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Abstract. The problem of escape/capture is encountered in many problems of the celestial
mechanics – the capture of the giants planets irregular satellites, comets capture by Jupiter, and
also orbital transfer between two celestial bodies as Earth and Moon. To study these problems we
introduce an approach which is based on the numerical integration of a grid of initial conditions.
The two-body energy of the particle relative to a celestial body defines the escape/capture. The
trajectories are integrated into the past from initial conditions with negative two-body energy.
The energy change from negative to positive is considered as an escape. By reversing the time,
this escape turns into a capture. Using this technique we can understand many characteristics
of the problem, as the maximum capture time, stable regions where the particles cannot escape
from, and others. The advantage of this kind of approach is that it can be used out of plane
(that is, for any inclination), and with perturbations in the dynamics of the n-body problem.
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1. Introduction
A precise definition of gravitational capture is not yet established. There are several

papers which define some kind of capture, as Heppenheimer (1975) with the passage of
the particle by the inner Lagrangian point (L1). In this work the definition given by
Yamakawa (1992) is adopted, and it reads: if the local two-body energy of the particle
relative to a celestial body changes from positive (hyperbolic motion) to negative (elliptic
motion) it is considered a capture. The local two-body energy can be formulated as:

C3 = v2 − 2µ

r
(1.1)

where v is the velocity of the particle relative to the celestial body, µ is the mass parameter
of the body, and r is the distance from the body to the particle.

In the two-body problem C3 is constant, but any perturbation to the two-body problem
will change this energy. For negatives values of C3 the orbit of a particle is closed (elliptic
motion), for positives values the orbit is open (hyperbolic motion). Thus, in the course
of the integration of the particle’s orbit, we monitor the value of C3 and when a change
of sign occurs, we record an escape or a capture.

In the restricted three-body problem, if a particle has a Jacobi constant CJ greater
than the CJ(L1), and it is in the vicinity of the secondary, C3 will vary, but never assume
a positive value. Thus this particle will never escape from the secondary, as expected. If
the particle has CJ smaller than CJ(L1) (the bottle neck near L1 is open), and it is in
the vicinity of the secondary, it can have a negative value of C3, which may vary to a
positive value at some time, that is, it can escape (see Figure 1).
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Figure 1. Variation of the energy (C3) for the restricted three body problem. The energy of
the particle is measured relative to the secondary body (or planet).

We use this simple rule to study regions near a celestial body. There are other tools
to make this kind of study, such as Poincaré Surface of section (see for example Hénon
1970), but they have some limitations. For example, it is very difficult to use the Poincaré
Surface of Section to study the four-body problem, or inclined orbits in the three-body
problem.

2. The method
To use this method it is necessary to choose a region in the vicinity of the celestial

body, the variables to represent the region, and the dynamical model to be used. For
example, the orbital elements of a particle relative to a planet can be used to study the
stability of the trajectories. Orbits with eccentricities lower than one (elliptic orbits) have
negative two-body energy; if we introduce another planet (or the Sun) the perturbations
on the trajectory can make the particle crash into the planet, or escape from the planet.
We define these trajectories as unstable, to distinguish them from the others which stay
around the planet.

As an example, lets study a region around the Moon. The dynamical model was
the circular restricted three-body problem. The variables were the selenocentric or-
bital elements. The initial values of the angular variables were fixed at zero, that is
i = 0o,Ω = 0o, ω = 0o,M = 0o. The value of the semi-major axis and the eccentricity
varied from 20 000 km to 35 000 km, and from 0.00 to 0.99, respectively. The trajectories
were integrated from time t = 0 to t = −5 000 days. The integration was made to the
past because in reversing the time the escape becomes a capture. The result for this grid
is shown in Figure 2 where the gray scale is associated with the escape time, that is, the
time when C3 changes its sign from negative to positive.

On the left hand side of Figure 2 there is a region in white whose trajectories have
the CJ value greater than CJ(L1). As expected, these trajectories do not escape in the
time span covered by the integration. However, there are some trajectories which do not
escape, but have CJ value smaller than CJ (L1); these are the trajectories on the right
hand side of the curve CJ = CJ(L1). These trajectories are associated with the family of
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Figure 2. Study of the stable region around the Moon. The escape time is shown in gray scale.
Each point is a trajectory with initial conditions i = 0o, Ω = 0o, ω = 0o, M = 0o, and a and e
as on the axes. The white regions are trajectories that did not escape in 5 000 days.

direct periodic orbits denoted h1 by Broucke (1968) (or family g1 by Hénon 1970). The
other white region, with semi-major axis about 30 000 km is associated with family h2

by Broucke (1968) (or g2 of Hénon 1970).
There are other remarkable characteristics in Figure 2. For example, on the top we see

a region with crosses, this region is filled with trajectories which collide with the Moon
due to the high initial eccentricity of the orbits. It is also possible to see these collision
lines in the figure with trajectories with low initial eccentricity.

The h2 family is better seen when we change the pericenter to ω = 180o, as it is shown
in Figure 3. In Figure 2 the particles have initial conditions at opposition with respect
to the Moon and in Figure 3 the trajectories initiate at conjunction with respect to the
Moon. Thus, with simple change of the initial values of the relevant variable we can have
better information about the characteristics of the region.

In Winter & Vieira Neto (2002) these regions were discussed in detail. In that paper
the Poincaré Surface of Section method was used, and it was shown that the white regions
are associated with periodic orbits.

As stated before, the advantage of the two-body energy method is the possibility to
study regions out of plane and to use more complex dynamics. In Figure 4 we explore this
possibility by using the four-body dynamical model to study the stability of the same
region as of Figure 3. In this case Earth, Moon and Sun interact with each other, but all
moving in the same plane. Here it is not possible to make use of the usual Poincaré Surface
of Section method because there is not a Jacobi constant for this problem, thus only the
use of the two-body energy in this problem can reveal the location of the trajectories
which will not escape in the time span of integration. Although the area of stability is
reduced in Figure 4, we see that the solar perturbation on the region does not destroy it.

With the two-body energy method it is also possible to study other effects on the
trajectories, like the effect of the Moon’s orbital inclination, or that of the Earth’s and
the Moon’s orbital eccentricities, one can use dynamical models with variation of mass
in the three-body problem, as in Vieira Neto et al. (2004). In this case, due to the change
of the gravitational influence of the planet, the particles integrated with a negative step
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Figure 3. Study of the stable region around the Moon. The escape time is shown in gray scale.
Each point is a trajectory with initial conditions i = 0o, Ω = 0o, ω = 180o, M = 0o, and a and e
as on the axes. The white regions are trajectories that did not escape in 5 000 days.
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Figure 4. Study of the stable region around the Moon. Each point is a trajectory with initial
conditions i = 0o, Ω = 0o, ω = 180o, M = 0o, and a and e as on the axes. The white regions are
trajectories that did not escape in 5 000 days. The dynamical model used in this case is the four
body problem with the particle, Earth, Moon and the Sun.

in time escaped. In this kind of analysis, the mass of the planet when the escape occurs
is used as indicative for the analysis instead of the escape time. Reversing the time we
found that particle in heliocentric orbit approached the planet and, due to the mass
variation of the planet, became a satellite.

Another approach is to study the lowest energy of the capture around the Moon. In
Figure 5 we vary the energy and the pericenter distance of the particle relative to the
Moon and we measure the time for a trajectory to escape (Winter et al. 2003). As in
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Figure 5. The minimum orbital energy of a particle as a function of the perilune position. The
gray scale represents the time, in days, that the trajectory takes to escape from the Moon. The
pericenter is pointed towards the Earth.

the previous figures, there is a region where the particle can not escape from the Moon
due to the value of the Jacobi constant. In the lower right corner of the figure there is a
region where the eccentricity of the particle is negative for the given values of energy and
pericenter distance. The time for the capture has an exponential growth, and the longest
capture times are detected at the border defined by the value of the Jacobi constant
CJ(L1). The white island inside the grey region, is a region where the trajectories do not
escape during the integration time of 5 000 days. Basically we have the same structures
as on the other figures but this one gives us information of the lowest energy possible
to achieve certain perilune distance and the time that the particle takes to achieve that
position and energy.

3. Conclusion
The two-body energy of a particle, relative to some celestial body, can be used to study

escape/capture problems. This approach can give us ample information as discussed in
this work. This method have some difficulties, as the extensive consumption of computa-
tional time when integrating trajectories in the stable regions. This computational time
depends on the total time used for the trajectory integration, and for some systems the
integration time must therefore be long. It is, however, easier than with other methods
to study the stability, and it can also be used in more general conditions such as out of
the orbital plane and with dynamics which includes mass variation, or gas drag.

Acknowledgements

We would like to acknowledge the support of FAPESP under grant number 02/00344-7
and CNPq. Also we are grateful to an anonymous referee for his useful comments.

https://doi.org/10.1017/S1743921304008968 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008968


444 Vieira Neto, Winter and Melo

References
Broucke, R. A. 1968, JPL-NASA, Technical Report 32-1168
Hénon, M. 1970, Astron. Astrophys. 9, 24
Heppenheimer, T. A. 1975. Icarus 24, 172
Vieira Neto, E., Winter, O. C. and Yokoyama, T. 2004, Astron. Astrophys. 414, 727
Winter, O. C. and Vieira Neto, E. 2002, Astron. Astrophys. 393, 661
Winter, O.C., Vieira Neto, E. and Prado, A.F.B.A. 2003, Advances Space Res. 31, 2005
Yamakawa, H. 1992, PhD Thesis, University of Tokyo.

https://doi.org/10.1017/S1743921304008968 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008968

