VOL. 34 (1986) 65-71.

COMMUTATOR OF TWO PROJECTIONS
 in Prediction theory

Takahiko Nakazi

Let ω be a nonnegative weight function in $L^{1}=L^{1}(d \theta / 2 \pi)$. Let 2 and P denote the orthogonal projections to the closed linear spans in $L^{2}(\omega d \theta / 2 \pi)$ of $\left\{e^{i n \theta}: n \leqslant 0\right\}$ and $\left\{e^{i n \theta}: n>0\right\}$, respectively. The commutator of 2 and P is studied. This has applications for prediction problems when such a weight arises as the spectral density of a discrete weakly stationary Gaussian stochastic process.

1. Introduction

Let w be a nonnegative weight function in $L^{1}=L^{1}(d \theta / 2 \pi)$.
Let Z^{-}denote the closed linear span in Z of $\left\{e^{i n \theta}: n \leqslant 0\right\}$ and Z^{+} denote the closed linear span in Z of $\left\{e^{i n \theta}: n>0\right\}$, where $Z=L^{2}(\omega d \theta / 2 \pi)$. 2 denotes the orthogonal projection onto Z^{-}in Z and P denotes the orthogonal projection onto Z^{+}in 2 . In this paper we assume that $\log w \in L^{1}$ because $Z=Z^{-}=Z^{+}$in the case that $\log w \notin L^{1}$. Hence we may assume $w=|h|^{2}$ for some outer function h in H^{2}, the Hardy space for the unit disc. Then $Z^{-}=\overline{h^{-1}} \bar{H}^{2}$ and $Z^{+}=h^{-1} z H^{2}$. Set

$$
\phi=\bar{h} / h .
$$

Let P be the orthogonal projection from L^{2} onto H^{2} and $Q=I-P$ where I is the identity operator on L^{2}. Let P_{0} be the

Received 24 September 1985. The author would like to thank Professor K. Takahashi for his helpful discussions. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

[^0]orthogonal projection from L^{2} onto $H^{2} \cap \bar{H}^{2}$. Put $M_{k} f=k f, k \in L^{\infty}$ and $f \in L^{2}$. Then $Q+P_{0}=M_{z} Q M_{z}$ and $P-P_{0}=M_{z} P M_{z}$. Let H_{k} denote the Hankel operator on H^{2} defined by $H_{k} f=Q\left(M_{k} f\right)$, and T_{k} denote the Toeplitz operator on H^{2} defined by $T_{k} f=P\left(M_{k} f\right)$.

In this paper it is shown that $\|Q P-P Q\| \leqslant 1 / 4$. Let $H_{\phi}^{*} H_{\phi}=\int_{0}^{1} \lambda d E_{\lambda}$. Then it is shown that $Q P-P Q$ is compact if and only if $\int_{0}^{\varepsilon} \lambda d E_{\lambda}$ is compact for any ε with $0<\varepsilon<1$. Also $Q P-P Q$ is compact and $Z^{-}+Z^{+}=Z$ if and only if $H_{\bar{\phi}}$ is compact. It is shown that $H_{\bar{\phi}}$ is compact if and only if $\int_{0}^{1} \lambda d E \lambda$ is compact.

Helson and Sarason [2] showed that $Q P$ is compact if and only if H_{ϕ} is compact. Levinson and McKean ([4], pp. 103-105) studied the weight functions which satisfy $Q P-P Q=0$ and Hayashi [1] considered the operator $Q P-Q \wedge P$ where $2 \wedge P$ denote the orthogonal projection onto $Z^{-} \cap Z^{+}$in Z.

The problem of characterizing the weight functions w that satisfy some kind of interdependence of Z^{-}and Z^{+}is of interest in the theories of weighted trigonometric approximations and discrete weakly stationary Gaussian stochastic process (such weights arise as the spectral densities of processes). We call Z^{-}the past of Z and Z^{+}the future of Z. The results in this paper (see [1], [2], [3] and [5]) have applications for prediction problems when such a weight arises as the spectral density of a discrete weakly stationary Gaussian stochastic process.

2. Norm of $Q P-P Q$

We give three lemmas which relate the commutator $Q P-P Q$ and the Hankel operator of ϕ where $\phi=\overline{h / h}$ and $w=|h|^{2}$.

LEMMA 1. For $k \in L^{2}, \bar{h}^{-1}{ }_{k}=\bar{h}^{-1} M_{z} Q M_{z} k$ and $P h^{-1} k=h^{-1} M_{z} P M_{z}$.
Proof. Since $Z=\overline{h^{-1}} L^{2}=\overline{h^{-1}} \bar{H}^{2} \oplus \overline{h^{-1}} z H^{2}, \quad \overline{h^{-1}} k=\overline{h^{-1}}\left(Q+P_{0}\right) k=$
$\overline{h^{-1}} M_{z} Q M-k, k \in L^{2}$. The statement for P follows similarly.
LEMMA 2. Let $k \in L^{2}$. Then the following hold :
(1) $Q P h^{-1} k=\overline{h^{-1}} M_{z} Q M_{\phi} P M_{z} k$,
(2) $\quad(2 P-P Q) h^{-1} k=h^{-1_{z}} M_{z}\left(M_{\phi} Q M_{\phi} P-P M_{\phi} Q M_{\phi}\right) M_{z}-k$.

Proof. This is clear.
LEMMA 3. Let $A=M_{\bar{\phi}} Q M_{\phi} P-P M_{\phi} Q M_{\phi}$. Then $A \mid H^{2}=-H_{\phi} T_{\phi}$ and $A \mid \bar{z} \bar{H}^{2}=T \bar{\phi}_{\phi} H_{\bar{\phi}}^{*}$.

Proof. We shall prove only $A \mid H^{2}=-H_{\phi} T_{\phi}$, since $A \left\lvert\, \bar{z} \bar{H}^{2}=T \bar{\phi} H \frac{*}{\phi}\right.$ follows similarly.

$$
\begin{aligned}
A \mid H^{2} & =\left(M_{\phi} Q M_{\phi} P-P M_{\phi} Q M_{\phi} P\right) \mid H^{2} \\
& =Q M_{\phi} Q M_{\phi} P \mid H^{2} \\
& =Q M_{\phi}(I-P) M_{\phi} P \mid H^{2} \\
& =-H-T_{\phi} .
\end{aligned}
$$

The map $S: f \rightarrow h f$ is an isometry of Z onto L^{2}. Then

$$
M_{z} S(Q P-P Q)=\left(M_{\phi} Q M_{\phi} P-P M_{\phi} Q M_{\phi}\right) M_{z} S
$$

THEOREM 1. $\|Q P-P Q\| \leqslant 1 / 4$.
Proof. By the remark above, $\|Q P-P Q\|=\left\|H_{\phi} T_{\phi}\right\|$.

$$
\begin{aligned}
\left(H_{\phi} T_{\phi}\right) & { }^{*} H_{\phi} T_{\phi}
\end{aligned}=T_{\bar{\phi}}\left(I-T_{\phi} T_{\bar{\phi}}\right) T_{\phi}=T_{\bar{\phi}} T_{\phi}\left(I-T_{\bar{\phi}} T_{\phi}\right), ~\left(I-H_{\phi}^{*} H_{\phi}\right) H_{\phi}^{*} H_{\phi} .
$$

If $H_{\phi}^{*} H_{\phi}=\int_{0}^{1} \lambda d E_{\lambda}$ then

$$
\left(H_{\bar{\phi}} T_{\phi}\right)^{*} H_{\bar{\phi}} T_{\phi}=\int_{0}^{1} \lambda(1-\lambda) d E_{\lambda}
$$

and this implies $\|Q P-P Q\| \leqslant 1 / 4$.

A theorem of Helson and Szegö [3] shows that $\|Q P\|<1$ if and only if $\sigma\left(H_{\phi}^{*} H_{\phi}\right) \subset[0,1-\varepsilon]$ for some $\varepsilon>0$ where $\sigma\left(H_{\phi}^{*} H_{\phi}\right)$ is the spectrum of $H_{\phi}^{*} H_{\phi}$. The proof of Theorem 1 shows that $\|Q P-P Q\| 1 / 4$ if and only if $\sigma\left(H_{\phi}^{\star} H_{\phi}\right) \subset[0,1 / 2-\varepsilon] \cup[1 / 2+\varepsilon, 1]$.

3. Compactness of $Q P-P Q$

$w=|h|^{2}$ for some outer function h in H^{2} and $\phi=\hbar / h$. Let

$$
H_{\phi}^{*} H_{\phi}=\int_{0}^{1} \lambda d E_{\lambda}
$$

THEOREM 2. The following three properties are equivalent.
(1) $Q P-P Q$ is compact ;
(2) $H_{\phi}^{T}{ }_{\phi}$ is compact;
(3) For any ε with $0<\varepsilon<1, \int_{0}^{\varepsilon} \lambda d E_{\lambda}$ and $\int_{\varepsilon}^{1}(1-\lambda) d E_{\lambda}$ are compact.

Proof. Lemmas 2 and 3 imply (1) \Leftrightarrow (2).
(2) \Leftrightarrow (3). $\left(H T_{\phi} T_{\phi}\right)^{*} H_{\phi} T_{\phi}=\int_{0}^{1} \lambda(1-\lambda) d E_{\lambda}$ by the proof of Theorem 1.

Hence ${ }_{\phi} \bar{\phi}_{\phi}$ is compact if and only if for any ε, with $0<\varepsilon<1$, $\int_{0}^{\varepsilon} \lambda(1-\lambda) d E_{\lambda}$ and $\int_{\varepsilon}^{1} \lambda(1-\lambda) d E_{\lambda}$ are compact, that is if and only if (3) holds.

THEOREM 3. The following three properties are equivalent.
(1) $\quad Q^{P}-P Q$ is compact and $Z^{-}+Z^{+}=Z$;
(2) H_{ϕ} is compact;
(3) For any ε, with $0<\varepsilon<1, \int_{0}^{\varepsilon} \lambda d E_{\lambda}$ is compact and $\int_{\varepsilon}^{1}(1-\lambda) d E_{\lambda}$ has finite rank.
Proof. (1) \Rightarrow (2). Since $\bar{h}^{-1} \bar{H}^{2}+h^{-1} z H^{2}=h^{-1} L^{2}, \bar{z}_{H^{2}}+\phi H^{2}=L^{2}$ and T_{ϕ} is right invertible. By Theorem 2, $H_{\bar{\phi}}$ is compact.
(2) \Rightarrow (3). If $H_{\bar{\phi}}$ is compact and $\| H_{\bar{\phi}}^{\|}=1$ then there exists f
in H^{2} with $\|f\|_{2}=1$ such that $H \frac{\star}{\phi} H_{\bar{\phi}} f=f$ and so $T_{\bar{\phi}} f=0$. This contradicts ker $T_{\bar{\phi}}=\{0\}$. Hence if $H_{\bar{\phi}}$ is compact then $\left\|H_{\bar{\phi}}\right\|<1$. Thus $T_{\phi} H^{2}=H^{2}$ and so $\left\|T_{\phi} f^{\|} \geqslant \delta\right\| f \|_{2}, f \in M$ for some $\delta>0$ where $M=\left(\operatorname{ker} T_{\phi}\right)^{\perp}$. Let P_{M} be the orthogonal projection from L^{2} onto M. Then there exists a bounded linear operator K such that $K T_{\bar{\phi}} T_{\phi}=P_{M}$. $P_{M} H_{\phi}^{*} H_{\phi}$ is compact because $H_{\bar{\phi}}$ is compact and $\left(H_{\bar{\phi}} T_{\phi}\right)^{*} H_{\bar{\phi}} T_{\phi}=T_{\bar{\phi}} T_{\phi} H_{\phi}^{*} H_{\phi}$. Since $\operatorname{ker} T_{\phi}=\left(E_{1}-E_{1-0}\right) H^{2}, P_{M} H_{\phi}^{*} H_{\phi}=H_{\phi}^{*} H_{\phi} P_{M}$. Thus $H_{\phi}^{*} H_{\phi} P_{M}$ is compact and so $\int_{0}^{1-} \lambda d E_{\lambda}$ is compact. This implies (3).
(3) \Rightarrow (2). By Theorem $2 \quad H_{\bar{\phi}} T_{\phi}$ is compact. Since $\int_{0}^{1-} \lambda d E_{\lambda}$ is compact, $\left\|T_{\phi} f_{2} \geqslant \delta\right\| f_{2}{ }_{2}, f \in M$ for some $\delta>0$ because $H_{\phi}^{*} H_{\phi}\left|M=\left(I-T_{\phi}^{*} T_{\phi}\right)\right| M$ is compact. This implies that T_{ϕ} is right invertible and so $H_{\bar{\phi}}$ is compact.
(2) \Rightarrow (1). As in the proof of (2) \Rightarrow (3) if $H_{\bar{\phi}}$ is compact then T_{ϕ} is left invertible. T_{ϕ} is left invertible if and only if $\bar{z} \bar{H}^{2}+\phi H^{2}=L^{2}$. This and Theorem 2 imply (1).

THEOREM 4. The following three conditions are equivalent.
(1) $Q P-P Q$ has finite ronk $2 n$;
(2) $H_{\bar{\phi}}$ has finite rank n;
(3) for any ε, with $0<\varepsilon<1, \int_{0}^{\varepsilon} \lambda d E_{\lambda}$ has finite rank m and $\int_{\varepsilon}^{1}(1-\lambda) d E_{\lambda}$ has finite rank ℓ with $m+\ell=n$.

Proof. By Lemma 3 rank $(Q P-P Q)=2$ rank $H_{\bar{\phi}} T_{\phi}$. Since $\operatorname{ker} T_{\bar{\phi}}=\{0\}$,

$$
\operatorname{rank} H_{\bar{\phi}} T_{\phi}=\operatorname{rank} T_{\bar{\phi}} H^{*}=\operatorname{rank} H_{\bar{\phi}}^{*}=\operatorname{rank} H_{\bar{\phi}} .
$$

These imply (1) \Leftrightarrow (2). (2) \Leftrightarrow (3) can be shown in a similar manner to $(2) \Leftrightarrow$ (3) in Theorem 3.

4. Weight functions

$\omega=|h|^{2}$ for some outer function h in H^{2} and $\phi=\hbar / h$. Let C denote the set of all continuous functions on the unit circle. Using a theorem of Wolff [6] we can show that $w=\left|h_{0}\right|^{2} e^{u+v}$ where h_{0} is an outer function in $H^{2-}=\bigcap_{p<2} H^{p}, h_{0} / h_{0}=\bar{F} G$ for some inner functions F and G and where u and v are real functions in $C(\tilde{v}$ denotes the harmonic conjugate of v).

PROPOSITION 5. $Q P-P Q$ is compact and $Z^{-}+Z^{+}=2$ if and only if

$$
\omega=\left|\hbar_{0}\right|^{2} e^{u+\tilde{v}}
$$

where h_{0} is an outer function in $H^{2-}, \hbar_{0} / h_{0}=\bar{F}$ for some inner function F and where u cand v are real functions in C.

Proof. If $Q P-P Q$ is compact and $Z^{-}+Z^{+}=2$ then by Theorem 3 $H_{\bar{\phi}}$ is compact. Hence $\bar{\phi} \in H^{\infty}+C$. By a theorem of wolff [6] $\phi=\bar{F} e^{i(v-\tilde{u})}$ where F is an inner function and where u and v are real functions in C. Put $g=e^{-\tilde{v}-u+i(v-\tilde{u})}$ then

$$
|g||h|^{2}=\bar{F} g h^{2} \geqslant 0 \quad \text { a.e. }
$$

If $h_{0}^{2}=g h^{2}$ then $h_{0}^{2} \in H_{i}^{2-}$ by a theorem of zygmund (see [4], p. 140). since $\left|h_{0}\right|^{2}=\bar{F} h_{0}^{2}, \quad \overline{h_{0}} / h_{0}=\bar{F}$ and $w=\left|h_{0}\right|^{2} e^{u+\tilde{v}}$. Conversely if $|h|^{2}=\left|h_{0}\right|^{2} e^{u+\tilde{v}}$ then $\bar{\phi} \in H^{\infty}+C$. Since $H_{\bar{\phi}}$ is compact, Theorem 3 implies the proposition.

Let $Z^{+/-}$be the closure of the projection of Z^{+}on Z^{-}then $Z^{-} \supset Z^{+/-}$. Levinson and McKean ([5], pp. 103-105) showed that $Z^{-} \neq Z^{+/-}$if and only if $\phi=\bar{F} G$ for some inner functions F and G.

PROPOSITION 6. $Q P-P Q$ has finite rank $2 n$ if and only if $\phi=\bar{F} G$ where F is an inner function and G is a finite Blashke product of degree n.

Proof. If $Q P-P Q$ has finite rank $2 n$ then by Theorem $4 H_{\bar{\phi}}$ has finite rank n. Then ker $H_{\bar{\phi}} \neq\{0\}$ and so ker $H_{\bar{\phi}}=G H^{2}$ for some inner function G by Beurling's theorem. Hence $\phi=\bar{F} G$ for some inner
Projections in prediction theory
function F. Since $\operatorname{rank} H_{\bar{\phi}}=\operatorname{codim} \operatorname{ker} H_{\bar{\phi}}=\operatorname{dim}\left(H^{2} \Theta G H^{2}\right), G$ is a finite Blashke product of degree n. Conversely if $\phi=\bar{F} G$ and G is a finite Blashke product of degree n then $H_{\bar{\phi}}$ has finite rank n. Theorem 4 implies $Q P-P Q$ has finite rank $2 n$.

Hayashi ([1], Theorem 2) showed that $Q P-2 \wedge P$ is compact if and only if $H_{\bar{\phi}}$ is compact. The proof shows that $Q P-2 \wedge P$ has finite rank n if and only if $H_{\bar{\phi}}$ has finite rank n. Thus rank $(Q P-P Q)=2 \operatorname{rank}(Q P-Q \wedge P)$.

References

[1] E. Hayashi, "The spectral density of a strongly mixing stationary Gaussian process", Pacific J. Math., 96 (1981), 343-359.
[2] H. Helson and D. Sarason, "Past and future", Math. Scand., 21 (1967), 5-16.
[3] H. Helson and G. Szegö, "A problem in prediction theory", Ann. Mat. Pura Appl., 51 (1960), 107-138.
[4] P. Koosis, "Introduction To H_{p} Spaces", London Math. Soc. Lecture Note Ser., 40 (1980).
[5] N. Levinson and H.P. McKean, "Weighted trigonometrical approximation on the line with application to the germ field of a stationary Gaussian noise", Acta. Math., 112 (1964), 99-143.
[6] T.H. Wolff, "Two algebras of bounded functions", Duke Math. J., 49 (1982), 321-328.

Department of Mathematics,
Faculty of Science,
(General Education)
Hokkaido University,
Sapporo 060, Japan.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

