = τp,i fixed for now, we will

suppress p from the notation and replace the subscript τp,i′ by i′ (for i′ = i,i−1). Recall

the assumption that vi ∈ Fil j−1(Ty(S)i) means that F (j′)
1,i corresponds to F (j′)

0,i ⊗k k[ε] for
j′ = 1, . . . ,j−1 under the canonical isomorphism

H1
dR(A1/k[ε])∼=H1

cris(A0/k[ε])∼=H1
dR(A0/k)⊗k k[ε]. (8)

For vi to be orthogonal to xθ means that the morphism

L1,θ −→L⊗nθ

1,σ−1θ (9)

induced by Hθ vanishes, and we need to show this implies that F (j)
1,i is the image of

F (j)
0,i ⊗k k[ε].

Suppose first that j > 1. Then (9) is simply

u : F (j)
1,i /F

(j−1)
1,i −→F (j−1)

1,i /F (j−2)
1,i ,

whose vanishing means F (j)
1,i = u−1F (j−2)

1,i . Since (8) sends F (j−2)
1,i to F (j−2)

0,i ⊗k k[ε] and is

compatible with u, it follows that it also sends F (j)
1,i to F (j)

0,i ⊗k k[ε].

On the other hand, if j = 1, then the vanishing of (9) means that u1−eF (1)
1,i is the pre-

image of φ∗
1(F

(e−1)
1,i−1 ) under Ver

∗
i (where φ1 is the absolute Frobenius on k[ε], and φ0 will

denote the absolute Frobenius on k). Since the diagram

H1
dR(A1/k[ε]) ��

��

H1
dR(A0/k)⊗k k[ε]

��

φ∗
1H

1
dR(A1/k[ε]) �� φ∗

0H
1
dR(A0/k)⊗k k[ε]

commutes, where the vertical maps are induced by Verschiebung, the top arrow is (8) and
the bottom one is given by the identification of φ∗

1A1 with φ∗
0A0⊗k k[ε], so in particular

identifies φ∗
1(F

(e−1)
1,i−1 ) with φ∗

0(F
(e−1)
0,i−1 )⊗k k[ε], it follows that the top arrow sends u1−eF (1)

1,i

to u1−eF (1)
0,i ⊗k k[ε], and hence F (1)

1,i to F (1)
0,i ⊗k k[ε]. This completes the proof of the claim.
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Now note that if y ∈ Z̃T , then (7) implies that the elements xθ for θ ∈ T can be extended

to a basis for m/m2 over k and hence are linearly independent. Since R is regular of

dimension d = |Σ|, it follows that OZ̃T ,y = R/〈xθ〉θ∈T is regular of dimension of d−|T |
and hence that Z̃T is smooth over F of dimension d−|T |.

Finally, we recall the definition of the minimal weight of a nonzero mod p Hilbert

modular form. If f ∈ Mk,l(U ;F), then kmin(f) is defined to be k−
∑

θmθhθ where∑
θmθeθ is the unique maximal element of the set{∑

θ

mθeθ ∈ ZΣ
≥0

∣∣∣∣∣ f = g
∏
θ∈Σ

Hmθ

θ for some g ∈Mk−
∑

θ mθhθ,l(U ;F)

}
.

By the main result of [10], the minimal weight of f always lies in the cone

Ξmin :=

{∑
θ

kθeθ

∣∣∣∣∣ nθkθ ≥ kσ−1θ for all θ ∈ Σ

}
. (10)

Note that the result stated in [10] applies to forms on a finite étale cover of YU,F, from

which the analogous result for forms on YU,F is immediate.

5. Partial Theta operators

5.1. Fundamental Hasse invariants

In order to define the partial Θ-operators (in Subsection 5.2), we first define a canonical
factorisation of the partial Hasse invariants over a finite flat (Igusa) cover of the Hilbert

modular variety over F.

We fix a sufficiently small U that the line bundles Lθ, Mθ, Nθ (and hence Ãk,l,F) on

ỸU,F descend to YU,F for all θ ∈Σ (and all k,l ∈ ZΣ), and we write simply Y for YU,F and

Lτ,j , Mτ,j and N τ,j for the line bundles on Y . For each p ∈ Sp and τ ∈ Σp,0, we let

Hτ =

ep∏
j=1

Hτ,j ∈H0(Y ,L−1

τ,ep ⊗OY
L⊗p

φ−1◦τ,ep).

Viewing each Hτ as a morphism (L−1

φ−1◦τ,ep)
⊗p → L−1

τ,ep and Hp :=
∏

τ∈Σp,0
Hτ as a

morphism ⊗τ∈Σp,0
(L−1

τ,ep)
⊗(p−1) →OY , we define the Igusa cover9 of Y (of level q=

∏
p)

to be

Y Ig = Spec

(
SymOY

(
⊕
τ∈Σ0

L−1

τ,ep)/I
)
,

where I is the sheaf of ideals generated by the OY -submodules

(Hτ −1)L−1

τ,ep for τ ∈ Σ0, and (Hp−1)

⎛⎝ ⊗
τ∈Σp,0

(L−1

τ,ep)
⊗(p−1)

⎞⎠ for p ∈ Sp

9The cover has a natural moduli-theoretic interpretation in terms of A[q], but we will not need
this here.
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(where all tensor products are over OY ). We then define an action of (OF /q)
× on Y Ig over

Y by letting α ∈ (OF /q)
× act on the structure sheaf by the automorphism of sheaves of

OY -algebras induced by multiplication by τ(α)−1 on L−1

τ,ep for each τ . We then see, exactly

as in the proof of parts (1) and (2) of [12, Prop. 8.1.1], that the projection π : Y Ig → Y

is finite flat, generically étale and identifies Y with the quotient of Y Ig by the action of
(OF /q)

×.
For each τ ∈ Σp,0, we let hτ,ep denote the tautological section of π∗Lτ,ep induced by

the inclusion L−1

τ,ep ↪→ π∗OY Ig . We also define the section

hτ,j = π∗(Hτ,j+1 · · ·Hτ,ep)hτ,ep

of π∗Lτ,j for j=1, . . . ,ep−1. Note that since Y Ig is reduced (or since
∏

τ∈Σp,0
hp−1
τ,ep =π∗Hp

by construction), the sections hτ,ep are injective, and hence so are the hτ,j for all τ and

j. We write simply hθ for the section hτ,j of π∗Lθ = π∗Lτ,j , and we call the hθ the
fundamental Hasse invariant (indexed by θ).

5.2. Construction of Θτ

We now explain how the construction of Θ-operators in [12] directly generalises to the
case where p is ramified in F, yielding an operator that shifts the weight k by (1,1) in

the final two components corresponding to embeddings with the same reduction; that is,

θp,i,ep−1, θp,i,ep (and hence, by composing with multiplication by partial Hasse invariants,

one can shift weights by +1 for any pair of embeddings with the same reduction).
Indeed, for each τ ∈ Σ0, we define the operator Θτ exactly as in [12, §8] but using the

morphism

KSτ : Ω1
Y /F

−→ grep(Ω1
Y /F

)τ
∼−→Lτ,ep ⊗OY

M−1

τ,ep

provided by Theorem 3.3.1 via projection to the top graded piece of the filtration of the

τ -component of Ω1
Y/F. More precisely, fix p0 ∈ Sp and τ0 = τp0,i, let θ0 = θp0,i,ep0

and
consider the morphism

KSIg
τ0 : Ω

1
Y Ig/F⊗O

Y Ig F Ig ∼= π∗Ω1
Y /F

⊗O
Y Ig F Ig −→ π∗(A2eθ0

,−eθ0
,F)⊗O

Y Ig F Ig

induced by KSτ0 , where F Ig is the sheaf of total fractions on Y Ig. Suppose now that

f ∈Mk,l(U ;F), and write hk =
∏

θ∈Σhkθ

θ and gl =
∏

θ∈Σ glθθ for any choice of trivialisations
gθ of the line bundles N θ on Y . We then define the section

ΘIg
τ0(f) := hkπ∗(glHθ0)KSIg

τ0(d(h
−kπ∗(g−lf))),

where

k′ = k+nθ0eσ−1θ0 +eθ0 and l′ = l+eθ0 . (11)

Furthermore, the section is independent of the choices of gθ and invariant under the action

of (OF /q)
× and hence descends to a section of Ak′,l′,F⊗OY

F , where F is the sheaf of

total fractions on Y . Denoting the section Θτ0(f), we have the following generalisation

of [12, Thm. 8.2.2].
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Theorem 5.2.1. If f ∈ Mk,l(U ;F), then Θτ0(f) ∈ Mk′,l′(U ;F). Moreover, Θτ0(f) is

divisible by Hθ0 if and only if either f is divisible by Hθ0 or p|kθ0 .

Proof. We see exactly as in [12] that Θτ0(f) is regular on the ordinary locus of Y ; that

is, the complement of the divisor ∪θ∈ΣZθ (where Zθ was defined in Subsection 4.2), so

the theorem reduces to proving that if z is the generic point of an irreducible component

of Zθ1 for some θ1 ∈ Σ, then

• ordz(Θτ0(f))≥ 0,
• if θ1 = θ0, then ordz(Θτ0(f))> 0 if and only if p|kθ0 or ordz(f)> 0.

Let R denote the discrete valuation ring OY ,z, and for each τ ∈ Σp,0 and θ ∈ Στ , let

yθ = yτ,j be a basis for the stalk Lθ,z = Lτ,j,z over R (for j = 1, . . . ,ep). For each θ ∈ Σ,
we may then write

Hθyθ = rθy
nθ

σ−1θ

for some rθ = rτ,j ∈ R, and we let rτ =
∏ep

j=1 rτ,j . By construction, we have T :=
(π∗OY Ig)z =R[xτ ]τ∈Σ0

/I, where I is the ideal generated by

xp
φ−1◦τ − rτxτ for τ ∈ Σ0, and

∏
τ∈Σp,0

xp−1
τ −

∏
τ∈Σp,0

rp−1
τ for p ∈ Sp,

where each xτ is the dual basis of yτ,ep . We then have hτ,ep = xτyτ,ep (in (π∗π
∗Lτ,ep)z),

from which it follows that

hτ,j = rτ,j+1rτ,j+2 · · ·rτ,epxτyτ,j

for j = 1, . . . ,ep−1, and hence that hk = ϕky
k, where yk =

∏
θ∈Σ ykθ

θ and

ϕk =
∏
p∈Sp

∏
τ∈Σp,0

⎛⎝(rτxτ )
∑

θ∈Στ
kθ

ep∏
j=1

r
−

∑ep

j′=j
kτ,j′

τ,j

⎞⎠
(writing kτp,i,j for kθp,i,j as usual and working over the field of fractions of T ).
Writing f = ϕfy

kgl, we see that

ΘIg
τ0(f) =KSIg

τ0(rθ0ϕkd(ϕfϕ
−1
k ))y−1

θ0
y
nθ0

σ−1θ0
ykgl.

Since rτxτ = xp
φ−1◦τ , we have d(rτxτ ) = 0 and

Θτ0(f) =KSτ0

(
rθ0dϕf + rθ0ϕf

∑
θ∈Σ

k′θ
drθ
rθ

)
y−1
θ0

y
nθ0

σ−1θ0
ykgl, (12)

where k′θ = kτ,j +kτ,j+1+ · · ·kτ,ep if τ = τp,i and θ = θp,i,j . We are therefore reduced to

showing that ordzKSτ0(drθ1)> 0 if and only if θ1 = θ0. However, the proof of Proposition

4.2.1 shows that if y is a closed point of Zθ1 , then KSτ0(drθ1) vanishes at y if and only

if θ1 = θ0.

Remark 5.2.2. The Kodaira–Spencer isomorphism is defined in [12] using the Gauss–

Manin connection. Much of the work in [12, §8.2] amounts to an explicit translation of
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this to the context of deformation theory. Here, however, we defined the morphism KSτ0

more directly using deformation theory, so the analogue of [12, Lem. 8.2.3] was not needed

here.

Remark 5.2.3. It is straightforward to check directly that the right-hand side of (12) is

independent of the choice of local trivialisations yτ and gτ and can therefore be used to
define the partial Θ-operator without reference to the Igusa cover Y Ig.

We call Θτ0 the partial Θ-operator (indexed by τ0). It is immediate from its definition

that the resulting map on F-algebras⊕
k,l∈ZΣ

Mk,l(U ;F)−→
⊕

k,l∈ZΣ

Mk,l(U ;F),

given by the direct sum over all weights of the operators Θτ0 , is an F-linear derivation;

that is, that

Θτ0(f1f2) = f1Θτ0(f2)+Θτ0(f1)f2

for all f1,f2 in ⊕Mk,l(U ;F). It is also clear that Θτ0(Hθ) = 0 for all θ ∈Σ, and hence that

Θτ0 commutes with multiplication by partial Hasse invariants.
It is also straightforward to check that the operator Θτ0 commutes with the Hecke

action in the obvious sense and hence induces a GL2(A
(p)
F,f )-equivariant map

Θτ :Mk,l(F)−→Mk′,l′(F)

where Mk,l(F) (and Mk′,l′(F), with their GL2(A
(p)
F,f ) actions) is defined in (6) as direct

limits over suitable open compact U.

Let us also make the effect of Θτ0 on the weight kmore explicit. Note that if k=
∑

θ kθeθ
and τ0 = τp0,i0 , then k′ =

∑
θ k

′
θeθ, where

• if ep0
= fp0

= 1, then k′θ =

{
kθ+p+1, if θ = θ0 = θp0,1,1,
kθ, otherwise;

• if ep0
= 1 and fp0

> 1, then k′θ =

⎧⎨⎩
kθ+1, if θ = θ0 = θp0,i0,1,
kθ+p, if θ = σ−1θ0 = θp0,i0−1,1,
kθ, otherwise;

• if ep0
> 1, then k′θ =

{
kθ+1, if θ = θ0 = θp0,i0,ep0

or θ = σ−1θ0 = θp0,i0,ep0
−1,

kθ, otherwise.

Remark 5.2.4. Considerations from the theory of Serre weights from the point of

[12] suggest that the above weight shifts are in a certain sense optimal. One can also
define cruder partial Θ-operators by composing with multiplication by (products of)

partial Hasse invariants. For example, the operator Hτ0,1Hτ0,2 · · ·Hτ0,ep0
−1Θτ0 is the one

constructed in [8], and for any j = 1, . . . ,ep0
, the operator

Hτ0,jH
2
τ0,j+1 · · ·H2

τ0,ep0
−1Hτ0,ep0

Θτ0

shifts the weight k by eθ+nσ−1θeσ−1θ, where θ = θp0,i0,j .

https://doi.org/10.1017/S1474748021000530 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000530


Weight-shifting operators on Hilbert modular forms 1895

6. Partial Frobenius operators

6.1. Partial Frobenius endomorphisms

In order to define partial Frobenius operators on Hilbert modular forms (in Subsection
6.2), we first need to define partial Frobenius endomorphisms of Hilbert modular varieties

over F.

Fix a prime p dividing p and a level U, assumed as usual to be sufficiently small and
prime to p. We will draw on ideas from [11, §7.1] to construct an isogeny on the universal

abelian variety s :A→ S, where S = ỸU,F.

We begin by associating Raynaud data to the line bundles Lp,i,ep over S, which we
write simply as Li for i ∈ Z/fZ = Z/fpZ (omitting the subscripts for the fixed p and

j = e = ep). We define fi : L⊗p
i →Li+1 to be zero, and we define vi : Li+1 →L⊗p

i to be

the morphism induced by the restriction of

Ver∗A :H=H1
dR(A/S)p →H1

dR((φ
∗
SA)/S)p = φ∗

SH1
dR(A/S)p = φ∗

SH

to F (e)
i = (s∗Ω

1
A/S)i (abbreviating subscripts τp,i by i). Note that since the image of

Hi+1 under Ver∗A is φ∗
S(F

(e)
i ), the inclusions F (e−1)

i+1 ⊂ uHi+1 and uF (e)
i ⊂ F (e−1)

i ensure

that Ver∗A(F
(e−1)
i+1 ) ⊂ φ∗

S(F
(e−1)
i ), so the morphism vi is well-defined. We then let H

denote the finite flat (OF /p)-vector space scheme over S associated to the Raynaud

data (Li,fi,vi)i∈Z/fZ.
Recall that the Dieudonné crystal of ker(FrobA) is canonically isomorphic to

Φ∗(s∗Ω
1
A/S), with F = 0 and V induced by Φ∗(Ver∗A) (in the notation of [2, §4.4.3]).

On the other hand, the Dieudonné crystal of H is identified with Φ∗(⊕iLi) with

F = Φ∗(⊕ifi) = 0 and V = Φ∗(⊕ivi) (as a simple special case of [11, Prop. 7.1.3]).
Therefore, the canonical projection s∗Ω

1
A/S → ⊕iLi induces a surjective morphism

of Dieudonné crystals D(ker(FrobA)) → D(H). As the base S is smooth over F, the

exact contravariant functor D is fully faithful on finite flat p-group schemes over S ([3,
Thm. 4.1.1]), so the surjection arises from a closed immersion H ↪→ ker(FrobA), and

we let

α :A−→A′ :=A/H

denote the resulting isogeny of abelian varieties over S. Note that A′ naturally inherits
an OF -action ι′ from the action ι on A.

Let I denote the image of the morphism α∗ :H1
dR(A

′/ỸU,F)p →H. By construction, we

have the exact sequence

D(A′[p])S −→ D(A[p])S −→ D(H)S −→ 0
‖ � ‖ � ‖ �

H1
dR(A

′/S)
α∗
−→ H1

dR(A/S)
Ver∗A−→

⊕
iφ

∗
S(F

(e)
τ /F (e−1)

τ ) −→ 0,

showing that I = ⊕iIi, where Ii is the pre-image of φ∗
S(F

(e)
i−1) under Ver∗A,i : Hi →

φ∗
S(Hi−1). Note in particular that uHi ⊂ Ii for all i, so that H ⊂ A[p] and there is a

unique isogeny β : p⊗OF
A′ −→A such that α◦β is the canonical isogeny p⊗OF

A′ →A′.
We now equip A′ with auxiliary data corresponding to an element of ỸU,F(S).

https://doi.org/10.1017/S1474748021000530 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000530


1896 F. Diamond

Since α induces isomorphisms T (p)(As)
∼−→ T (p)(A′

s) for all geometric points s of S, we
immediately have a level Up structure η′ on A′ inherited from A.

Next we claim that the quasi-polarisation λ on A induces an isomorphism10 pcd⊗OF

A′ → (A′)∨ or, equivalently, A′ → p−1c−1d−1⊗OF
(A′)∨, which amounts to the claim that

H corresponds to the kernel of

c−1d−1⊗β∨ : c−1d−1⊗OF
A∨ −→ p−1c−1d−1⊗OF

(A′)∨

under the isomorphism induced by λ. Denoting this kernel by I, we have that H and

I are finite flat group schemes over S of the same rank, so it suffices to prove that the

composite

I −→ c−1d−1⊗OF
A∨[p]

∼−→A[p]−→A′[p]

is trivial. Taking Dieudonné modules, this in turn amounts to the vanishing of the

composite

D(A′[p])S −→ D(A[p])S −→ D(c−1d−1⊗OF
A∨[p])S −→ D(I)S .

We have already noted that the image of the first map has p-component ⊕iIi; on the

other hand, the kernel of the last map is the image of the map

D(p−1c−1d−1⊗OF
(A′)∨[p])S −→ D(c−1d−1⊗OF

A∨[p])S

corresponding to the adjoint of

β∗ :H1
dR(A/S)→H1

dR((p⊗OF
A′)/S)∼= p−1⊗OF

H1
dR(A

′/S)

under the canonical isomorphisms

D(c−1d−1⊗OF
A∨[p])S ∼=H1

dR((c
−1d−1⊗OF

A∨/S)
∼=HomOS

(d−1⊗OF
H1

dR(A/S),OS)∼=HomOF⊗OS
(H1

dR(A/S),OF ⊗OS)

and, similarly,

D(p−1c−1d−1⊗OF
(A′)∨[p])S ∼=HomOF⊗OS

(p−1⊗OF
H1

dR(A
′/S),OF ⊗OS)

obtained from duality. We are therefore reduced to proving that Ii is orthogonal to the

kernel of β∗
i for each i ∈ Z/fZ under the pairing 〈·,·〉i defined by (4). Note, however, that

the kernel of β∗
i is ue−1Ii, as can be seen, for example, from the commutative diagram

H1
crys(As/W (Fp))i

� � ��

����

(p−1⊗OF
H1

crys(A
′
s/W (Fp)))i

����

H1
dR(As/Fp))i �� (p−1⊗OF

H1
dR(A

′
s/Fp))i

of W (Fp)[u]-modules for s ∈ S(Fp). Finally, the orthogonality of Ii and ue−1Ii is

immediate from that of F (e−1)
i−1 and u−1F (e−1)

i−1 provided by Lemma 3.1.1, completing

the proof of the claim. We may then define the quasi-polarisation on A′ by α∗(λ′) = δλ

10Here c depends on the connected component of S.
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for any totally positive generator δ = δp of pOF,(p), so that λ′ induces an isomorphism

c′d⊗OF
A′ ∼−→ (A′)∨ where c′ = δ−1pc.

Finally, we define a Pappas–Rapoport filtration on F ′
τ := (s′∗Ω

1
A′/S)τ for all τ ∈ Σ0.

First, note that if τ 	∈ Σp,0, then α∗ induces an isomorphism F ′
τ � F (e)

τ , and we define

(F ′
τ )

(j) as the pre-image of F (j)
τ .

Suppose now that τ = τp,i. Recall from the construction of A′ = A/H that

Ver∗A(F
(e−1)
i ) ⊂ φ∗

S(F
(e−1)
i−1 ), so we have F (e−1)

i ⊂ Ii. It follows that (α∗
i )

−1(F (e−1)
i ) is a

subbundle of H′
i :=H1

dR(A
′)i of the same rank as F ′

i , namely, e. Furthermore, we have

φ∗
S(α

∗(F ′
i)) = (φ∗

S(α))
∗(F ′

i) = (φ∗
S(α))

∗(Ver∗A′(H′
i+1))

= Ver∗A(α
∗(H′

i+1)) = Ver∗A(Ii+1)⊂ φ∗
S(F

(e+1)
i ),

so in fact F ′
i ⊂ (α∗

i )
−1(F (e−1)

i ), and hence equality holds. We thus obtain an exact

sequence

0→ ker(α∗
i )−→F ′

i

α∗
i−→F (e−1)

i → 0.

We may thus define a Pappas–Rapoport filtration on F ′
i by setting

(F ′
i)

(j) = (α∗
i )

−1(F (j−1)
i )

for j = 1, . . . ,e, so, in particular, (F ′
i)

(1) = ker(α∗
i ).

We now define Φ̃p : ỸU,F = S → ỸU,F to be the endomorphism corresponding to the

data (A′,ι′,λ′,η′,(F ′)•). Note that Φ̃p depends on the choice of δ in the definition of λ′;

however, it is straightforward to check that Φ̃p is compatible with the O×
F,(p),+-action

on S and descends to an endomorphism Φp of Y U which is independent of this choice.

We call Φ̃p (respectively Φp) the partial Frobenius endomorphism (indexed by p) of ỸU,F

(respectively Y U ); the terminology is justified by the next proposition.

For the statement of the proposition, we also define the endomorphism Φ̃ of S = ỸU,F

corresponding to the data φ∗
S(A) = (φ∗

SA,φ
∗
Sι,φ

∗
Sλ,φ

∗
Sη,(φ

∗
SF)•), where (φ∗

SF)• is the

collection of filtrations on the vector bundles

((φ∗
Ss)∗(Ω

1
(φ∗

SA)/S))τ = (φ∗
S(s∗Ω

1
A/S))τ = φ∗

S((s∗Ω
1
A/S)φ−1◦τ )

given by (φ∗
SF)

(j)
τ = φ∗

S(F
(j)
φ−1◦τ ). Note that Φ̃ is not the absolute Frobenius φS on S

(unless F= Fp), but we may write φS = Φ̃◦ ε̃ where ε̃ is the isomorphism defined by the

commutative diagram

S

ε̃

�����
����

����
����

����
�

ε

���
��

��
��

��

��
��
��
��
��
��
��
��
��

φ∗S
∼ ��

��

S

��

SpecF
∼
φ

�� SpecF

,
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where the square is Cartesian and ε is the inverse of the isomorphism associated to
φ∗A = A×F,φ F with the evident auxiliary data. We thus have an isomorphism ε̃∗A ∼= A

compatible with ι, λ and η and inducing ε̃∗F (j)
τ

∼= F (j)
φ◦τ for all τ and j. (Note also that Φ̃

may be viewed as the base change of the absolute Frobenius on the descent of S to Fp

defined by the diagram.)

The endomorphism Φ̃ is compatible with the OF,(p),+-action on S = ỸU,F, and we

let Φ denote the resulting endomorphism of Y U . Similarly, ε̃ descends to a φ-linear
automorphism ε of Y U such that the absolute Frobenius on Y U is Φ◦ ε.

Proposition 6.1.1. The morphisms Φp are finite flat of (constant) degree NmF/Q(p),

commute with each other and satisfy the formula∏
p∈Sp

Φ
ep
p =Φ.

Proof. We first prove the commutativity and analogous formula for the maps Φ̃p on

S = ỸU,F, from which the corresponding assertions for Φp follow. To that end, it suffices

to consider the maps on geometric closed points s ∈ S(Fp), which we will do in order to
facilitate computations on Dieudonné modules.

Let A0 denote the data corresponding to s ∈ S(Fp) and A′
0 = A′

0,p denote the data

corresponding to Φ̃p(s). Let D = H1
crys(A0/W (Fp)) and D′ = H1

crys(A
′
0/W (Fp)), so we

may decompose the OF ⊗W (Fp)-modules D = ⊕τ∈ΣDτ and D′ = ⊕τ∈Σ′D′
τ where Dτ

and D′
τ are free W (Fp)[u]/(f

τ (u))-modules of rank 2. Furthermore, the canonical isogeny

α : A0 → A′
0 induces an injective W (Fp)[u]/(f

τ (u))-linear map α∗
τ :D′

τ →Dτ for each τ ,
compatible in the obvious sense with the maps

Frob∗A0,τ : φ∗(Dφ−1◦τ )→Dτ and Frob∗A′
0,τ

: φ∗(D′
φ−1◦τ )→D′

τ ,

as well as Ver∗A0,τ = p(Frob∗A0,τ )
−1 and Ver∗A′

0,τ
= p(Frob∗A′

0,τ
)−1. Letting F

(j)
τ ⊂Dτ denote

the pre-image of F (j)
τ under the canonical surjection

Dτ −→ (D/pD)τ ∼=H1
dR(A0/Fp)τ ,

we have α∗
τ (D

′
τ ) =Dτ if τ 	∈ Σp,0 and

α∗
τ (D

′
τ ) = (Ver∗A0,τ )

−1(φ∗(F
(ep−1)

φ−1◦τ ))

if τ ∈ Σp,0 (by the construction of Φp). Furthermore, writing F
′(j)
τ for the submodules of

D′
τ similarly defined by the Pappas–Rapoport filtration on H0(A′

0,Ω
1
A′

0/Fp
)τ , we have

• α∗
τ (F

′(j)
τ ) = F

(j)
τ if τ 	∈ Σp,0,

• α∗
τ (F

′(j)
τ ) = F

(j−1)
τ for j = 2, . . . ,ep if τ ∈ Σp,0,

• and α∗
τ (F

′(1)
τ ) = pDτ = Frob∗A0,τ (φ

∗(F
(ep)

φ−1◦τ )) if τ ∈ Σp,0.

Thus, if p1 and p2 are distinct elements of Sp, then Φ̃p1
(Φ̃p2

(s)) corresponds to the

data A′′
0 for which we have an isogeny α′ : A0 → A′′

0 such that if τ 	∈ Σp1,0 ∪Σp2,0 then
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(α′)∗τ (D
′′
τ ) =Dτ and (α′)∗τ (F

′′(j)
τ ) = F

(j)
τ (with the obvious notation), but if τ ∈ Σpi,0 for

i= 1 or 2, then

(α′)∗τ (D
′′
τ ) = (Ver∗A0,τ )

−1(φ∗(F
(epi

−1)

φ−1◦τ )),

(α′)∗τ (F
′′(1)
τ ) = pDτ and (α′)∗τ (F

′′(j)
τ ) = F

(j−1)
τ for j = 2, . . . ,epi

. Furthermore, we have

η′′ = α′ ◦η and (α′)∗(λ′′) = δp2
δp1

λ, from which it follows that the isomorphism class of

the data A′′
0 also corresponds to Φ̃p2

(Φ̃p1
(s)).

Now consider the data A
(r)
0 associated to Φ̃r

p(s) for r = 1, . . . ,ep, and write Dr =⊕Dr,τ

for H1
crys(A

(r)
0 /W (Fp)), Fr,τ for the submodule of Dr,τ determined as above by the

Pappas–Rapoport filtration, and αr for the composite isogeny A0 → A
(1)
0 → ·· · → A

(r)
0 .

By induction on r, we find that if τ 	∈ Σp,0, then α∗
r,τ (Dr,τ ) =Dτ and α∗

r,τ (F
(j)
r,τ ) = F

(j)
τ ,

but if τ ∈ Σp,0, then

• α∗
r,τ (Dr,τ ) = (Ver∗A0,τ )

−1(φ∗(F
(ep−r)

φ−1◦τ )),

• α∗
r,τ (F

(j)
r,τ ) = F

(j−r)
τ for j = r+1, . . . ,ep,

• α∗
r,τ (F

(j)
r,τ ) = Frob∗A0,τ (φ

∗(F
(ep+j−r)

φ−1◦τ )) for j = 1, . . . ,r.

In particular, taking r = ep gives

α∗
ep,τ (Dep,τ ) = (Ver∗A0,τ )

−1(pφ∗(Dφ−1◦τ )) = Frob∗A0,τ (φ
∗(Dφ−1◦τ ))

and α∗
ep,τ (F

(j)
ep,τ ) = Frob∗A0,τ (φ

∗(F
(j)
φ−1◦τ )) for j = 1, . . . ,ep and τ ∈ Σp,0. It then fol-

lows that
∏

p∈Sp
Φ̃

ep
p (s) corresponds to A′′

0 with α′ : A0 → A′′
0 satisfying (α′)∗τ (D

′′
τ ) =

Frob∗A0,τ (φ
∗(Dφ−1◦τ )) and (α′)∗τ (F

′′(j)
τ ) = Frob∗A0,τ (φ

∗(F
(j)
φ−1◦τ )) for all τ and j. Further-

more, we have η′′ = α′ ◦ η and (α′)∗(λ′′) =
∏

p
δ
ep
p λ, from which it follows that A′′

0 is

isomorphic to (φ∗A0,φ
∗ι,νφ∗λ,(φ∗F)•) with ν = p−1

∏
p
δ
ep
p ∈ O×

F,(p),+. This proves that∏
p∈Sp

Φ̃
ep
p = ν · Φ̃,

which in turn implies the desired formula.

Since Φ is finite (and Y U is separated), it follows that Φp is finite and therefore also
flat since Y U regular. Note furthermore that Φp is therefore bijective on closed points

and induces isomorphisms on their residue fields, so the degree of Φp in a neighbourhood

of any closed point x of Y U is that of the extension of completed regular local rings

Φ∗
p,x :O∧

Y U,y
→O∧

Y U,x
, where y=Φp(x). Since Φ factors through Φp, so does the absolute

Frobenius on Y U , and hence the absolute Frobenius on O∧
Y U,x

factors through Φ∗
p,x.

Therefore, it follows from [26, Cor. 2] that deg(Φ∗
p,x) = pn where n= np is the dimension

of the kernel of the induced map on tangent spaces Tx(Y U ) → Ty(Y U ). Furthermore,

since
∏

p∈Sp
Φ

ep
p = Φ has degree p[F :Q] =

∏
p∈Sp

pepfp , it suffices to prove that np ≥ fp =

NmF/Q(p) for each p. Note also that we may replace Y U by S = ỸU,F, x by any point in

its pre-image in S and Φp by Φ̃p.
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Suppose then that x corresponds to the data (A0,ι0,λ0,η0,F•
0 ) over the residue field

k and its image y = Φ̃p(x) corresponds to the data (A′
0,ι

′
0,λ

′
0,η

′
0,F ′•

0 ). Recall that the

Kodaira–Spencer filtration on the fibre of Ω1
S/Fp

at x is dual to one on Tx(S) which was

described using Grothendieck–Messing deformation theory (see the discussion following

the proof of Theorem 3.3.1). In particular, we have a decomposition Tx(S) =⊕τ∈Σ0
Tx(S)τ

and a decreasing filtration of length ep′ on Tx(S)τ for each τ ∈Σp′,0 (where p′ ∈ Sp) such
that ⊕

τ∈Σ0

Fil jτTx(S)τ

corresponds to the set of lifts of A0 to A1 = (A1,ι1,λ1,η1,F•
1 ) ∈ S(k[ε]) such that F (j)

1,τ is

the image of F (j)
0,τ ⊗k k[ε] for all τ and j ≤ jτ under the canonical isomorphism

H1
dR(A1/k[ε])∼=H1

cris(A0/k[ε])∼=H1
dR(A0/k)⊗k k[ε].

We claim that the fp-dimensional subspace ⊕τ∈Σp,0
Filep−1Tx(S)τ is contained in the

kernel of Tx(S)→Ty(S). Indeed, if A1 is a lift corresponding to an element of this subspace
and A′

1 is its image in Ty(S) and αi : Ai → A′
i are the specialisations of the universal

isogeny α :A→A′, then the commutativity of the diagram

H1
dR(A

′
1/k[ε])

α∗
1 ��

�
��

H1
dR(A1/k[ε])

�
��

H1
dR(A

′
0/k)⊗k k[ε]

α∗
0⊗1

�� H1
dR(A0/k)⊗k k[ε]

and the definition of Φ̃p imply that F ′(j)
1,τ corresponds to F ′(j)

0,τ ⊗k k[ε] for all τ and j. (Note

in particular that F (1)
1,τ = ker(α∗

1,τ ) for all τ ∈Σp,0 and that H0(A′
1,ΩA′

1/k[ε]
)τ corresponds

to H0(A0,ΩA′
0/k

)τ ⊗k k[ε] for all τ ∈ Σ0.) It follows that A′
1 is the trivial deformation of

A′
0, so the kernel of Tx(S)→ Ty(S) has dimension n≥ fp as required.

Remark 6.1.2. The final part of the proof of the proposition shows that the kernel of

the pullback map Φ∗
pΩ

1
Y U/F

→ Ω1
Y U/F

is precisely

Φ∗
p

(
⊕τ∈Σp,0

Fil1(Ω1
Y U/F

)τ

)
.

Furthermore, a similar argument shows that the map preserves the Kodaira–Spencer

decomposition and filtration, in the obvious sense, and induces isomorphisms

Φ∗
p

(
Fil j(Ω1

Y U/F
)τ/Fil

1(Ω!
Y U/F

)τ

)
∼−→ Fil j−1(Ω1

Y U/F
)τ , if τ ∈ Σp,0,j = 1, . . . ,ep,

Φ∗
p

(
Fil j(Ω1

Y U/F
)τ

)
∼−→ Fil j(Ω1

Y U/F
)τ , if τ 	∈ Σp,0.
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6.2. Construction of Vp

In this section we generalise the construction11 of [12, §9.8] to define partial Frobenius

operators, similar to the Vp-operator on classical modular forms.

We maintain the notation of Subsection 6.1, so that Φ̃p is an endomorphism of S = ỸU,F

corresponding to the data (A′,ι′,λ′,η′,(F ′)•), where A′ = A/H for a certain finite flat
subgroup scheme H ⊂A[p], and α is the projection A→A′.

It is immediate from the definition of F ′(j)
τ that α∗

τ induces an isomorphism L′
τ,j

∼−→Lτ,j

for all j if τ 	∈ Σp,0, as well as

L′
τ,j = F ′(j)

τ /F ′(j−1)
τ

∼−→F (j−1)
τ /F (j−2)

τ = Lτ,j−1

for j = 2, . . . ,ep if τ ∈Σp,0. To describe L′
τ,1 for τ ∈Σp,0, note that since H ⊂ ker(FrobA),

there is an isogeny γ :A′ → φ∗
SA such that γ ◦α= FrobA. We thus obtain a surjection

γ∗
τ : φ∗

S(F
(ep)

φ−1◦τ ) = ker(FrobA)
∗
τ −→ ker(α∗

τ ) = L′
τ,1.

Furthermore, φ∗
S(F

(ep−1)

φ−1◦τ ) = ker(γ∗
τ ), as can be seen on closed points, so we obtain a

surjection, and hence an isomorphism, of line bundles

L⊗p
φ−1◦τ,ep

∼= φ∗
S(Lφ−1◦τ,ep) = φ∗

S(F
(ep)

φ−1◦τ )/φ
∗
S(F

(ep−1)

φ−1◦τ )
γ∗
τ−→L′

τ,1.

By construction, we have Φ̃∗
pLτ,j = L′

τ,j , so we have now defined isomorphisms

Φ̃∗
pLθ

∼=
{

L⊗nθ

σ−1θ, if θ ∈ Σp;

Lθ, if θ 	∈ Σp.

Similarly, we find that if τ ∈ Σp,0, then γ∗ induces φ∗
S(Pφ−1◦τ,ep)

∼= P ′
τ,1 and α∗ induces

P ′
τ,j

∼=Pτ,j−1 for j =2, . . . ,ep, so that Φ̃∗
pNθ

∼=N⊗nθ

σ−1θ if θ ∈Σp, while Φ̃
∗
pNθ

∼=Nθ if θ 	∈Σp.

Taking tensor products, we thus obtain isomorphisms

Φ∗
pÃk,l,F

∼= Ãk′′,l′′,F

for all k,l ∈ ZΣ, where

• k′′θ = kθ and l′′θ = lθ if θ 	∈ Σp and
• k′′θ = nσθkσθ and l′′θ = nσθlσθ if θ ∈ Σp.

Furthermore, it is straightforward to check that the isomorphisms are compatible with
the descent data relative to S = ỸU,F → YU,F, so we obtain isomorphisms

Φ∗
pAk,l,F

∼=Ak′′,l′′,F (13)

for all k,l ∈ ZΣ and sufficiently small U. Note that

k′′ = k+
∑
θ∈Σp

kθhθ and l′′ = l+
∑
θ∈Σp

lθhθ. (14)

11The operators defined here differ slightly from the ones defined in [12] in the unramified case.
The construction there is tailored to be compatible with the classical case and to be simply
interpreted on q-expansions at cusps at ∞. Doing this in the general ramified case would
introduce complications that make it seem not worthwhile.
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Remark 6.2.1. One can check that the resulting isomorphisms Φ∗
pA2eθ,−eθ,F

∼=
A2eθ,−eθ,F (for θ 	∈ Σp) and

Φ∗
pA2eθ,−eτ,F

∼=A2eσ−1θ,−eσ−1θ,F

(for θ = θp,i,j , j = 2, . . . ,ep) are compatible via the Kodaira–Spencer isomorphisms of
Theorem 3.3.1 with the corresponding isomorphisms

Φ∗
p(gr

j(Ω1
Y U/F

)τ )∼= gr j
′
(Ω1

Y U/F
)τ

given by Remark 6.1.2, where j′ = j if τ 	∈ Σp,0 and j′ = j−1 if τ ∈ Σp,0.

We are now ready to define the partial Frobenius operator (indexed by p)

Vp :Mk,l(U ;F)−→Mk′′,l′′(U,F)

as the composite

H0(YU,F,Ak,l,F)
Φ∗

p−→H0(YU,F,Φ
∗
pAk,l,F)

∼−→H0(YU,F,Ak′′,l′′,F),

where the second map is the isomorphism (13). It is immediate from the definition

that Vp is injective and that taking the direct sum over all weights yields an F-algebra

homomorphism ⊕
k,l∈ZΣ

Mk,l(U ;F)−→
⊕

k,l∈ZΣ

Mk,l(U ;F)

for all sufficiently small U containing GL2(OF,p). It is also straightforward to check that

Vp is compatible with the Hecke action in the usual sense and hence defines a GL2(A
(p)
F,f )-

equivariant map

Mk,l(F)−→Mk′′,l′′(F),

where the spaces are defined in (6) as direct limits over sufficiently small U containing

GL2(OF,p).
It will also be convenient at times to consider instead the operator

V 0
p :Mk,l(U ;F)−→Mk′′,l(U,F) (15)

defined by V 0
p (f) = Vp(f)

∏
θ∈Σp

G−lθ
θ , where Gθ is the trivialisation of A0,hθ,F defined at

the end of Subsection 4.1. Thus, V 0
p is also Hecke-equivariant but depends on the choice

of uniformiser �p.

We also record the relation between the partial Frobenius operators and the p-power
map. First note that the identification Φ̃∗(F (j)

τ ) = φ∗
S(F

(j)
φ−1◦τ ) arising from the definition

of Φ̃ yields isomorphisms

Φ̃∗Lτ,j
∼= φ∗

S(Lφ−1◦τ,j)∼= L⊗p
φ−1◦τ,j

for all τ and j. We similarly have Φ̃∗Nτ,j
∼= N⊗p

φ−1◦τ,j , and taking tensor products

and descending to Y yields isomorphisms Φ∗Ak,l,F
∼= Apkφ,plφ,F for all k,l, where

kφθp,i,j = kθp,i+1,j
and hence an operator Vp :Mk,l(U ;F)→Mpkφ,plφ(U ;F). Similarly, the
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isomorphisms ε̃∗F (j)
φ−1◦τ

∼=F (j)
τ yield ε̃∗Lφ−1◦τ,j ∼=Lτ,j and ε̃∗Nφ−1◦τ,j ∼=Nτ,j whose tensor

products descend to isomorphisms ε∗Akφ,lφ,F
∼−→Ak,l,F, yielding a φ-linear isomorphism

Mkφ,lφ(U ;F) → Mk,l(U ;F) which we denote εk,l. Furthermore, the above isomorphisms

of line bundles on S are compatible in the sense that the resulting diagram

ε̃∗Φ̃∗Lτ,j
∼ ��

�

��

ε̃∗L⊗p
φ−1◦τ,j

�
��

φ∗
SLτ,j

∼ �� L⊗p
τ,j

commutes, as does its analogue for the Nθ, from which it follows that the composite

Mk,l(U ;F)
Vp−→Mpkφ,plφ(U ;F)

εpk,pl−→ Mpk,pl(U ;F)

is the p-power map.

Returning to the partial Frobenius operators, the isomorphisms between Φ̃∗
pLθ and

L⊗nθ

σ−1θ (respectively Lθ) for θ ∈Σp (respectively θ 	∈Σp) for different p∈ Sp are compatible

with each other in the obvious sense and taken together with the formula
∏

p∈Sp
Φ̃

ep
p = ν ·Φ̃

and the canonical isomorphism ν∗Lθ
∼= Lθ yield the isomorphisms Φ̃∗Lτ,j

∼= L⊗p
φ−1◦τ,j

defined above. A similar assertion holds for the line bundles Nθ, and it follows that the

operators Vp for p ∈ Sp commute with each other and that
∏

p
V

ep
p = Vp, so that⎛⎝εpk,pl

∏
p∈Sp

V
ep
p

⎞⎠(f) = fp. (16)

7. Compactifications and q-expansions

7.1. Toroidal compactifications

We next recall how q-expansions of Hilbert modular forms are obtained using compacti-

fications of Hilbert modular varieties. In this section we review properties of the toroidal

compactification constructed by Rapoport [31] (see also [4] and [13]). We will consider
toroidal compactifications only in the case U = U(N), but we first describe the set of

cusps adelically for any U of level prime to p.

For an arbitrary open compact subgroup U of GL2(AF,f ) containing GL2(OF,p), we
define the set of cusps of YU to be

Y ∞
U =B(OF,(p))+\GL2(A

(p)
F,f )/U

p =B(F )+\GL2(AF,f )/U,

where B denotes the subgroup of GL2 consisting of upper-triangular matrices. Similarly,

we define the set of cusps of ỸU to be

Ỹ ∞
U =B1(OF,(p))+\GL2(A

(p)
F,f )/U

p.

Note that the natural surjection Ỹ ∞
U → Y ∞

U identifies Y ∞
U with the quotient of Ỹ ∞

U by the

left action of B(OF,(p))+/B1(OF,(p)) ∼= O×
F,(p),+. Furthermore, the subgroup (O×

F ∩U)2
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acts trivially on Ỹ ∞
U , but the quotient O×

F,(p),+/(O
×
F ∩U)2 need not act freely; more

precisely, the stabiliser of the cuspB1(OF,(p))gU of ỸU is the group det(gUg−1∩B(F ))+ ⊂
O×

F,+, in which (O×
F ∩U)2 has finite index.

We also have a natural bijection between Y ∞
U and the set of isomorphism classes of

data (H,I,[λ],[η]) where

• H is a projective OF -module of rank 2;
• I is an invertible submodule of H such that J :=H/I is invertible;
• [λ] is a prime-to-p orientation of ∧2

OF
H ∼= I ⊗OF

J = IJ , by which we mean an

O×
F,(p),+-orbit of isomorphisms

λ : ∧2
OF,(p)

H(p)
∼−→OF,(p).

• [η] is a level Up-structure on H ; that is, a Up-orbit of Ô(p)
F -linear isomorphisms

η : (Ô(p)
F )2

∼−→ Ô(p)
F ⊗OF

H.

The bijection is defined by associating the data (Hg,Ig,[λg],[ηg]) to the coset

B(OF,(p))+gU
p, where Hg = Ô2

F g
−1∩F 2, Ig is its intersection with the subspace {0}×F ,

λg is induced by the determinant and ηg is induced by right pre-multiplication by g−1.
Note that to give a prime-to-p orientation of ∧2

OF
H is equivalent to giving an F×

+ -

orbit of isomorphisms ∧2
F (Q⊗H)

∼−→ F , but the integrality condition is imposed for

consistency with the fact that we have a bijection between Ỹ ∞
U and the set of isomorphism

classes of data of the form (H,I,λ,[η]), which is similarly defined, O×
F,(p),+-equivariant

and compatible in the obvious sense with the bijection describing Y ∞
U . In particular, if

U = U(1) =GL2(ÔF ), then the map sending (H,I,[λ],[η]) to the pair (∧2
OF

H,I) defines a

bijection between Y ∞
U and C+

F ×CF , where C
(+)
F denotes the (strict) class group of F. For

each such cusp we choose a polyhedral cone decomposition as in [31, Lemme 4.2] (with

U ′ = U+ in the notation there) for (M∗⊗R)+∪{0}, where

M =HomOF
(I,d−1J) = d−1I−1J,

M∗ =Hom(M,Z)∼=HomOF
(J,I) = J−1I,

(17)

and the positivity is induced by the orientation of I⊗OF
J .

Suppose now that U = U(N) for some N ≥ 3 (not divisible by p) and that O contains

the N th roots of unity. The above choice of cone decomposition (for the image of each
cusp of Ỹ ∞

U in Y ∞
U(1)) yields a toroidal compactification12 ỸU ↪→ Ỹ tor

U such that the set of

(geometrically) connected components of its (reduced) closed subscheme Z̃tor
U := Ỹ tor

U − ỸU

is identified with Ỹ ∞
U . The construction of Ỹ tor

U identifies its completion along the

component corresponding to a cusp C̃ represented by (H,I,λ,[η]) with the quotient

12Compactified in the sense that its (infinitely many) connected components are proper over
O.
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of a formal scheme13 ŜC̃ by an action of V 2
N , where VN = ker(O×

F → (OF /NOF )
×).

Furthermore, this extends to an action of O×
F,+ on Ŝ = ŜC̃ , and we have an isomorphism

Γ(Ŝ,OŜ)
∼=O[[qm]]m∈N−1M+∪{0} (18)

compatible with the obvious action of O×
F,+ on the target. (The isomorphism depends on

a choice of splitting of the exact sequence

0→ I →H → J → 0

of OF -modules; modifying the splitting by an element β ∈ J−1I ∼= M∗ alters it by

composition with the automorphism defined by qm �→ ζ
−β(m)
N qm for m ∈ N−1M .) We

let ξ : Ŝ → Ỹ tor
U denote the natural morphism of formal schemes, and we write FŜ for the

field of fractions of Γ(Ŝ,OŜ) and μν for the automorphism of Ŝ defined by ν ∈ O×
F,+.

The construction of the toroidal compactification also extends the universal abelian
scheme A to a semi-abelian scheme Ator whose pullback to Ŝ is identified with that of

the Tate semi-abelian scheme14 associated to a quotient of the form

TI,J := (d−1I⊗Gm)/q̃d
−1J, (19)

where q̃· : d−1J → F×
Ŝ
⊗ d−1I is the homomorphism corresponding to the tautological

element under the canonical isomorphism

Hom(M,F×
Ŝ
) = HomOF

(d−1J,d−1I⊗F×
Ŝ
).

Similarly, its dual A∨ extends to a Tate semi-abelian scheme (A∨)tor whose pullback via

ξ is associated to TdJ−1,dI−1 , with the isomorphism cd⊗OF
Ator → (A∨)tor defined by the

quasi-polarisation pulling back to the composite

cd⊗OF
TI,J

∼−→ d(IJ)−1⊗OF
TI,J

∼−→ TdJ−1,dI−1,

where c = {α ∈ F |αλ(IJ) ⊂ OF }, the first morphism is the isomorphism induced by λ

and the second is the canonical one.

The subschemes Zθ of ỸU (defined in Subsection 4.2 by the vanishing of the partial
Hasse invariants Hθ) are closed in Ỹ tor

U , and we let Ỹ ord
U (respectively Ỹ tord

U ) denote

the complement of their union – that is, the ordinary locus, in ỸU (respectively Ỹ tor
U )

– and we use similar notation for the restrictions of Ator and (A∨)tor. Since the sheaf

Lie(Atord/Ỹ tord
U ) is locally free over OF ⊗OỸ tord

U
, the universal filtration F (j)

τ on

(s∗Ω
1
A/ỸU

)τ ∼=HomOỸU
(Lie(A/ỸU )τ ,OỸU

)

13The formal scheme depends on the chosen cone decomposition {σC̃
α} and is denoted

SN ({σC̃
α})∧ in [4, Subsection 3.4.2].

14More precisely, the formal scheme ̂S has an open cover by affine formal subschemes SpfRσ

(indexed by cones σ) such that SpecRσ ×Ỹ tor
U

Ator is identified with the semi-abelian scheme

TI,J over SpecRσ. The compatibilities in the discussion that follows are then systematically

checked by verifying them over the open subschemes SpecR0
σ = SpecRσ ×Ỹ tor

U

˜YU .
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extends canonically to one on HomOỸ tor
U

(Lie(Ator/Ỹ tor
U )τ ,OỸ tor

U
) for each τ ∈ Σ0.

Furthermore, its pullback to Ŝ is identified (in the notation of (1)) with

0⊂ tτ,1(I
−1⊗OŜ)τ ⊂ tτ,2(I

−1⊗OŜ)⊂ ·· · ⊂ tτ,ep(I
−1⊗OŜ)τ = (I−1⊗OŜ)τ

under the canonical isomorphism

HomOŜ
(Lie(TI,J/Ŝ),OŜ)

∼=Hom(d−1I,OŜ)
∼= I−1⊗OŜ .

We thus obtain extensions L̃tor
θ of the line bundles L̃θ = L̃p,i,j to Ỹ tor

U whose pullback to

Ŝ is identified with (I−1)θ⊗OOŜ , where (I−1)θ is defined by (2).

Similarly, Lie((A∨)tord/Ỹ tord
U ) is locally free over OF ⊗OỸ tord

U
, but the line bundles

M̃θ = M̃p,i,j over Ỹ ord
U are canonically identified with

(R1s∗OAord)τ [u−θ(�p)]∼= Lie((A∨)ord/Ỹ ord
U )τ [u−θ(�p)].

It follows that each M̃θ extends to a line bundle M̃tor
θ on Ỹ tor

U such that the identification

Lie(TdJ−1,dI−1/Ŝ) = J−1⊗OŜ

induces an isomorphism

ξ∗M̃tor
θ

∼= (J−1⊗OŜ)τ [u−θ(�p)]∼= (dJ−1⊗OŜ)τ ⊗O[u],θO.

We can thus identify the pullback ξ∗Ñ tor
θ of the line bundle Ñ tor

θ = L̃tor
θ ⊗OỸ tor

U

M̃tor
θ

with (d(IJ)−1)θ ⊗O OŜ , which the polarisation in turn identifies with (cd)θ ⊗O OŜ in

the notation of (2). Finally, it follows that the automorphic bundles Ãk,l extend to line

bundles Ãtor
k,l on Ỹ tor

U such that

ξ∗Ãtor
k,l

∼=Dk,l⊗OOŜ, where Dk,l :=
⊗
θ∈Σ

(
(I−1)⊗kθ

θ ⊗ (d(IJ)−1)⊗lθ
θ

)
(20)

(the tensor products being over O). We refer to this isomorphism as the canonical

trivialisation of ξ∗Ãtor
k,l .

Next we consider the completion of Ỹ tor
U along the component corresponding to the

cusp C̃ represented by (H,I,λ,[η]), which we denote (ỸUtor)∧C̃ . We now describe the global

sections of the completions of the line bundles Ãtor
k,l using the identification (Ỹ tor

U )∧C̃ =

Ŝ/V 2
N and taking invariants under the action of V 2

N on their trivialisations over Ŝ. Note

firstly that Γ((Ỹ tor
U )∧C̃ ,O(Ỹ tor

U )∧
C̃
) = Γ(Ŝ,OŜ)

V 2
N corresponds to{∑

rmqm ∈ O[[qm]]m∈N−1M+∪{0}

∣∣∣ rα2m = rm ∀α ∈ VN,m ∈N−1M+

}
(21)

under the isomorphism of (18). One then finds that the descent data for ξ∗Ator is

provided by the isomorphisms TI,J
∼−→ μ∗

α2TI,J induced by α⊗ 1 on d−1I ⊗Gm, from
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which it follows that the descent data for ξ∗L̃tor
θ is provided on the trivialisation by the

isomorphisms

(I−1)θ⊗O μ∗
α2OŜ

∼−→ (I−1)θ⊗OOŜ

induced by θ(α) on (I−1)θ. On the other hand, the descent data for ξ∗M̃tor
θ is similarly

induced on the canonical trivialisation by θ(α)−1, so that the resulting trivialisation of

ξ∗Ñ tor
θ descends to (ỸUtor)∧C̃ (in fact extending the one already defined over ỸU via the

choice of generator tτ,j(f
′(�p)⊗1) of (cd)θ). Since Γ((Ỹ tor

U )C̃,(Ãtor
k,l)

∧
C̃ ) = Γ(Ŝ,ξ∗Ãtor

k,l)
V 2
N ,

we conclude the following.

Proposition 7.1.1. Suppose that U =U(N) and O contains the Nth roots of unity. Then

the isomorphism (18) and the canonical trivialisation (20) identify Γ((Ỹ tor
U )C̃,(Ãtor

k,l)
∧
C̃ )

with ⎧⎨⎩ ∑
m∈N−1M+∪{0}

b⊗ rmqm

∣∣∣∣∣∣ rα2m = χk(α)rm ∀α ∈ VN,m ∈N−1M+

⎫⎬⎭,

where b is any choice of basis for Dk,l.

7.2. Minimal compactifications

We now recall the construction due to Chai [4] of minimal compactifications of Hilbert
modular varieties. The presentation in [4] is very concise with numerous typos, but a

more detailed treatment of the construction can be found in [13] in the case of U1(n)

(with different conventions than ours) and of the descriptions of q-expansions in that
case in [5].

We continue to assume for the moment that U = U(N) for some sufficiently large N

prime to p. The minimal compactification ỸU ↪→ Ỹ min
U is then constructed as in [4, §4] or

[13, §8]. More precisely, letting t=
∑

eθ and taking the global sections of ⊕k≥0Ãtor
kt,0 over

each component of Ỹ tor
U yields a projective scheme over O containing the corresponding

component of the Deligne–Pappas model as an open subscheme. Gluing their ordinary

loci to ỸU along Ỹ ord
U yields a scheme Ỹ min

U and a proper morphism π : Ỹ tor
U → Ỹ min

U

such that ι̃ : ỸU → Ỹ min
U is an open immersion. Furthermore, the (reduced) complement

Ỹ min
U − ỸU is an infinite disjoint union of copies of SpecO indexed by Ỹ ∞

U , the pre-image

of each in Ỹ tor
U being the corresponding connected component of Z̃tor

U , and the scheme

Ỹ min
U is independent of the choice of cone decomposition in the construction of Ỹ tor

U .
Now recall that the Koecher principle implies that OỸ min

U
= π∗OỸ tor

U
= ι̃∗OỸU

, so that

O∧
Ỹ min
U ,C̃ = Γ((Ỹ tor

U )∧C̃ ,O(Ỹ tor
U )∧

C̃
) is the ring described by (21), where we have written C̃

for the corresponding point of Ỹ min
U . Furthermore, the argument of [31, Prop. 4.9] shows

that ι̃∗Ãk,l = π∗Ãtor
k,l (see the discussion following [31, Def. 6.10], or view ỸU as a disjoint

union of PEL Shimura varieties and apply [28, Thm. 2.5]), so the theorem on formal

functions gives that (ι∗Ãk,l)
∧
C̃ = Γ((ỸUtor)∧C̃ ,(Ã

tor
k,l)

∧
C̃ )) is the O∧

Ỹ min
U ,C̃-module described in

Proposition 7.1.1. (Note that ι̃∗Ãk,l is coherent but not necessarily invertible.)
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Similarly, for any O-algebra R, we may identify (ι̃R,∗Ãk,l,R)
∧
C̃ with⎧⎨⎩ ∑

m∈N−1M+∪{0}
b⊗ rmqm

∣∣∣∣∣∣ rα2m = χk,R(α)rm ∀α ∈ VN,m ∈N−1M+

⎫⎬⎭ (22)

as a module over O∧
Ỹ min
U,R,C̃ , which the Koecher principle and (18) identify with{∑

rmqm ∈R[[qm]]m∈N−1M+∪{0}

∣∣∣ rα2m = rm ∀α ∈ VN,m ∈N−1M+

}
, (23)

where ι̃R : ỸU,R → Ỹ min
U,R is the base change of ι̃ to R, the completions are at the fibre over

C̃ and b is any basis for Dk,l.

The compatibility of the choices of polyhedral cone decompositions ensures that the

natural action of OF,(p),+ on ỸU extends (uniquely) to one on Ỹ tor
U . Furthermore, the

stabiliser of each component of Z̃tor
U is VN,+, and the action of VN,+ on each completion

(ỸUtor)∧C̃ = Ŝ/V 2
N is induced by an action of VN,+ on Ŝ such that the effect of ν ∈ VN,+

on global sections of OŜ is induced by multiplication by ν−1 on M. We see also that
the canonical isomorphism A → ν∗A extends to an isomorphism Ator → ν∗Ator whose

pullback via ξ is induced by the identity on d−1I ⊗Gm, from which it follows that the

action of ν is compatible with the canonical trivialisation of the line bundle L̃tor
θ over Ŝ.

On the other hand, the induced isomorphisms ν∗M̃tor
θ →Mtor

θ and ν∗Ñ tor
θ → Ñ tor

θ pull

back to ones corresponding to multiplication by θ(ν).

Since Ỹ min
U is a disjoint union of projective schemes over O on which O×

F,(p),+/V
2
N acts

with finite stabilisers, the quotient scheme exists, and we define this to be the minimal

compactification Y min
U of YU . We thus obtain an open immersion ι : YU → Y min

U such

that Y min
U is projective over O and the (reduced) complement of YU is a disjoint union

of copies of SpecO in canonical bijection with the set of cusps Y ∞
U . Furthermore, we

again have that ι∗OYU
=OY min

U
, and its completion O∧

Y min
U ,C at the cusp C represented by

(H,I,[λ],[η]) is identified under (21) with{∑
rmqm ∈ O[[qm]]m∈N−1M+∪{0}

∣∣∣ rνm = rm ∀ν ∈ VN,+,m ∈N−1M+

}
(where the identification depends as in (18) on a choice of splitting of the exact sequence

0→ I →H → J → 0). Now suppose that R is an O-algebra such that χk+2l,R is trivial on

VN , so that the line bundle Ãk,l,R descends to one over YU,R which we denote by Ak,l,R.

We then see that ι∗Ak,l,R is a coherent sheaf on Y min
U,R whose completion at the (base

change to R of the) cusp C is identified under (22) with⎧⎨⎩ ∑
m∈N−1M+∪{0}

b⊗ rmqm

∣∣∣∣∣∣ rν−1m = χl,R(ν)rm ∀ν ∈ VN,+,m ∈N−1M+

⎫⎬⎭ .

In particular, ι∗Ak,l,R is a line bundle if χl,R is trivial on VN,+.

Suppose now that U ′ is any sufficiently small open compact subgroup of GL2(ÔF )

containing GL2(OF,p). One can then carry out a construction similar to the one above
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to obtain the minimal compactification or choose an N prime to p such that U(N)⊂ U ′,
extend the natural (right) action of U ′/U(N) on YU(N) to Y min

U(N) and take the quotient;

we do the latter (see [13] for the former in the case of U ′ = U1(n)). Firstly, our choice
of polyhedral cone decompositions ensures that the natural right action of U ′/U on ỸU

extends to Ỹ tor
U , where U = U(N) for some choice of N as above. Denoting the resulting

automorphism of Ỹ tor
U by ρ̃g for g ∈U ′, the canonical identification of the universal A over

ỸU with its pullback extends to an identification Ator = ρ̃∗gA
tor, giving rise to canonical

isomorphisms ρ̃∗gÃtor
kt,0 = Ãtor

kt,0, and hence to an action of U ′/U on Ỹ min
U extending its

action on ỸU . Moreover, the action commutes with the natural action of OF,(p),+, so

it descends to an action on Y min
U extending the action on YU . We denote the resulting

automorphisms of Y min
U by ρg and define Y min

U ′ to be the quotient of Y min
U by the action

of U ′/U (which we will soon see is independent of the choice of N in its definition).

Identifying the set of components of Y min
U −YU with Y ∞

U , the resulting action of g ∈ U ′

is given by pre-composing η with right multiplication by g−1, so the set of components of

Y min
U ′ −YU ′ may be identified with Y ∞

U ′ . For each cusp C′ ∈ Y ∞
U ′ , the completion O∧

Y min
U′ ,C′

is identified with the subring of O∧
Y min
U ,C invariant under the stabiliser of C in U ′/U , where

C is any cusp of YU in the pre-image of C′. Choose such an (H,I,[λ],[η]) representing C
and a splitting σ :H

∼−→ J × I and let

ΓC =

{ (
α β
0 δ

)∣∣∣∣ α ∈ O×
F ,β ∈ J−1I,δ ∈ αO×

F,+

}
, (24)

which we view as acting on J × I by right multiplication. The stabiliser of C is then the
set of classes Ug = gU ∈ U ′/U such that

g ≡ η−1σ−1γση mod NÔF for some γ ∈ ΓC,

and we let ΓC,U ′ = ΓC ∩ σηU ′η−1σ−1. Thus, the stabiliser of C is the image of the

homomorphism s : ΓC,U ′ −→ U ′/U defined by γ �→ η−1σ−1γσηU .

We claim that if g = s(γ), then ρ∗g on O∧
Y min
U ,C = H0(Ŝ,OŜ)

VN,+ is induced by an

automorphism ψγ of Ŝ whose effect on global sections corresponds to the map defined by

ψ∗
γ : qm �→ ζ

−β(α−1Nm)
N qα

−1δm (25)

under (18) and the identification M∗ = J−1I of (17). Indeed, letting ν denote αδ (as well

as the automorphism of Ỹ tor
U defined by its effect on the universal polarisation), we see

that δ⊗ 1 on TI,J defines an isomorphism ξ∗ρ∗gν
∗Ator ∼−→ ψ∗

γξ
∗Ator compatible with all

auxiliary data, from which one deduces that ν ◦ρg ◦ξ = ξ ◦ψγ . Note also that (25) defines

an action of ΓC on Γ(Ŝ,OŜ) which factors through the surjection

ΓC −→ (J−1I⊗Z/NZ)�O×
F,+(

α β

0 δ

)
�→ (−α−1β,α−1δ),

and the latter group acts on Γ(Ŝ,OŜ)
VN,+ via its quotient

(J−1I⊗Z/NZ)� (O×
F,+/VN,+).
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We conclude that O∧
Y min
U′ ,C′ =H0(Ŝ,OŜ)

ΓC,U′ is identified with⎧⎨⎩ ∑
m∈N−1M+∪{0}

rmqm
∣∣∣rα−1δm = ζ

−β(α−1Nm)
N rm ∀m ∈N−1M+,

(
α β
0 δ

)
∈ ΓC,U ′

⎫⎬⎭,

where we recall that the isomorphism may depend on the choice of the splitting σ and

that we view β as an element of M∗. We note in particular that if U ′ = U(N ′) for

some N ′|N , then the resulting description of O∧
Y min
U′ ,C′ coincides with the one previously

obtained, from which it follows that the same holds for the scheme Y min
U ′ and hence that

Y min
U ′ is independent of the choice of N in its definition (for any sufficiently small U ′

containing GL2(OF,p).)

Suppose now that k,l ∈ ZΣ and R is an O-algebra such that χk+2l,R is trivial on

U ′∩O×
F and consider the automorphic bundle A′

k,l,R on YU ′,R. Letting ι
′
R denote the open

immersion of YU ′,R in Y min
U ′,R, similar considerations to those above show that ι′R,∗A′

k,l,R is

a coherent sheaf on Y min
U,R whose completion at C′ is identified with the O∧

Y min
U′,R,C′-module

of ΓC,U ′-invariants in (ι̃R,∗Ãk,l,R)
∧
C . Using that the isomorphism ξ∗Ator ∼−→ ψ∗

γξ
∗Ator is

induced by δ⊗1 on the Tate semi-abelian scheme, we find that the resulting automorphism

multiplies the canonical trivialisation (20) of ξ∗Ãtor
k,l,R by χl,R(α)χk+l,R(δ). We therefore

conclude the following.

Proposition 7.2.1. If χk+2l,R is trivial on U ′∩O×
F , then ι′R,∗A′

k,l,R is a coherent sheaf

on Y min
U ′,R whose completion at (the fibre over) C′ is identified by the Koecher principle and

Proposition 7.1.1 with⎧⎨⎩ ∑
m∈N−1M+∪{0}

b⊗ rmqm

∣∣∣∣∣ rα−1δm = ζ
−β(α−1Nm)
N χl,R(α)χk+l,R(δ)rm

for all m ∈N−1M+,
(
α β
0 δ

)
∈ ΓC,U ′

⎫⎬⎭ .

Note that the description of O∧
Y min
U′,R,C′ = (ι′R,∗OY min

U′,R
)∧C′ may be viewed as a special case

(with k= l= 0), as can the prior formula for U = U(N). Furthermore, the identifications
are compatible in the obvious senses with base changes R → R′, inclusions U ′′ ⊂ U ′

(provided the splittings σ are chosen compatibly) and the natural algebra structure on⊕
k,lA′

k,l,R (taking the direct sum over k,l as in the statement).
Recall that the q-expansion principle allows one to characterise Hilbert modular forms

in terms of their q-expansions.

Proposition 7.2.2. If C ⊂ Y ∞
U ′ is any set of cusps containing at least one on each

component of YU ′ , then the natural map

Mk,l(U
′;R) =H0(Y min

U ′ ,ι′R,∗A′
k,l,R)−→

⊕
C′∈C

(ι′R,∗A′
k,l,R)

∧
C′

is injective.
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Note also that we may replace Dk,l ⊗O · with Dk,l,R ⊗R · in the description of q-
expansions over R. In particular, if R is an F-algebra, the identification

(I−1)θ⊗O F = (I−1⊗O)τ ⊗O[u],θ F= tτ,j(I
−1
p ⊗W (OF /p),τ O)⊗O[u],θ F

= tτ,j(I
−1
p ⊗W (OF /p),τ O)/(u,mO)tτ,j(I

−1
p ⊗W (OF /p),τ O)

= uep−j(I−1
p ⊗W (OF /p),τ F)/u

ep−j+1(I−1
p ⊗W (OF /p),τ F)

yields a canonical isomorphism

(I−1)θ⊗OR= (pep−jI−1/pep−j+1I−1)⊗OF /p,τ R. (26)

The analogous formula holds for the factors (d(IJ)−1)θ appearing in the definition of

Dk,l.

The condition on the q-expansion coefficients in the description of the completions
in Proposition 7.2.1 simplifies for certain standard level structures and cusps, as in [12,

Prop. 9.1.2]. Suppose that n is an ideal ofOF such that χk+2l,R is trivial on Vn =ker(O×
F →

(OF /n)
×). Letting U ′ = U(n), we have

ΓC,U ′ =

{ (
α β
0 δ

)∣∣∣∣ α ∈ Vn,β ∈ nM∗,δ ∈ αVn,+

}
for every cusp C of YU . Note that m ∈ n−1M if and only if β(Nm) ∈NZ for all β ∈ nM∗

and that α,δ ∈ Vn implies that χl,R(α)χk+2l(δ) = χl,R(αδ
−1), so we see that

(ι′R,∗A′
k,l,R)

∧
C′ �

⎧⎨⎩ ∑
m∈(n−1M)+∪{0}

b⊗ rmqm

∣∣∣∣∣∣ rν−1m = χl,R(ν)rm for all ν ∈ Vn,+

⎫⎬⎭
for every cusp C′ of YU ′ .
Keep the same assumption on n but now let U ′ = U1(n) and suppose that C′ is a cusp

of YU ′ ‘at ∞’ in the sense that η(0,1) ∈ I+nĤ(p). We then find that

ΓC,U ′ =

{ (
α β

0 δ

)∣∣∣∣ α ∈ δO×
F,+,β ∈M∗,δ ∈ Vn

}
,

and we similarly conclude that

(ι′R,∗A′
k,l,R)

∧
C′ �

⎧⎨⎩ ∑
m∈M+∪{0}

b⊗ rmqm

∣∣∣∣∣∣ rν−1m = χl,R(ν)rm for all ν ∈ OF,+

⎫⎬⎭ .

We remark that every component of YU ′ contains such cusps (in the obvious sense) and

that in this case the isomorphism is independent of the choice of splitting σ.

7.3. Kodaira–Spencer filtration

We next explain how the Kodaira–Spencer filtration on differentials extends to compact-

ifications.
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We maintain the notation from the preceding section. In particular, we first assume
U =U(N) for some N prime to p before deducing results for more general level structures.

The construction of Ỹ tor
U via torus embeddings then yields a canonical isomorphism

ξ∗(Ω1
Ỹ tor
U /O(log Z̃

tor
U ))∼=N−1M ⊗OŜ (27)

for each cusp C̃ of ỸU under which the descent data relative to the quotient map Ŝ =

ŜC̃ → (Ỹ tor
U )∧C̃ corresponds to that induced by the obvious action of V 2

N on N−1M and

the completion of the canonical derivation

d :OỸ tor
U

→ Ω1
Ỹ tor
U /O(log Z̃

tor
U )

pulls back to a derivation OŜ →N−1M ⊗OŜ whose effect on global sections corresponds

under (18) to the map defined by∑
m∈N−1M+∪{0}

rmqm �→
∑

m∈N−1M+∪{0}
m⊗ rmqm.

Recall also that

s∗Ω
1
Aord/Ỹ ord

U

∼= HomO
Ỹ ord
U

(Lie(Aord/Ỹ ord
U ),OỸ ord

U
)

and R1s∗OAord
∼= Lie((Aord)∨/Ỹ ord

U )

are locally free sheaves of OF ⊗OỸ ord
U

-modules over Ỹ ord
U , and therefore so is

s∗Ω
1
Aord/Ỹ ord

U

⊗OF⊗O
Ỹ ord
U

s∗Ω
1
(Aord)∨/Ỹ ord

U

.

Decomposing this sheaf over embeddings τ ∈ Σ0 and equipping it with the filtration
defined by the images of the endomorphisms tτ,j defined by (1), we see that the successive

quotients

tj

(
s∗Ω

1
Aord/Ỹ ord

U

⊗OF⊗O
Ỹ ord
U

s∗Ω
1
(Aord)∨/Ỹ ord

U

)
τ
⊗O[u],θO

∼=HomOS
(R1s∗OAord [u−θ(�)],tj(s∗Ω

1
(Aord)∨/Ỹ ord

U

)τ ⊗O[u],θO)

(where τ = τi, tj = tτ,j and θ = θp,i,j) are canonically identified with the automorphic

bundles Ã2eθ,−eθ
over Ỹ ord

U . Furthermore, the proof of Theorem 3.3.1 shows that the

natural map

s∗Ω
1
Aord/Ỹ ord

U

⊗OF⊗O
Ỹ ord
U

s∗Ω
1
(Aord)∨/Ỹ ord

U

−→ Ω1
Ỹ ord
U /O (28)

arising from Grothendieck–Messing theory or, equivalently, the Gauss–Manin connection

on H1
dR(A

ord/Ỹ ord
U ) (see [27, §2.1.7]) is an isomorphism. In particular, the Kodaira–

Spencer filtration on Ω1
Ỹ ord
U /O corresponds under (28) to the one defined by the images of

the endomorphisms tτ,j . Furthermore, (28) extends over Ỹ tord
U to an isomorphism

HomO
Ỹ tord
U

(d⊗OF
Lie(Atord/Ỹ tord

U )⊗OF⊗O
Ỹ tord
U

Lie((Atord)∨/Ỹ tord
U ),OỸ tord

U
)

∼−→ Ω1
Ỹ tord
U /O(log Z̃

tor
U )
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whose pullback via ξ = ξC̃ for each cusp C̃ of ỸU is compatible with the canonical

isomorphisms of the pullback of each with M ⊗OŜ =N−1M ⊗OŜ (the latter via (27)).

Indeed, the existence of the extension and the claimed compatibility follow from the
analogous well-known result after base change to C. We therefore conclude that the

Kodaira–Spencer filtration on Ω1
ỸU/O extends over Ỹ tor

U in the form of a decomposition

Ω1
Ỹ tor
U /O(log Z̃

tor
U ) =

⊕
p∈Sp

⊕
i∈Z/fpZ

(
Ω1

Ỹ tor
U /O(log Z̃

tor
U )
)
p,i

,

together with an increasing filtration of length ep on each component (Ω1
Ỹ tor
U /O(log Z̃

tor
U ))p,i

and isomorphisms

Ãtor
2eθ,−eθ

∼−→ gr j
(
Ω1

Ỹ tor
U /O(log Z̃

tor
U )
)
p,i

.

Furthermore, for each cusp C̃ of ỸU and embeddings τ = τp,i and θ= θp,i,j , the pullback via

ξ= ξC̃ of Fil j(Ω1
Ỹ tor
U /O(log Z̃

tor
U ))p,i corresponds to tj(N

−1M⊗O)τ ⊗OOŜ = tj(d
−1I−1J⊗

O)τ ⊗OOŜ under (27), and the resulting isomorphism

ξ∗Ãtor
2eθ,−eθ

∼−→ gr j
(
ξ∗(Ω1

Ỹ tor
U /O(log Z̃

tor
U ))p,i

)
∼= (d−1I−1J ⊗O)θ⊗OOŜ

coincides with the canonical trivialisation of (20).

We now interpret this in the context of minimal compactifications. First we note that

the argument of [31, Prop. 4.9] yields a Koecher principle for Ω1
Ỹ tor
U /O(log Z̃

tor
U ), so that

π∗(Ω
1
Ỹ tor
U /O(log Z̃

tor
U ))−→ ι̃∗(Ω

1
ỸU/O)

is an isomorphism of coherent sheaves on Ỹ min
U whose completion at the cusp C̃ is identified

with
(
M ⊗O[[qm]]m∈N−1M+∪{0}

)V 2
N

=

⎧⎨⎩ ∑
m∈N−1M+

cm⊗ qm

∣∣∣∣∣∣ cνm = νcm ∀ν ∈ V 2
N,m ∈N−1M+

⎫⎬⎭ .

(Note that c0 ∈MV 2
N = 0.) Furthermore, the completion at C̃ of the canonical derivation

OỸ min
U

→ ι̃∗Ω
1
ỸU/O is given by

∑
rmqm �→

∑
m⊗ rmqm.

We see also from the description of the extension of the Kodaira–Spencer filtration to

Ω1
Ỹ tor
U /O(log Z̃

tor
U ) in terms of q-expansions that

π∗(Fil
j(Ω1

Ỹ tor
U /O(log Z̃

tor
U ))p,i) = ι̃∗(Fil

j(Ω1
ỸU/O)p,i),

with completion at C̃ given by
(
tj(M ⊗O)τ ⊗OO[[qm]]m∈N−1M+∪{0}

)V 2
N

=

⎧⎨⎩ ∑
m∈N−1M+

cm⊗ qm

∣∣∣∣∣∣ cνm = (ν⊗1)cm ∀ν ∈ V 2
N,m ∈N−1M+

⎫⎬⎭ .
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Furthermore, since V 2
N acts freely on N−1M+ (and M

V 2
N

θ = 0), the morphisms

ι̃∗(Fil
j(Ω1

ỸU/O)p,i)→ ι̃∗Ã2eθ,−eθ

are surjective on completions at cusps and hence surjective. It follows that the graded

pieces of (the obvious extension of) the Kodaira–Spencer filtration on ι̃∗Ω
1
ỸU/O are

canonically isomorphic to ι̃∗Ã2eθ,−eθ
.

The constructions above are compatible with the natural actions of O×
F,(p),+ on Ỹ tor

U ,

Ỹ min
U and M, so that the resulting descriptions carry over to Y min

U . More precisely,

ι∗(Ω
1
YU/O) is a coherent sheaf on Y min

U whose completion at the cusp C is identified

with
(
M ⊗O[[qm]]m∈N−1M+∪{0}

)VN,+

=

⎧⎨⎩ ∑
m∈N−1M+

cm⊗ qm

∣∣∣∣∣∣ cνm = νcm ∀ν ∈ VN,+,m ∈N−1M+

⎫⎬⎭,

in terms of which the canonical derivation is
∑

rmqm �→
∑

m⊗ rmqm. Furthermore,

the completion at C of Fil j(ι∗(Ω
1
YU/O)p,i) := ι∗(Fil

j(Ω1
YU/O)p,i) is identified with(

tj(M ⊗O)τ ⊗OO[[qm]]m∈N−1M+∪{0}
)VN,+

, and the natural maps

gr j(ι∗(Ω
1
YU/O)p,i) ↪→ ι∗(gr

j(Ω1
YU/O)p,i)

∼−→ ι∗A2eθ,−eθ
(29)

are isomorphisms whose completions at the cusps are induced by the surjections tj(M ⊗
O)τ →Mθ.
Suppose now that U ′ is an arbitrary sufficiently small open compact subgroup of

GL2(AF,f ) of level prime to p, and choose N so that U(N)⊂U ′. The constructions above
are then also compatible with the natural actions of U ′, so we arrive at similar conclusions

with minor modifications to the descriptions of completions that result from taking
invariants under ΓC,U ′ . We omit the details, but we remark that letting L (respectively

V ) denote the kernel (respectively image) of the homomorphism

ΓC,U ′/(O×
F ∩U ′) → O×

F,+(
α β

0 δ

)
· (O×

F ∩U ′) �→ α−1δ,

the coefficients rm of q-expansions in O∧
Y min
U′ ,C′ are indexed by m ∈ (L∗)+ ∪{0} (where

L is identified with a finite index subgroup of M ). Since V acts freely on L∗ (twisting

q-expansion coefficients by a possibly nontrivial cocycle valued in L⊗μN (O)), we still

obtain the isomorphism of (29) with U replaced by U ′, identifying the graded pieces of
the Kodaira–Spencer filtration on ι∗Ω

1
YU′/O with the sheaves ι∗A2eθ,−eθ

.

The description of the extension of the Kodaira–Spencer filtration over compactifica-

tions also applies after base change to an arbitrary O-algebra R, with one significant
difference. If R is not flat over O, then the modules M ⊗R (and their subquotients) may

have invariants under the action of the unit groups VN,+ (or, more generally, the isotropy

groups ΓC,U ′), so that q-expansions of meromorphic differentials on YU,R (and forms of
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weight (2eθ, − eθ)) may have nonzero constant terms and the morphism analogous to

(29) may fail to be an isomorphism. (Note that in this case the relevant base-change

morphisms (ι∗F)R → ιR,∗(FR) fail to be surjective at the cusps.)
We can, however, simplify matters by placing ourselves in the situation when this fails

in the extreme. Suppose then that pnR = 0 for some n > 0 and that N is sufficiently

large that ν ≡ 1 mod pnOF for all ν ∈ VN,+. Arguing exactly as above, we find that
ιR,∗(Ω

1
YU,R/R) is now a vector bundle over Y min

U,R whose completion at C is identified with(
M ⊗R[[qm]]m∈N−1M+∪{0}

)VN,+
=M ⊗O∧

Y min
U,R,C

=

⎧⎨⎩ ∑
m∈N−1M+∪{0}

cm⊗ qm

∣∣∣∣∣∣ cνm = νcm ∀ν ∈ VN,+,m ∈N−1M+

⎫⎬⎭,

with the canonical derivation given by
∑

rmqm �→
∑

m⊗ rmqm. Furthermore, each

Fil j(ιR,∗(Ω
1
YU,R/R)p,i) = ιR,∗(Fil

j(Ω1
YU,R/R)p,i)

is a subbundle whose completion at C is identified with tj(M ⊗O)τ ⊗O O∧
Y min
U,R,C and the

natural maps

gr j(ιR,∗(Ω
1
YU,R/R)p,i) ↪→ ιR,∗(gr

j(Ω1
YU,R/R)p,i)

∼−→ ιR,∗A2eθ,−eθ,R

are isomorphisms of line bundles over Y min
U,R whose completions at the cusps are induced

by the surjections tj(M ⊗O)τ → Mθ. We remark also that this carries over with U

replaced by arbitrary U ′, provided U ′ is sufficiently small that (in additional to the

usual hypotheses) α ≡ δ mod pnOF for all

(
α β
0 δ

)
∈ ΓC,U ′ and cusps C′ of YU ′ (the

condition being independent of the choice of N and C in the definition of ΓC,U ′).

8. Operators on q-expansions

8.1. Partial Hasse invariants

We next describe the effect of the various weight-shifting operators on q-expansions,

beginning with the simplest case of (multiplication by) partial Hasse invariants. We will
now only be working in the setting of R = F, and we will use · to denote base changes

from O to F. Since the formation of q-expansions is compatible in the obvious sense with

pullback under the projections Y U → Y U ′ , it will suffice to consider the case U = U(N).
Recall that in Subsection 4.1 we defined the partial Hasse invariants as certain elements

Hθ ∈Mhθ,0(U ;F) =H0(Y U,Ahθ,0),

where hθ := nθeσ−1θ−eθ, with nθ = p if j = 1 and nθ = 1 if j > 1. In particular, if j > 1,

then Hθ is defined by the morphism u : Lτ,j → Lτ,j−1 induced by �p on the universal

abelian variety over ỸU,F, which evidently extends to the endomorphism �p of Ator over
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S := Ỹ tor
U,F. Since its pullback via ξ is defined by �p on T I,J , the resulting morphism of

line bundles

ξ
∗Ltor

τ,j −→ ξ
∗Ltor

τ,j−1

is compatible with their canonical trivialisations and, more precisely, with the morphism

(I−1)θ⊗O F→ (I−1)σ−1θ⊗O F

induced by u=�⊗1 on (I−1⊗O)τ . It follows that Hθ has constant q-expansion, where
the constant corresponds to the basis element �p under the identification

Dhθ,0
∼= p⊗OF ,θ F

provided by (26).

For j = 1 we use also that the morphism of line bundles

ξ
∗Ltor

τ,1 −→ ξ
∗
φ∗
S(Ltor

φ−1◦τ,ep)

induced by the Verschiebung φ∗
ST I,J → T I,J is compatible via the canonical trivialisations

with the canonical isomorphism

(I−1⊗F)τ
∼−→ φ∗

S(I
−1⊗F)φ−1◦τ .

So in this case we again find that Hθ has constant q-expansion, the constant now

corresponding to the basis element �
1−ep
p under the identification

Dhθ,0
∼= p1−ep ⊗OF ,θ F

given by (26).

The q-expansions of the canonical sections Gθ ∈M0,hθ
(U ;F) may be described similarly.

Indeed, for j > 1, the composites

Lτ,j −→ Pτ,j
u−→ Lτ,j−1

and Mτ,j−1 −→ Pτ,j
u−→ Mτ,j

on Ỹ ord
U,F are isomorphisms whose tensor product defines Nθ

∼=Nσ−1θ. Its unique extension

to Ỹ tord
U,F , and hence to Ỹ tor

U,F, is therefore the isomorphism whose pullback via ξ is the

tensor product of the isomorphisms defined on canonical trivialisations by (I−1)θ⊗O F
u→

(I−1)σ−1θ⊗OF and by the identity on (dJ−1⊗F)τ/u(dJ
−1⊗F)τ and hence corresponds to

(d(IJ)−1)θ⊗O F
u→ (d(IJ)−1)σ−1θ⊗O F.

Therefore, Gθ has constant q-expansion, with constant corresponding to the basis element

�p under the identification

D0,hθ
∼= p⊗OF ,θ F

provided by the analogue of (26) for (d(IJ)−1)θ.
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Similarly, if j =1, we find that Nτ,1
∼= φ∗

S(Nφ−1◦τ,ep) over S = Ỹ ord
U,F is the tensor product

of the isomorphism

Lτ,1 → φ∗
S(Lφ−1◦τ,ep)

defining the Hasse invariant and the isomorphism

φ∗
S(Mφ−1◦τ,ep)→Mτ,1

induced by FrobA. The extensions to Ỹ tord
U,F are again compatible with the canonical

trivialisations, now corresponding to maps whose tensor product is the inverse of the

isomorphism

((d(IJ)−1)σ−1θ⊗O F)⊗p ∼−→ (d(IJ)−1)θ⊗O F

induced by uep−1. So again Gθ has constant q-expansion, with constant corresponding to

�
1−ep
p under the identification

D0,hθ
∼= p1−ep ⊗OF ,θ F

given by (26) for (d(IJ)−1)θ.

8.2. Partial Θ-operators

We now compute the effect of Θ-operators on q-expansions exactly as in [12]. Recall from

Subsection 5.2 that for each τ0 = τp,i ∈ Σ0, the associated partial Θ-operator is a map

Θτ0 :Mk,l(U ;F)→Mk′,l′(U ;F)

where k′ = k+nθ0eσ−1θ0 +eθ0 , l
′ = l+eθ0 and θ0 = θp,i,ep . It is defined for all sufficiently

small U of level prime to p and is Hecke-equivariant. In particular, it is compatible with

restriction for U ⊂ U ′, so we may assume U = U(N) for some N sufficiently large that
ν ≡ 1 mod pOF for all ν ∈ VN,+.

Recall from the proof of Theorem 5.2.1 that Θτ0 is defined by a morphism Ak,l,F →
Ak′,l′,F given locally on sections by formula (12). Our assumptions on U imply that

(ιF,∗Ak,l,F)
∧
C =Dk,l,F⊗F ·O∧

Y min
U,F ,C

is free of rank 1 over O∧
Y min
U,F ,C for all weights k,l and cusps C, so the completion at C of

ιF,∗Θτ0 is the map

(ιF,∗Ak,l,F)
∧
C → (ιF,∗Ak′,l′,F)

∧
C

defined by (12), where yθ is any basis for (ιF,∗Lθ)
∧
C and yk =

∏
θ y

kθ

θ . In particular, we

may choose yθ = bθ ⊗ 1 where bθ is a basis for Deθ,0,F = (I−1)θ ⊗O F. The fact that Hθ

has (nonzero) constant q-expansion at C then means the same holds for the element
rθ ∈ O∧

Y min
U,F ,C ; that is, rθ ∈ F×. We can even select the bases bθ so that rθ = 1 for all θ

by choosing any basis bp for (Ip⊗F)p,0 over F[u]/uep for each p, letting bp,i correspond

to (φi)∗(bp) under the canonical isomorphism (Ip⊗F)p,i ∼= (φi)∗(Ip⊗F)p,0 and defining

bp,i,j to be the image of uep−jbp,i in (I−1)θ⊗O F.
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Recall also that gl =
∏

θ g
lθ
θ in (12), where each gθ is a trivialisation of Nθ over YU,F.

Therefore, gθ trivialises ιF,∗Nθ over Y min
U,F , from which it follows that gθ = cθ⊗1 for some

basis cθ of D0,eθ,F = (d(IJ)−1)θ⊗O F. The formula (12) therefore takes the form

Θτ0(b
kcl⊗ϕf ) =Hθ0b

kcl⊗KSτ0(dϕf ) = bk+hθ0 cl⊗KSτ0(dϕf ),

for ϕf ∈ O∧
Y min
U,F ,C . Finally, the descriptions in Subsection 7.3 of the canonical derivation,

the Kodaira–Spencer filtration and the isomorphism (29) in terms of q-expansions yield
the formula

Θτ0

⎛⎝ ∑
m∈N−1M+∪{0}

(bkcl⊗ rm)qm

⎞⎠=
∑

m∈N−1M+

(bk+hθ0 clτ0(m)⊗ rm)qm (30)

where τ0 is the canonical projection

N−1M → (N−1M ⊗F)τ0 = (M ⊗F)τ0
→ M ⊗OF ,θ0

F= (d−1I−1J)⊗OF ,θ0
F=D2eθ0

,−eθ0
,F

(writing θ0 for the composite of OF
θ0→O→ F). As noted above, it follows that (30) holds

with U = U(N) replaced by any sufficiently small open compact U ′ of level prime to p

and C replaced by any cusp of YU ′ . In this case, the q-expansions are necessarily invariant

under the natural action of ΓC,U ′ (whose compatibility with (30) is a consequence of the
construction but is straightforward to check directly).

We see immediately from (30) that the operators Θτ for varying τ commute. We see

also that

Θp
τ0(f) = Θτ1(f)H

p
θ0
Hθ1G

−1
θ1

ep−1∏
j=1

(
Hσjθ0G

−1
σjθ0

)
,

where τ1 = τ0◦φ= τp,i+1 and θ1 = σepθ0 = θp,i+1,ep . Indeed, this follows from (30) together

with the fact that the q-expansions of

Hτ1 =

ep∏
j=1

Hσjθ0 and Gτ1 =

ep∏
j=1

Gσjθ0

are constants given by the canonical isomorphisms ((I−1)θ0 ⊗O F)⊗p ∼= (I−1)θ1 ⊗O F and

((d(IJ)−1)θ0 ⊗O F)⊗p ∼= (d(IJ)−1)θ1 ⊗O F, so we get a commutative diagram

D2eθ1
,−eθ1

,F

��

N−1M

τ1

�����������

τ0
⊗p

����
���

���
���

D⊗p
2eθ0

,−eθ0
,F

where the downward arrow is multiplication by the (constant) q-expansion of H2
τ1G

−1
τ1 .
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8.3. Partial Frobenius operators

Finally, we compute the effect on q-expansions of the partial Frobenius operators Vp

defined in Subsection 6.2. We must first extend the partial Frobenius endomorphisms

Φ̃p (and Φp) defined in Subsection 6.1 to compactifications. To that end, let hp

denote the matrix
(
1 0
0 δ

)
, viewed as an element of GL2(A

(p)
F,f ), where δ ∈ F× is as in

the definition fo Φ̃p. We let Φ̃∞
p : Ỹ ∞

U → Ỹ ∞
U be the permutation defined on double

cosets by B1(OF,(p))gU
p �→B1(OF,(p))h

−1
p gUp and, similarly, let Φ∞

p denote the induced

permutation of Y ∞
U . Then Φ̃∞

p translates to the map on corresponding data sending

(H,I,λ,[η]) to (H ′,I ′,λ′,[η′]), where

• I ′ = p−1⊗OF
I = p−1I,

• H ′ is the pushout of H with respect to I → I ′,
• λ′ = δ⊗λ (identifying ∧2

OF
H ′ = p−1⊗OF

∧2
OF

H) and

• η′ = η (identifying Ô(p)
F ⊗OF

H ′ = Ô(p)
F ⊗OF

H).

Suppose now that U = U(N) for some sufficiently large N. One then checks that the

morphism Φ̃p : ỸU,F → ỸU,F extends to a morphism Φ̃tor
p : Ỹ tor′

U,F → Ỹ tor
U,F (where the ′

indicates the choice of cone decomposition need not be the same) under which the

component corresponding to a cusp C̃ represented by (H,I,λ,[η]) is sent to the one

corresponding to C̃′ = Φ̃∞
p (C̃) represented by (H ′,I ′,λ′,[η′]), and the resulting map on

completions pulls back to a morphism Ŝ′
C̃,F → ŜC̃′,F whose effect on global sections

corresponds under the isomorphisms of (18) to the homomorphism induced by the

canonical inclusion

M ′ := d−1(I ′)−1J = pd−1I−1J ↪→ d−1I−1J.

Furthermore, the pullback of A′tor = (Φ̃tor
p )∗Ator to Ŝ′

C̃,F is identified with the Tate semi-

abelian variety Tp−1I,J , and the isomorphisms defined in Subsection 6.2 relating the line

bundles Φ̃∗
pLθ to Lθ or Lσ−1θ extend to isomorphisms

(Φ̃tor
p )∗Ltor

θ
∼= Ltor′

θ for θ 	∈ Σp, and (Φ̃tor
p )∗Ltor

θ
∼= (Ltor′

σ−1θ)
⊗nθ for θ ∈ Σp

over Ỹ tor′

U,F whose pullbacks are compatible via their canonical trivialisations with

isomorphisms induced by the canonical (OF ⊗F)τ -equivariant maps

(pI−1⊗F)−→ (pI−1⊗F)τ −→ (I−1⊗F)τ .

More precisely, if τ 	∈Σp,0, then the second map is an isomorphism identifying (pI−1)θ⊗O
F with (I−1)θ⊗O F, and if τ = τp,i and θ = θp,i,j , then this map also induces the desired

isomorphisms

(pI−1)θ⊗O F = uep−j(pI−1⊗F)τ ⊗F[u]/uep F
∼−→ uep−j+1(I−1⊗F)τ ⊗F[u]/uep F= (I−1)σ−1θ⊗O F

for j = 2, . . . ,ep. On the other hand, if τ = τp,i and θ = θp,i,1, then the first map induces

an isomorphism

(pI−1⊗F)τ ⊗F[u]/uep F
∼−→ uep−j(pI−1⊗F)τ ⊗F[u]/uep F= (pI−1)θ⊗O F

https://doi.org/10.1017/S1474748021000530 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000530


1920 F. Diamond

whose composite with the ones induced by

φ∗(I−1⊗F)φ−1◦τ
∼−→ (I−1⊗F)τ

p⊗1−→ (pI−1⊗F)τ

yields the desired isomorphism

((I−1)σ−1θ⊗O F)⊗p ∼−→ (I−1)θ⊗O F.

The relations between the line bundles Φ̃∗
pNθ and Nθ or Nσ−1θ extend similarly over

Ỹ tor′

U,F , so for k′′,l′′ as in (14) we obtain isomorphisms

(Φ̃tor
p )∗Ãtor

k,l,F
∼= Ãtor′

k′′,l′′,F

whose pullbacks to Ŝ′
C̃,F are compatible via their canonical trivialisations with the

isomorphisms

D
′
k,l

∼=Dk′′,l′′ (31)

obtained as the tensor products of the ones just defined (where D
′
k,l is associated to the

data for the cusp C̃′ and Dk′′,l′′ to the data for C̃).
It follows from the above description of Φ̃tor

p that Φ̃p extends to the morphism Φ̃min
p :

Ỹ min
U,F → Ỹ min

U,F restricting to Φ̃∞
p on the set of cusps, with the induced maps on completed

local rings15 being the restriction to V 2
N -invariants of the canonical inclusion

F[[qm]]m∈(N−1M ′)+∪{0} −→ F[[qm]]m∈(N−1M)+∪{0}, (32)

where M = d−1I−1J and M ′ = pM . Furthermore, the commutativity of the diagram

(ι̃F,∗Ãk,l,F)
∧
C̃′� �

��

Γ((Ỹ tor
U,F)

∧
C̃′,(Ãtor

k,l,F)
∧
C̃′)� �

��

∼		 ∼ �� (D
′
k,l⊗F Γ(ŜC̃′,F,OŜC̃′,F

))V
2
N

� �

��

(ι̃F,∗Φ̃
∗
pÃk,l,F

)∧C̃

�
��

Γ((Ỹ tor′

U,F )
∧
C̃ ,(Φ̃

tor,∗
p (Ãtor

k,l,F))
∧
C̃ )

�
��

∼		 ∼ �� (D
′
k,l⊗F Γ(Ŝ

′
C̃,F,OŜ′

C̃,F

))V
2
N

�
��

(ι̃F,∗Ãk′′,l′′,F)
∧
C̃ Γ((Ỹ tor′

U,F )
∧
C̃ ,(Ã

tor′

k′′,l′′,F)
∧
C̃ )

∼		 ∼ �� (Dk′′,l′′ ⊗F Γ(Ŝ
′
C̃,F,OŜ′

C̃,F

))V
2
N

(where the top vertical arrows are defined by pulling back via Φ̃min
p , Φ̃tor

p and the map

Ŝ′
C̃,F → ŜC̃′,F) shows that the resulting map on q-expansions is the restriction to V 2

N -

invariants of the map

D
′
k,l⊗F F[[q

m]]m∈(N−1M ′)+∪{0} −→Dk′′,l′′ ⊗F F[[q
m]]m∈(N−1M)+∪{0},

15Note that we have implicitly chosen different representatives (H,I,λ,[η]) for each cusp ˜C
according to whether ˜YU,F is viewed as the source or target of ˜Φp, but the rings and modules

arising from the two different descriptions of completions at ˜C are canonically isomorphic.
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obtained as the tensor product of (31) and (32). (Note that the isomorphism (31) is

V 2
N -equivariant, but we can also choose N sufficiently large that the action is trivial.)

The constructions above are all compatible with the natural action of O×
F,(p),+, so the

morphism Φ̃min
p induces a morphism Φmin

p : Y
min

U → Y
min

U extending Φp by the map Φ∞
p

on cusps, and its effect on completed local rings is given by the VN,+-invariants of (32).

Furthermore, the map Vp : Mk,l(U ;F) −→ Mk′′,l′′(U,F) is described on q-expansions by
taking the VN,+-invariants of the tensor product of (31) and (32). (Note that Φmin

p is

proper and quasi-finite, and hence finite, but not necessarily flat at the cusps.)

Similarly, for any sufficiently small U ′, we may choose N so U = U(N) ⊂ U ′ and take
invariants under the natural action of U ′/U , with which the above constructions are also

easily seen to be compatible. We thus obtain the description of Vp on q-expansions (under

the identifications of Proposition 7.2.1) as the resulting map

(
D

′
k,l⊗F F[[q

m]]m∈(N−1M ′)+∪{0}

)ΓC′,U′
−→

(
Dk′′,l′′ ⊗F F[[q

m]]m∈(N−1M)+∪{0}
)ΓC,U′8 .

(33)

(Note that the maps (31) and (32) are in fact ΓC-equivariant, where ΓC is defined in (24)
and its action on the target is via the natural inclusion in ΓC′ .)

Finally, we note that the effect of the operator V 0
p : Mk,l(U ;F) −→ Mk′′,l(U,F) on q-

expansions has the same description but with (31) replaced by its composite with the
isomorphism

Dk′′,l′′
∼=D0,l−l′′ ⊗FDk′′,l′′ =Dk′′,l

given by choosing the basis element of D0,l−l′′ to be the (constant) q-expansion of∏
θ∈ΣG−lθ

θ .

9. The kernel of Θ

9.1. Determination of the kernel

In this section we analyze the kernel of the partial Θ-operator Θτ : Mk,l(U ;F) →
Mk′,l′(U ;F) for τ ∈ Σp,0 and relate it to the image of a partial Frobenius operator.
We allow U to be any sufficiently small open compact subgroup of GL2(AF,f ) of level

prime to p and (k,l) any weight such that χk+2l,F is trivial on U ∩O×
F . First note that by

(30) and the q-expansion principle (Proposition 7.2.2), the kernel of Θτ consists precisely
of those f whose q-expansions

∑
m∈N−1M+∪{0}(b

kcl⊗rm)qm at all cusps, or even a cusp on

each connected component, satisfy rm =0 for all m 	∈ pN−1M . (Recall that M = d−1I−1J

if the cusp C if represented by (H,I,[λ],[η]), and note that the condition depends only on

the isomorphism class of (H,I,[λ],[η]) and, in particular, is independent of N prime to p
such that U(N)⊂ U .) Note that the condition is the same for all τ ∈ Σp,0, so that

ker(Θτ ) = ker(Θτ ′) for all τ,τ ′ ∈ Σp,0.
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Note also that the condition is invariant under multiplication by the Hasse invariants Hθ

(and, of course, the forms Gθ) for all θ, so that Θτ (f) = 0 if and only if

Θτ (f
∏
θ∈Σ

Gmθ

θ Hnθ

θ ) = 0

for all m∈ZΣ, n∈ZΣ
≥0, if and only if Θτ (f

∏
θ∈ΣGmθ

θ Hnθ

θ ) = 0 for some m∈ZΣ, n∈ZΣ
≥0.

(Alternatively, note that this follows from the fact the partial Θ-operators commute with

multiplication by the Gθ and Hθ, as can be seen directly from their definition.)
Suppose now that k= kmin(f), so that f is not divisible by any partial Hasse invariants

(see Subsection 4.2). Then if f ∈ ker(Θτ ), and hence f ∈ ker(Θτp,i) for all i∈ Z/fpZ, then

Theorem 5.2.1 implies that p|kθp,i,ep for all i ∈ Z/fpZ. Therefore, k is of the form k′′
0 for

some k0, where k′′
0 is as in the definition of Vp in Subsection 6.2 or, equivalently, V 0

p .

Furthermore, it is immediate from the description of the effect of V 0
p on q-expansions

in (33) that its image is contained in the kernel of Θτ . We now use the method of [12,

Thm. 9.8.2] to prove that the kernel is precisely the image of V 0
p .

Theorem 9.1.1. Suppose that f ∈Mk′′
0 ,l

(U ;F) and τ ∈Σp,0. If Θτ (f)= 0, then f =V 0
p (g)

for some g ∈Mk0,l(U ;F).

Proof. Let ι denote the embedding Y U ↪→ Y
min

U and choose a set of cusps S ⊂ Y ∞
U

consisting of precisely one on each connected component of Y U . Note that since Φmin
p

(defined in Subsection 8.3) is bijective on cusps as well as connected components, the set
S ′ := Φ∞

p (S) also includes exactly one cusp on each connected component.

Recall from Proposition 7.2.1 that the sheaves ι∗Ak0,l,F and ι∗Ak′′
0 ,l,F

are coherent, as

is ι∗Φp,∗Ak′′
0 ,l

′′,F = Φmin
p,∗ ι∗Ak′′

0 ,l,F
since Φmin

p is finite. For each C ∈ S, let C′ = Φ∞
p (C), so

that Φmin,∗
p defines a finite extension O

Y
min
U ,C′ ↪→ O

Y
min
U ,C of local rings. We let NC′ =

(ι∗Ak0,l,F)C′ denote the stalk at C′ of ι∗Ak0,l,F and, similarly, let N ′′
C = (ι∗Ak0,l,F)C =

(ι∗Φp,∗Ak′′
0 ,l,F

)C′ . The stalk at C′ of ι∗ of the adjoint of Φ∗
pAk0,l,F

∼−→Ak′′
0 ,l,F

then defines

an injective homomorphism NC′ →N ′′
C of finitely generated O

Y
min
U ,C′-modules, extending

V 0
p to a map ⊕

C′∈S′

NC′ →
⊕
C∈S

N ′′
C .

Similarly, localising at the generic points of Y U (or, equivalently, Y
min

U ) extends V 0
p to

a map H0(Y U,Ak0,l,F⊗Y U
FU )→H0(Y U,Ak′′

0 ,l,F
⊗Y U

FU ), so we obtain a commutative

diagram of injective maps

Mk0,l(U ;F) ��

��

⊕
C′∈S′ NC′ ��

��

H0(Y U,Ak0,l,F⊗Y U
FU )

��

Mk′′
0 ,l

(U ;F) ��
⊕

C∈SN
′′
C

�� H0(Y U,Ak′′
0 ,l,F

⊗Y U
FU ).

(34)

(Note that the horizontal maps, defined by localisation, are injective since S and S ′ each
contain a unique cusp on each component of Y U .)
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Let N∧
C′ denote the completion of NC′ with respect to the maximal ideal of O

Y
min
U ,C′ ,

and, similarly, let N ′′∧
C denote the completion of N ′′

C with respect to the maximal ideal

of O
Y

min
U ,C or, equivalently, O

Y
min
U ,C′ . Note that the map N∧

C′ →N ′′∧
C is the one described

by (33) or, more precisely, its variant for V 0
p .

Recall from (30) that if f ∈ kerΘτ , then for each C ∈ S, the q-expansion of f,∑
m∈N−1M+∪{0}

(bk
′′
0 cl⊗ rm)qm ∈N ′′∧

C ,

satisfies rm = 0 for all m 	∈ pN−1M =N−1M ′
+, where M ′ = pM , and is therefore in the

image of N∧
C′ . Since the completion O∧

Y
min
U ,C′ is faithfully flat over O

Y
min
U ,C′ , it follows that

the image of f in
⊕

C∈SN
′′
C is of the form V 0

p (g) for some g ∈
⊕

C′∈S′ NC′ and hence that

its image inH0(Y U,Ak′′
0 ,l,F

⊗Y U
FU ) is of the form V 0

p (g) for some g ∈H0(Y U,Ak′′
0 ,l,F

⊗Y U

FU ).

It just remains to prove that g ∈Mk0,l(U ;F) or, equivalently, that ordz(g) ≥ 0 for all
prime divisors z on Y U . To that end, note that the operators Vp′ for all p′ ∈ Sp and εk,l
for all k,l ∈ ZΣ (see Subsection 6.2)) similarly extend to maps on stalks at generic points

satisfying (16), so that Vp(g) = f
∏

θ∈ΣGlθ
θ and

gp =

⎛⎝εpk,pl
∏

p′∈Sp

V
eq
q

⎞⎠(g) =

⎛⎝δpk,pl
∏
p′ 
=p

V
ep
p′

⎞⎠V
ep−1
p (f).

Therefore, p ·ordz(g)≥ 0, and hence ordz(g)≥ 0.

For the following corollary, recall that Ξmin is defined by (10) and that the main result

of [10] states that if f is a nonzero form in Mk,l(U ;F), then kmin(f) ∈ Ξmin.

Corollary 9.1.2. Suppose that f ∈Mk,l(U ;F) and τ ∈Σp,0. Then Θτ (f) = 0 if and only
if there exist k0 ∈ Ξmin, n ∈ ZΣ

≥0 and g ∈Mk0,l(U ;F) such that k= k′′
0 +
∑

θ nθhθ and

f = V 0
p (g)

∏
θ

Hnθ

θ .

Proof. We have already seen that if f = V 0
p (g)

∏
θH

nθ

θ , then Θτ (f) = 0.
For the converse, note that we may assume k= kmin(f), so that k∈Ξmin and k= k′′

0 for

some k0 ∈ ZΣ. Therefore, the theorem implies that f = V 0
p (g) for some g ∈Mk0,l(U ;F).

Finally, it is immediate from the definitions of Ξmin and k′′
0 that k0 ∈ Ξmin if (and only

if) k′′
0 ∈ Ξmin.

9.2. Forms of partial weight 0

We now apply our results on partial Θ-operators to prove a partial positivity result for

minimal weights of Hilbert modular forms. Recall the main result of [10] proves that

minimal weights k =
∑

kθeθ of Hilbert modular forms necessarily lie in the cone Ξmin,
and hence satisfy kθ ≥ 0 for all θ, and that forms with k = 0 are easily described by

Proposition 3.2.2. We prove the following restriction on possible minimal weights k with

kθ = 0 for some (but not all) θ ∈ Σ.
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Theorem 9.2.1. Suppose that p ∈ Sp is such that fp > 1, or ep > 1 and p > 3. Suppose
that f ∈Mk,l(U ;F) is nonzero and k= kmin(f). If kθ = 0 for some θ ∈ Σp, then k= 0.

Proof. Writing simply f = fp and e= ep, note that the hypotheses mean that ef > 1 and

pf > 3. Choose any τ = τp,i ∈ Σp,0 and let θ0 = θp,i,e. We will first prove that Θτ (f) = 0.
Note that since k∈Ξmin and kθ =0 for some θ ∈Σp, we in fact have kθ =0 for all θ ∈Σp.

In particular, p|kθ0 , so Theorem 5.2.1 implies that Hθ0 |Θτ (f). Therefore, if Θτ (f) 	= 0,

then kmin(Θτ (f))≤Ha k+2eθ0 ; that is,

k+2eθ0 −
∑
θ∈Σ

mθhθ ∈ Ξmin

for some integers mθ ≥ 0. Letting mr =mσrθ0 for r = 1, . . . ,ef , this implies that

m1−m2 ≤m2−m3 ≤ ·· · ≤me−1−me ≤me−pme+1

≤ p(me+1−me+2)≤ p(me+2−me+3)≤ ·· · ≤ p(m2e−1−m2e)≤ p(m2e−pm2e+1)
...

≤ pf−1(m(f−1)e+1−m(f−1)e+2)≤ ·· · ≤ pf−1(mef−1−mef )≤ pf−1(2+mef −pm1)

≤ pf (m1−m2)

(35)

(with the obvious collapsing here and in subsequent inequalities if e or f = 1). In

particular, all of the expressions in (35) are nonnegative, so we have

m1 ≥m2 ≥ ·· ·me ≥ pme+1 ≥ pme+2 ≥ ·· · ≥ pf−1mef−1 ≥ pf−1mef

and 2+mef −pm1 ≥ 0, which implies that (pf −1)mef ≤ 2. Since pf > 3, it follows that

mef = 0, so pm1 ≤ 2, which implies that either m1 = 0 or m1 = 1 and p = 2. If m1 = 0,

then mr = 0 for all r, which contradicts the final inequality in (35). On the other hand, if
m1 = 1 and p= 2, then all of the expressions in (35) are zero, which in turn implies that

m1 = pf−1mef , which again yields a contradiction.

We have now shown that Θτ (f) = 0. Note that k′′ = k since kθ = 0 for all θ ∈ Σp,
so Theorem 5.2.1 implies that f = V 0

p (f1) for some f1 ∈ Mk,l(U ;F). We may therefore

iterate the above argument to conclude that f1 = V 0
p (f2) for some f2 ∈Mk,l(U ;F) and,

by induction, that for all n ≥ 1, we have f = (V 0
p )

n(fn) for some fn ∈ Mk,l(U ;F). It

follows that for all n≥ 1, the q-expansion of f at every cusp of Y U satisfies rm = 0 for all
m 	∈ pnM , so in fact the q-expansion of f at every cusp is constant.

To prove that k = 0, recall that Ξmin is contained in the cone spanned by the partial

Hasse invariants, so k =
∑

θ∈Σ sθhθ for some sθ ∈ Q≥0. Furthermore, the denominators
are divisors of M = lcm{pfq − 1 |q ∈ Sp }, so that Mk =

∑
mθhθ for some mθ ∈ Z≥0.

Similarly, M l=
∑

nθhθ for some nθ ∈ Z. Since f has constant q-expansions, so does fM ,

and therefore

fM = h
∏
θ∈Σ

(Hmθ

θ Gnθ

θ )

for some h ∈H0(Y U,OY U
).
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For each θ ∈ Σ, the assumption that k = kmin(f) means that f is not divisible by Hθ,

so ordz(f) = 0 for some irreducible component z of Zθ. On the other hand, we have

Mordz(f) = ordz(f
M ) ≥ mθ, so mθ = 0. As this holds for all θ ∈ Σ, we conclude that

k= 0.

9.3. The kernel revisited

Finally, we present a cleaner, but less explicit, variant of Corollary 9.1.2 describing the

kernels of partial Θ-operators.
We first record the effect of Vp on the partial Hasse invariantsHθ. For each prime p∈Sp,

we let βp = p−1�
ep
p ∈ O×

F,p. It is straightforward to check, directly from the definition of

Vp or from the description (33) of its effect on q-expansions (and those of the Hθ in

Subsection 8.1), that if θ 	∈ Σp, then Vp(Hθ) =Hθ, but if θ = θp,i,j , then

Vp(Hθ) =

⎧⎪⎪⎨⎪⎪⎩
Hp

σ−1θ, if ep = 1;

θ(βp)
−1Hp

σ−1θ, if ep > 1 and j = 1;

θ(βp)Hσ−1θ, if ep > 1 and j = 2;

Hσ−1θ, otherwise.

Therefore, we define the modified partial Hasse invariant to be H ′
θ = θ(βp′)Hθ if θ= θp′,i,1

for some p′ ∈ Sp and i ∈ Z/fp′Z and H ′
θ =Hθ otherwise, so that

Vp(H
′
θ) =

{
H ′nθ

σ−1θ if θ ∈ Σp,0;

H ′
θ if θ 	∈ Σp,0.

Similarly, letting G′
θ = θ(βp′)Gθ if θ = θp′,i,1 and G′

θ = Gθ otherwise, we have Vp(G
′
θ) =

G′nθ

σ−1θ if θ ∈ Σp and Vp(G
′
θ) =Gθ if θ 	∈ Σp.

Now for any sufficiently small U of level prime to p, consider the F-algebra

Mtot(U ;F) =
⊕

k,l∈(ZΣ)2

Mk,l(U ;F)

of Hilbert modular forms of all weights and level U (where we let Mk,l(U ;F) = 0 if χk+2l,F

is nontrivial on U ∩O×
F ). We may then consider Vp (respectively Θτ ) as an F-algebra

homomorphism (respectively F-linear derivation) Mtot(U ;F)→Mtot(U ;F) for any p ∈ Sp

and τ ∈ Σp,0. Furthermore, letting I denote the ideal 〈H ′
θ − 1,G′

θ − 1〉θ∈Σ in Mtot(U ;F)

and RU =M tot(U ;F)/I, we see that Vp(I)⊂ I and Θτ (I)⊂ I, so we obtain an F-algebra
homomorphism Vp and derivation Θτ such that the composite

RU
Vp−→RU

Θτ−→RU

is zero for any p ∈ Sp, τ ∈ Σp,0.

Let Λ denote the subgroup
⊕

θ∈ΣZhθ of Z
Σ =
⊕

θ∈ΣZeθ, so Λ is the image of the image

of the endomorphism of ZΣ defined by
∑

θmθeθ �→
∑

θmθhθ. Writing hθ =
∑

θ′ nθ,θ′eθ′ ,

it is straightforward to check that the matrix (nθ,θ′) has determinant
∏

p∈Sp
(pfp −1), so

this is the index of Λ in ZΣ. On the other hand, let Ψ denote the group of characters
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ψ : (OF /q)
× =

⊕
p∈Sp

(OF /p)
× −→ F× and consider the surjective homomorphism � :

ZΣ →Ψ defined by

�(k) =
∏
θ∈Σ

θ
kθ

=
⊕
p∈Sp

(
∏
θ∈Σp

θ
kθ
).

Note that �(hθ) is trivial for all θ ∈Σ, so Λ⊂ ker(�). Since ZΣ/Λ and Ψ each have order∏
p∈Sp

(pfp −1), it follows that

Λ = ker(�) =

⎧⎨⎩∑kθeθ

∣∣∣∣∣∣
fp∑
i=1

ep∑
j=1

kθp,i,jp
i ≡ 1 mod (pfp −1) ∀p ∈ Sp

⎫⎬⎭ .

Remark 9.3.1. Recall that the Gθ, and hence G′
θ, are invertible in M tot(U ;F), so if l′−

l=
∑

θmθhθ ∈ Λ, then multiplication by
∏

θG
′mθ

θ defines an isomorphism Mk,l(U ;F)
∼→

Mk,l′(U ;F). We may therefore write RU as the quotient of
⊕

k∈ZΣ,ψ∈Ψ

Mk,ψ(U ;F) by the

ideal 〈H ′
θ − 1〉θ∈Σ, where Mk,�(l)(U ;F) is canonically isomorphic to Mk,l(U ;F) for each

l ∈ ZΣ. Furthermore, the main result of [10] immediately implies that the natural map⊕
k∈Ξmin,ψ∈Ψ

Mk,ψ(U ;F)−→RU

is surjective, so we may also replace ZΣ by the submonoid Ξmin+Λ as the index set for
k in the definition of RU .

We will now describe the ideal I in terms of q-expansions. For each cusp C ∈ Y ∞
U

we choose a representative (H,I,[λ],[η]), and for each k,l ∈ ZΣ, we let D
C
k,l denote the

one-dimensional vector space F⊗O Dk,l over F (where Dk,l is defined by (20)). We then

let D
C
tot denote

⊕
k,l∈ZΣ Dk,l with its natural F-algebra structure. For each θ ∈ Σ, let

cθ ∈D
C
hθ,0

denote the (constant) q-expansion of H ′
θ at C. (Recall that the q-expansions

of Hθ were explicitly described in Subsection 8.1, from which one gets a description of

cθ by multiplying by θ(bp) if θ = θp,i,1.) Similarly, let dθ ∈ D
C
0,hθ

denote the (constant)

q-expansion of G′
θ at C, and define IC to be the ideal 〈cθ−1,dθ−1〉θ∈Σ of D

C
tot. We may

then view the quotientD
C
tot/I

C as the space of Λ2-coinvariants of the free F[(ZΣ)2]-module

D
C
tot and decompose

D
C
tot/I

C =
⊕

χ,ψ∈Ψ

D
C
χ,ψ,

so that the natural projection map D
C
k,l →D

C
�(k),�(l) is an isomorphism for all k,l ∈ ZΣ.

Now observe that the collection of q-expansion maps

Mk,l(U ;F)→D
C
k,l⊗F F[[q

m]]m∈N−1MC
+∪{0}
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(where MC = d−1I−1J and U(N)⊂ U) induces an F-algebra homomorphism

q :Mtot(U ;F)−→
⊕

C∈Y ∞
U

⊕
χ,ψ∈Ψ

D
C
χ,ψ ⊗F F[[q

m]]m∈N−1MC
+∪{0}.

Lemma 9.3.2. The kernel of q is I.

Proof. The inclusion I⊂ ker(q) is clear from the definitions.

Suppose then that q(f) = 0 and write f =
∑

k,l∈W fk,l for some finite subset W of

ZΣ. For each χ ∈ Ψ, choose kχ ∈ �−1(χ) sufficiently large that k ≤Ha kχ for all k ∈
�−1(χ)∩W . Thus, for each k ∈W , there is a unique mk =

∑
θmk,θeθ ∈ ZΣ

≥0 such that

k�(k) = k+
∑

θmk,θhθ. Now note that

g :=
∑

k,l∈W

H ′mkG′mlfk,l ∈
⊕

χ,ψ∈Ψ

Mkχ,kψ
(U ;F)

and that f −g ∈ I (where H ′mk =
∏

θH
′mk,θ

θ and G′ml =
∏

θG
′ml,θ

θ ). Since I⊂ ker(q), it

follows that q(g) = 0. However, q restricts to the q-expansion map

⊕
χ,ψ∈Ψ

Mkχ,kψ
(U ;F)−→

⊕
C∈Y ∞

U

⊕
χ,ψ∈Ψ

D
C
χ,ψ ⊗F F[[q

m]]m∈N−1MC
+∪{0},

which is injective by Proposition 7.2.2, so g = 0, and hence f = f −g ∈ I.

We also extract the following observation from the proof of the lemma.

Lemma 9.3.3. If W ⊂ (ZΣ)2 is such that (�,�) :W →Ψ2 is injective, then

I∩
⊕

(k,l)∈W

Mk,l(U ;F) = 0.

We are now ready to interpret the description of the kernel of the partial Θ-operator

in terms of the algebra RU .

Theorem 9.3.4. If p∈Sp, τ ∈Σp,0 and U is any sufficiently small open compact subgroup

of GL2(AF,f ) containing GL2(OF,p), then the sequence

0−→RU
Vp−→RU

Θτ−→RU

is exact.
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Proof. The injectivity of Vp : RU → RU follows16 from Lemma 9.3.2 and the commuta-
tivity of the diagram

Mtot(U ;F)
q′−→

⊕
C′∈Y ∞

U

⊕
χ,ψ∈Ψ

D
C′

χ,ψ ⊗F F[[q
m]]m∈N−1MC′

+ ∪{0}

Vp ↓ ↓
Mtot(U ;F)

q−→
⊕

C∈Y ∞
U

⊕
χ,ψ∈Ψ

D
C
χ,ψ ⊗F F[[q

m]]m∈N−1MC
+∪{0},

where the right downward arrow is the direct sum over (C,χ,ψ) of the tensor product of the
isomorphism D

C′

χ,ψ →D
C
χ,ψ induced by (31) and the injective F-algebra homomorphism

(32). (Note that (�(k),�(l)) = (�(k′′),�(l′′)), and recall that the data (H,I,[λ],[η])

representing each cusp of Y ∞
U were implicitly chosen differently for the source and target

of Φp to simplify the resulting description of Vp on q-expansions in Subsection 8.3.)
Since Θτ ◦Vp =0, it just remains to prove that ker(Θτ )⊂ im(Vp). Suppose then that f ∈

Mtot(U ;F) is such that Θτ (f) ∈ I. As in the proof of Lemma 9.3.2, write f =
∑

k,l∈W fk,l
for some finite subset W of ZΣ, and for each χ ∈Ψ choose kχ ∈ �−1(χ) so that k≤Ha kχ

for all k ∈ �−1(χ)∩W and consider

g :=
∑

k,l∈W

H ′mkG′mlfk,l ∈
⊕

χ,ψ∈Ψ

Mkχ,kψ
(U ;F).

Since f −g ∈ I and Θτ (f) ∈ I, we have Θτ (g) ∈ I. Note, however, that

Θτ (g) ∈
⊕

χ,ψ∈Ψ

Mk′
χ,l

′
ψ
(U ;F)

where k′
χ =kχ+nθ0eσ−1θ0 +eθ0 and l′ψ =kψ−eθ0 , so Lemma 9.3.3 implies that Θτ (g) = 0.

Writing g =
∑

χ,ψ gχ,ψ with gχ,ψ ∈Mkχ,kψ
, this means that Θτ (gχ,ψ) = 0 for all χ,ψ ∈Ψ.

Corollary 9.1.2 now implies that for each χ,ψ ∈Ψ, we have

gχ,ψ =G′mH ′nVp(hχ,ψ)

for some hχ,ψ ∈ Mk0,l0(U ;F), where k0,l0,m ∈ ZΣ and n ∈ ZΣ
≥0 depend on χ and ψ. It

follows that gχ,ψ −Vp(hχ,ψ) ∈ I, so setting h=
∑

χ,ψ hχ,ψ, we conclude that f −Vp(h) =
(f −g)+(g−Vp(h)) ∈ I, as required.

Finally, consider R= lim−→U
RU , where the direct limit is over all sufficiently small open

compact subgroups U containing GL2(OF,p). (Note that this is the same as the quotient of

Mtot(F) := lim−→
U

Mtot(U ;F)∼=
⊕

k,l∈ZΣ

(
lim−→
U

Mk,l(U ;F)

)
=
⊕

k,l∈ZΣ

Mk,l(F)

16Alternatively, one can appeal to Lemma 9.3.3 instead of Lemma 9.3.2 and argue similarly to
the forthcoming proof of the other exactness assertion.
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by the ideal 〈H ′
θ−1,G′

θ−1〉θ∈Σ.) Since the maps Vp and Θτ are Hecke-equivariant in the

obvious sense, we obtain an F-algebra endomorphism Vp of R and an F-linear derivation

Θτ on R, each of which is GL2(A
(p)
F,f )-equivariant and such that the sequence

0−→R
Vp−→R

Θτ−→R

is exact.
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