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SUMMARY

This paper shows that every lattice group G can be densely embedded in a unique laterally
complete lattice group H (the lateral completion of G). All reasonable structure properties of G
are inherited by H and we have the following relationships between the ideal radical L(G), the
distributive radical D(G) and the radical R(G) of G and the corresponding radicals of H.

L(G) U (L(H) N G) = D(H) N G = D(G) = R(H) N G = R(G)

1. Introduction

We first recall some definitions. Let G be a lattice group. A positive disjoint
subset of G is a non-empty subset M of G* (= {xeG:x = 0}) such that
mAn=0if mneM and m # n, ie., the elements of M are pairwise disjoint;
G is laterally complete if every positive disjoint subset of G has a supremum.
Conrad (1969) defines an .Z-completion of G as follows. If G is a sublattice group
of H and if, for each positive disjoint subset M of G such that \/; M exists,
then \/g M exists and is equal to \/¢ M, then G is an Z-subgroup of H. If H is
laterally complete, G is an F-subgroup of H, and K is the intersection of all
laterally complete #-subgroups of H that contain G then K is called an %-
completion of G or the &-completion of G in H; K is laterally complete and no
proper #-subgroup of K is laterally complete and contains G.

As Conrad points out #-completions can be rather pathological. However,
if G is dense in an #-completion K, i.e., for each non-zero k € Kt there exists
a non-zero g € G such that 0 < g < k, all the pathology disappears. He is then
led to the following definition. A lateral completion of G is a lattice group
K 5 G such that:

() Gisdensein K;

(I) K is laterally complete;

(IIT) no proper sublattice group of K contains G and is laterally complete.
(Here we do not distinguish genuine inclusion from embedding.)
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The existence of a unique lateral completion for a complete lattice group
goes back to Nakano (1950) and Pinsker (1949). The author (1966) introduced the
concept of an orthocomplete lattice group which is laterally complete and in which
each polar subgroup is a direct summand.

An orthocompletion of G was then defined to be a laterally complete group H
which contains G as a sublattice group and in which every positive element has a
representation in terms of elements of G and polars of subsets of G. It was shown
that a necessary and sufficient condition for the existence of an ortho-
completion of G is that G be representable (see Section 4 for this definition).
This construction was based on methods of Nakano (1950) and Amemiya (1953).

Conrad (1969) gives a much simpler construction for the orthocompletion
using the concept of a direct limit of lattice groups, and uses this to derive the
existence of a unique lateral completion for a representable lattice group. He also
gives a quite different construction of a unique lateral completion (with zero
radical) for lattice groups with zero radical (see Section 5 for definitions). Byrd
and Lloyd (1969) show that Conrad’s construction can be applied to lattice groups
whose distributive radical is zero, and gives a unique lateral completion with zero
distributive radical.

Conrad’s construction can be summarised as follows. The Holland representa-
tion, Holland (1963), for a lattice group shows the existence of #-completions (but
not uniqueness). Conrad chooses a suitably constructed #-completion K for a
lattice group G and defines, for any subset X of K, X to be the sublattice group
of K generated by all elements of the form \/ M with M a positive disjoint subset
of X. Then, with G(0) = G, for each ordinal u he defines

G(p) = G(v) fpu=v+1
G) = UGH)  if pis a limit ordinal.
v<yu

The process terminates for some least ordinal 2 and K = G(A). Results about K
are then largely proved by transfinite induction. In most cases only G(1) needs
to be considered, the remaining steps of the proof being entirely straightforward.

Our construction may now be outlined. In Section 2 we produce an external
extension G of G in which G is dense and every positive disjoint subset of G has
a supremum. The elements of G are equivalence classes in a semigroup manu-
factured from positive disjoint subsets of G, g € G* corresponds to the equivalence
class of {g}in G, and the equivalence class determined by a positive disjoint subset
of G becomes the supremum of the corresponding subset of G. The equivalence
relation is so chosen that (the image of) G is dense in G. In section 3 we define
G(1) = G(v) when g = v + 1 and for limit ordinals use a simple direct limit in
place of the set-theoretic union of Conrad’s construction. This time the fact that
G is dense in each G(u) puts a limit on the cardinality of positive disjoint subsets
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and enables us to prove that the construction terminates, i.e., that G(u + 1)
= G(p), for some ordinal u. By choosing the least such ordinal, 4 say, we find
that G(2) is a lateral completion of G. The method of construction enables an
easy proof of uniqueness to be given.

The choice of notation in sections 2, 3 is deliberately intended to parallel
Conrad’s notation. This enables us later to use, where applicable, the same
arguments for #-completions and lateral completions. The only distinguishing
feature is the denseness of G in its lateral completion.

Verification of certain structure properties of the lateral completion, in
section 4, is routine. In section 5 we investigate the relationship between the radicals
of G and those of an #-completion K of G. We extend some of Conrad’s results
and get particularly sharp results when K is the lateral completion of G. In sec-
tion 6 we give a very simple proof of one Conrad’s results (1969), Theorem 6.1
about the .#-completion of a lattice group satisfying the condition that each
upper bounded positive disjoint subset is finite.

I am grateful to Paul Conrad for supplying a preprint of Conrad (1969) and
to Richard Byrd for discovering non-trivial errors in the first version of section 2
and in my firstefforts at correction. Yet another error, in the proof of Lemma?2.3, was
discovered by the referee of the second revision. Roger Bleier sat through a detailed
seminar presentation of this material. His refusal to be bluffed and his insistence
on following all steps of the proofs led to many improvements in the exposition.

2. The basic extension

Let G be a lattice group and M and N any non-empty subsets of G. We use
a natural notation and write M + N, My N, M A N, for the subsets of G
consisting respectively of all elements of G of the form m + n, m\V n, m A n,
for all me M, ne N. The natural extension of this notation to the case of finite
index sets 4, B, (« € A) and subsets M,; of G will be used to define \/,c4 A pes,Map-

Now let 2 denote the collection of all positive disjoint subsets of G. Define
a semigroup 5 as follows. The elements of 5 are ordered n-tuples (n = 1,2,-+)
of the form (¢,M,---,e,M,) where ¢; = + 1 and M;e 2 (i = 1,---,n). We define

(EIMI’ ""gnMn) + ('11N1, Tty ﬂka) = (81M1,~"-, san ’11N19 M) '1ka)-

This makes s an associative semigroup under addition. Further we define, for
H = (81M1a --',GnM")Ef, —H= (— san ety T 8lMl) and’ for Hl’HZE';f’
H -H,=H,+(-H,), -H, +H, =(—H,)+ H,. For each

H = (EIMI’ -",SnM”)GJf
we define # = G by H = ¢,M, + --- + ¢,M,. Finally let ¥ denote the set of all

non-empty finite sets of non-empty finite subsets of 5. In other words a
typical element L of ¢ is of the form L = {{H,;: BeB,}: ac A} where 4
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and B, (x € A) are non-empty finite index sets. For such an element L we shall write
L, = {H,: BeB,} (x€A), we may also write L = {{H,]}}, supressing index
sets, where no confusion is likely. For each L = {{H,;: feB,}: ac A}e¥ we
define L = /o4 Apes, Hip < G.

DeFINITION 2.1, Let L = {L,} = {{H,}}, M = {M,} = {{H,;}}e¥. We
define:

@) L+M={{H,+H,:(f8)eB, x A}: @ned x T};

(i) —L={{—Hypu:acA}: fe X,caB};

(i) L-M =L+ (—~M), —L+M = (—L)+ M;

vV LVM=LuyuUM,;

V) LAM={L,UM,:(yed xT}.

In (ii) the Cartesian product X, ., B, is the set of choice functions f with
domain A such that f(x) € B, (x € A).

The definitions above make % an associative semigroup under addition
which is also closed under the other operations. Furthermore, given any %-
completion of G we have a natural map of % into the Z-completion which takes
each {{(M)}} (M e9D) to \/ M and reduces the operations in] ¢ to ordinary
lattice operations in the #-completion. We proceed to exploit this.

DEFINITIONS 2.2. Let H = (¢, M, -+ £,M,). A negative part of H isany element
(&1 M7, -, e,M¥) of S such that M} is a singleton subset of M, if ¢ = 1 and
M} = M;if e, = — 1. When ¢; = 1 we say the negative part of H fixes the single-
ton M} in M;. A positive part of H is defined dually by fixing a singleton in each
M; such that g, = — 1.

For L = {{H,z}} €9, a negative (positive) subsystem of L is an element
{{N.p}} ({{P,s}}) of & such that foreach a, f, N, is a negative part of H,; (P, is
a positive part of H,g).

Next we define three subsets (in fact subsemigroups) of ¥.

First, 2"~ is the set of all elements L& % such that for any negative sub-
system N = {{N,}} of L,

inf N+ = inf (\V A N+ =inf (V A N3)=0.
a B a B8

(We use “inf” here to denote the infimum in G so as to avoid confusion with our
subset calculus.)

Second, X"+ is the set of L € ¢ such that inf P~ = 0 for every positive sys-
tem P of L.

Finally, X = o+ N X",

Before starting on the proof of the next lemmas we make three useful obser-
vations:
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(A) IfV = p(U,, -+-, U,) is a finite combination of subsets of G using addition,
supremum and infimum, the set of lower bounds and hence the infimum if it
exists, of V are unchanged by replacing any set U; by | U, the set of all finite
infima of elements of U;.

(B) Let U,; (B €B,, ac A) be finitely many non-empty subsets of G and let

u,€ U, for all o, B. Since \,cq Apen as = Nsex B, Vallas, ) it follows
that \, ApUss = As Vo Uspey If ua,(,)e U,y for each f and « we can find
V€| Ugp (BE€B,,0€A) such that v,p < U,y (f(@) = f). Then \/, Apvy
= Ay VaVesy S Ay Vallas@y Since inf (V, ApUsp) = inf (Vo Ap | Uap))
(if either exists) it follows that inf \/, AU, = inf A, \/,U,sa, if either
infimum exists.

The dual result, inf A, \/ Uy = inf \/; AyUqsq is proved similarly.

(C) From infinite distributivity of the lattice operations in G we deduce that
inf(U, v U,) = (infU,) v (infU,) for any subsets U,, U, of G which have
infima. A sssociativity also gives inf(U; A U,) = (infU,) A (infU)).

For Lemmas 2.3, 2.4, 2.5 we assume L = {{H,;: peB,}: ac A} and
K= {{H,;;:5€A,}: ye I'} are elements of %.

Lemma 2.3. (i) If K,LeXA ~ then K+ LeX .
(i) If K,LeX* then K+ LeX+.
(iii) If K,Le A" then K+ Le X .

PrOOF. (i) Let Q be a negative system of K + L, then
Q = {{Ruyps + Suyps: (B,0)€B, x A}: (2,7)€ A xT'} where each R,
Sayps are negative parts of H,,, H,;. This gives

Q+ = V /\ (Rayﬁﬁ'l'sayﬂé)ﬂ-'

a7 B.0

By (C) to showinf g+ = 0 it is sufficient to show that for each a,y
inf A (Ryyps + Sapps)™ = 0.
B.é
Let Tayps € Rayﬁas Sayps es, aypor then

t{\a (Tayps + Sapp) ™ = N (rayﬁa + S:;,sa)
, 8.8

= A[ Vst Ashu| S NVt VA s

B
Hence

inf ( A (R,,,,,,+S,,,,,,)+)§ inf[ AV Rt VA Jp’a]

]

= inf ( /p\ \6/ R:,ﬂ‘,) + inf ( Vv /a\ Saypa)

B
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By (O),
(37 Sim) = [0 830)] =0

since for each ayp, S,,4; is a negative part of H,, and LeJt ™.
By (B) and (C),

1nf(/\ V a,p,,) inf( \V4 :4\ Risr: feA‘,"l) .
= \/[inf (/\R:;ﬂf(ﬁ)>] =0,
f 8
since for each a, , f, Ry,p7p is a negative part of H,;and Ke 2 ~. We conclude
that inf A 4,5(R,,ps + Seyps) 7 = O for each o,y and hence K+ Led~.

(i) Let Q be positive subsystem of K + L, then Q = {{R,,p5 + Suyps}}
with R,,s, Sgyps POsitive parts of H,g, H,; Then, by (B),

ian— = inf /\ V (Rayﬁé + Szyﬁé)_

ay Brd

inf v{/\ Rop+Su)-: @D X Byx X A,}.
@y

(»7) e AXT (xy) € AXT

(for each a«, y, g, r, we have written R,,, for R, .yr@y and similarly
for S,,,). We require inf 0~ = 0 and, by (C), it is sufficient to show that
inf A ,,,(Ryyg + Sey)~ = 0 for each g, r.

Now, as in (i), we have

iIlf /\ (Rarqr + Sa'yqr)- é lnf[ /\ Sayqr + Rayqr)]
ary
< inf(\//\ m,) + 1nf(/\ )

For fixed «, S,,, is a positive part of H,,,, and r(a, )€ X ,rA, Because
Lext, (B) gives

0= 1nf(\/ /\ ayq(x, 7)6) = inf(/\ V a:;q(mv)é) = inf (r \/A /\ Sayq(a v)h(r))
eXAy 7y

Hence, inf( \/, A, S = V. inf A, S;,,) = 0‘-
Similarly,

inf ( AV R';q,) = inf , \4-,4 A Rifye = \f/[inf ( A Ra}(,,)q,)] =0,
a b e a 3
because, q( :f( )) € >< a sABas sz(u)q(a.f(a))r(a.f(a)) is a pOSitiVC part of
Hoyo s(ay @and Ke XA+,
Thus we have inf 0~ = 0 and K + Le X+ as required.
(iii) This part follows from (i) and (ii).
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LemMmA 2.4,

() If KedA'~ then L+ K—LeX'~ and —L+K+LeX .

(i) If KeXt then L+ K—LeX't and — L+ K+ LeXd+.

(iii) If KeA then L+K—LeX and —L+K+LeX.
In particular L— Le X" and — L+ LeX (Le%).

ProOOF. (i) Let Q be a negative subsystem of L + K — L, then
Q = {{Rayspon + Nuyspon = Sayspon : (B;0,m) € B, x A, x A}:
(0,7, /)€ AxI" x X B,;

acA

with, for each choice of subscripts R,, 45, @ negative part of H,4, N,, 55, @ negative
part of H; and S,, (s, a positive part of H, .
Suppose that

H,; = (e(a, B)1, M(ax, B)y, -+, (2, ﬁ)n(a,p)M (o, ﬂ)n(a,p))-

We define finite subsets M'(a, §); of M(a, f); as follows. If &(, f); = 1, M'(a, B);
is the union of the set of singletons fixed in M(a, B); by the R,, 45, as v, f, 6, n vary.
If &(a, B); = — 1, M'(a, B); is the union of the set of singletons fixed in M(«, f); by
the S, 554 as &', 7, B’, 6 and f vary such that f(x) = .

Define R;, 45, by replacing, in R,, 45, €ach M(a, B); for which e(a, f); = — 1
by M’(a, f);. Similarly define S;, 4, by replacing, in S,, 45, €ach M(n, f(n)); for
which &(y, f(n)); = 1 by M'(n, f(n)); . This leads to

0> VA (R;yfpa,, + Naym»p - Sa'yfﬂan = 0, say.

ayf B

It is now sufficient to show that infJ7 = 0. We apply (A) to Q, and replace, in
each R, 4, those &(x, B);M’(a, B); for which &(a, f); = — 1 by | (e(a, B):M (e, B);).
Since M’(x, B); is finite we then retain only the term A (e(x, )M '(a, B);) =
= &(«, f); V M'(«, B);. This leads to R;,ps, such that R; 4, is a singleton, say
Tayspsy- Taking account of the sign preceding S, -ps, We can form Sy, 45, by re-
placing each M(n, f(n)); with &(n, f(m)); = 1 by { \V M'(n,f(m));}. Then

s _ .
inf@; = inf \f/ ﬂé\ (Ryyspon + Naygpon — Sevppon)
ay. n - -

Now in Ry, 45, €ach singleton subset of M(a, B); with &(«, B); = 1 is contained in
M’(a, B); . It follows that

ra'yfﬁ&r] é 8(“’ ﬂ)l \/ M’(a’ ﬁ)l ot 8(“3 ﬁ)n(a ') V Ml(a’ ﬂ)n(a,ﬂ)
= gaﬁ say.

Similarly, if $3,sp0 = {Sarrpon}> We BAVE —Suypp0 = — Gygeny Where gypqyy i
defined as above for g,p.
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This gives
infQ} < inf \/ A (9ap + Narfﬂén_ g'lf(’l))+]
: ayf pén -
< inf Vf /a\ Gos + Nayff(a)ba - gaf(a))+]
ay,
= \/f inf {,\ asy + Niyrrarse = Ges@)]
ay,

N . +
= Vf as(a + inf /6\ Na‘vff(a)éu = Gaf(@]

ay

=V [Gesey+0-— gaf(a)] = 0.
ayf

(The equality inf A\, N r@s =0 follows because KeX = and for each
& f, Nuysr(ayse 15 @ negative part of H,;.)

This shows that L + K — Le " ~; the proof that — L+ K+ LeX ™ is
entirely similar.

(i) This time let Q be a positive sybsystem of L + K — L then

Q = {{Rayspon t Payspin — Sarspon}}

with each R,, 45, @ positive part of H,g, P,,s4s, @ positive part of H,; and S,, s
a negative part of H, .. We require

0 =inf@~ = inf [ /\f V' Serspon — Parspon — Rayspon) ™ ]
ay,

Arguing in much the same way as in part (i) we find elements g, € G (B € B,,a € 4)

such that
inf@~ < inf [/\f V' Gnsy + Pavfﬂén gaﬂ)+]
ay
< inf [ AV WV gnf(ﬂ)) + Pavfﬂén - (A gaﬁ))+]'
ayf Bon L] [

Write hy = V 3 945m) and g, = Apas-
Then,

infQ~ < /\ inf[A V (b + -a;fﬂarl —g)%]

y B

= Ays+inf[AV V Fa:;fﬂaq]“ga)+--
af v Bn 8
Now, by (B) and (C),
inf [/\ \/ V Pospsn] =inf A \6/ P pamortn

(@r) e Bax )T

V inf [ /\ V Poramenn] = V inf [( V /\ Py rotnorn) 1

qr

https://doi.org/10.1017/51446788700031463 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031463

9] The lateral completion 21

This last expression is zero since each P, ,,ysny) IS @ positive part of H,,
and K e *. Hence

inf0~ < /> (hy — g, [/f\ V Gy — V é\gap]+ =0

Thus L + K — L, and similarly — L + K+ L, is in "+,

(iii) This part is immediate from (i) and (ii).

The arguments above apply if K = . This gives the final statement of this
Lemma.

LemMaA 2.5,
() IfKexX*and L+ KeX " orK+LeX ™, then Le X .
(i) IfKeX~ and L+ KeX* or K+ LeX*, then Le X+,

ProOF. Let R = {{R,;}} be a negative subsystem of L and N = {{N,,;}}
a negative subsystem of K; then R + N is a negative subsystem of L + Ke ' ~.
We verify first that inf(R + N)* =
Since L + Ke X',
0=inf(R+N)" =inf[\V A (Rp+ Nyp)*].
ay Byé
Let rayﬁJERaB: nayﬂdejvyb and put Top = /\ yel /\ seAy Tayps € iRaﬂ’ nys =

/\a/\ﬂeB,naypae¢Nya' Then Vay/\pa(rap + ny6)+ = (Va/\ ﬁraﬂ'l' Vy/\& ny6)+'
By (A),
0=inf(R+N)" =(V {I\raﬁ vV /6\ Ny V A; (Tayps + Mayps)* €(R+ N) ™.

Hence inf((R+ N)* = 0.

- Now suppose g 2 0 and g is a lower bound for R*. If ueR, veN,
then(u+o)* 2w —u" —v ) =ut—ut Ao =@t —-0v)t 2 (@-v)*
=g—g Av-. It follows that inf{g—g Av™: veN} =0, and hence
g =sup{g A v™:ve N}, for every negative subsystem N of K.

Fix yoe I" and 6, € A, and suppose

H = (e My, eMy, 6 (Myyy, -, gM;, M, M,) where My, ---, M,

Yodo

are singletons (possibly there are no such terms) and g L M, (r =j+1,--,n)
(again there may be no such terms).

We shall modify K to K* = {{H};}} and replace g by g* so that: (i) g* > 0
if g>0; (i) K*ex'*; (iii)) g* = sup{g* A v":ve N*} for every negative
subsystem N* of K*. There are four cases to consider.

Case 1. ¢; = 1,g 1 M;; take K* = Kand g* = g.

CasE 2. ¢; = 1 and there exists me M; such that g A m # 0. Choose one
such m, put g* = g A m, M* = M; ~ {m}, Hy; = H,; if (3,6) # (y0,9,), and
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7060'—({’"} 81( m+M1+m)’ ‘s ] 1( m+M 1+m) M M1+1a *'s n)
This defines K* = {{H;}}. Observe that for any x, u, a, b in a lattice group
such that x = 0O and x L a andx L b,

xA@@+a)y " =xAu"=xA@+b).

(Wehave x A(u+a) " =xA@ +u)SsxAa" +xAu"=xAu"
=xA@+a-a)y " =xAN{(—a) " +@u+a))=xA@u+a).)

Let PJ;, be a positive part of H.\,,. By fixing the same singletons in the M,
with &, = — 1 we have a corresponding positive part P, ; of H, ;.. Let p*e P ;.
then p* =u+m+m' +v with uegM, +-.-+¢;_;M;_; (the conjugations
cancel), m’e M* and veM;,,+-+M, Now, p*=(u+m+v)V (u+m'+v)
because m A m’ = 0. Since every element of P, , is either of the form u +m+v
or u+ m’+v with m'e M*, every p~ e P, ; exceeds some p*~ e 3o+ Since
Hys; = H,; if (y,6) # (y0,6,) we conclude that if P* is a positive subsystem of
K* and P the corresponding positive subsystem of K,

inf P*~ < inf P~ = 0,

and K*e X'+,

Let N* = {{N;}} be a negative subsystem of K. Corresponding to N¥, w
have a negative part N, ; of H,, obtained by fixing m in M; and the same
singletons in the other M, with ¢, = 1. If ne N, ,, we have n = u + m + v and
n*=u+m+m +veNy;. Sinceg* Lm' +vandg* Lo, g* An~ =g*Au"
= g* A n*~. Taking N,; = NJ; if (y,0) # (yo, 9o) we have g* A N,z =g* A NJi~
for all y, 6 and hence

g* = supg* /\(V /\ N,5)~ = sup /\ \/ g* A\ N =sup{g* A v=:ve N*}.

This concludes Case 2.

Case 3. ¢;, = —1, g LM;. Take g* = g, Hy; = H,5; (3, 8) # (0, O0)),
HYs = (e:My, -6, M ,M;_y,---,M,)and K* = {{H};}}. Clearly K*e X'+,
(positive parts of K* and K correspond one to many depending on the choice
in M;, and, in any corresponding positive parts P*, P of H, ;, the elements of P*
are greater than the corresponding elements of P). Let Nw;o, N,o‘,o be cor-
responding negative parts of H,, and u+ v, with uee,M; + -+ + & M;_,
and veM;.y + - + M, an element of Nw,o Because g Lv and g 1 M;,
gANu+v)y " =gAu" =g A(u—m+0v)~ (meM;). As in Case 2 we can
conclude that

*=g=sup{g A v :veN*}

for every negative subsystem of K*.
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CAse 4. ¢; = — 1 and there exists m e M; such that g A m + 0. Choose
such an m, put g* = g A m, Hyjy = H,; ((.6) # (yo, 60)) and HJ,
= (~{m},es(m + My —m), -, g;_y(m+M;_y —m),M,;,q,--,M,). A positive
part P* of H;"o,,o corresponds, in the usual way, to a positive part P of H, 5, where
we fix m in M ; and we have, taking conjugations into account, P* = P. It follows
that K* = {{H}}} e+,

If N5, is a negative part of H,%; and N, the corresponding negative part
of H, s, we have N5 = N, 5, while if xe N, 5, ~ N5, x = u — m’ + v with
m'eM;~ {m}, ueesM + - +¢&_,M;_{,veM;,, +---+ M, Since v Lg*
and m’' L g* we have g* A(u—m' +v)" =g* Au" Zg* A\ (u—- m)~

=g* A (u — m + v)~. Since u — m + ve N,,;, we can conclude that

g* =sup{g A v™:v” e N*}

for every negative subsystem N* of K*.
Repeating this argument a finite number of times we see that we can modify
g and H, , so that g remains positive or zero as the initial case may be, and so

that
Hyobo = (81M1’ R ekMk’ Mk+1’ R Mr)

with M, ---, M, all singletons. Continuing we can assume that all the other H,,
also have this form.

It follows that each H,; is its own unique positive part and K is its own
unique positive subsystem. If h,, € H,; there is a negative part N,; of H,; such
that {h,;} = N,; Define a negative subsystem N of K by N = {{N,;}}. Then
N={V, Ash,;} and g=sup{g Av-:veN}, which means g < (V, Ash,))".
Thus g is a lower bound for K~. Since K is a positive part of KeJX'*,
g < infK- = 0. Since our modification procedure never reduced g to zero,
unless it was already zero, we conclude that L € /"~ as required.

The proof for K + Le X"~ is similar so we omit it.

(ii) This part can be proved in the same way as part (i). The following ar-
gument is rather easier. From L+ Ke X'+ and Ke X'~ we have, by Lemma
2.4 (ii) L+ K~ Le X"~ so, by part (i) above, — Le ¢ ~, This follows similarly
ifK+Led™.

Now, let P = {{P,4}} be a positive subsystem of L, then, by (B),

infP- =inf[A V (—=Pp*]
a B

lnf[ V /\ (_Paf(a))+]

JexB, acd

I

= 0,

because {{— P,;@: a€A}: f €X B,} is a negative subsystem of —L e #"~. Thus
LeXt as required.
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COROLLARY 2.6. Any element of A+ (respectively A —, A" can be cancelled
from a sum of elements of ¥ which is inA"~ (respectively X +,) and the
resulting sum is in 24"~ (respectively A" *,XA").

ProOF, Lemma 2.5 applies directly to sums of the form K+ L, L+ K.
Suppose Ke X' * and L+ K+ M e X' ~, we must show L + M e ~. We have,
by Lemma 2.4 (i),

L+M)+L+K+M-M-L)=L+M+@L+K+M)~M)—LeX~;
also, by Lemmas 2.3, 2.4,
L+K+M-M~—-L=L+K+M-M)—LeX+.

Hence, by Lemma 2.5 (i), L+ MeXx .
The case KeAf ~ and L + K+ M e+ is similar and the results for ¢
are clear.

The next step is to construct an equivalence relation on 4. We define
% = {(LI,LZ)E.@ X g: Ll ‘-Lzef},

Using Lemmas 2.3, 2.4 and Corollary 2.6 we have: (i) (L,L)e (Le%);
G)if Ly ~L,eXA,(L,—L)+(Ly—Ly)=L,+(—Ly+L,)—L,eX and
hence L, — L, eX; (iii) if L, —L,eX, L, — LyeX then L, +(—L,+ L))
— Liet and hence Ly — Lye . It follows that £ is an equivalence relation.

1et G denote the set of #-equivalence classes of ¢ and, for Le ¥, let (L)
denote the Z-equivalence class determined by L. If geG we abbreviate
{{{g*} = {g7 N1 to <gd.

(The next two lemmas are identical in content with Theorems 3.2, 3.4 in my
paper Free non-Abelian lattice groups, Math. Ann. 186 (1970), 249-262. They are
proved here for completeness and because this paper was written first.)

LEMMA 2.7. With the natural definition {L,) + <L,y ={Ly+ L), G is
an additive group.

PRrOOF. Suppose L} e (L,>, L%€<L,), and put U = L, + L, — (L} + L%).
We have

U+ +L5—L,—L, =L+ (L, +(—(L + LY+ L+ LY~ L,)—L, e X

Cancelling I, — L, and then LT — L, we have U € #". Thus addition in G is well
defined. Associativity now follows from associativity in &, {0} is the zero element
(henceforth written 0) and Lemma 2.4 provides additive inverses.

Before our next definition we note that if Le "™+ (4 ~) and L* e (L), then
L*+(—L+L)y=(L*—L)+ Lex* and by Corollary 2.6, L¥*e 4 *. Now
define <(L,> = (L,) in G to mean L, — L, e X"+, It is clear that this definition
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is independent of our choice of representatives from (L), {L,> and is equivalent
toanyof — L, + LyeX*,{L;—L,)c A *,{~Ly+Ly>cx*,

LeMMA 2.8. The relation = defined above is a partial ordering on G

under which G is a partially ordered group.

ProoF. Reflexivity, antisymmetry and transitivity are immediate. If (L)
> (L*> and M, N €% we have

M+L+N-M+L*¥*+N)={M+L+N~—-N-—-L*- M)
={M+L-L*-M)
c A+,
The ordering of G is therefore translation invariant. This completes the proof.
THEOREM 2.9. G is a lattice group in which, for
L= {{H,:PeB,}: acA} €Y we have
<L> = V /\ <{{Haﬁ}}>’
acApeB_
and hence
Ly> V (Lp> =Ly V Ly}, <{Ly> A<L2> =<Ly A Ly>(Ly,L,€9).
PRrROOF. Suppose L;,L, e %, then
(Ly V Ly)— Ly =(Ly— Ly V (Ly — Ly

Hence a positive subsystem Q of L, \V L, — L, can be written R \v S with R,
S positive subsystems of L, — L;, L, — L, respectively. Because L, — L, e "
cA+, NO-"=ARV S = AR =0. Thus, {L; V L;> 2 <L) and
similarly <Ly V L3> = <L,>. Now suppose (M) 2 <L>, <M} 2 (L,).
Considering L, \V L, — M we see that any negative subsystem Q is of thc form
0 =R Vv S with R, S negative subsystems of L, — M, L, — M. Hence

ANG*F=ANRVIH*=(AR)HV(ASH)=0.

It follows that <L, VV L,> = {(L;> V {L).

Note that in this next part of the proof index sets are not omitted, thus {H,,,}
is a singleton as is {{H,z}}. Taking L as given we have, using <L, V L,
= (L V (L3,

pé\n_<{{H¢p}}> = _p/e\p_«{'H“”}D = —{{{—Hug}:BEB,}) = {{{H,p: B B,}}).
Hence,

V. A {{Hygdh =1X‘<{{Hap :BeB}}) = {{He: BeB,}:acd}) = (L).

acA peB
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THEOREM 2.10. The natural map g - {g)> of G into G is a group and
order isomorphism of G onto a dense sublattice group of G. All suprema and
inffima in G are preserved in G and if M e 9, {{g>: g€ M} is a positive disjoint
subset of G with supremum {{{(M)}}>.

Proor. It is easy to check that

g1+ 92> =<g1> +<92>1,9,€6)

and that {(g)> = 0 (in G) if and only if g = 0 (in G). This verifies the group and
order isomorphism property.

Let (L)€, and suppose <L) =0, (L) # 0, then LeX'+ and L¢ X ~.
Hence, there exists a negative subsystem N of L and ge G such that g = 0,
g #0and g £ n* (neN). Consider @ =L — {{({g})}}. If R is a positive sub-
system of Q then R = S — {{({g})}} for some positive subsystem S of L and
R =28 —g. Because Le X'+, infR~ < g+inf §~ = g.

Let H = (,M,,+,e,M,)e# and let H; be a positive and H, a negative
part of H. Since H, fixes singleton subsets of the M; with ¢; = — 1 and H, fixes
singleton subsets of the M; with g = 1, there is a unique element ue A, N H,.
It follows that there exists a unique element ve S N N. Then g £ v+ and (v — g)~
< v~. Hence

infR-SgAv- Zvt Ao =0,

It follows that (L) — {g)> = 0. Because g = 0and g # 0, {g) # 0 and {¢g)> = 0.
Thus the image of G is dense in G as required.

By [2, Lemma 10] or [7, Lemma 2.3] g — {g) preserves all suprema and
infima in G. In particular the image of G is a sublattice group of G.

Now let M € 2. By the density property just proved {{g)>: g € M} is a positive
disjoint subset of G. It is easy to check that {{{{M)}}> = <{g)> (g € M). Suppose
L = {{H,:BeB,}:ae A}, and (L) = {g)> (geM).

1If § is a positive subsystem of L — {{(M)}}, then S = {{R,; — {(g,5)} :B€B,}:
ae A} with R, a positive part of H,; and g,;€ M (B € B,, a € A). Observe that if
M, = {g.p: B B,, o€ A} then M, is a finite subset of M and S is a positive part
of T = L — {{(M,)}}. Since (L} = <g) (geM) <L) 2 <YM, and T, = L
— {{({V MDYy e A+, Consider K = {{({\V M)} — {{MD}} = H{EV M),
— M))}}e%. We see that K is its own unique negative subsystem and that
R = (V M,;) ~M,. Hence \ K* = \(V My —M)* = (VM; -V M)* =0.
A positive subsystem of K is the formR = {{({\/ M}, — {m})}} with me M.
Clearly R = {\/ M; — m} and R~ = {0}. Thus Ke#". By Lemma 2.3,

L-{{vMp}+{dV MDY} - {M)}} = T, + Ke A+

and by Lemma 2.4 and Corollary 2.6 we may cancel the two middle terms to get
T = L —{{(M)}}ex*. This gives infS™ = 0 for any positive subsystem of
L — {{(M)}} so that <L) = <{{{(M)}}> which completes our proof.
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3. The lateral completion of a lattice group

The construction of Section 2 provides a lattice group G containing a dense
copy of G and suprema for every positive disjoint subset of G and is, in fact,
generated by these suprema. We continue by transfinite induction as follows.

Define G(0) = G, G(1) = G(0) and =(1,0) to be the embedding G(0) —» G(1)
defined by g — {g). Suppose that for all ordinals g, v such that y < v < 4 we
have constructed lattice groups G(u) and lattice group isomorphisms n(v, u) of
G(p) into G(v) such that

(1) 7(u, p) is the identity on G(u);

() =0y, Wr(p,7) = 7(v,7) T S p S v);

(iii) G(u + 1) = G(u) and n(u + 1. p) is the associated natural embedding if

pu+1l <A

Then, if A =v+1 for some v, take G(1) = G(v), n(4,v) the associated
natural embedding, 7n(4,7) the identity on G(1) and, for u < v put zn(4,n)
(A, (v, p).

If A is a limit ordinal we take G(1) to be the direct limit of the G(u) with
4 < A. We may represent G(1) as follows (Conrad (1969)). G(4) is the subset of the
large cardinal product IT,.;(x) consisting of elements g such that g = 0 or if p
is the least ordinal such that g(u) # 0 then g(i) ¢ U ,<,7(1,v)G(v) and g(v) =
n(v,)g(p) if ¢ £ v < A. Any non-zero component of g completely determines
g, g = 0if g = 0 or if g has a positive component, and the sum of two elements g
and h is found by taking an ordinal g such that g(u) # 0, h(u) # 0 and determi-
ning g + h by (g + h)p) = g(u) + h(y). We determine g \/ h and g A h similarly.
By Conrad (1969), Theorem 3.1, G(1) is a lattice group. We take n(4, 1) to be the
identity on G(4) and determine each (4, i) by

(AW =g (9eG), p < ).

Condition (ii) is easily verified from the representation of G(A) and (iii) is vacuous.

THEOREM 3.1. For ordinals A, u such that u < A, n(4, p)G() is a dense sub-
lattice group of G(A) and, if M is a positive disjoint subset of G(u), then n(d, )M
has a supremum in G().

PROOF. For the first result we use transfinite induction. For A=v+1>v=pu
we have G(4) = G(v) and =(v, u)G(n) is dense in G(v). Because n(v + 1,v)G(v)
is dense in G(v) we have

(v + Lv)a(v, )G() = n(2, G

is dense in G(4). If A is a limit ordinal, g € G(1) and g > 0 then g(v) > 0 for some v
such that u < v < A. By the inductive hypothesis n(v, x)G(x) is dense in G(v)
so there exist h e G(i) such that 0 < #(v,p)h < g(v). It follows that 0 < =(4, h < g.
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For the second result we have, by construction, that n(u + 1, x)M has a
supremum, say m, in G(u + 1) and, by Theorem 2.10, n(A, 4 + 1)m is the sup-
remum, in G(1), of n(A, u + Dr(u + 1, )M = =(4, )M.

COROLLARY 3.2, We have n(A+1,)G(A) = G(A+1), if and only if
G(4) is laterally complete.

ProoF. By Theorem 3.1, if M is a positive disjoint subset of G(A) then
n(A+1,2)M has a supremum, say m,, in G(A + 1). By hypothesis m; = n(4 +
1, )m for some m € G(1). It follows that m is the supremum of M in G(A).

The converse follows from Theorem 2.10 and density of n(A + 1,4) G(4) in
G(A + 1).

THEOREM 3.3. For any lattice group G there exists an ordinal A such
that G(A) is laterally complete.

PrOOF. Let B be the cardinal of G (considered as a set); note that B is infinite
(except in the trivial case G = {0}); and let A be the least ordinal with cardinal
strictly greater than B. We show that G(J) is laterally complete.

Suppose M = {g,: a € A}) is a positive disjoint subset of G(1). For each a € A
there exists h, € G such that 0 < n(4,0)h, < g,. It follows that h, # hpif « # B
and hence that 4 has cardinal at most B. Note that A is a limit ordinal and for
each x€ A4 let y, be the least ordinal such that g, € n(4,1)G(u). Then U = {u,:a€ A}
is a set of ordinals of cardinal B, at most, and bounded above by A. Because
4, < A, u, has cardinal B at most and hence, if v is the supremum of U, v has
cardinal at most B x B = B. Thus v < A. Hence, for each a€ A, there exists
a unique k,e G(v) such that g, = n(,v)k,. It follows that K = {k,: ac A} is a
positive disjoint subset of G(v) and, by Theorem 3.1, M = =(4, v)K has a supremum
in G(4). Thus G(J) is laterally complete.

Let A now be the least ordinal such that G(4) is laterally complete. If, for
each v < 1 we identify G(v) with n(4,v) G(v) we have inclusions

G = G0) < - = G

with each inclusion strict, G(v + 1) the sub lattice group of G(A) generated by
the suprema of all positive disjoint subsets of G(v) and G(v) = U ,<,G(u) when v
is a limit ordinal, If KX is a laterally complete sub lattice group of G(4) such that
G < K it follows by transfinite induction that G(v) < K (v £ 1) and hence that
K = G(4). Thus G(A) is a lateral completion of G.

LemMmA 34. Let G be a lattice group, K a laterally complete lattice group

and i: G - K a lattice group isomorphism. If iG is dense in K, then i can be
lifted to a lattice group isomorphism of G into K.
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PROOF. Suppose L = {{H,;: feB,}: x€ A} € ¥ whu
Hzﬂ = (8((1, ﬂ)lM(Cl, ﬁ)l, MY 8((1, ﬂ)n(z,p)M(as B)n(a,ﬂ))'

Because iG is dense in K and K is laterally complete, iM(a, f); is a positive disjoint
subset of Kand \/ g iM(a, B); exists. Define h,;e K by h,z = &(x, f); \/ x iM(a, f)1
+ o+ &0 Paa sy V kiM(@, Py py and put@l{L) = \/, Ay hpeK. To verily
that 9 is well defined it is sufficient to show that if Le X, \/, A h, = 0. For

this, suppose N = {{N,,}} is a negative subsystem of L. Define n,z € K by analogy
with the definition of h,z; above. Then,

ng= Ax {ig:g& Ny}
and, if #7,; denotes the set of all negative parts of H,g,
hyg =V {/\K {ig: QENap}3 Nye€ -/Va,n}-
Write 4" for the set of all negative subsystems of L, then
y /p\ hy = \a/ {’\ Ve {Ax{ig:ge Ny}: Nyge 5}

= supg {infg(\/ A iNp): {{Nys}} €A} = supg {infgiN: Ne #7}.
« 8
Hence,
(V A hg)* = supg {infgiN*: Ne #}.
a B

Because iG is dense in K and Le o,
infgiN+* = iinfg N+ = 0.

Thus \/, A phep < 0. Similarly we have \/, A ph, = 0. This shows that 6 is
well defined.

It is routine now to check that 8: G — K is a lattice group homomorphism
which lifts i. That 6 is an isomorphism follows because G is dense inG and 6 is
-lonG.

THEOREM 3.5. If K is a lateral completion of G then G(X) is iso-
morphic to K.

PrOOF. Suppose for each ordinal 4 < v we have a lattice group isomorphism
i, of G(u) into K which lifts the identity map i of G into K and also Ifits each i,,,
with p’ < p. If v = g + 1 we use Lemma 3.4 to lift i, to G(v). If v is a limit ordinal
and g € G(v) we pick a non-zero component g(u) of g and take i, g =i, g(u).
It is easily checked that this provides a lattice group homomorphism of G(v)

into K and the one to one property follows because G is dense in K. That i,
lifts i, if 4 < v is clear.
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This induction provides an embedding of G(1) into K with G a dense sub
lattice group of G(A). It follows that suprema in G(1) agree with those in K so
that G(2) contains G and is a laterally complete sub lattice group of K. Because K
is a lateral completion of G we have the image of G(X) equal to K. This proves the

theorem.
We summarise the results of this section in

THEOREM 3.6. Every lattice group has a unique lateral completion.

4. Structure of the lateral completion

In this section we shall look into properties of the lateral completion of G
which are inherited from G. The method of proof is usually by induction up the

chain G = G(0) < - = G(A)

where G(4) is the lateral completion.

First, if G is abelian it is obvious from the construction of G in section 2
that G is abelian. The direct limit construction of G(v) for limit ordinals also
preserves the abelian property so we have verified the first part of the following.

THEOREM 4.1. (Conrad (1969), Theorem 2.5). If G is abelian, then so its
lateral completion. If G is also divisible, then so is its lateral completion.

ProOF. We have already shown that G(A) is abelian. The proof of divisibility
follows exactly as in Conrad (1969).
Recall that in a lattice group G a polar subgroup is a subgroup of the form

M ={x:|x|Alm|=0 (meM)}

for some non-empty subset M of G. All the material we need about polar subgroups
can be found in Bernau (1965). We also recall that a lattice group G is said to be
representable if for alla,x€ G,a A (—x + a + x) = O implies a = 0. This concept
precedes, see for example Lorenzen (1969), and is equivalent to orthocommuta-
tivity which was defined in Bernau (1965) to mean that all polar subgroups of G
are normal (suppose a Ab=0, put u=aA(x+b—x) and consider
uA(—x+u+x).

Our next result 1s due to Conrad (1969), Theorem 2.8. The proof gives a
considerable simplification of Conrad’s and also contains his Lemmas 2.6, 2.7.

THEOREM 4.2. If G is representable, then so is the lateral completion of G.
Proor. We begin with the observation, valid in any lattice group, that
—xVyte+xVy=(-xVy+ctx)V(-xVy+tcty

S(=x+c+x)V(-y+c+y),
and similarly,
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xVy+te—xVys@x+e—c—x)V{y+c—y).

Hence (compare Conrad’s Lemma 2.6), if PA(—x+c+ x)=0and b A(—y +
¢+ y) =0, then

bA(=xVy+c+xy »=0=bA(=xAy+c+xA)).

To prove the lateral completion representable it is sufficient to show that
G(1) is representable. By our remarks above it is sufficient to show that if b,c e G(1)
and b Ac=0 then b A(—h+c+h) =0 for all heG() of the form
h = gu; + --- + g,u, where for each i, g = +1 and u;, = ¥ M, for a positive
disjoint subset M, of G. For this it is clearly sufficient to consider n =1 and
h = + v M. Now

bA(WM+c—-VM)= VM(b/\(M+C—VM)),
and
bAMm+c—\M)Zb A(m+c—m).

Thus it is sufficient to show that if b, ce G(1), me G and b A ¢ = 0, then
bA(m+ec—m)=0.

Suppose geG and g < b A(m+c—m), then g A (—m+g+m)
=< b A c=0. Because G is representable, g < 0 and, because G is dense in
G(1), b A (m + ¢ —m) = 0 (me G). This completes the proof.

Suppose temporarily that G is archimedean. Then, G is abelian and certainly
representable. In Bernau (1966) we constructed an orthocompletion for a repre-
sentable lattice group which, among other things, is laterally complete and con-
tains a densely embedded copy of G. It follows from Lemma 3.4, as in the proof
of Theorem 3.5, that the lateral completion, G(1), can be embedded in the ortho-
completion. Because G is archimedean so is the orthocompletion Bernau (1966),
page 125, Remark 1 and hence the lateral completion of an archimedean lattice
group is archimedean. In fact for archimedean lattice groups the lateral completion
is the orthocompletion, this is proved by Veksler and Geiler (1972). Conrad (1969),
Theorem 3.5 constructs the lateral completion of a representable lattice group
and shows, as a corollary, that the Archimedean property is preserved. We give
yet another proof based on our construction.

THEOREM 4.3. The lateral completion of an archimedean lattice group G
is archimedean.

Proor. It is again sufficient to consider G(1). Suppose that h,, h, e G(1) and
nhy £ h, (n=12,-),

and that h; > 0. By construction of G(1) there exists a finite collection My, +--, M,
of positive disjoint subsets of G such that, in G(1) ’
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h2 é VNII+"'+ VMk’

Because G is dense in G(1) and h, > O there exists g € G such that 0 < g < h,.
Thus we have

O<ngS VM, +-+ VM, (n=12-).

We show that this is impossible using induction on k.
Ifk=1and meM = M; we have m A (\V M — m) = 0 and hence

ng AmyAN(VM—-m)=20 so that
0OsngAmsm (n=12-)

Because G is archimedean g A m =0 (meM)andg = \V(g Am) =0.
Now suppose the result true for 1 £ k < p and suppose

O<ng= VM +--+VM, n=12.)

Then, there exists a positive integer n, such that

ng £ VM,
Hence there exists g, € G such that

0<g, =(mg—- VM)
For each positive integer n
0<ngy £ (nmg—n\/ M)t

S (mng — VM)*

VM +-+ VM,

By our inductive hypothesis this is impossible. It follows that G(1) is archimedean.

IIA

5. The radicals of the lateral completion

Let us now recall some definitions as given, say, in Conrad (1964), (1969),
or Byrd and Lloyd (1967). Let M be a solid subgroup of a lattice group G.
We say that M is prime, closed, a value of g (respectively) if @ A b = 0 implies
aeM or beM, Pc M* and \/ P exists in G implies \VPeM, M is
maximal with respect to not containing g (respectively). Further we call M
regular if M is a value of some element g€ G. and essential if M is regular
and for some he G, M > R, where R, is the subgroup of G generated by all
the values of k. It is easily seen that regular subgroups are prime. The analogous
concepts for [-ideals (solid normal subgroups) of G are also defined, but note
that regular I-ideals need not be prime.

Three types of radicals have been defined for a lattice group. These are: the
radical (Conrad (1964)), R(G) = N {R,:g<G,g # 0}, where R, is the subgroup
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generated by all values of g; the distributive radical, Byrd and Lloyd (1967), D(G)
equal to the intersection of all closed prime subgroups of G; and the ideal radical,
Conrad (1964), L(G) = N{(L,: g€ G, g # 0} where L, is the [-ideal generated by
all ideal values of g. It is known that each of these radicals is an l-ideal of G, that

L(G) « D(G) = R(G),

that G is completely distributive if and only if D(G) = {0}, and that R(G)(L(G)) is
the intersection of all essential subgroups (I-ideals) of G. By a result of Byrd
(1969), Proposition 4.1, essential subgroups are closed so it follows that R(G) is
closed (this is obvious for D(G)).

We now quote two results of Conrad (1969) in a strengthened form due
to Byrd and Lloyd (1969), Lemmas 1 and 2. As foreshadowed in §1 we now

use the G(u) notation interchangeably for #-completions of G and for the lateral
completion of G.

LemMA 5.1. Let G be a latttice group, H = G(X) an L-completion of G
and suppose that C is a solid subgroup of G(1) = H such that:

(1) CNGisprimeinG;

(2) if M is a positive disjoint subset of C N G, then \/ M e C.

Then (i) C + G = G(1), and (ii) C is prime in G(1).

Now suppose B is a solid subgroup of G and let C be the solid subgroup
of G(1) generated by all elements of the form \/ M where M is a positive disjoint
subset of B. We shall use the notation C = \/ (1, (\V M) (M € Z(B)).

LemMA 5.2. If B is a closed prime subgroup of G and C = \/ ¢u1,(\V M)
(M € 2(B)), then:

(i) if xeCand x>0, then x £ \/ M+ -+ \/ M, where M;e 2(B)

(i = 1,2,--,n) and hence x £ \/ P for some subset P of B*;

(i) CNG=B;

(iii) C + G = G(1) and C is prime in G(1);

(@iv) C is closed in G(1);

(v) ifin addition,ge G,g > 0 and Bis a value of g in G, then C is a value

of g in GQ).

We shall extend these results a little further (compare Byrd and Lloyd (1969),
parts of the proof of Theorem 1). Take B a closed prime subgroup of G, H = G(4)
an Z-completion of G, and define subgroups C(u) of G(u) for each ordinal p<4
by induction as follows,

C@0) =B
Cu+1l)= V gu+n (V M) (M e 2(C()
and, for limit ordinals v < 4,

cv) =U Cw,

g<v
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LemMA 5.3. With B and C(u) defined as above we have, for each ordinal
p=s A

() ifxeC(p)andx >0thenx =\/{x A g:geB*};

(ii) C(w) NG = B;

(iii) C(u) +G = G(w) and C(p) is prime in G(p);

(iv) C(w) is closed in G(u);

(v) if in addition ge G, g > 0 and B is a value of g, then C(u) is a value

of g in G(u).

Proof. We preceed by induction on u. Suppose the result is valid for all
ordinals v < pu. If g = v + 1 then Lemma 5.2 proves (ii), (iii), (iv) and (v) while
(i) follows from Lemma 5.2 (i) since we have, for non-zero xe C(u)*, x < \/ P
for some subset of P of C(v)*. Thus

x=V{xAp:peP}=\V{xAV{pAg:geBt}:peP}
=V{xApAg:geB*,peP} SV {x ANg:geB*} <x.

If p is a limit ordinal we have C(u) = UJ,.,C(v) and G(1) = UJ,<,G().
Parts (i) and (ii) follow immediately as does the equality C(u)+G = G(u).
Ifa, be G(u), a A b = 0 and a ¢ C(u) then a, b € G(v) for some v < p and hence,
be C(v) = C(n). This proves (iii).

To prove (iv) suppose that P = C(u)* and ¢ = \/ P exists in G(u). By (iii) we
have ¢ = x + g with x e C(n), g € G. Because ¢ = 0 we have x = — g and hence,
g~ € C(u). Thus we may assume g = 0. Then we have g =gV 0=(—x+¢c)Vv O
= V{(—x+p)t: peP}. Writing Q@ = (~x+ P)* we have QeC()* and
g =VQ0eG. Thusg = \/ {g A q: qe€Q}. By (i) we have

g=V{gAV{aANg*:g*eBt}:qeQ} < \V{g Ag*:g*eB*} < g.

Because B is solid g A g*eB* (g*eB") and, because B is closed, g € B. Thus
¢ = x+ g e C(u) and C(u) is closed.

For (v) suppose he G(u), h¢ C(u), then, by (iii) h = x + k with xe C(p),
keG and k¢ G N C(u) = B. Hence, if a solid subgroup M of G(u) properly
contains C(u) it contains an element of G not in B. If B is a value of g in G it
follows that g € M. Thus C(u) is a value of g in G(p).

COROLLARY 5.4. With the hypotheses of Lemma 5.2 if B is also a normal
subgroup of G, then C(y) is a normal subgroup of G(u) for each u < A.

ProoF. It is sufficient to show that C = C(1) is normal in G(1). If he G(1)
then h = x + g with xeC, geG. Thus —h+C+h=—-g+C+g.If Misa
positive disjoint subset of B, — g+ M + ¢ is a positive disjoint subset of G and is
contained in B because B is normal in G. The result follows.

THEOREM 5.5. If H is an Z-completion of G, then D(H) N G < D(G);
if H is the lateral completion of G then D(H) N G = D(G).
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ProoF. If g ¢ D(G) there is a closed prime subgroup B of G such that g ¢ B.
Take C(4) as in Lemma 5.3. Then C(A) is a closed prime subgroup of H and
CA)NG=B.Thus g¢ D(H) N G.

If H is the lateral completion of G, g € G and g ¢ D(H) there is a closed prime
subgroup C of H such that g¢ C. Let B= G N C, then B is a prime subgroup
of G. If L « Band g, = \/¢L in G, then g, = \/zL because G is dense in H.
This gives g, € C NG = B, because C is closed in H. Thus B is a closed prime
subgroup of G, g ¢ B o D(G). This proves our theorem.

COROLLARY 5.6. If G is completely distributive so is its lateral completion.

ProOF. Because G is dense in its lateral completion H, D(G) = {0} implies
D(H) = {0}. The result follows.

This reverifies Byrd and Lloyd’s Theorem 2 (1969) without the need to con-
sider invariant sets of closed prime subgroups.

We turn now to the radical of an #-completion of G. We recall Proposition
4.1 of Byrd (1967) in which it is shown that an essential subgroup of a lattice
group is closed.

LeEMMA 5.7. Let H = G(X) be an Z-completion of G and let B be an
essential subgroup of G. If C = C(A) is constructed from B as in Lemma 5.3,
then C is an essential subgroup of H,

PRrOOF. We consider two cases.

CasE 1. There exists a non-zero he B+ such that R, = B. Let P be a solid
subgroup of H such that h¢ P and take peP*. By Lemma 53 (ii) p=c+ g
with ce C, g € G; then

p=pt=ct—ct Ag-—c” Ag*+g*.

Thus, to show that peC it is sufficient to show that if ge G*, ceCt and
0< —c+geP,thengeB.

Suppose under these circumstances that g¢ B. If 0 < k < g and ke B, then
—k + g ¢ B. Because R, = B and h e B no value of h contains (—k + g — h)*.
It follows that h £ n(—k+g — h)* for some positive integer n. Hence
0 (—-k+g—-h~"=hsn(—-k+g—mrand(—k+g—h)~ = 0. In other
words k < g — h (and, in particular, h < g). By Lemma 5.3 (i), ¢ = \/ {¢ A g*:
g¥e Bt} and, because c < gand g A g* £ g — h (g* e B*),

c=V{cAg*Ng:g*teB*} < g—h.

Thus 0 < h £ —c+geP which contradicts our assumption that h¢ P. It
follows that g € B, P = C, every value of h in H is contained in C and, by Lemma
5.3 (v), C is an essential subgroup of H.
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CASE 2. For every he G* such that h > 0 and R, < B, h¢ B. Choose one
such h and observe that R, = B and B is the unique value of h in G. If g e B*
andg Ah#0,R,,, < R, =Band g A heB. This is impossible sog A h =0
and B is the polar of h in G (so far we are repeating part of the proof of Byrd (1967),
Proposition 4.1, Case 2, the rest is new). By Lemma 5.3 (v), C is a value of h in H
and hence contains the polar of h in H. However, by Lemma 5.3 (i) if ueC,
h A l u | = 0, so C is precisely the polar of h in H. If Q is any value of h in H then
Q contains the polar of h in H, that is Q > C. Because C is a value of h, Q = C.
Thus C is the unique value of h in H so again C is an essential subgroup of H.

THEOREM. 5.8 If H is an #-completion of G then R(H) N G < R(G) and
if H is the lateral completion of G, R(H) N G = R(G).

Proor. If ge G ~ R(G) there is an essential subgroup B of G such that
g ¢ B. Take C as in Lemma 5.7, then C is an essential subgroup of H and g ¢ C.
Thus R(H) N G < R(G).

Conversely, when H is the lateral completion, if g€ G ~ R(H) there is an
essential subgroup C of H such that g¢ C. Take ue H* such that u # 0 and
R, N C. Because G is dense in H, there is he G such that 0 < h < u. Clearly,
in G, R, « G N C. Hence, G N C is an essential subgroup of G and g¢ G N C.
It follows that R(H) N G = R(G).

COROLLARY 5.9. If H is the lateral completion of G and R(G) = {0}, then
R(H) = {0}.

ProoF. This follows because G is dense in H.

Whether L(H) N G is comparable with L(G) remains an open problem even
when H is a lateral completion of G. The inclusion L(H) N G o> L(G) would
follow, for the lateral completion, if we could prove that if M is an l-ideal of G
the solid hull of M in H (or even in G(1)) is again an Il-ideal. We summarise our
results as follows.

THEOREM 5.10. If H is the lateral completion of G, then
L(G) V(L(H) NnG) =« D(H) NG = D(G) = R(H) N G = R(G).

6. Lattice groups which satisfy condition (F)

This section is chiefly concerned with providing a simplified proof of Theorem
6.1 in Conrad (1969). We refer to sections 5, 6 of Conrad (1969) for terminology,
references and proofs not given here. An element s of a lattice grnup G is called
basicif s>0and {xe€G:0 £ x < s} is totally ordered. A positive disjoint subset
S of G is a basis of G if S is a maximal positive disjoint subset of G and every
element of S is basic. If G has a basis S, and H is the lateral completion of G it is
easily verified that S is also a basis for H.
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Suppose now that G is a lattice group which satisfies the condition (F) that
each positive element of G exceeds at most a finite number of disjoint elements;
i.e. each upper bounded positive disjoint subset is finite. In particular, G has a
basis, Conrad (1969), Theorem 5.2, each element of G* has only a finite number
of values and can be expressed as the supremum of a finite number of disjoint
special elements, Conrad (1969), Theorem 2.5, 3.7. If g € G, g is special if g has
precisely one value. Note that if m, n are positive special elements of G and
m A n # 0 then the values of m and n are comparable and there exists a positive
integer p such that m < pn or n < pm.

We now attack Conrad’s Theorem.

THEOREM 6.1. (Conrad (1969), Theorem 6.1). If G is a lattice group which
satisfies condition (F) and H is an ¥-completion of G then, H = G(1),

H* = {\ M: Me 9},

and hence H is the lateral completion of G.
(Recall that & is the set of positive disjoint subsets of G.)

Proor. Let P = {\/M:MeP} and suppose x = \/ M, y = \/ N with
M,Ne2.

)] (x —y)*eP and (—y+ x)* €P.

We have (x—y)* = \/{m—-m A y:meM}. Now, m Ay=\/{m A n:
neN} and {m A n:neN} is a disjoint subset of G every element of which is
less than or equal to m. By condition (F) at most a finite number of the m A n
(neN) are non-zero. Hence m A yeG and {m—-m A y:meM}e2. Thus
(x—y)teP and similarly (~y+x)teP.

2) x+ yeP.

Without loss of generality we may assume that all elements of M and N are
special. We partition M and N as follows:

My = {(meM:m Ay =0},

M, {m e M: for some ne N and some integer p, pm = n},

M, = M~ (M, UM,),

No = {neN:n A x =0},

‘ N, = {neN: for some meM and some integer p, pm = n},

N, = N~ (NgUN,).

It is readily checked that the suprema of these six sets are pairwise disjoint except
for the pairs \/ M;, VV N, and \V M,, \/ N;. Hence

x+y=NM)V (VM + VN)V (VM;+ VNV (VN
and it is sufficient to show that \/ M, + \/N,eP and \/ M, + \/ N, €P,

I
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For each me M, let N,,, = {neN,: m A n # 0}. Then, by condition (F)
each N,, is finite and, by definition, Ny = Upenm, Nom- Let n, = \V N5,
(meM,), then n,,e G and n,, £ pm for some integer p. It follows thatn,, A n,. =0
ifm,m eM, and m # m’.

Thus, m +n,.=mV n,. < (m + n,) VvV (m'+n,.);and (m+n,) A (m'+n,,)
=0(m,m eM;,m # m’). Hence,

VMi+ VN, =V {m+n,.:mmeM}=\/{m+n,:meM}eP.

It follows similarly that \/ M, + \/ Ny eP and hence x + yeP.
(3) If[P] = {x — y: x,y e P}, then [P] = G(1).
Suppose u, ve [P], then

+v)yt =@t —ut Av)+(—u" Avt+ov%).
By (1), u*, u~, v+, v~ € P, then,
ut —ut Av- =(@u* —v7)teP,
—u- Avt+ot=(—u"+ovH)*eP,

0, by (2), (u + v)* € P. Similarly (u + v)~ € P so [P] is a subgroup of H and,
because P generates G(1), [P] = G(1).

Also if ue[P], u* € P, as above, so that P is a sub lattice group of G(1) and
hence P = G(1).

It is clear from the proof of (3) that P = G(1)*. It follows that G(1) is
laterally complete and, hence, that H = G(1) is the lateral completion of G.
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