Canad. Math. Bull. Vol. 17 (1), 1974

A SHORT PROOF OF AN INTERPOLATION THEOREM

BY

EDWARD HUGHES

In this note we give a simple proof of an operator-interpolation theorem (Theorem 2) due originally to Donoghue [6], and Lions-Foias [7].

DEFINITION. Let \mathscr{C} be the complex plane, \mathscr{C}^+ the open upper half-plane, \mathscr{R} the real line, \mathscr{R}^+ and \mathscr{R}^- the non-negative and non-positive axes. Denote by \mathscr{K} the class of positive functions on \mathscr{R}^+ which extend analytically to $\mathscr{C} - \mathscr{R}^-$, and map \mathscr{C}^+ into itself. Denote by \mathscr{K}' the class of functions φ such that $\varphi(x^{1/2})^2$ is in \mathscr{K} .

Let $\varphi \in \mathscr{K}$. By reflection φ takes the lower half-plane to itself, and is increasing and concave (i.e. $\varphi'' \leq 0$) on \mathscr{R}^+ . Turner [5] proves the following generalisation of a matrix theorem of Löwner [4] (see also Heinz [2]):

LEMMA 1. Let φ be a positive function on \mathscr{R}^+ . Then $\varphi \in \mathscr{K}$ if and only if for any positive selfadjoint operators A and B on a Hilbert space which satisfy $0 \le A \le B$, we have $\varphi(A) \le \varphi(B)$.

By a simple exercise with harmonic functions one proves:

LEMMA 2. Let $\varphi \in \mathscr{K}$. Then if $z \in \mathscr{C}^+$,

 $0 \leq \arg \varphi(z) \leq \arg z$,

If $\varphi \in \mathscr{K}$ or \mathscr{K}' , let $\varphi^c(x) = x/\varphi(x)$. It follows from Lemma 2 that $\varphi \in \mathscr{K}$ (or \mathscr{K}') implies $\varphi^c \in \mathscr{K}$ (or \mathscr{K}'). The following theorem was first proved by Heinz [3] for the functions $\varphi(x) = x^{\theta}$ ($\theta \in [0, 1]$).

THEOREM 1. Let A and B be positive operators on Hilbert spaces H_1 and H_2 . Let Q be a closed, densely defined linear map from H_1 to H_2 , such that $D(A) \subseteq D(Q)$, $D(B) \subseteq D(Q^*)$, and for all $f \in D(A)$, $g \in D(B)$, we have: $||Qf|| \leq ||Af||$; and $||Q^*g|| \leq ||Bg||$. Let $\varphi \in \mathcal{H}'$. Then for $f \in D(A)$, $g \in D(B)$,

$$|(Qf, g)| \leq ||\varphi(A)f|| ||\varphi^{c}(B)g||.$$

In proving this theorem it suffices to assume that $H_1 = H_2$. Then Q has the "polar" representation Q = PS, where $S \ge 0$ and P is a partial isometry [1, p. 1249]. The rest of the proof is a straightforward use of Lemma 1.

127

9

EDWARD HUGHES

We now have the main interpolation result:

THEOREM 2. Let $A \ge 0$, $B \ge 0$ be positive operators on H_1 and H_2 . Let $\varphi \in \mathcal{K}'$. Suppose T is a bounded linear map from H_1 to H_2 which takes D(A) into D(B), and satisfies

$$\|BTf\| \leq C_1 \|Af\| \qquad (f \in D(A))$$

$$\|Tg\| \leq C_2 \|g\| \qquad (g \in H_1).$$

$$\|\varphi(C_2B)Tf\| \leq C_2 \|\varphi(C_1A)f\|.$$

Proof. Assume first that $A \ge \varepsilon > 0$, $B \ge \varepsilon$. Let Q = BT. Then Q^* is the closure of T^*B , and hence the hypotheses of Theorem 1 are satisfied. Thus,

 $|(Qf, g)| \le ||\varphi(C_1A)f|| ||\varphi^{\circ}(C_2B)g||, \quad \text{for } f \in D(A), \quad g \in D(B).$ Since $B \ge \varepsilon$, $\varphi^{\circ}(C_2B)$ is invertible. Let $h = \varphi^{\circ}(C_2B)g$. Since

$$\varphi^{c}(C_{2}B)^{-1}Qf = C_{2}^{-1}\varphi(C_{2}B)Tf,$$

the above becomes

 $|(\varphi(C_2B)Tf, h)| \leq C_2 ||\varphi(C_2A)f|| ||h||,$

from which the conclusion follows. A limiting argument removes the assumptions on A and B.

The concavity of φ implies

COROLLARY.

$$\|\varphi(B)Tf\| \leq d_1d_2 \|\varphi(A)f\|,$$

where $d_i = \max(C_i, 1)$.

Theorem 2 has a converse, which is an easy consequence of Lemma 1, and which states that \mathscr{K}' is the largest class of functions enjoying the property stated in Theorem 2 for all A, B, and T.

References

1. N. Dunford and J. Schwartz, Linear operators, Interscience, New York, 1963.

2. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.

3. E. Heinz, On an inequality of linear operators in a Hilbert space, Nat. Acad. Sci. (U.S.A.) 387 (1955), 27–29.

4. K. Löwner, Über monotone Matrix Functionen, Math. Z. 38 (1934), 177-216.

5. R. Turner, On monotone operator functions and interpolation, (to appear).

6. W. F. Donoghue, The interpolation of quadratic norms, Acta Math. 118 (1967) 251-270.

7. J. L. Lions and C. Foias, Sur certains theorèmes d'interpolation, Acta Sci. Math. (Szeged) 22 (1961) 269–282.

CARLETON UNIVERSITY, OTTAWA, ONTARIO

128