BULL. AUSTRAL. MATH. SOC. VOL. 27 (1983), 395-401.

ON THE EXISTENCE OF OPTIMAL CONTROLS IN BANACH SPACES

Mohan Joshi

We prove the existence of an optimal control in Banach spaces for a system characterized by Hammerstein operator equations.

1. Introduction

Let X be a Banach space with dual X^* and $Y \subset X^*$ a closed subspace. Let Z be another Banach space and $U \subset Z$ be a weakly compact set. We consider a system characterized by the operator equation

$$(1.1) x + K_u N x = w$$

where $u \in U$ is a control variable and for each $u \in U$, $K_u : X \to X^*$ is a linear operator with range in Y and $N : Y \to X$ a nonlinear operator. $w \in X^*$ is given. For a fixed u, the operator equation (1.1) is called the Hammerstein operator equation. Existence and uniqueness of solutions for such types of equations have been studied by many authors (refer Browder [2]).

Let ϕ be a lower semicontinuous functional on X^* with values in R^+ and S a closed and bounded subset of X. The problem is to find a control $u^* \in U$ such that

$$(1.2) J(u) = \phi(x)$$

is minimum, subject to the constraint that $x \in S$ is the response of the system (1.1) corresponding to the control u.

Received 2 February 1983.

395

In this paper we prove existence of an optimal control under continuity assumptions on $\{K_u\}_{u \in U}$ and some mild assumptions on N. As a corollary we derive the existence of a control function u^* for an important system characterized by the equation

(1.3)
$$x(t) + \int_0^t f(\tau, x(\tau)) u(\tau) d\tau = x_0$$

with the associated functional J(u) given by

(1.4)
$$J(u) = \phi(x, u) = \int_0^T g(t, x(t), u(t)) dt ,$$

where $T \in [0, \infty)$ is prescribed.

2. Main results

LEMMA 2.1. Let X be a real reflexive Banach space with dual X* and $Y \subset X^*$ a closed subspace. Let Z be another Banach space and $S \subset X^*$ be a bounded set. Let, for $u \in Z$, $K_u : X \to X$ be a bounded linear operator with range in Y and $N : Y \to X$ a continuous and bounded nonlinear operator. Further assume that the following hold:

(a)
$$K_u$$
 is compact for each $u \in \mathbb{Z}$;
(b) $u_n \rightarrow u$ in \mathbb{Z} implies that $K_u \rightarrow K_u$ in operator norm.

Let $\{u_n\}$ be any sequence in 2 which converges weakly to u^* in 2 and let $x_n \in S$ denote a solution of (1.1) corresponding to u_n . Then there exists a subsequence $\{x_n\}$ of $\{x_n\}$ which converges to x^* and x^* is a solution of (1.1) corresponding to u^* .

Proof. Since $x_n \in S$ is a solution of (1.1) corresponding to u_n , we have

$$(2.1) x_n + K \frac{Nx_n}{u_n} = \omega .$$

 $\{x_{\mu}\}$ is a bounded sequence in a reflexive Banach space and hence there

exists a subsequence $\{x_{n_k}\}$ of it which converges to x^* weakly. Similarly boundedness of N implies that there exists a subsequence of $\{Nx_{n_k}\}$ (which we again denoted by $\{Nx_{n_k}\}$) converging to y weakly. Since $K_{u_{n_k}} \neq K_{u^*}$ in operator norm and $\{Nx_{n_k}\}$ is bounded, it follows

that

(2.2)
$$K_{u} N_{n_{k}} - K_{u} N_{n_{k}} \to 0 \text{ as } k \to \infty.$$

Also, since $Nx \xrightarrow{\rightarrow} y$ and K_{u^*} is compact, we have

Combining (2.2) and (2.3) we get that $\underset{n_k}{K} \underset{n_k}{Nx} \underset{k}{\to} \underset{u*y}{K}$ as $k \to \infty$. But

(2.1) gives

$$(2.4) x_{n_k} = \omega - K_u N x_{n_k} N x_{n_k}$$

and hence $\{x_{n_k}\}$ is strongly convergent, that is $x_{n_k} \rightarrow x^*$. Now continuity of N implies that $Nx_{n_k} \rightarrow Nx^*$ and hence $K_u \underset{n_k}{Nx_n} \rightarrow K_u \ast Nx^*$. So (2.4) gives

$$x^* + K_{u^*} N x^* = w .$$

That is $\{x_{n_k}\}$ converges strongly to x^* where x^* is a solution of the system (1.1) corresponding to u^* .

DEFINITION 2.1. Let the spaces X, Y, Z be as in the above lemma. Let $U \subseteq Z$ be a weakly compact subset. $X = \{x_u : u \in U\}$ is said to be the set of trajectories of (1.1) if

- (i) X ≠ Ø ,
- (ii) $x_{i} \in Y$,

(iii) x_{μ} satisfies the operator equation

$$x_{u} + K_{u} N x_{u} = \omega$$

DEFINITION 2.2. $F \subseteq Y$ is said to be an attainable set of the system (1.1) if $F = \{y : y = x \text{ for some } x \text{ in } X\}$.

THEOREM 2.1. Let F be an attainable set of the system (1.1) and S a closed and bounded subset of Y such that $F \cap S \neq \emptyset$. Let ϕ be a lower semicontinuous functional on X* with values in R^+ . Then there exists $u^* \in U$ where it attains a minimum to the functional ϕ on the set $F \cap S$.

Proof. By Lemma 2.1, $F \cap S$ is a compact set. Since ϕ is a lower semicontinuous functional and $F \cap S$ is compact, it follows that ϕ attains its minimum on $F \cap S$. Hence the result.

As a corollary of the above theorem we obtain the existence of an optimal control for the system characterized by the equation

(2.5)
$$x(t) + \int_0^t f(\tau, x(\tau)) u(\tau) d\tau = x_0,$$

where the control function u(t) lies in some weakly compact subset of $L_2^m[0, T]$, $0 \le T < \infty$. The associated cost functional J(u) to be minimized is given by

(2.6)
$$J(u) = \phi(x) = \int_0^T g(\tau, x(\tau), u(\tau)) d\tau$$

ASSUMPTION [A]. $f(t, x) : R \times R^n \to R^{n \times m}$ is such that [Al] f(t, x) is measurable in t for all $x \in R^n$, [A2] f(t, x) is continuous in x for almost all $t \in [0, T]$, [A3] $||f(t, x)|| \le ||a(t)|| + b||x||$, $a(t) \in L_2^{n \times m}[0, T]$, b > 0for all $(t, x) \in R \times R^n$.

Here the norm in the left hand side denotes the $R^{n \times m}$ norm and the norm in the right hand side denotes the R^{n} norm.

398

ASSUMPTION [B]. $g(t, x, u) : R \times R^n \times R^m \to R$ is such that

[B1] g(t, x, u) is measurable in t for all $(x, u) \in R^n \times R^m$,

- [B2] g(t, x, u) is continuous in $(x, u) \in \mathbb{R}^n \times \mathbb{R}^m$ for almost all $t \in [0, T]$,
- [B3] there exists $\Psi \in L_1[0, T]$ such that $g(t, x, u) \ge \Psi(t)$ for almost all $t \in [0, T]$ and all $(x, u) \in \mathbb{R}^n \times \mathbb{R}^m$,

[B4] g(t, x, u) is convex in u for all t, x.

We set $X = L_2^{n \times m}[0, T]$, $Y = L_2^n[0, T]$, $Z = L_2^m[0, T]$. For each $u \in Z$, define $K_u : X \to X$ with range in Y as follows:

(2.7)
$$\begin{bmatrix} K \\ u \end{bmatrix} (t) = \int_0^t x(\tau) u(\tau) d\tau .$$

 $N : Y \rightarrow X$ is defined as

$$(2.8) [Nx](t) = f(t, x(t)) .$$

With these definitions, (2.5) is equivalent to the operator equation

 $x + K_{\mu}Nx = x_{0}$.

LEMMA 2.2. K is a bounded linear operator from X into itself with range Y such that

- (a) K_{μ} is compact for each $u \in \mathbb{Z}$,
- (b) $u_n \rightarrow u$ in Z implies that $K_{u_n} \rightarrow K_{u_n}$.

Proof.
$$[K_u x](t) = \int_0^t x(\tau)u(\tau)d\tau$$
, where $x \in L_2^{n \times m}[0, T]$,

 $u \in L_2^m[0, T]$. Let

$$K(t, \tau) = \begin{cases} 0 , t \leq \tau , \\ \\ I , \tau < t . \end{cases}$$

Then we get

$$\begin{bmatrix} K_{u}x \end{bmatrix}(t) = \int_{0}^{T} [K(t, \tau)x(\tau)]u(\tau)d\tau .$$

Since ess $\sup \int_0^T \|K(t, \tau)\|^2 \|u(\tau)\|^2 d\tau < \infty$ it follows by the theory of integral operators (refer Okikiolu [3]) that K_u is compact for each $u \in L_2^m[0, T]$. Similarly one can show that K_u is compact with respect to the variable u and hence by using the uniform boundedness principle we get the result.

LEMMA 2.3. Under Assumption [A] the nonlinear operator N is a continuous and bounded operator from $L_2^n[0, T]$ to $L_2^{n \times m}[0, T]$.

COROLLARY. Let f and g satisfy Assumptions [A] and [B] respectively. Let U be a weakly compact subset of $L_2^m[0, T]$. For $u \in U$, let (2.5) possess a solution in a closed and bounded set $S \subseteq L_2^n[0, T]$. Then there exists $u^* \in U$ such that

$$J(u^*) = \inf J(u)$$

where J(u) is the cost functional given by (2.6).

Proof. We set $X = L_2^{n \times m}$, $Y = L_2^n[0, T]$, $Z = L_2^m[0, T]$ and K_u and N be as defined before. Then (2.5) is equivalent to the operator equation

$$x + K_{u}Nx = x_{0}$$

Let F denote the attainable set of (2.5). Then by assumption $F \cap S \neq \emptyset$. Further, by a result of Berkovitz [1], ϕ is lower semicontinuous with respect to weak convergence in u and strong convergence in x. Since all the conditions of Theorem 2.1 are satisfied, it follows that there exist $u^* \in U$ such that

$$J(u^*) = \inf_{u \in U} J(u) .$$

REMARK. Vidyasagar [4] has proved a similar result for the system (2.5). However he imposes a Lipschitz condition on f(t, x) assume a simple growth condition of type [A3]. This is a significant

improvement.

References

- [1] Leonard D. Berkovitz, "Lower semicontinuity of integral functionals", *Trans. Amer. Math. Soc.* 192 (1974), 51-57.
- [2] Felix E. Browder, "Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type", *Contributions to nonlinear functional analysis*, 425-500 (Academic Press, New York, London, 1971).
- [3] G.O. Okikiolu, Aspects of the theory of bounded integral operators in L^p -spaces (Academic Press, London, New York, 1971).
- [4] M. Vidyasagar, "On the existence of optimal controls", J. Optim. Theory Appl. 17 (1975), 273-278.

Mathematics Group, BITS, Pilani 333031, India.