COMMUTATOR OF TWO PROJECTIONS IN PREDICTION THEORY

Τακαμικό Νακαζι

Let w be a nonnegative weight function in $L^1 = L^1(d\theta/2\pi)$. Let Q and P denote the orthogonal projections to the closed linear spans in $L^2(wd\theta/2\pi)$ of $\{e^{in\theta}:n\leq 0\}$ and $\{e^{in\theta}:n>0\}$, respectively. The commutator of Q and P is studied. This has applications for prediction problems when such a weight arises as the spectral density of a discrete weakly stationary Gaussian stochastic process.

1. Introduction

Let w be a nonnegative weight function in $L^1 = L^1(d\theta/2\pi)$. Let Z^- denote the closed linear span in Z of $\{e^{in\theta} : n \leq 0\}$ and Z^+ denote the closed linear span in Z of $\{e^{in\theta} : n > 0\}$, where $Z = L^2(wd\theta/2\pi)$. Q denotes the orthogonal projection onto Z^- in Zand P denotes the orthogonal projection onto Z^+ in Z. In this paper we assume that $\log w \in L^1$ because $Z = Z^- = Z^+$ in the case that $\log w \notin L^1$. Hence we may assume $w = |h|^2$ for some outer function hin H^2 , the Hardy space for the unit disc. Then $Z^- = h^{-1}\overline{H}^2$ and $Z^+ = h^{-1}zH^2$. Set

$$\phi = \bar{h}/h$$

Let P be the orthogonal projection from L^2 onto H^2 and Q = I - P where I is the identity operator on L^2 . Let P_0 be the

Received 24 September 1985. The author would like to thank Professor K. Takahashi for his helpful discussions. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

orthogonal projection from L^2 onto $H^2 \cap \overline{H}^2$. Put $M_k f = kf$, $k \in L^{\infty}$ and $f \in L^2$. Then $Q + P_0 = M_g Q M_{\overline{z}}$ and $P - P_0 = M_g P M_{\overline{z}}$. Let H_k denote the Hankel operator on H^2 defined by $H_k f = Q(M_k f)$, and T_k denote the Toeplitz operator on H^2 defined by $T_k f = P(M_k f)$.

In this paper it is shown that $\|QP - PQ\| \le 1/4$. Let $H_{\phi}^{*}H_{\phi} = \int_{0}^{1} \lambda dE_{\lambda}$. Then it is shown that QP - PQ is compact if and only if $\int_{0}^{\varepsilon} \lambda dE_{\lambda}$ is compact for any ε with $0 < \varepsilon < 1$. Also QP - PQ is compact and $Z^{-} + Z^{+} = Z$ if and only if $H_{\overline{\phi}}$ is compact. It is shown that $H_{\overline{\phi}}$ is compact if and only if $\int_{0}^{1} \lambda dE_{\lambda}$ is compact.

Helson and Sarason [2] showed that QP is compact if and only if H_{ϕ} is compact. Levinson and McKean ([4], pp. 103-105) studied the weight functions which satisfy QP - PQ = 0 and Hayashi [1] considered the operator $QP - Q \wedge P$ where $Q \wedge P$ denote the orthogonal projection onto $Z^- \cap Z^+$ in Z.

The problem of characterizing the weight functions w that satisfy some kind of interdependence of Z^- and Z^+ is of interest in the theories of weighted trigonometric approximations and discrete weakly stationary Gaussian stochastic process (such weights arise as the spectral densities of processes). We call Z^- the past of Z and Z^+ the future of Z. The results in this paper (see [1], [2], [3] and [5]) have applications for prediction problems when such a weight arises as the spectral density of a discrete weakly stationary Gaussian stochastic process.

2. Norm of QP - PQ

We give three lemmas which relate the commutator QP - PQ and the Hankel operator of ϕ where $\phi = \bar{h}/h$ and $w = |h|^2$.

LEMMA 1. For $k \in L^2$, $Q\overline{h^{-1}}k = \overline{h^{-1}}M_{g}QM_{\overline{z}}k$ and $Ph^{-1}k = h^{-1}M_{g}PM_{\overline{z}}k$. Proof. Since $Z = \overline{h^{-1}}L^2 = \overline{h^{-1}}\overline{H}^2 \oplus \overline{h^{-1}}zH^2$, $\overline{h^{-1}}k = \overline{h^{-1}}(Q + P_0)k =$ $\overline{h^{-1}}M_{2}QM_{2}^{-k}$, $k \in L^{2}$. The statement for P follows similarly. LEMMA 2. Let $k \in L^{2}$. Then the following hold: (1) $QPh^{-1}k = \overline{h^{-1}}M_{2}QM_{\phi}PM_{2}^{-k}$, (2) $(QP - PQ)h^{-1}k = h^{-1}M_{2}(M_{\phi}QM_{\phi}P - PM_{\phi}QM_{\phi})M_{2}^{-k}$. Proof. This is clear.

LEMMA 3. Let $A = M_{\overline{\Phi}}QM_{\Phi}P - PM_{\overline{\Phi}}QM_{\Phi}$. Then $A | H^2 = -H_{\overline{\Phi}}T_{\Phi}$ and $A | \overline{z}H^2 = T_{\overline{\Phi}}H_{\overline{\Phi}}^*$.

Proof. We shall prove only $A|H^2 = -H_{\overline{\Phi}}T_{\phi}$, since $A|\overline{z}\overline{H}^2 = T_{\overline{\phi}}H_{\overline{\phi}}^*$ follows similarly.

$$\begin{split} A \left| H^{2} &= \left(M_{\overline{\Phi}} Q M_{\Phi} P - P M_{\overline{\Phi}} Q M_{\Phi} P \right) \right| H^{2} \\ &= Q M_{\overline{\Phi}} Q M_{\Phi} P \left| H^{2} \\ &= Q M_{\overline{\Phi}} \left(I - P \right) M_{\Phi} P \left| H^{2} \right| \\ &= -H_{\overline{\Phi}} T_{\Phi} \quad . \end{split}$$

The map $S: f \rightarrow hf$ is an isometry of Z onto L^2 . Then $M_{-S}^{-}(QP - PQ) = (M_{-Q}^{-}QM_{-\phi}^{-}PM_{-\phi}^{-}QM_{-\phi}^{-})M_{-S}^{-}Z$

THEOREM 1. $\|QP - PQ\| \leq 1/4$.

Proof. By the remark above, $\|QP - PQ\| = \|H_{\phi}T_{\phi}\|$.

$$\begin{aligned} (H_{\overline{\phi}}T_{\phi})^* H_{\overline{\phi}}T_{\phi} &= T_{\overline{\phi}}(I - T_{\phi}T_{\overline{\phi}})T_{\phi} &= T_{\overline{\phi}}T_{\phi}(I - T_{\overline{\phi}}T_{\phi}) \\ &= (I - H_{\phi}^* H_{\phi})H_{\phi}^* H_{\phi} \quad . \end{aligned}$$

If $H_{\phi}^{\star}H_{\phi} = \int_{0}^{1} \lambda dE_{\lambda}$ then

$$(H_{\overline{\phi}}T_{\phi})^{*}H_{\overline{\phi}}T_{\phi} = \int_{0}^{1} \lambda(1-\lambda) dE_{\lambda}$$

and this implies $\|QP - PQ\| \le 1/4$.

A theorem of Helson and Szegö [3] shows that $\|QP\| < 1$ if and only if $\sigma(H_{\phi}^{*}H_{\phi}) \subset [0,1-\varepsilon]$ for some $\varepsilon > 0$ where $\sigma(H_{\phi}^{*}H_{\phi})$ is the spectrum of $H_{\phi}^{*}H_{\phi}$. The proof of Theorem 1 shows that $\|QP - PQ\| < 1/4$ if and only if $\sigma(H_{\phi}^{*}H_{\phi}) \subset [0,1/2-\varepsilon] \cup [1/2+\varepsilon,1]$.

3. Compactness of QP - PQ

 $w = |h|^2$ for some outer function h in H^2 and $\phi = \bar{h}/h$. Let

$$H_{\phi}^{\star}H_{\phi} = \int_{0}^{1} \lambda dE_{\lambda}$$

- (1) QP PQ is compact;
- (2) $H_{-}T_{+}$ is compact;
- (3) For any ε with $0 < \varepsilon < 1$, $\int_{0}^{\varepsilon} \lambda dE_{\lambda}$ and $\int_{\varepsilon}^{1} (1-\lambda) dE_{\lambda}$ are compact.

Proof. Lemmas 2 and 3 imply (1) \Leftrightarrow (2). (2) \Leftrightarrow (3). $(H_{\overline{\Phi}}T_{\phi})^*H_{\overline{\Phi}}T_{\phi} = \int_0^1 \lambda(1-\lambda)dE_{\lambda}$ by the proof of Theorem 1. Hence $H_{\overline{\Phi}}T_{\phi}$ is compact if and only if for any ε , with $0 < \varepsilon < 1$, $\int_0^{\varepsilon} \lambda(1-\lambda)dE_{\lambda}$ and $\int_{\varepsilon}^1 \lambda(1-\lambda)dE_{\lambda}$ are compact, that is if and only if (3) holds.

THEOREM 3. The following three properties are equivalent.

- (1) QP PQ is compact and $Z^- + Z^+ = Z$;
- (2) $H_{\overline{\phi}}$ is compact; (3) For any ε , with $0 < \varepsilon < 1$, $\int_{0}^{\varepsilon} \lambda dE_{\lambda}$ is compact and $\int_{\varepsilon}^{1} (1-\lambda) dE_{\lambda}$ has finite rank.

Proof. (1) \Rightarrow (2). Since $h^{-1}\bar{H}^2 + h^{-1}zH^2 = h^{-1}L^2$, $\bar{z}\bar{H}^2 + \phi H^2 = L^2$ and T_{ϕ} is right invertible. By Theorem 2, H_{ϕ} is compact.

(2) \Rightarrow (3). If $H_{\overline{\phi}}$ is compact and $\|H_{\overline{\phi}}\| = 1$ then there exists f

in H^2 with $\|f\|_2 = 1$ such that $H_{\overline{\Phi}}^*H_{\overline{\Phi}}f = f$ and so $T_{\overline{\Phi}}f = 0$. This contradicts ker $T_{\overline{\Phi}} = \{0\}$. Hence if $H_{\overline{\Phi}}$ is compact then $\|H_{\overline{\Phi}}\| < 1$. Thus $T_{\Phi}H^2 = H^2$ and so $\|T_{\Phi}f\|_2 \ge \delta \|f\|_2$, $f \in M$ for some $\delta > 0$ where $M = (\ker T_{\Phi})^{\perp}$. Let P_M be the orthogonal projection from L^2 onto M. Then there exists a bounded linear operator K such that $KT_{\overline{\Phi}}T_{\Phi} = P_M \cdot P_M H_{\Phi}^*H_{\Phi}$ is compact because $H_{\overline{\Phi}}$ is compact and $(H_{\overline{\Phi}}T_{\Phi})^*H_{\overline{\Phi}}T_{\Phi} = T_{\overline{\Phi}}T_{\Phi}H_{\Phi}^*H_{\Phi}$. Since ker $T_{\Phi} = (E_1 - E_{1-0})H^2$, $P_M H_{\Phi}^*H_{\Phi} = H_{\Phi}^*H_{\Phi}P_M$. Thus $H_{\Phi}^*H_{\Phi}P_M$ is compact and so $\int_0^{1-} \lambda dE_{\lambda}$ is compact. This implies (3).

(3) \Rightarrow (2). By Theorem 2 $H_{\overline{\phi}}T_{\phi}$ is compact. Since $\int_{0}^{1-} \lambda dE_{\lambda}$ is compact, $\|T_{\phi}f\|_{2} \ge \delta \|f\|_{2}$, $f \in M$ for some $\delta > 0$ because $H_{\phi}^{*}H_{\phi}|M = (I - T_{\phi}^{*}T_{\phi})|M$ is compact. This implies that T_{ϕ} is right invertible and so $H_{\overline{\phi}}$ is compact.

(2) \Rightarrow (1). As in the proof of (2) \Rightarrow (3) if $H_{\overline{\phi}}$ is compact then T_{ϕ} is left invertible. T_{ϕ} is left invertible if and only if $\overline{zH}^2 + \phi H^2 = L^2$. This and Theorem 2 imply (1).

THEOREM 4. The following three conditions are equivalent.

(1) QP - PQ has finite rank 2n; (2) $H_{\overline{\phi}}$ has finite rank n; (3) for any ε , with $0 < \varepsilon < 1$, $\int_{0}^{\varepsilon} \lambda dE_{\lambda}$ has finite rank m and $\int_{\varepsilon}^{1} (1-\lambda) dE_{\lambda}$ has finite rank l with m + l = n.

Proof. By Lemma 3 rank (QP - PQ) = 2 rank $H_{\overline{\Phi}}T_{\phi}$. Since ker $T_{\overline{\Phi}} = \{0\}$,

$$\operatorname{rank} H_{\overline{\phi}} T_{\phi} = \operatorname{rank} T_{\overline{\phi}} H_{\overline{\phi}}^{\star} = \operatorname{rank} H_{\overline{\phi}}^{\star} = \operatorname{rank} H_{\overline{\phi}} .$$

These imply (1) \Leftrightarrow (2). (2) \Leftrightarrow (3) can be shown in a similar manner to (2) \Leftrightarrow (3) in Theorem 3.

Takahiko Nakazi

4. Weight functions

 $w = |h|^2$ for some outer function h in H^2 and $\phi = \bar{h}/h$. Let C denote the set of all continuous functions on the unit circle. Using a theorem of Wolff [6] we can show that $w = |h_0|^2 e^{u+\tilde{v}}$ where h_0 is an outer function in $H^{2-} = \bigcap_{p < 2} H^p$, $\bar{h}_0/h_0 = \bar{F}G$ for some inner functions F and G and where u and v are real functions in C (\tilde{v} denotes the harmonic conjugate of v).

PROPOSITION 5. QP - PQ is compact and $Z^- + Z^+ = Z$ if and only if $w = |h_0|^2 e^{u+\tilde{v}}$

where h_0 is an outer function in H^{2-} , $\bar{h}_0/h_0 = \bar{F}$ for some inner function F and where u and v are real functions in C.

Proof. If QP - PQ is compact and $Z^- + Z^+ = Z$ then by Theorem 3 $H_{\overline{\Phi}}$ is compact. Hence $\overline{\Phi} \in H^{\infty} + C$. By a theorem of Wolff [6] $\phi = \overline{F}e^{i(v-\tilde{u})}$ where F is an inner function and where u and v are real functions in C. Put $g = e^{-\tilde{v}-u+i(v-\tilde{u})}$ then

$$|g||h|^2 = \overline{F}gh^2 \ge 0$$
 a.e.

If $h_0^2 = gh^2$ then $h_0^2 \in \tilde{\mu}^{2-}$ by a theorem of Zygmund (see [4], p. 140). Since $|h_0|^2 = \bar{F}h_0^2$, $\bar{h}_0/h_0 = \bar{F}$ and $w = |h_0|^2 e^{u+\tilde{v}}$. Conversely if $|h|^2 = |h_0|^2 e^{u+\tilde{v}}$ then $\bar{\phi} \in H^{\infty} + C$. Since $H_{\bar{\phi}}$ is compact, Theorem 3 implies the proposition.

Let $Z^{+/-}$ be the closure of the projection of Z^+ on Z^- then $Z^- \supset Z^{+/-}$. Levinson and McKean ([5], pp. 103-105) showed that $Z^- \neq Z^{+/-}$ if and only if $\phi = \overline{F}G$ for some inner functions F and G.

PROPOSITION 6. QP - PQ has finite rank 2n if and only if $\phi = \overline{F}G$ where F is an inner function and G is a finite Blashke product of degree n.

Proof. If QP - PQ has finite rank 2n then by Theorem 4 $H_{\overline{\phi}}$ has finite rank n. Then ker $H_{\overline{\phi}} \neq \{0\}$ and so ker $H_{\overline{\phi}} = GH^2$ for some inner function G by Beurling's theorem. Hence $\phi = \tilde{F}G$ for some inner function F. Since rank $H_{\overline{\phi}} = \operatorname{codim} \ker H_{\overline{\phi}} = \dim(H^2 \ominus GH^2)$, G is a finite Blashke product of degree n. Conversely if $\phi = \overline{F}G$ and G is a finite Blashke product of degree n then $H_{\overline{\phi}}$ has finite rank n. Theorem 4 implies QP - PQ has finite rank 2n.

Hayashi ([1], Theorem 2) showed that $QP - Q \wedge P$ is compact if and only if $H_{\overline{\phi}}$ is compact. The proof shows that $QP - Q \wedge P$ has finite rank *n* if and only if $H_{\overline{\phi}}$ has finite rank *n*. Thus rank (QP - PQ) = 2 rank $(QP - Q \wedge P)$.

References

- [1] E. Hayashi, "The spectral density of a strongly mixing stationary Gaussian process", *Pacific J. Math.*, 96 (1981), 343-359.
- [2] H. Helson and D. Sarason, "Past and future", Math. Scand., 21 (1967), 5-16.
- [3] H. Helson and G. Szegö, "A problem in prediction theory", Ann. Mat. Pura Appl., 51 (1960), 107-138.
- [4] P. Koosis, "Introduction To H_p Spaces", London Math. Soc. Lecture Note Ser., 40 (1980).
- [5] N. Levinson and H.P. McKean, "Weighted trigonometrical approximation on the line with application to the germ field of a stationary Gaussian noise", Acta. Math., 112 (1964), 99-143.
- [6] T.H. Wolff, "Two algebras of bounded functions", Duke Math. J., 49 (1982), 321-328.

Department of Mathematics, Faculty of Science, (General Education) Hokkaido University, Sapporo 060, Japan.