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Introduction. Let G be a group given in terms of generators and denning relations. The
order problem is said to be solvable for (the given presentation of)f the group G if, given any
element W of G (as a word in the given generators of G), we can determine the order of W in
G. The power problem is solvable for G if, given any pair X, Y of elements of G, we can
determine whether or not X belongs to the cyclic subgroup {Y} of G generated by Y. It is
easy to see that if either of these problems is solvable for G, then the word problem is also
solvable for G.

A solution to the order problem for free sixth-groups is contained in the work of
Greendlinger [4], while Lipschutz [6] has solved the power problem for such groups. In [6]
Lipschutz conjectured that similar results hold for the free product sixth-groups (FPS-groups)
studied by Britton [2], [3]. In this paper we show that this is the case, by obtaining conditions
under which the order problem and the power problem are solvable for FPS-groups. These con-
ditions are derived from the algebraic results of [3] and [7], together with a result (Theorem 1)
which we state without proof. The proof of Theorem 1 will be given in a later paper.

The FPS-groups we study may have an infinite number of generators and defining rela-
tions, and we show by means of two examples that the order problem and the power problem
are not solvable in general for presentations of such groups, even when they have solvable word
problems.

1. Notation. Let S be a set. A word in the elements of S is a finite sequence of elements
of S, each with an index +1 or — 1. The inverse co~x of the word

(o = xl>x?...xc
n» (xteS, 8, = ± 1 , i = l , 2 , . . . , H )

is the word x~e"x~I\-1... xf *'. Let D be a subset of the set W(S) of all words in S. In a well
known way the presentation (S; D) determines an abstract group G. Thus every word co in S
represents a unique element of G denoted by \\<o\\; the empty word represents the identity
element / of G, and two words a>, a>' represent the same element of G if (and only if) one can
be obtained from the other by a finite number of deletions or insertions of words of the form
x+lx~i

 OTX~1X+1 or i?*1 (xeS, ReD).
The group G is said to be recursively presented if there is given a presentation (S; D) of G

such that the set S of generators is effectively enumerable and the set D of defining relators is
recursively enumerable; that is, D is given as w,, u2, u3,..., where, in some given effective
enumeration of W(S) (obtained from the effective enumeration of 5), un is the/(w)th element
of W(S), and / («) is a recursive function of «. This definition is due to Higman [5].

t The presence of this phrase in such statements is necessary, as the examples of §5 show; we shall omit it
however when no ambiguity is likely to arise.
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Let II be the free product of the set of groups {Gy; yeT} and let the following conditions
be satisfied.

(a) The set T is effectively enumerable.
(6) Each Gy (yeF) is given by a recursive presentation (Sy; Dy), where the sets Sy are

pairwise disjoint.
Then IT has generators S = (J Sy and defining relators D = (J Dy, and it is clear that (5; D)

yer j c T

is a recursive presentation of IT. In particular, given any element s of S, we can determine the
Sy containing s in a finite number of steps.

We say that a word co in S is TL-reduced if it is a word of the form

where n ^ 1, a^eS^, y(i) * ?('+1) 0 = 1,2,. . . , H - 1 ) and || coy(() fl # / (/ = 1, 2 , . . . , «).
If at is IT-reduced it follows that || co || has free product normal form || <uy(1) || || coy(2) | | . . . || &>,(,,) ||
and free product length n.

We impose a further condition on II.
(c) The word problem is solvable for each Gv that is, given any pair of words x, y in the

elements of Sy, we can determine whether or not || x \\ = || y | .
We can now give an algorithm (first described in [2]) to obtain from an arbitrary word co

in 5 a word co' such that [| ct> j| = || co' || and co' is either II-reduced or is the empty word. We
first bracket together the symbols in the word co so that all symbols in a bracket belong to the
same set Sy and symbols in adjacent brackets belong to different sets. We then have
co = cot co2...con say, where c0ieSy{0 and y(i) ± y(i+1) (i = 1,2,. . . , n-1). We next delete
each co( for which || co( || = / ; this is possible since the word problem is solvable for each Gr

After a finite number of repetitions of these steps we arrive at the required word co'.
It follows that the word problem is solvable for IT, since a Il-reduced word does not

represent the identity element of II. In view of this, and in order to simplify the terminology,
we shall work from now on in terms of elements of II rather than in terms of words in S.
Thus we restate the result of the paragraph above as: Given an element W of II, we can
determine the normal form of W and the length of W.

We shall denote elements of II of length one by small letters and general elements of II
by capital letters. We write x ~ y or x ~ ' y according to whether x and y belong to the same
constituent group Gy of FI or not. We define fl(X, Y) and E(X, Y) to be the number of cancel-
lations and amalgamations, respectively, in the product X. Y, and put

Clearly, given X and Y, we can determine P(X, Y) and s(X, Y). If X = Xt. X2 Xr and
r

l(X) = £ l(Xt), we write X=X1X2...Xr. If the element W of II has normal form
i= i

xlx2...xn in ^ 1), we put \n{W) = xu ¥\n(W) — xn. If n ^ 2 and jq ~'xn, the elements

x I .x r + 1 . . .x I I x 1 x 2 . . .x r _ 1 (r = l ,2 , . . . ,n )

are called the cyclic arrangements of W.
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We define the cyclic length of We IT, written l°(W), by

l°(W) = Min {1{X): X a conjugate of W).

It is easy to describe a finite process to obtain from any element PFof IT a conjugate element X
of n such that l\W) = l(X).

2. The set Si. Letfi be a set of elements of IT and [SI] the normal subgroup oflT generated
by SI, where the quotient group U/[Q] of IT is an FPS-group; i.e., for any elements R, R' of SI,
the following conditions are satisfied:

(1) l(R) £ 7.
(2) InCR)~'FinCR).
(3) Every cyclic arrangement of/? and i?"1 belongs to SI.
(4) Either R^R'1 or 6a(R', R) < Min(/(#), /(*))•
(5) Maxa(/?i, K) ?£ 0, where /?t is a cyclic arrangement of R or i?"1 and Kis an element

of Q such that Rl

We denote by | A'l the image of the element X of IT under the natural homomorphism of IT
onto n/[ft], and write X « 7 if A" and 7 are elements of IT such that | jif | = | y |.

We define the subset f̂  of TT to consist of all elements U of IT such that U is a subword of
some element R of SI (i.e., R = AT/y for some X and y) and /(£/) ^ [$/(/*)]. We impose the
following conditions on IT/[Q].

(d) The set SI is recursively enumerable.
(e) Given any element W of IT, we can determine whether or not W belongs to fit.

Let W be an element of Slr. It follows from properties (3) and (4) of SI that there exist
unique elements R, T of IT such that R = WT and ReSl. (For, since WeSli} there exists
R{ eSl such that Rt = XWY, and then R = WYX belongs to SI. Now, if 7?' = WT' belongs
to fi, then a(R-\ R') ^ /(«0 ^ MR)] >|/(i?) and so /? = #'.) Given ^ E Q , , we can deter-
mine this R and T, for, since SI is recursively enumerable, we have an explicit enumeration
/?j, R2,... of the elements of Cl. We test if Rl is of the form WT, and, if not, then we test
Rj, R2,...; the testing process must terminate since we know that some Rt in the enumeration
has the required form. The element T'1 is called the complement of W, written ^W. We
note that <#Wx,W since Rxl. If W is a subword of the element Z of IT, Z = XWY say, then
the element P = X. T~l. Y of IT is called the result of replacing W in Z by <$W, and, if
/(P) < /(Z), we say that Z is Sl-reducible by W. The element Z is said to be Sl-reduced if Z ? I
and Z contains no subword by which it is Q-reducible. Britton [3] has proved (see Lemma 3
of [7]) that, if Z is fi-reduced, then Z * /. We note that, if Z is fi-reducible by W and P is
the result of replacing W in Z, then P as Z, since WxWW.

We now state a theorem concerning fi-reduced elements of IT. The proof of this result
will be given in a later paper.

THEOREM 1. Let A, B be Sl-reduced elements of IT such that AxB. Put n = l(A), m = 1{B).
Then n < 6mm.
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COROLLARY 1. Let A x B, where A is Q-reduced and l(B) = 1. Then A = B.

Proof. It is easy to see that any element of length one is ft-reduced. Hence the conditions
of Theorem 1 are satisfied and so we have l(A) £ 6. Thus l(A.B~l) g 7 and A.B'1 xl.
From (ii) of the theorem of [3], it follows that either A = B or A.B*1 = AB~leCl, since
l0 = Min{/CR): ReQ) ^ 7. Now, if AB'1 belongs to fi, then A belongs to Qj and /(/I) = 6.
This contradicts the fact that A is Q-reduced, since replacing the subword A of A by WA = B
yields an element of length one. Hence we must have A = B.

The element Z of II is said to be cyclically il-reduced if either /(Z) = 1, or /(Z) > 1 and
the following conditions are satisfied:

(i) In(Z)~'Fin(Z).
(ii) /(Z) g l°(P) for any P which is the result of replacing a subword W of Z.

(iii) Every cyclic arrangement of Z satisfies (ii).
We note that, if Z is cyclically Q-reduced, then so is every cyclic arrangement of Z or

Z" 1 ; also Z is Q-reduced.

3. Preliminary results.

LEMMA 1. Given any element W of n , we can determine whether or not W is cyclically

il-reduced. If W is not cyclically Q-reduced, then we can find U, V such that W x U'1 .V.U

and V is either cyclically il-reduced or is the identity.

Proof. The proof is by induction onn = 1{W). The result holds if n = 1, since then W
is cyclically H-reduced, and also if n = 0, since then W = I and we can take U = V = I. We
suppose that n > 1 and that the result holds for any element of length less than n. If
In(0O~Fin(0O,weput W'= {In(W)}"1. W.ln(W). Then Whas length less than Wand
so, by the induction hypothesis, we can find U, V such that W x U'1 .V.U and V is either
cyclically fi-reduced or is the identity. Now Wx, In(W). U'1. V. U. {In(W)}"1 and so the
result holds for W. Thus we can assume that In{W) ~'Fin(W).

Since W has only finitely many cyclic arrangements and each cyclic arrangement has only
finitely many subwords, we can determine all the cyclic arrangements W of W which contain
a subword belonging to Q,. If no such W is found, then W is cyclically Q-reduced and the
result follows. If we find a W containing a subword Y belonging to il1, then we can deter-
mine ^ 7 and hence the result W" of replacing Y'm W. Now, if we do not find a W" such that
l\W") < 1{W), then it follows that W is cyclically fi-reduced; if we find a W and W" such
that l\W") < 1{W), then we can find elements T, Tu A of II such that W=T~1 .W'.T,
W" =TilA.Ti and l(A) = l°(W") < l(W). Using the induction hypothesis, we can find
elements U, V of II such that A x U'1. V. U and V is either cyclically Q-reduced or is the
identity. Now, since W x W", we have Wx T~l. Tf1. U'1. V. U. 7\ . T, and so the result
holds for W. This concludes the proof of the lemma.

The following result is proved in a similar way.

LEMMA 2. Given any element W of IT, we can determine whether or not W is Q-reduced.
If W is not Q-reduced, then we can find an element W of Yl such that W x W and W is either
il-reduced or is the identity.
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Combining this result with the fact that, if Z is Q-reduced, then Z * /, we obtain (Theorem
2 of [2]).

THEOREM 2. Let fl/[fi] be an FPS-group satisfying conditions (a) to (e). Then the word
problem is solvable for 11/[fi].

We now impose another condition on n/[Q].

( / ) Given any element J of n , we can determine whether or not there exist a positive
integer r and an element R of Q such that Jr = R.

We have

LEMMA 3. Let W be an element ofR such that 1{W) > 1 and W is cyclically Q-reduced.
Then we can determine the order of | W\ in IT/[£l].

Proof. It was shown in [7] that | W\ has finite order if and only if there exist / e f l ,
ReSl and positive integers m, n such that W = Jm, R = J".

Now, if there is an element / of IT such that W= Jm for some positive integer m, then we
must have/(/) ^ 2, In(7) ~ ' Fin(J)and / a subword of W, since l(W)^ 2andIn(J<F)~' F'm(W).
Clearly we can find all such subwords of W (note that W itself is such a subword).

We now determine, for each such / , whether or not there exist a positive integer n and an
element R of Q such that J" = R. If no such R exists, then | W\ has infinite order. If for
some J there exists such an R, then we can find it by examining in turn each of the elements
Rlt R2,... of fi until we come to one with the required form. Let t be the highest common
factor of m and n (clearly the integers m and n are known). Then, by Theorem 2 of [7], | J\
has order n and so | W | has order njt.

4. The main results. We list two conditions that we shall need to impose on U/[£l].
(g) The order problem is solvable for each constituent group Gy of II.
(h) The power problem is solvable for each constituent group Gy of II.

We have

THEOREM 3. Let n / [n] be an FPS-group satisfying conditions (a) to (g) listed above. Then
the order problem is solvable for Hj[Q].

Proof. Given any element | W\ of n , we have to determine the order of | W\ in II/[fi].
By Lemma 1, we can find elements U, V of II such that W x U~l .V .U and V is either cyclic-
ally fi-reduced or is the identity. Then | f̂ |̂ == | tZ| x | P^111/"|, and so the order of | W\ is
equal to the order of | V\. Thus, to prove the theorem, we have to determine the order of
| V\. If V = / then we are finished. If l(V) = \,VeGy say, then, by (ii) of Theorem 1 of [7],
the order of | V\ is equal to the order of V, and we can determine this since the order problem
is solvable in Gr Finally, if l(V) > 1, then by Lemma 3 we can determine the order of | V\:
This proves the theorem.

THEOREM 4. Let II/[Q] be an FPS-group satisfying conditions (a) to ( / ) and condition (h).
Then the power problem is solvable for II/[Q].

Proof. Given elements X and Y of IT, we have to determine whether or not | X\ = | Y\"
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for some integer n. Now, if either X as I or Y an I, then the result follows from Theorem 2,
so we can assume that X x I and Y * /. It follows that we can find elements Z, W of II
such that Y as Z " 1 .W.Z and W is cyclically Q-reduced, and an element P of n such that
PasZ.X.Z'1 and P is Q-reduced. Now X an Y" if and only if P an W", so that the theorem
will be proved if we can determine whether or not P as W for some integer n.

Suppose firstly that /(W) = 1. Then, if P as W for some n, we must have, by Corollary 1,
that P = W and so, in particular, P and W must belong to the same constituent group of IT.
Now we can determine whether or not P belongs to the same constituent group Gy as W, and,
if it does, then we can decide whether or not P = W for some integer n, since the power
problem is solvable for Gr This proves the theorem for the case l(W) = 1.

Now suppose that l(W) > 1. Then, by Lemma 3, we can determine the order of | W\. If
| W | has finite order, then we have to test whether or not | P | is equal to any one of a finite
number of powers of | W\, and this we can do since the word problem is solvable for II/[Q].
Hence we can assume that | W\ has infinite order. We determine whether or not W2 is
cyclically fi-reduced.

Suppose that W2 is cyclically fi-reduced. Then, since we know that the order of | W\ is
infinite, it follows from Lemma 5 of [7] that W is fi-reduced for all n. Also W, W2,... are
increasing in length, since l(W) > 1 and In(PF) ~ 'Fin(H / ) . Now, by Theorem 1, we can find
a positive integer s such that P as W and P'1 * W for any r ^ s. Hence, to determine
whether or not P as W for some integer n in this case, we have only to determine whether or
not Pas W"for —s<n<s, and this we can do since the word problem is solvable for IT/[Q].

Now suppose that W2 is not cyclically Q-reduced. Then we can find a cyclic arrangement
U of W, an element V of IT and an element S of fit such that U2 = SV, R = S J " 1 eQ and
l°(T. V) < 1{U2). It is easy to see that we can choose S and U so that P(T, V) = /?(F, T) = 0.
Then, by Corollary 2 of [7], writing W2 for V, we have U=WVW2 for some element Wv of II
(which we can clearly determine), (T. W2)

n is £2-reduced for all n and (T. W2), (T. W2)
2,...

are increasing in length. We note that T. W2 as U2 since it is the result of replacing
S = Wx W2 Wi in U2 = (Wy W2 W1)W2 by T. Now we have W= A T 1 . C/.M say, where M

Put H=M.P.M~i. Theis known, and \P\ = | W\n if and only if \M.P.M~X \ = \U
theorem will be proved if we can determine whether or not H | is a power of | U | . Since
T. W2 as U2 this will be so if and only if either | H\ = \ T. W2 \

k or | H. U~11 = | T. W2 \
k for

some integer Jr. Using the fact that (T. W2f is Q-reduced for all n and that (T. W2),
{T. W2)

2,... are increasing in length, it is clear that we can determine whether or not this is so.
This concludes the proof of the theorem.

Theorems 3 and 4 can be used in various ways to extend the class of groups for which
Britton solved the word problem. We give here one such extension. We need firstly modifica-
tions of two results due to Lipschutz (Lemma 2 and Theorem 5 of [6]).

THEOREM 5. Let (5; D) and {S'\ D') be presentations of groups A and B, respectively, for
which both the order problem and the power problem are solvable. Let U, V be words in the
symbols of S, S', respectively, such that the corresponding group elements have the same order,
and let G be the free product of A and B with the cyclic subgroup generated by these elements
amalgamated, so that G has presentation
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Then the order problem and the power problem are solvable for G.
Proof. The conditions of the theorem imply that the word problem is solvable for A and

B, so that we can work with group elements of A and B rather than with words in the symbols
of S and S'. The solvability of the power problem for G follows easily from Lemma 2 and
Theorem 5 of [6], so that we have only to solve the order problem for G.

Let W be any element of G. Then we can find a conjugate W of W such that either

(i) W = a1bla2b2...anbn, where ateA, b{sB {i = 1, 2 , . . . ,«) and no a% or bt belongs
to the amalgamated subgroup, or

(ii) W is equal to an element of A or B.

If (i) holds, then W (and therefore W) has infinite order in G, while if (ii) holds, we can
determine the order of W since the order problem is solvable in A and B. This proves the
theorem.

As a consequence of this theorem we have

THEOREM 6. Let <3V be a set of groups given by presentations for which the order problem
and the power problem are solvable. Let e&k (k > 1) consist of groups G which are the free products
of a finite number of groups in ^k-t with a cyclic subgroup amalgamated, each amalgamation
being specified in terms of the known presentations of the groups in ^k-ly so that a presentation
is obtained for each group in &k. Then the order problem and the power problem are solvable for
each group in ^§k.

Combining this result with Theorems 3 and 4, we have

COROLLARY 2. If&i is a set of FPS-groups, each of which satisfies conditions (a) to (h),
and ^k (k > 1) is defined as in Theorem 6, then the order problem and the power problem are
solvable for each group in 1§k.

5. Two examples. We now give the two examples mentioned in the introduction. These
were suggested by Example 2 of [2]. It is worth noting that the presentation with unsolvable
word problem given in that example is in fact a recursive presentation of the free group F
on a countable number of generators. Thus if we take a more usual presentation of this group,
say (S; D) where S = {xu x2,...} and D is the empty set, then we have two presentations of F
such that we cannot construct the isomorphism between them (since otherwise, as the word
problem is solvable for (S; D), it would be solvable for the presentation given by Britton).
This is in complete contrast with the situation for finitely presented groups, for it is known
(cf. Boone [1], p. 214) that, if two finite presentations represent the same group, then an iso-
morphism between them can be found, even when nothing is known about the solvability of
the word problem for the presentations.

The examples we give depend on the result (Lemma 2.31 of [2]) that there is a one-one
mapping cj> of the set of positive integers into itself such that the image 0(«) of any given
integer can be calculated, but there exists no finite process for deciding whether or not any
given integer is an image under </>.
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EXAMPLE 1. A group Ht with a recursive presentation Pt for which the power problem is
solvable but the order problem is unsolvable.

For each positive integer n we define the group Gn by the presentation

(xB; x? = 1 if <f>(m) = n).

Thus Gn is an infinite cyclic group if there is no integer m such that <j>(m) = n, and in any case
Gn is well defined since there is at most one integer m such that 4>{m) = n.

We take 1^ to be the free product of the set of groups {(?„; n = 1, 2, . . .} and Pt to have
generators xr (r = 1,2,...) and defining relations xr^r) = 1 (/• = 1,2,...). Then clearly the
order problem is unsolvable for Pu since given an integer n there is no finite process for
determining whether or not there is an integer m such that (j>(m) = n.

To show that the power problem is solvable for Plt it is sufficient, from the construction
of Tlv as a free product, to prove that the power problem is solvable for each group Gn.

Thus, given elements x*, x% of Gn, we have to determine whether or not there is an integer
r such that xx

n = x£r in Gn, that is whether or not x*~"r = 1 in Gn.
Put a = max(|X\, \fi\)- Then we can determine whether or not 4>(m) = n for any

integer m such that m^a.
Suppose that we find such an m. Then Gn has presentation (xn; x™1 = 1) and so x^""' = 1

for some integer r if and only if A—jur = 0 (mod m\). If such an r exists, then there is one
in the set (0, 1, 2 , . . . ,m\ — 1), so that we can determine whether or not there is such an r.

Now suppose there is no integer m such that m^a and $(m) = n. We complete the proof
that the power problem is solvable for Ga by showing that, in this case, x*~"r = 1 for some
integer r if and only if A is a multiple of \i.

Suppose firstly that there is no integer m such that <f>{m) = n. Then x^""r = 1 if and only
if X = fir, that is, a*"*"" = 1 for some integer r if and only if A is a multiple of ft.

Now suppose that there is an integer m such that $(m) = n. We note that ft \ m!, since we
must have m> a. Now, if xj}-"p = 1, then X—fir = 0 (mod ml) and so X = fir+km\ for
some integer k. Hence A is a multiple of /x, since \i | m!. On the other hand, if A is a multiple
of n, X = fir say, then x;}"'"' = 1. This proves our assertion.

Thus we have shown that the power problem is solvable for each Gn and hence for Pv.

EXAMPLE 2. A group JI2 with a presentation P2for which the order problem is solvable but
the power problem is unsolvable.

For each positive integer n we define the group Gn by the presentation

(xn,yn;xnyn = ynxn,xn = y™ if <£(m) = n).

We take n 2 to be the free product of the set of groups {Gn:n= 1,2,...} and P2 to have
generators xr, yr (r = 1, 2, . . .) and defining relations xryr = yrxr, x^r) = j j ( r ) (r = 1, 2, . . . ) .
The power problem is unsolvable for P2, since, given xn, yn, we have xn = y™ if and only if
4>[m) = n, and we have no finite process for deciding whether or not there is an integer m such
t h a t <j>{m) — n.

To prove that the order problem is solvable for P2 it is sufficient, from the construction
of IT2 as a free product, to show that it is solvable for each group Gn.
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Any element of Gn can be written in the form x^y^, and

if and only if there is an integer m such that §(ni) = n and Xmr+nr = 0, that is, if and only if
<t>(m) = n and Aw+ji = 0. Clearly we can determine whether or not there is such an m.
Thus we can solve the power problem for each Gn and hence for P2.

We note that recursive presentations P[, P2 of ITj, n 2 , respectively, can be given for
which both the order problem and the power problem are solvable; this answers a question
raised by the referee. We need the fact that the set SP of positive integers which are not images
under <j> is (countably) infinite; this follows easily from the definition of <j> given in Lemma
2.31 of [2]. Thus the subgroup of 111 generated by the xn for which net? is a free group of
infinite rank, and II x is the free product of this subgroup with the subgroup generated by the
x<l>(r) (r = ' . 2 , . . . ) ; we take P[ to have generators ar, br(r=l,2,...) and defining relations
a? = 1 (r = 1, 2, . . .) . Also the subgroup of IT2 generated by the xn, yn for which n e Sf is the
free product of an infinite number of free abelian groups of rank 2, while the subgroup of U2

generated by the x^r), y^r) (r = 1, 2,. . .) is a free group of infinite rank generated by the
y^(r) (r = 1.2,...), and IT2 is the free product of these two subgroups; we take P'2 to have
generators ar, br, cr(r= 1,2,...) and defining relations arbr = brar(r = 1,2,...). It is clear
that P[, P'2 have the properties stated above.
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