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Beyond the Wilson action 

The imposition of an ultraviolet cutoff is a highly non-unique procedure. 
Even in the framework of a lattice theory, innumerable variations are 
possible. Several decades of success with perturbative quantum electro­
dynamics had led to the lore that the removal of any regulator yields the 
unique renormalized theory depending only on a small number of physical 
couplings and masses. Indeed, renormalizability is often regarded as a 
primary constraint on models for fundamental interactions. 

On a non-perturbative level, however, little is rigorously known about 
even the existence of any four-dimensional theory, let alone its uniqueness. 
In some cases the theory may depend on even less parameters than 
suggested in perturbative analysis; for example, as discussed in chapter 13, 
Yang-Mills theories should undergo dimensional transmutation with 
dimensionless ratios being determined independent of any coupling 
constants. 

The Monte Carlo technique provides an opportunity for non­
perturbative exploration of cutoff dependence. Thus we can begin nu­
merically to address these questions of the uniqueness of the continuum 
limit. In this chapter we discuss some of the simple variations of the Wilson 
scheme from this viewpoint of universality. 

A simple alternative to the Wilson model places a vector field AI' on the 
lattice sites and uses an action obtained by replacing derivatives in the 
continuum Yang-Mills Lagrangian with nearest-neighbor differences. 
This would be naively similar to the procedure followed in chapter 4 for 
scalar fields. This differs from the conventional lattice gauge theory in two 
important respects. First, the cutoff theory no longer has an exact local 
symmetry. This should not matter if the gauge breaking terms go away 
sufficiently rapidly in the continuum limit, but will complicate the renor­
malization procedure. Second, the integral over gauges is no longer 
compact. The path integral will not be well-defined until gauge fixing is 
imposed. Because of its awkwardness, little work has been done with such 
a scheme, although Patrasciou, Seiler and Stametescu (1981) have done 
some preliminary Monte Carlo studies. They have not as yet seen the area 
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law for large loops, but this is probably due to a renormalization of the 
bare charge making the linear potential appreciable only at extremely 
strong coupling. 

Remaining closer in spirit to the Wilson formulation, Edgar (1982) 
considered replacing the plaquette with the two-by-one Wilson loop as the 
fundamental term in the action. In two space-time dimensions with the 
gauge group 22 this model is equivalent to the Ising model and therefore 
must have a phase transition, unlike the two-dimensional Wilson theory, 
which is trivial. The model possesses some extra global symmetries which 
can be broken; indeed, Edgar has seen a first-order phase transition in this 
'fenetre' model with the gauge group SU(2) in four dimensions. The moral 
of this is that the mere presence or absence of a phase transition is not 
a universal property of the gauge group. As we will see again later in this 
chapter, when the lattice spacing is not small, variations on the action can 
introduce new phenomena as lattice artifacts. 

Drawing still closer to the Wilson theory, one can keep the action a class 
function of the group elements associated with the plaquettes, but change 
the detailed form of that function. We have already done that to some 
extent when we discussed duality and the Migdal-Kadanoff recursion 
relations, and we will pursue such generalizations further here. Manton 
(1980) presented a particularly simple alternative, taking for the action on 
a plaquette (20.1) 

where d is the minimal distance in the group manifold between the element 
U and the identity I. The concept of a distance in the group manifold is 
formulated in terms of the metric tensor briefly mentioned in chapter 8. 
This metric is unique up to an overall normalization. In the case of SU(2) 
the distance is simply 

(20.2) 

The Manton action is convenient for analytic work in the weak coupling 
limit. It is, however, singular for those elements with maximum distance 
from the identity, such as -I for SU(2). An amusing technical consequence 
of this singularity is that the transfer matrix is never positive definite 
(Grosse and Kuhnelt, 1981). 

Another generalization, similar in spirit but different in detail from that 
of Manton, is the 'heat kernel' or generalized Villain (1975) action 
(Drouffe, 1978; Menotti and Onofri, 1981). This is based on the desire that 
the Boltzmann weight or exponentiated action 

B(Uo) = exp( -So(P, Uo» (20.3) 
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should peak strongly near the identity element for weak coupling but 
should become uniform over the group for a simple strong coupling limit. 
This is reminiscent of expectation for the evolution of the temperature 
distribution in a piece of material shaped like the group manifold and 
initially possessing a spike in temperature at the identity. As time proceeds, 
the temperature spike should spread and eventually become uniformly 
distributed over the manifold. These ideas can be made mathematically 
precise using a group-theoretical generalization of the Laplacian to 
formulate a heat equation. Recall from chapter 8 the metric tensor 

Mij = Tr (g-l(Ot g) g-l(Oj g», (20.4) 

where the derivatives are with respect to the variables lXi which parameterize 
the group manifold. In terms of this, the invariant Laplace operator is given 
by the standard formula of differential geometry 

V2 = det (M)1 (ojolXt) det (M)t Mt/(OfolXj). (20.5) 

We now define the heat equation 

V2K(t,g) = -(djdt) K(t, g), (20.6) 

where for convenience we have set the thermal diffusion coefficient to unity. 
For an initial condition we take 

K(O,g) = 8(g,I). (20.7) 

The heat kernel action is directly identified with the solution of this 
equation at a time given by the coupling constant 

eS o(.8, U) = K( I j p, U). (20.8) 

This action has the technical advantage over the Manton form of being 
smooth over the entire group manifold and giving rise to a positive definite 
transfer matrix. 

Both the Manton and heat kernel actions have been subjected to Monte 
Carlo analysis (Lang, Rebbi, Salomonson and Skagerstam, 1981). The 
string tension was extracted as discussed in the last chapter. For comparison 
with the Wilson action results, the scheme dependence of the parameters 
must be calculated perturbatively. The results showed deviations of 20-40 % 
from the theoretical expectations for their ratios, assuming that the 
physical string tension is universal. This should be regarded as the 
uncertainty due to the practical fact that the lattice spacing must be kept 
fairly large and therefore higher terms in the renormalization group 
function can be important. 

Going on to another variant of the action, we note that an interesting 
change in the qualitative phase structure of the SU(2) theory results from 
merely changing the trace of a plaquette to the corresponding trace in the 
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adjoint representation (Greensite and Lautrup, 1981; Halliday and 
Schwimmer, 1981a). This amounts to working directly with the group 
SO(3). In figure 20.1 we show a thermal cycle on this model with a 5' site 
lattice. Figure 20.2 shows the evolution of this system from ordered and 
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Fig. 20.1. A thermal cycle with SO(3) lattice gauge theory on a 54 site lattice. The 
open circles represent heating; the crosses, cooling. (From Bhanot and Creutz, 
1981.) 
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Fig. 20.2. Monte Carlo runs on SO(3) lattice gauge theory at the transition 
temperature, p = 2.5. The open circles represent an ordered start, the crosses, 
random (Bhanot and Creutz, 1981). 

disordered starts at the estimated transition temperature. These figures 
indicate a rather clear first-order transition. 

As far as the c1assicallimit is concerned, SO(3) and SU(2) Yang-Mills 
theories are identical. They only differ because of global properties which 
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can come into play when quantum fluctuations bring plaquette operators 
far from the identity. The new transition is a lattice artifact which only 
shows up when the lattice spacing is not small. This is similar to the 
situation with the fenetre action mentioned earlier. 

One possible explanation of this SO(3) transition is in terms of Z2 
monopole excitations. These arise because the SO(3) representation of 
SU(2) does not see the Z2 center of the group. A plaquette variable near 
- I in the group SU(2) has the same energy as one near I. This can be used 
to define a Dirac string as a sequence of plaquettes near - I. Several closely 
related schemes for making this concept precise have been presented (Mack 
and Petkova, 1979; Tomboulis, 1981; Halliday and Schwimmer, 1981b; 
Brower, Kessler and Levine, 1982). We will follow Halliday and Schwim­
mer, who consider a slight modification of the theory. To make the action 
insensitive to the group center, they introduce a new set ofvariables {O'o}, 
each from the group Z2 = {+ 1, -I} and located on the lattice plaquettes. 
The new partition function is 

Z = I f(dU) exp (IjlO'o Tr(Uo». (20.9) 
{O'o} 0 

As the action is linear in 0'0' that part of the sum can be carried out to 
give 

(20.10) 

where So(U) = log (2 cosh (jlTr U». (20.11) 

Being an even function ofTr U, this quantity does not see the group center. 
Monte Carlo simulation (Halliday and Schwimmer, 1981b) has shown that 
this variation of the SO(3) theory also has a first-order phase transition. 

The quantity 0'0 is essentially a Dirac string variable; when it is 
positive, Uo is weighted towards the identity, and when it is negative, Uo 
prefers to be near - I. The precise position of the Dirac string is unphysical 
because it can be moved around by absorbing factors of - 1 into the link 
variables. However, in this process the ends of the string do not move; 
consequently, a natural definition of a monopole is to count the number 
of negative string variables entering any given three-dimensional cube and 
to say that a monopole is in that cube if this number is odd. On a 
four-dimensionallattice the monopoles will trace out world lines, and the 
strings sweep out world sheets. Halliday and Schwimmer measured the 
density of these monopole world lines in their simulation and found a sharp 
discontinuity at the transition temperature. The monopole density is not 
an order parameter in the sense of a magnetization for a spin system 
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because thermal fluctuations prevent it from ever being exactly zero at any 
finite temperature. Nevertheless, it does provide a useful quantity to 
describe what is physically occurring at the transition. 

The monopoles are easily supressed by giving them an ad hoc mass term. 
This motivates the more general partition function 

Z = 1: f(dU)eXP (1:PO'o Tr(Uo )+"1: II 0'0)' (20.12) 
{uo} 0 c Dec 

where the new sum in the exponent is over all three-dimensional cubes of 
the lattice. The presence of a monopole in any cube is now penalized by 
a factor of e-ZA • As " becomes large, the product of string variables over 
the surface of any cube must go to unity. An elementary exercise shows 
that once this has occurred there exists a set of Z2 variables on the links 
such that any 0'0 is the product of these around the given plaquette. In 
this event, all Z2 factors are readily absorbed in the invariant SU(2) 
measure and the theory goes over into the usual SU(2) theory, which 
appears not to have any phase transitions. The limit P--+O in eq. (20.12) 
gives rise to a rather complicated looking Z2 theory. However, under a 
duality transformation as discussed in chapter 16, this model turns into 
the usual four-dimensional Ising model with its second-order phase 
transition. Halliday and Schwimmer provided Monte Carlo evidence that 
as " is increased, the SO(3) transition moves to smaller P and eventually 
becomes the Ising transition. The place where the transition changes from 
first to second order is not known. 

An alternative means for supressing monopoles is to add to the action 
of eq. (20.9) an effective potential for the variables 0'0' Thus we could 

consider f 
Z = 1: (dU)exp(1:pO'o Tr(U)+1J 1:0'0)' (20.13) 

{uo} 0 . 0 

As the parameter 1J goes to infinity, all 0'0 are driven to unity and we again 
return to the pure SU(2) theory. As 0'0 is a Dirac string variable, the new 
term adds an effective energy per unit length to the strings. With 1J non-zero 
the strings become physical because moving them around will now change 
the total action in proportion to the total change in string length. 

The action in eq. (20.13) is linear in 0'0' These variables can be summed 
out to give an action dependent on the Uo only, as in eq. (20.10), but now 

SO<U) = log (2 cosh (pTr U+1J». (20.14) 

Unlike in eq. (20.11), this is no longer insensitive to the group center. 
Expanding this action in characters 

(20.15) 
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will give rise to terms with both integer and half-integer spin representations 
of SU(2). Only the half-integer terms distinguish the group center. The 
action in eq. (20.14) has not been simulated directly, but it motivates a 
simpler form obtained by taking just the spin one-half and spin one terms 
in eq. (20.1S) (Bhanot and Creutz, 1981). 

So(U) = !pTr(U)+lPA TrA(U), (20.16) 

Here Tr A denotes the trace or character in the adjoint or spin one 
representation. The factors in front of the couplings P and P A are inserted 
for normalization convenience. 

The theory defined by eq. (20.16) has several interesting limits. For 
vanishing P A it reduces to the ordinary Wilson SU(2) model, which we 
believe exhibits no phase transitions. In contrast, the limit of vanishing P 
gives the SO(3) model, which we saw in figures 20.1 and 20.2 to have a 
first-order transition. The third interesting limit occurs as P A goes to 
infinity. In this case all plaquettes are forced to lie in the center of the gauge 
group. This means that up to a gauge transformation all links are 
themselves driven to the center. Thus for SU(2) the model becomes a Z2 
gauge theory with coupling p. As discussed in chapter 16, this model has 
a strong first-order phase transition at the self-dual point. At the outset, 
therefore, we know that the model of eq. (20.16) must have non-trivial 
phase structure, with two first-order lines entering the phase diagram. 

Monte Carlo simulations have explored the evolution of these transitions 
into the two coupling plane (Bhanot and Creutz, 1981). The resulting phase 
diagram is shown in figure 20.3. Note that the Z(2) and SO(3) transitions 
are stable and meet at a triple point located at 

(P,PA) = (0.SS±0.03,2.34±0.03). (20.17) 

A third first-order line extends from this point and aims toward the Wilson 
axis but terminates before reaching it at a critical point located at 

(P,PA) = (l.S7± O.OS, 0.78 ±O.OS). (20.18) 

This line points directly at the position of the peak in the specific heat of 
the ordinary SU(2) model (Lautrup and Nauenberg, 1980b). That peak 
may be interpreted as a remnant of this transition, a shadow of its critical 
endpoint. 

We can use this system to test the uniqueness of the continuum limit. 
The connection between the bare charge and the parameters is 

(20.19) 

A continuum limit requires taking g~ to zero; however, this can be done 
along many paths in the (P, P A) plane. Conventionally concentration is 
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placed on the Wilson trajectory P A = 0, P ~ 00. Along that line no 
singularities are encountered. Thus we have the usual claim that confine­
ment, which is present in strong coupling, should persist into the weak 
coupling domain. However, an equally justified path would be, for 
example, P = P A ~ ex:>. In this case we cross a first-order transition. Because 
one can continue around it in our larger coupling constant space, the 
transition is not deconfining and is simply an artifact of the lattice action. 

3 

2 
~A 

o 0.5 1.0 1.5 2.0 
~ 

Fig. 20.3. Phase diagram for SU(2) lattice gauge theory with fundamental and 
. adjoint couplings (Bhanot and Creutz, 1981). 

To test whether physical observables are indeed independent of direction 
in this plane, we can consider Wilson loops in the weak coupling regime. 
The loop by itself is not an observable because of self -energy divergences 
(Dotsenko and Vergeles, 1980; also recall problem 4 of chapter 6). These 
divergences should cancel in ratios of loops with the same perimeters and 
numbers of sharp comers. This leads us to consider the ratios 

R(l J K L) = W(I,J) W(K, L) 
, " W(I,L) W(J,K) , (20.20) 

where W(J, J) denotes the rectangular Wilson loop of dimensions I-by-J 
in lattice units. Wishing to compare points which give similar physics, we 
can consider for each value of PA the value of P for which some R ratio 
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has a particular value. In figure 20.4 we show points from Monte Carlo 
simulation for R(2, 2, 3, 3) having the values 0.87 and 0.93. The dashed 
lines in the figure represent constant bare charge from eq. (20.19). This 
particular simulation was performed with a 12O-element subgroup ap­
proximating SU(2). This is a good approximation where we are working, 
but does give rise to an extra transition to a highly ordered state at large 
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Fig. 20.4. Points of constant • physics' as obtained from R(2,2, 3, 3) = 0.87 
(solid circles) and 0.93 (open circles) (Bhanot and Creutz, 1981). 

values of inverse coupling. The location of this • discreteness' transition line 
is also indicated in ,figure 20.4. 

If physics is indeed similar at all points along one of these contours of 
constant R ratio, then it should not matter which ratio we chose. In 
figure 20.5 we show several such ratios as functions of fJA along the 
R(2, 2, 3, 3) = 0.87 contour. The comparison is quite good considering that 
finite cutoff corrections are ignored. Note that in this comparison the bare 
charge is far from being a constant. Along the 0.87 contour of • constant 
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physics', g~ varied from less than unity to nearly 4 in the measured region. 
Such variation is permissible and perhaps even expected since the bare 
charge is unobservable and should depend on the cutoff prescription. The 
dependence can be characterized by a {J A dependent renormalization scale 
Ao({J A)' The expected dependence of the renormalization scale on the new 
coupling {J A is calculable in perturbation theory (Gonzales-Arroyo and 
Korthals-Altes, 1982; Bhanot and Dashen, 1982). In the vicinity of the 
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Fig. 20.5. Various R ratios along the R(2, 2, 3, 3) = 0.87 contour (Bhanot and 
Creutz, 1981). 

Wilson action, that is when I {J Aa I < 0.5, the prediction works reasonably 
well. However, as we approach the critical endpoint at positive {J A, large 
deviations from the points in figure 20.4 are found. This indicates that 
important additional physics is affecting the Monte Carlo results. We are 
seeing lattice artifacts near the new critical point. For negative {JA where 
the bare coupling becomes large, the agreement with the perturbative result 
is again poor. This can presumably be understood because of higher terms 
in the renormalization group function coming into playas the coupling 
increases (Grossman and Samuel, 1983). 
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This analysis indicates the privileged role played by the Wilson action. 
It appears to lie in a middle region where the scaling of asymptotic freedom 
appears on the modest lattices available to Monte Carlo simulation. 

As the parameter fl A increases relative to fl, the extremum of the action 
at U = - I changes from a maximum to a minimum. This occurs along the 
line flA = 3/l/8. (20.21) 

Finally, along the flA axis the two minima are degenerate. Note that the 
critical endpoint lies slightly above the line in eq. (20.21). Bhanot (1982) 
has studied a similar two-coupling SU(3) theory and finds a critical 
endpoint near the appearance of new minima of the plaquette action for 
group elements lying in the group center. As the n of SU(n) increases 
beyond four, those elements of the group center near the identity become 
minima of the action even for the conventional Wilson action (Bachas and 
Dashen, 1982). This observation correlates well with the Monte Carlo 
results that the Wilson SU(4), SU(5) and SU(6) theories all display 
first-order phase transitions (Creutz, 1981b; Moriarty, 1981; Creutz and 
Moriarty, 1982a). Presumably a negative fl A removes the extraneous action 
minima and will permit continuation around these transitions, which 
would therefore not be deconfining. 

In the last few chapters we have seen that Monte Carlo simulation indeed 
provides a powerful tool. The technique not only permits calculation of 
observables, but also opens a way to investigate questions of existence and 
uniqueness. These investigations of the solutions of non-trivial quantum 
field theories indicate that we are truly at an exciting time in the 
development of elementary particle physics. 

Problems 

1. Show that if the product of the 0"0 variables in eq. 12 is unity for 
every three-dimensional cube, then these parameters can be written as the 
product of Zz variables on the links surrounding the corresponding 
plaquettes. 

2. Verify the assertion that the flr~ 00 limit of the theory defined by 
eq. (20.16) is indeed a Z2 gauge theory. 

3. Consider a three-parameter generalized SU(2}-SO(3) action with 
both the A term ofeq. (20.12) and the 7J term ofeq. (20.13). Discuss the 
various two parameter limits of this model. 
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