
9 
Electroweak interactions 

One of the most dramatic events in the history of elementary particle 
physics was the unification of the electromagnetic and the weak interac­
tions into a single, beautiful gauge theory, which was created by Weinberg, 
Salam and Glashow and which is nowadays referred to as the 'Standard 
Model' (SM). For a detailed pedagogical account of the need for and de­
velopment of such a theory, the reader is referred to Leader and Predazzi 
(1996). We simply recall that this tightly knit theory contains the astound­
ing and incredible prediction of the existence of a set of three vector 
bosons, w±,zo, with huge masses, mw ~ 80 GeV jc2, mz ~ 90 GeV jc2, 

and that these unlikely objects were eventually discovered. (The W was 
identified at CERN in January 1983 and the Z 0, also at CERN, a few 
months later.) A test for the spin of the W is described in subsection 
8.2.1(ix). 

In the Standard Model the electroweak interactions are mediated by the 
exchange of photons, Z s and W s, whose coupling to the basic fermions 
(leptons and quarks) is a mixture of vector and axial-vector. To begin with 
all particles are massless, and their masses are generated by spontaneous 
symmetry breaking. The usual mechanism of symmetry breaking requires 
a neutral scalar particle, the Higgs meson H, whose mass is not determined 
by the theory. H has not yet been detected experimentally and is the most 
serious missing link in the theory. But in every other respect the theory 
has been remarkably successful. All the first-generation experimental tests 
have been passed with flying colours and a new generation of more refined 
and demanding tests has been carried out at the two highest energy 
e+ e- colliding beam machines, LEP at CERN and SLC at Stanford. It 
has been realized that some of the cleanest tests involve spin-dependent 
measurements and SLC has made excellent use of such ideas. Some work 
on polarized e± beams has been done at LEP, but the push for higher 
energies and the use of LEP in the construction of the new large hadron 
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9.1 Summary of the Standard Model 235 

collider (LHC) means that a detailed spin programme was never carried 
out. 

We shall recall the essential elements of the SM and then concentrate 
on the spin-dependent possibilities. 

9.1 Summary of the Standard Model 

There are three generations of leptons, (e-, ve), (Jr, v,u), and (r-, v,) and 
the neutrinos are treated as massless. The charged lepton fields, which 
we designate by the symbol for the particle, are split into left- and 
right-handed parts, see eqns (4.6.53), (4.6.54), and the neutrinos are, by 
definition, left-handed. 

The left-handed parts are grouped into weak isospin doublets 

and the charged bosons w± interact universally with these. Interactions 
involving w± are called charged current interactions and these only in­
volve left-handed leptons. The relevant part of the interaction Lagrangian 
density has the following form: 

se = e 
w -lept 2-/2 sin ew 

+1r terms+ r- terms}. (9.1.1) 

Here e is the magnitude of the electron charge and 8w, the Weinberg angle, 
is a crucial parameter in the unifying of the weak and electromagnetic 
interactions. 

The above interaction gives nse to the following Feynman diagram 
vertices: 

_ ie .U(l _ ) 
- 2-/2 sinewy Ys (9.1.2) 

Ve ore+ 

where the arrow shows the flow of fermion number or, equivalently, lepton 
number. Identical vertices occur for 11± and r±. 

The form of the W -propagator depends upon the gauge choice. It is 
simplest in what is called the unitary gauge: 

k i ( -g.uv + k,ukv/miv) 
f.l 'V\IVVVV'-NVVV' v = k2 2 + . . -mw lE 

(9.1.3) 
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236 9 Electroweak interactions 

Note, in (9.1.1), that only left-handed leptons are annihilated but also, 
because y.U(l- ys) = (1 + Ys)y'\ that only left-handed leptons are created. 
This follows since, from (4.6.53), 

-_to_[t(1 )Jto_-t(1+) uL - uLy - 2 - Ys u y - u 2 Ys . 

The Z 0, which gives rise to neutral current weak interactions, inter­
acts with a superposition of left- and right-handed charged leptons. The 
relevant part of the interaction Lagrangian density is 

2z-lept = e { [ey 11(ve- aeys)eZ11 + VeY 11 (vv - avys)veZ,u] 

+,u- terms+ r- terms}. 

where, for a fermion f, 

I{- 2Qf sin2 Ow 
Vf = 2sin0wcos0w 

If 
a = 3 
f 2 sin Ow cos Ow 

(9.1.4) 

(9.1.5) 

Here I{ and Q1 are the third component of weak isospin and the charge 
(in units of e) of the fermion. Thus 

-1 + 4sin2 Ow 
Ve=------

4 sin Ow cos Ow 

1 
ae=-----

4 sin Ow cos Ow 
(9.1.6) 

and 

1 
Vv = . = av. (9.1.7) 

e 4 sm Ow cos Ow e 

Note that because sin2 Ow ~ 0.23 one finds that Ve ~ ae, so that the 
coupling to the charged leptons is almost purely axial-vector. 

The Feynman diagram vertices are 

f 

(9.1.8) 

with identical vertices for the generations e, ,u, r. 
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A fascinating feature of the theory is the interference between Z 0 and 
photon exchange, so we recall that the standard QED vertex is 

y = ieyfl 

with identical vertices for f.l±, r±. 
The Z 0 and photon propagators are 

k i ( -gflV + kflkV /m~) 
J1 I\/VV'II0IVV'v v 

2o k2 - m~ +it: 

k 
Jl~V 

y 

For all fermions, the propagators are 

p p -m+ ie 

(9.1.9) 

(9.1.10) 

(9.1.11) 

(9.1.12) 

where pis the momentum flow in the direction of the fermion number-flow 
arrow. 

Because interference effects between different diagrams are so inter­
esting, care must be taken to allow for possible relative signs between 
diagrams; these signs arise from the sequential order of the fermionic 
operators that occur in the products of operators responsible for the 
diagrams. 

Some of the most beautiful effects arise because (9.1.1) and (9.1.4) 
contain a mixture of vector and axial-vector coupling and thus do not 
conserve parity. 

The parameter fJw fixes the relative couplings of y, Z, W to charged 
leptons, but even to the lowest order in perturbation theory, it plays several 
other roles as well (see Chapter 4 of Leader and Predazzi (1996)). 

The Higgs mechanism, which gives mass to w± and Z, results in the 
relation 

mw = mz cos fJw (9.1.13) 

and a computation of the muon lifetime in f.l- ~ e- + Ve + vfl relates fJw 
and mw to the Fermi coupling constant G = Gp = Gfl: 

( mx ) 112 1 
mw = n (9.1.14) 

y2G sinfJw 

where rx is the fine structure constant. 
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238 9 Electroweak interactions 

The coupling of the vector bosons to quarks is analogous to the leptons 
except that Cabibbo-Kobayashi-Maskawa generation mixing takes place 
and there is universal coupling to the three left-handed doublets 

where 

(9.1.15) 

or 

(9.1.16) 

and V is the 3 x 3 unitary Kobayashi-Maskawa matrix. 
Although its existence had more or less been taken for granted, on 

account of its role in calculations that agreed with a host of data, the top 
quark twas discovered only in 1994, at Fermilab. Its mass has turned out 
to be so mew hat larger than originally expected: mt ~ 17 5 Ge V j c2. 

The relevant parts of the Lagrangian density for the charged current 
interactions are: 

5/!w-quark = J2 ~ { [uy!1(1- Ys)d'WJl + d'y!l(l- Ys)uwJ] 
2 2sm8w (9.1.17) 

+c, s' term + t, b' term} . 

This gives rise to the following Feynman diagram vertices 

(9.1.18) 

ieV.t. 
= lj !1(1-) 

2Jl sin 8w Y Ys · 
(9.1.19) 

For the neutral current interactions there is no generation mixing and 
the coupling to qq has exactly the same structure as for the lepton­
antilepton pairs, as given in (9.1.4) and (9.1.5), where now 1{ and Qf refer 
to the quark weak isospin and charge. The vertices are thus shown in 
(9.1.8). 
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9.2 Precision tests of the Standard Model 239 

Of course when dealing with quarks one must remember that all the 
above applies equally to each quark colour. 

In addition to the above there are interaction terms involving the Higgs 
meson coupling to fermions and to the vector mesons and the self-coupling 
of the vector mesons. None of these is directly relevant to our study, which 
will deal mainly with fermionic reactions, but of course they will play a 
role in higher-order perturbative corrections. The detailed Feynman rules 
can be found in Appendix 2 of Leader and Predazzi (1996). 

The Higgs meson does contribute to the reactions we shall consider, 
but its effect, in lowest order, is negligible because of the weakness of the 
coupling to fermions: 

(9.1.20) 

This is especially small for reactions at LEP and SLC, where f in the 
initial state is always an electron. Note, from (9.1.14), that 

Higgs exchange will be ignored in the following. 

9.2 Precision tests of the Standard Model 

The properties of many experimental reactions have been calculated in 
lowest-order perturbation theory (the Born or tree approximation); they 
are all consistent with the results of the first generation of experiments 
carried out in the past few years. In particular the parameter Ow occurs in 
many different situations and its various determinations are all mutually 
consistent. 

There is now great interest in testing the deeper quantum-field-theoretic 
aspects of the theory by comparing precision experiments with calcula­
tions done to higher order. (Recall the seminal role of the Lamb shift and 
g - 2 for QED!) But the procedure is not quite straightforward, given 
the non-discovery thus far of the Higgs, because while at the Born level 
we can simply deal with reactions that do not involve it, in higher orders 
it is unavoidable. For example, although the Higgs couples very weakly 
to light fermions, its coupling to the vector bosons (which is dimension­
less) is effectively large, 2(,J2G)112miv, so that its contribution to the W 
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propagator, 

w 

is important. 

9 Electroweak interactions 

H 
.,...---... ....... 

,,. ' 
/ ' \ 

' 
w 

w 

Thus the detailed higher-order corrections will depend upon the un­
known parameter mH and it becomes very interesting to look for observ­
ables that are particularly sensitive to this parameter. 

Finally, in going to higher orders, because of infinite renormalization 
effects one has to decide more carefully what exactly the parameters are 
that go into the perturbative calculations. 

A natural set to use would be ll., mw, mz and mr, mH, but mw is less 
accurately known on account of the neutrino involved in its decay. To 
obviate this problem one can compute the rate for 1r ~ e- + Ve + V.u to 
order ll.2, in which case (9.1.14) is altered to 

mTv = ( ~li.G) Cin; Bw) 1 ~fir (9·2·1) 

where fir is a calculated correction of order ll., whose precise value depends 
upon the renormalization scheme used. 

If one chooses a scheme where (9.1.13) holds exactly (the so-called 
'on-shell' scheme), i.e. ew is defined by 

mw 
cosew = -, 

mz 

then one can use the fact that G is known to great accuracy, 

G= 1.66389(22) X w-5 (GeVjc2) 2 , 

(9.2.2) 

(9.2.3) 

and take ll., G and mz as basic parameters. Now mw and Bw are calculated 
from (9.2.1) and (9.2.2), i.e. 

2 . 2 ( nll. ) 1 cos ew sm Bw = R 2 -1 A 
v2Gm2 - LJ.r 

(9.2.4) 

and 
2 2 2 e mw = m2 cos w. (9.2.5) 

The dominant contribution to fir is 

fir >=:::: till. ___ 3_ cos2 Bw Gm2 

8J2n2 sin2 ew t 

where till. is a QED correction, fill. ::::: 0.064. 
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It is estimated that the error in the calculation of 11r ansmg from 
imperfectly controlled hadronic physics implies an uncertainty in sin2 Ow 
as calculated from (9.2.4) of 

b(sin2 Ow)= ±0.0004. (9.2.6) 

This then sets a fantastic goal for the accuracy in the new generation of 
measurements; thus one should look for other reactions in which sin2 Ow 
plays such a sensitive role that it can be measured to the accuracy (9.2.6). 

The most promising approach seems to be via the measurement of the 
vector part of the Z coupling to fermion-antifermion pairs, i.e. of Vf, 

defined in (9.1.5). But because Vf is so small it is essential to look for 
parity-violating effects, where interference between vector and axial-vector 
couplings will give rise to observables proportional to Vfaf rather than to 
vJ +a] as in parity-conserving quantities. 

Several reactions seem possible, but by the far the most sensitive to 
sin2 Ow are those involving forward-backward asymmetries using longi­
tudinally polarized e± beams, and those involving measurement of the 
polarization of the final state fermion. In order to optimize the event rate 
the e+ e- energy should be close to the Z 0 peak. 

To evaluate the dominant dependence on sin2 Ow it will be sufficient to 
discuss the reaction in the Born approximation but, clearly, in the eventual 
comparison between theory and experiment the theoretical predictions 
must include higher-order effects. (These are described in detail in Consoli 
and Hollik (1989).) 

9.2.1 The reaction e-e+ ~ fermion-antifermion pair 

Consider the process 
e-e+ ~ f] 

in the region of the Z peak, 1 so that we can ignore photon exchange, for 
simplicity, with longitudinally polarized electrons and positrons; here f is 
any lepton. At the huge energies involved m/ E ~ 1 for all the fermions 
involved, so that, as discussed in subsection 4.6.3, helicity and chirality are 
indistinguishable. The lowest-order diagrams are: 

+ 

1 Paramenters evaluated at the Z energy are sometimes called the 'pole paramenters' and are given 
a superscript 0 
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242 9 Electroweak interactions 

Because the energy is close to the Z 0 mass it is not adequate to use the 
propagator given in (9.1.10) and a more realistic version that takes into 
account the finite width r z of the Z must be used: 

k i ( -gjlV + kjlkV /m~) 
J1 'VV\1\NV\N'v v = ----c-'~----.------=--------'-

z k2 - m~ + ik2f'z/mz 
(9.2.7) 

The contribution from y exchange is of order r z /mz compared with Z 
exchange, which will be neglected in our qualitative discussion. It could 
be included easily. In fact we will not actually evaluate the Feynman 
diagrams but derive the results in a fashion that highlights the physical 
ingredients. Thus we shall view the process as a physical process of 
resonance formation and decay, 

e-e+---+ Z---+ f]. 

From subsection 8.2.1, the amplitude is of the form 

Hfl;ee(8) = M(f,])M(e,e)dli8) 

Jc = e- e J1 = f- ], 
(9.2.8) 

where, because we shall be interested only in ratios of cross-sections at 
the same energy, we have left out a function of energy related to the 
behaviour of the Z propagator. The labels in (9.2.8) refer to the helicities 
of the relevant particles and the M s measure the amplitudes for e-e+ ---+ Z 
and f]---+ Z respectively. 

We know from subsection 4.6.2 that the fermions and antifermions must 
have opposite helicity, so only two decay amplitudes occur, M( +,-) and 
M(-,+). Moreover if in (9.1.8) we write 

v- ays = ~(v + a)(1- Ys) + ~(v- a)(1 + Ys) (9.2.9) 

we see that apart from irrelevant normalization we can take 

M(+,-)=v-a M( -, +) = v +a. 

The only helicity amplitudes are then 

where 

H+-;+- = (vf- af )(ve- ae)di1 (8) 

H-+;-+ = (vf + af )(ve + ae)d~l-l (8) 

H+-;-+ = (vf- af )(ve + ae)d~11 (8) 

H-+;+- = (vf + af)(ve- ae)dL1(8) 

(9.2.10) 

(9.2.11) 
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9.2 Precision tests of the Standard Model 243 

and 

The unpolarized differential cross-section has the simple form, in the 
CM frame, 

(9.2.12) 

where 

(9.2.13) 

is a direct measure of the vector coupling Vi and (J is the total integrated 
cross-section. 

The most general experiment possible in e-e+ ~ JJ is described by 
eqn (5.6.3). Since we are looking for parity-violating effects we consider 
longitudinally polarized e+. Let f!le, f!le be the degree of longitudinal 
polarization of the e-, e+ beams respectively in their helicity rest frames, 
as depicted in Fig. 3.1 for particles A and B, so that, for both e+, 

where nR,L are the relative numbers of right- and left-handed particles. 
Then the initial state density matrix is determined by 

and 'Pe = (0, 0, f!le). (9.2.14) 

Because of the simple structure of the helicity amplitudes (9.2.11), the 
CM reaction parameters defined in (5.6.4) are easily evaluated. Those that 
interest us are independent of </J, as follows from (5.6.2) and (5.3.3). One 
has: 

• the electron longitudinal analysing power, 

Az(8) = Az(e-) = (ZOIOO) 

de(1 + cos2 8) + dJ (2 cos 8) 
1 + cos2 8 + d ed f (2 cos 8) 

= -Az(e+); 

• the initial state correlation parameter, 

Azz = (ZZIOO) = -1. 

(9.2.15) 

(9.2.16) 

(9.2.17) 
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244 9 Electroweak interactions 

Equation (9.2.17) is a direct signature of the fact that only electrons and 
positrons of opposite helicity can interact with each other. 

Using these in (5.6.3) yields 

d(J d(J 
dQ (£?J e, £?Je) = dQ [(1 - £?Je£?Je) + (£?Je- £?Je)Az(B)] 

3(J { 2 = 16n [1- £?Je£?Je + de(£?Je- £?Je)](1 +cos e) 

+dt [de(1- £?Je£?Je) + £?Je- £?Je] 2cos e} 
(9.2.18) 

Thus 

d(J 3(J [ 2 ] dQ(£?Je,£?Je)= 16n (1+y1)(1+cos B)+dt(de+Y2)2cose 

where 

For the integrated cross-section we have 

(i) The left-right asymmetry ALR 

(9.2.19) 

(9.2.20) 

(9.2.21) 

Let (JL and (JR be the integrated cross-section for the interaction of left 
and right-handed electrons respectively with unpolarized positrons. Then 
from (9.2.21) we have 

A _ (JL- (JR 
LR = 

(JL + (JR 

= de in the Born approximation. 

Taking sin2 Bw = 0.23 yields de = 0.16. 

(9.2.22) 

(9.2.23) 

When higher-order corrections are taken into account the relationship 
(9.2.23) will change only slightly, because the radiative corrections largely 
cancel in the asymmetry. The structure of (9.2.21) remains the same but 
with de replaced by ALR, i.e. 

(9.2.24) 

As discussed in subsection 7.2.1 this could have been used to measure 
£?Je, £?Je and ALR by running LEP in the four polarization settings: 

If it were possible to have 50% polarization and 106 events the statistical 
precision on ALR would be <5ALR = 0.002, leading to <5(sin2 Bw) ~ 0.0004. 
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Now that mt is reasonably well determined, a measurement of ALR to the 
above accuracy will quite strongly constrain the possible values of mH. 

The most advanced studies thus far have been carried out by the SLD 
collaboration at the SLC at Stanford (see Prepost, 1996). Although using 
only 93 000 events at the Z 0 mass, the beam polarization f!/Je is known with 
great accuracy to be (77.23 ± 0.52)% and ALR is measured with amazing 
prec1s1on: 

ALR = 0.1543 ± 0.0039. (9.2.25) 

Allowing for the higher-order radiative corrections, this result is ex­
pressed as a value for sin2 8~, which differs from sin2 8w defined in (9.2.2) 
by small radiative corrections (see Hollik, 1990). The result is 

sin2 8~ = 0.23060 ± 0.00050, (9.2.26) 

making it the world's most precise determination of 8~ from a single 
experiment. 

(ii) The forward-backward asymmetry AFB 
It is clear from (9.2.19) that a forward-backward asymmetry exists (i.e. 
under 8 ~ n - 8) because of the term linear in cos 8 and that this is 
non-zero because of interference between vector and axial-vector terms. 
The forward-backward asymmetry AFB is defined as 

(9.2.27) 

where nF,B are the numbers of events in the forward and backward 
hemisphere respectively. Thus 

A (1'17J 1'17J_) = ~ { dt [f!/Je- f!/Je + de(1- f!/Jef!/Je)]} (9 2 28) 
FB ;;r e. ;;r e 4 1 - f!JJ ef!/Je + d e(f!/Je - f!JJ e) . . . 

This is a fundamental result and will be used to illustrate the power of 
utilising polarized beams. For the unpolarized asymmetry we have 

AFB = ~dtde. (9.2.29) 

Now recall that from (9.1.6) the vector coupling of the leptons is very 
small, so that the dz are also very small. Then for a given experimental 
error c5AFB we will have for the error on, say, d f 

1 
c5dt ~de c5AFB ~ c5AFB (9.2.30) 

so that we cannot obtain a sufficiently accurate measurement of sin2 8w. 
On the contrary if we have, say, f!/Je = 0 but f!JJ e sizeable then 

(9.2.31) 
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In this case the error in bd f will be comparable to that in AFB: 

(9.2.32) 

Again, the most advanced studies to date have been carried out at the 
Stanford SLC. The forward-backward asymmetry has been measured for 
e+e- ~ e+e-,f.l+f.r,r+c, leading to (see Prepost, 1996) 

de= 0.148 ± 0.016 d 11 = 0.102 ± 0.033 

,s/T = 0.190 ± 0.034, 
(9.2.33) 

which are compatible with lepton universality. 
When combined with the result (9.2.25) for ALR these yield 

sin2 e\{1 = 0.23061 ± 0.00047. (9.2.34) 

(iii) Polarization of final state fermion for unpolarized e-e+ 
If we are interested in the longitudinal polarization of the final state 
fermion f or in the final state correlations with a polarized initial state, 
we require the following additional CM reaction parameters: 

• the final fermion longitudinal polarizing power, 

f!JJ (e)= (OOIZO) = _ dJ(l +cos2e)+de(2cose) 
f 1+cos2e+dedJ(2cose) 

= -f!JJJ( e). 

• the final state correlation parameter, 

Czz = (OOIZZ) = -1, 

(9.2.35) 

(9.2.36) 

(9.2.37) 

again, a consequence of opposite helicities in the JJ production; 
• the electron longitudinal depolarization parameter, 

Dzz(e) = Dzz(e-) = (ZOIZO) 

- dedf(l + cos2 e)+ 2cos e 
- 1 + cos2 e + dedj2COS e 
= Dzz(e+); 

• the electron longitudinal polarization transfer parameter, 

Kzz(e) = Kzz(e-) = (ZOIOZ) 

= -Dzz(e) 
= Kzz(e+); 

(9.2.38) 

(9.2.39) 

(9.2.40) 
(9.2.41) 

https://doi.org/10.1017/9781009402040.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.009


9.2 Precision tests of the Standard Model 

• the three-spin and four-spin correlation parameters, 

(ZO[ZZ) = -(OZ[ZZ) 

= -Az(8) 

(ZZ[ZO) = -(ZZ[OZ) 

= -!?Jj(8) 

(ZZ[ZZ) = 1. 

247 

(9.2.42) 

(9.2.43) 

(9.2.44) 

For an unpolarized initial state the degree of longitudinal polarization 
of the final fermion is given by (9.2.35), which in principle allows a 
determination of d f and de if the longitudinal polarization of the final 
fermion can be measured. 

If we assume lepton universality and take de= & 1 ~ 0.16, correspond­
ing to sin2 8w = 0.23, then we see that !?J 1( 8) varies from 0 at 8 = n to 
about -30% at 8 = 0. 

However, the measurement of !?J 1( 8) requires an analysis of the angular 
distribution of the decay products off (as discussed in subsection 8.2.1), 
which is a non-trivial matter. 

It may therefore be better, from the point of view of statistics, to deal 
with an integrated quantity. Thus we define 

;?JJ = J !?J f( 8)da /dO. 
f- J dajdQ · 

(9.2.45) 

From the definition of !?J 1( 8) in terms of relative numbers of right- or 
left-handed f particles produced at angle 8, it is clear that 

f1lJ - a(fR)- a(fL) (9 2 46) 
uf- a(fR) + a(fL) · · 

where a(JR,L) are the total cross-sections to produce right- or left-handed 
f particles. 

Using (9.2.35) and (9.2.12) in (9.2.45) we see that 

!?Jf = -df, (9.2.47) 

a beautiful and simple result. 
In practice it appears that the most accurate results will come from 

e-e+ ~ 'CT+; the T polarization can be studied via various decays, e.g. 
T ~ nv, T ~ JlV!lv,, T ~ pv, T ~ a1v. 

(iv) Measurement of the T polarization 
We consider how the T polarization can be measured. We work within the 
Standard Model where the T is produced with longitudinal polarization 
and the neutrinos are purely left-handed (Av = -1/2). All the following 
results emerge as a straightforward application of the discussion of the 
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decay of unstable particles given in subsection 8.2.1, which should be 
consulted for notational conventions about angles etc. 

(a) 'L- ~ n + v, 
Because Av = -1/2 and then is spinless there is only one reduced helicity 
amplitude, (8.2.1). The decay is trivially magic and the normalized decay 
distribution of the n in the helicity rest frame of 'L- is given by (8.2.20) 
and (8.2.31): 

W(On,<f>n) = ~ [~ + t~*ylm(On,<f>n)] 
so that, using (3.1.35), 

W(On) = ! (1 +&>,cos On). (9.2.48) 

(b) 'L- ~ V + v,, where V is a spin-1 meson ( p or a1) 
There are now two independent reduced helicity amplitudes: 

M(.A.v,Av) 

with Av = -1/2 and Av = 0 or -1. (The transition to Av = + 1 is 
impossible by conservation of angular momentum.) Let us label these 
M(O) and M(-1) respectively. We can identify them by calculating the 
relevant helicity amplitudes HJcvJcv;Jc, with arbitrary choice of A, and then 
using (8.2.1). 

In the Standard Model the Feynman amplitude is given by 

G 2 (V; .A.vlhlliO) [uJcv YJL(1- Ys)uJcJ (9.2.49) 

where hll is the hadronic weak current and G is the Fermi coupling 
constant. (See, for example, Leader and Predazzi (1996), Chapter 1.) In 
(9.2.49) we have justifiably neglected the effects of the W propagator. We 
cannot, of course, calculate the hadronic matrix element (V; .A.vlhJLIO), but 
in any field theory it has to be proportional to the polarization vector 
ell· (.A.v) of the spin-1 particle. Moreover the proportionality function is 
just a constant, since in the decay the momentum of V is fixed. 

Using the fact that 

u_112(v)(1 + Ys) = 2u_112(v) 

(see subsection 4.6.3), we can write 

HAVAv;A, = ce:(Av)UJcvYJlUJc, = ce:(Av)VtA, 

in the notation of subsection 4.6.2. 

(9.2.50) 

We can directly use the results (4.6.36)-(4.6.39) together with (4.6.30) and 
(4.6.28) to evaluate the amplitudes, taking for convenience the produced 
vector meson to have polar angles Ov, <Pv = 0 in the helicity rest frame of 
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the .-. The only subtlety is to remember that the neutrino then has polar 
angles 8v = n- 8v, cPv = n. 

For the polarization vector of the V meson, from (3.4.25), (3.4.24), 
(1.2.23) and (3.1.80), we have 

and 

ell. (±1) = ~(0, +cos 8v, i, ±sin 8v) 

* 1 A 

ell (0) = -(pv,EvPv), 
mv 

where Pv = (sin8v,O,cos8v), 

m2-m2 
Pv = ' v and 

2m, 

(9.2.51) 

(9.2.52) 

(9.2.53) 

After a little algebra involving the Pauli matrices in ( 4.6.30), one finds, up 
to a common constant, 

H-1-1/2;1/2 = -.ji sin 8v 
m, 

Ho-112-112 =-cos 8v. 
' mv 

Comparing with (8.2.1), using 

d~~;,-1/2(8) = -sin 8/2 

and 

d~~;,112(8) = cos 812 

(9.2.54) 

(see Appendix 1), we see that the correctly normalized reduced amplitudes 
are 

M(O) = m, M(-1) = -Jlmv 

vm~+2m~ vm~+2m~ 
(9.2.55) 

From (8.2.20), upon using (8.2.12) and (9.2.55) we find for the angular 
distribution of the vector meson 

1 [ (m~- 2m~) l W(8v) = -2 1 + 2 2 :JJJ,cos8v . 
m, +2mv 

(9.2.56) 

In practice, in order to use (9.2.48) or (9.2.56) to measure :JJJ, we do 
not measure the angles 8h (h = n, p, al) but convert the distribution into 
distributions in the Lab fractional energy Xh = Eh/ E, of the decay hadron, 
usmg 

(9.2.57) 
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An example of the results from a measurement of &,(8) by the L3 
Collaboration at CERN (Acciarri et al., 1994) is shown in Fig. 9.1. The 
curves correspond to fitting &> ,( 8) either with d, and de as indepen­
dent parameters (no universality) or enforcing d, = de (universality). 
Excellent agreement with the Standard Model is obtained for a value 
sin2 8~ = 0.2309 ± 0.0016, nicely compatible with (9.2.26). For further 
experimental studies see: Delphi Collaboration, Abreu et al. (1995a, b); 
Aleph Collaboration, Buskulic et al. (1996) and OPAL Collaboration; 
Alexander et al. (1996). 

(c) ,- ~ p- + v, with analysis of p- ~ n-n° 
Additional information can be obtained by studying the angular distribu­
tion of say, n-, in the p- ~ n-n° decay. The theoretical analysis is a very 
nice example of the power of the methods discussed in subsection 8.2.1. 

From (8.2.20) and (8.2.17) the angular decay distribution of the n-, 
produced at an angle 8n to the p's direction of flight in the p helicity rest 

0.1.------------------, 

-0.1 

-0.2 

- No universality 
-0.3 ····· ·· Universality 

-0.4~~-~~~-~~-~~-~~ 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
cos e 

Fig. 9.1 The polarization g>,(e) vs. cos e for T leptons produced in 
e-e+ ---+ ,-,+ (from the L3 Collaboration, Acciarri et al. 1994). For a 
discussion of the two curves see the text. 
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frame is, after integration over the azimuthal angle c/Jn, 

W(8n) =! [1- f5,.t5(p,8p)(3cos2 8n -1)] 

251 

(9.2.58) 

where t5(p, 8p) is the multipole parameter of the p, which was produced 
at angle 8p in the -r helicity rest frame. 

The experimental analysis of the n- angular distribution is done in the 
p helicity rest frame reached from the Lab, where the n-, n° are detected. 
Thus the Lab multipole parameters t51sL needed in (9.2.58) will differ by 
a Wick rotation from the t51s, of the p in the -r helicity rest frame. 

From (3.2.9) and (2.2.5) the connection is 

tB(p, 8p)l = dito(Owick)tit(p, 8p)l (9.2.59) 
SL S, 

in which, from (2.2.6), we have 

ll Pp + /3-rEp cos 8p 
COS uwick = Y-r p 

PL 
(9.2.60) 

. mp sin8p 
sm 8wick = Y-r/3-r p 

PL 
(9.2.61) 

where Pp and Ep are found from (9.2.53), p[ is the p Lab momentum and 
Y-r, /3-r refer to the -r's motion in the Lab. 

To compute the t~(p) for the decay -r- ~ p- + V-r, in the -r helicity rest 
frame, we use (8.2.12), (8.2.14) and (9.2.55). It is easy to see that t~ls-r = 0. 
For the others we find 

2 1 13 m-cmp . 
W(8p)t1 (p, 8p)ls-r = 2 y 5 2 2 2 &-r sm 8p 

m"+ mP 
(9.2.62) 

2 1 !2 1 
W(8p)to(P, 8p)ls-r = - 2 y 5m2+ 2m2 

' p 

x [m;- m~ + (m; + m~)&-r cos 8p J (9.2.63) 

where W(8p) is found from (9.2.56). 
Finally putting together (9.2.58)-(9.2.63), using the expressions for dit0 

given in Appendix 1, and eqn (9.2.56), we get for the normalized joint 
distribution for production of a p- at angle 8p, in the -r helicity rest frame, 
that then decays into an- at angle en, in the p helicity rest frame reached 
from the Lab, 

(9.2.64) 

Here 

(9.2.65) 
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and 

g((}p,(Jn) 

= (m; + 2m~)- 1 

x { [m;- 2m~+ ~(m; + 2m~)(3 cos2 On- 1)(3 cos2 8wick -1)] cos (}P 

+ 3m-rmp(3 cos2 On- 1) sin 8wick cos 8wick sin (}P} (9.2.66) 

where it must be remembered that 8wick is a function of (}p· Thus &>-r can 
also be determined from an analysis of the two-dimensional distribution 
(9.2.64). Important comments about optimizing the statistical analysis of 
multi-dimensional distributions are given in Davier et al. (1993). 

(d) -r---+ a1 + V-r, with analysis of a1--+ 3n 
Further information is obtained if one studies the angular distribution of 
the normal n (polar angles On, </Jn) to the 3n decay plane in the a1 helicity 
rest frame. (See subsection 8.2.2 for the three-body decays of an unstable 
particle.) 

In general, as can be seen from (8.2.61) or from (8.2.78), for a1 --+ 

three spin-0 particles, the angular distribution of the normal depends 
upon the unknown dynamical parameter 2Ru - 1, which multiplies the 
t6(al) multipole parameter of the a1. However, for a1 --+ 3n, because 
of either identical-particle or isotopic-spin symmetry, the correctly sym­
metrized version of Ru vanishes after integration over the Dalitz plot; see 
(8.2.67). 

Hence starting with (8.2.61) and using (8.2.62) we find the following 
result: after integration over the Dalitz plot, and after integrating over 
the azimuthal angle <Pn of the normal to the decay plane, the normalized 
angular distribution in On is given by 

(9.2.67) 

very similar in form to (9.2.58). 
Analogously to the case of p --+ 2n, the decay pions in a1 --+ 3n detected 

in the Lab will yield the distribution of n in the helicity rest frame SL 
reached from the Lab, so that a Wick rotation (9.2.59) must be carried 
out. 

The result can be read off from the p --+ 2n case. One obtains 

(9.2.68) 
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where f' and g' are obtained from f and g in (9.2.65) and (9.2.66) by the 
substitutions 

(this must be done also inside Owick; see (9.2.60), (9.2.61)). 

(e) Correlation in .-r+ production 

(9.2.69) 

The .-.+ are created in a correlated state in the e-e+ ~ .-.+ reaction, 
so that further information can be obtained by studying the correlated 
decays of the .- and r+. 

There are two different approaches possible. We could write down from 
(8.2.22) the most general form for the joint angular distribution of the 
decay products, measure various correlation coefficients and then test 
whether their values correspond to the predictions of the Standard Model. 
We shall carry out, however, the somewhat simpler analysis of assuming 
the structure of the Standard Model and using the correlation analysis 
to measure the vector and axial-vector couplings, in effect, therefore, 
measuring sin2 Ow by yet another method. 

Because we are dealing with spin-1/2 resonances it is simpler to use the 
Cartesian spin formalism rather the multipole parameter language. 

Firstly, for the production reaction, it is easy to see from (5.6.3), upon 
using the amplitudes given in (9.2.11), that the only non-zero expectation 
values are 

(az(r-)) = &, =- (az(r+)) = -&'t 

with &, as given in (9.2.35), 
(az(r-)az(r+)) = - 1 

and 

(ax(r-)ax(r+)) = (ay(r-)ay(r+)) 

(9.2.70) 

(9.2.71) 

( v2 - a2 ) sin2 e 
= v~+a? 1+cos2 0+2ded,cose· (9.2.?2) 

(Recall that the .- is produced at an angle e to the e- direction in the 
e-e+ CM; see (9.2.8).) 

Secondly, we utilize (8.2.22); on the basis of (5.6.1) and (9.2.71), we 
substitute 

tl}ir-, r+) = ! (az(r-)az(r+)) = -! 
d6 = tM = tU = o 
tE-l = t~11 = -! (ax(r-)ax(r+)). 
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We can deal with all the negative decays -r- ~ n-v,, p-v,, a1v, and the 
positive decays -r+ ~ n+v,, p+v,, atv, by writing the generic forms 

W(O_, l/J-) = !(1 + a_fJ>, cos 0_) 

W(O+, lfJ+) = !(1 + a+fJ>:r cos 0+) 
(9.2.73) 

for their decay distributions with, from (9.2.48) and (9.2.56), and their 
analogues for -r+, 

2 2 2 
(V)- _m,- mv 

IY.± - + 2 +2 2 m, mv 
(9.2.74) 

where V = p,a1. 
For the normalized joint distribution we end up with 

w(e_, lfJ_; e+, lfJ+) 

= 16
1n2 [ 1 + a_fJ>,(O) cos e_ + a+fJ>:r(O) cos e+ -a_a+ cos e_ cos e+ 

_ 2a_a (a~-v;) sin2 0sinO_sinO+cos(l/J--lfJ+)] (9.2.75) 
+ a?+ v; 1 + cos2 e + 2Siled, cos e 

where the + angles are defined in the c, -r+ helicity rest frames respec­
tively. 

Clearly, the azimuthal dependence can be used to measure the parameter 
(a~- v;)/(a~ + v;), called Crr in some of the experimental literature. 

For experimental data see Abreu et al. (1997}, where a value of 0.87 ± 
0.20 ± 0.11 was obtained, compatible with the value 0.978 corresponding 
to sin2 Ow = 0.2236. 

( v) Polarization of final state fermion with polarized e-e+ 
As an example of the benefits of having polarized e± beams, let us study 
the longitudinal polarization of the final state fermion f when the electron 
and positron have longitudinal polarizations fJ>e, fJ>e respectively. 

From (5.6.3) and (5.6.5) 

(9.2.76) 
where fJ>f(O) is given by (9.2.35) and Dzz(O) by (9.2.38}. Substituting for 
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dj(l + Yt)(l + cos2 8) +(de+ Y2)2 cos 8 

(1 + yt)(l + cos2 8) + dJ(de + Y2)2 cos 8 

where Yt,2 are given in (9.2.20). 

255 

(9.2.77) 

The advantages of (9.2.77) are twofold. Firstly, by an appropriate choice 
of f!J e, f!Je we can obtain a much larger polarization. Figure 9.2 compares 
f!Jf for unpolarized e± with the case f!Je = -f!J-e =50%. This will enhance 
the asymmetry in the decay of, say, the r. Secondly, it is useful from the 
point of view of statistics since one can use (9.2.77) to extract information 
from all f decays, no matter what the initial e± polarizations are. 

9.2.2 The reaction e-e+ ----+ quark-antiquark pair 

All the asymmetry measurements discussed in the previous section for 
e-e+ ----+ lepton-antilepton pair can, in principle, be carried out for e-e+ ----+ 

0.2 

0.1 

0 

-D.l 

-D.2 

-D.3 

-1 -D.5 0 

cos e 
0.5 

Fig. 9.2 Comparison of Standard Model T polarization for e-e+ colli­
sions: (a) unpolarized; (b) f!l'e = -f!l'e =50%. 
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qq. Thereby one is measuring the various vector and axial vector couplings 
Vf and af of (9.1.5) for the quarks. 

(i) Production of heavy quarks 
Experimentally the identification of a given quark and the determination 
of its direction of motion is much more complicated than for a lepton, 
and is probably only feasible for the b and c quarks. All sorts of tagging 
techniques are required as well as a determination of the thrust axis of 
the jet produced when the quark hadronizes. 

We shall not attempt to cover this subject, but the reader is referred to 
Prepost (1996) for access to the literature. 

The experimental complications are somewhat compensated by the 
large magnitude of the asymmetries compared with the lepton case. For 
the key parameters di defined in (9.2.13) we have the following values for 
sin2 ew = 0.23: 

de= d 11 = d, = 0.16 du =de= dt = 0.67 

dd = ds =db= 0.94. (9.2.78) 

As a consequence the unpolarized forward-backward asymmetry (9.2.29) 
will be far larger for b and c quarks than for leptons. 

For the polarized forward-backward asymmetry, with flJJe = 0 and 
flJJe ~ 75%, (9.2.31) implies that IAhl ~ 0.52, a huge asymmetry. 

Results for the parameters db and d c vary somewhat according to the 
method used for tagging the quark but are essentially compatible with 
each other and with the Standard Model values. The world averages, given 
at the 1997 Lepton-Photon Conference (Timmermans, 1998) were 

db= 0.898 ± 0.050 d c = 0.649 ± 0.058, (9.2.79) 

to be compared with the precise Standard Model predictions 

d~M = 0.935 d~M = 0.667. (9.2.80) 

Also, the polarization of the produced quark in an unpolarized e+ e­
collision will be very large and roughly independent of the production 
angle, as can be seen from (9.2.35): 

(9.2.81) 

In principle the state of polarization of the heavy quark could be 
determined from the lepton energy spectrum in the semileptonic decay 
b ----+ c + l + vz. If we pretend that the quarks are free particles then this is 
analogous to the determination of the muon polarization from J.l ----+ evv 
discussed in subsection 8.1.1(v). In reality one has to worry about the 
strong interaction effects, which lead to the hadronization of the quarks 
(see Mele, 1994). Interestingly, however, this will not be a problem for 
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top decay, if it were ever possible to produce tt pairs in lepton-antilepton 
collisions, since the decay is so rapid that there is no time for strong 
interaction effects to act. 

(ii) Production of light quarks 
By eqns (9.2.81) and (9.2.78) the u, d and s quarks are all produced with 
a high degree of polarization, but there is no sense in considering them 
as free particles and one is forced to take into account the process of 
hadronization, whereby the quark materializes as a physical particle. Since 
this is a non-perturbative strong interaction process we are unable to 
calculate it. The dynamics of the hadronization thus has to be studied 
experimentally. The focus, therefore, is not so much upon testing the 
electroweak theory as upon trusting the Standard Model to tell us about 
the state of the produced quark and then, by measuring the properties of 
the final state particles, to learn about the process of hadronization. 

9.3 Summary 

In summary, the measurement of spin-dependent observables has been 
and will continue to be a very powerful tool in testing the Standard 
Model to fantastic levels of precision. It is quite remarkable that the SLD 
measurement of ALR using some 93 000 Z 0 events has achieved the same 
accuracy in the value of sin2 8w as all the LEP experiments put together, 
involving several million Z 0 events! 
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