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Abstract

Background. Considerable heterogeneity exists in treatment response to first-line post-
traumatic stress disorder (PTSD) treatments, such as Cognitive Processing Therapy (CPT).
Relatively little is known about the timing of when during a course of care the treatment
response becomes apparent. Novel machine learning methods, especially continuously updat-
ing prediction models, have the potential to address these gaps in our understanding of
response and optimize PTSD treatment.

Methods. Using data from a 3-week (n = 362) CPT-based intensive PTSD treatment program
(ITP), we explored three methods for generating continuously updating prediction models to
predict endpoint PTSD severity. These included Mixed Effects Bayesian Additive Regression
Trees (MixedBART), Mixed Effects Random Forest (MERF) machine learning models, and
Linear Mixed Effects models (LMM). Models used baseline and self-reported PTSD symptom
severity data collected every other day during treatment. We then validated our findings by
examining model performances in a separate, equally established, 2-week CPT-based ITP
(n=108).

Results. Results across approaches were very similar and indicated modest prediction accuracy
at baseline (R ~ 0.18), with increasing accuracy of predictions of final PTSD severity across
program timepoints (e.g. mid-program R* ~0.62). Similar findings were obtained when the
models were applied to the 2-week ITP. Neither the MERF nor the MixedBART machine
learning approach outperformed LMM prediction, though benefits of each may differ based
on the application.

Conclusions. Utilizing continuously updating models in PTSD treatments may be beneficial
for clinicians in determining whether an individual is responding, and when this determin-
ation can be made.

Introduction

Mounting evidence supports the efficacy of Cognitive Processing Therapy (CPT; Resick,
Monson, & Chard, 2017a), which is considered a first line intervention for treating post-
traumatic stress disorder (PTSD; APA, 2017; ISTSS, 2017; VA/DoD, 2017). Support comes
from randomized controlled trials (Monson et al., 2006; Resick, Nishith, Weaver, Astin, &
Feuer, 2002; Resick et al., 2008, 2015, 2017b) as well as clinical research (Asmundson et al.,
2019; Held, Smith, Pridgen, Coleman, & Klassen, 2022¢; Lloyd et al., 2015). CPT has been suc-
cessfully delivered in different formats such as the traditional 12 sessions delivered on a weekly
basis (Monson et al., 2006; Resick et al., 2002, 2008, 2015, 2017b) and massed/intensive treat-
ments which deliver a full course of treatment in as little as one to three weeks (Galovski et al.,
2021; Held et al., 2022a, 2022c). Effect sizes for PTSD severity reduction in CPT are generally
large and meaningful when delivered weekly or in massed format (e.g. d>1.0; Asmundson
et al. 2019; Held, Bagley, Klassen, & Pollack, 2019) and have been demonstrated to persist
after treatment for up to ten years following treatment completion (Held et al., 2020b;
Resick, Williams, Suvak, Monson, & Gradus, 2012). However, not all participants benefit to
the same extent (Dewar, Paradis, & Fortin, 2020). Recent research on massed CPT delivered
as part of an intensive PTSD treatment program (ITP) identified four separate PTSD response
trajectories (Held et al., 2021). In line with other research examining response trajectories in
weekly CPT (Galovski et al., 2016; Schumm, Walter, & Chard, 2013), approximately 15%
reached treatment goals within a small number of sessions and 14% didn’t respond to treat-
ment in any meaningful way (Held et al., 2021). Given this variability in treatment response
across treatment programs for psychiatric conditions, development of prediction models for
determining who is, or is likely to be, benefitting from treatment is paramount.
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Psychological Medicine

The emerging emphasis on machine learning in developing
prediction models in psychological medicine, as well as the
increase in the types and amount of data collected in the field,
has led to increased use of these methods for various applications,
including tracking treatment response (Shatte et al., 2019). Such
approaches often differ from traditional statistical approaches in
their emphasis on prediction accuracy rather than probabilistic
emphasis on specific predictors and aspects of their relationships
with outcomes (e.g. slopes or odds ratios). Machine learning mod-
els are able to accommodate a larger number of variables as pre-
dictors than generally found in traditional statistical approaches.
Although some baseline predictors, such as baseline PTSD sever-
ity or negative posttraumatic cognitions, have been shown to be
useful in predicting such non-responders, the amount of variabil-
ity in post-treatment PTSD and depression severity that can be
accounted for solely via baseline assessment is usually limited
(Held et al., 2021, 2022b; Hilbert et al., 2020; Nixon et al., 2021).

Primarily focusing on baseline predictors may be important
for initial determination of the appropriateness of a treatment
program for an individual (Held et al., 2021; Hilbert et al.,
2020; Nixon et al., 2021), however such models also involve con-
siderable uncertainty given the dynamic nature of treatment
response over time. The recent emphasis on implementation of
precision medicine approaches (Aafjes-van Doorn, Kamsteeg,
Bate, & Aafjes, 2021; Chekroud et al., 2021; Delgadillo, 2021;
Hilbert et al, 2020) necessitates identification of participants
who may or may not be responding to treatment as early as pos-
sible. Recently developed machine learning approaches that
account for the longitudinal structure of repeated assessments
hold promise for improved accuracy in predicting participants’
treatment response by continuously updating models with
newly acquired information about a patient’s treatment response
(e.g. repeatedly measured symptom severity scores). The ability
to assess individual progress during treatment and update predic-
tions of patient’s response is likely a necessary precursor to treat-
ment adjustments in any precision medicine approach.

Although others have attempted clinical prediction models in
PTSD outcomes during the course of treatment (Held et al., 2022b;
Nixon et al, 2021), these studies have not utilized approaches
designed to accommodate the correlated structure inherent to lon-
gitudinal data, in which observations are nested within individuals,
or have predicted variants of categorized non-response rather than
overall PTSD severity. Given the lack of a generally agreed-upon
standards for what may constitute non-response to PTSD treatment
(Varker et al., 2020), and in the interest of modeling the full spec-
trum of variability in treatment response, predicting continuous
PTSD severity may be a preferred solution.

The current study aimed to examine the ability for machine
learning and statistical prediction models to utilize both
baseline data and updated PTSD symptom severity information
throughout the program to generate increasingly accurate and
informative predictions of post-treatment PTSD severity for par-
ticipants in a 3-week CPT-based ITP. This was evaluated using
three approaches; Mixed Effect Random Forest (MERF; Hajjem,
Bellavance, & Larocque, 2011, 2014) and Mixed Effects
Bayesian Additive Regression Trees (MixedBART; Spanbauer &
Sparapani, 2021), which both appropriately model random
effects, and gold-standard statistical linear mixed-effects longitu-
dinal models (LMMs) were used to generate these updating pre-
dictions. As shown previously (Held et al., 2022b), we expected
that models would provide acceptable performance with baseline
predictors, but that accuracy would improve throughout the
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program with the incorporation of updated PTSD severity infor-
mation as treatment progressed and change trajectories became
more apparent. Testing continuously improving models could
provide foundational information in implementing a precision
medicine-based approach in PTSD treatment. We were generally
agnostic regarding the ability for machine learning to outperform
mixed-effects regression predictions, given prior research demon-
strating that machine learning approaches may not necessary
outperform standard statistical approaches in making clinical
predictions (Cho et al., 2021; Christodoulou et al., 2019; Li
et al,, 2021).

Methods
Participants

Data utilized in this study were from 361 veterans with PTSD who
completed a 3-week CPT-based ITP at Rush University Medical
Center's Road Home Program: Center for Veterans and Their
Families. Participants were included if they had complete data™. On
average, veterans in the sample were 41.46 years old (s.p.=9.43).
The majority identified as male (63.71%) and White, (67.87%).
Additional sample characteristics can be found in Table 1.

Program description

During the 3-week ITP, veterans received 14 individual CPT ses-
sions, 13 group CPT sessions, 13 group mindfulness sessions, and
12 group yoga sessions in addition to psychoeducation classes on
various topics, such as sleep hygiene. A more detailed description
of the ITP and its outcomes can be found in elsewhere (Held
et al., 2020a; Zalta et al., 2018). Veterans were eligible for the
ITP if they met the diagnostic criteria for PTSD, which was veri-
fied using the Clinician-Administered PTSD Scale for DSM-5
(CAPS-5; Blevins, Weathers, Davis, Witte, & Domino, 2015;
Bovin et al., 2016; Weathers et al., 2013). Exclusionary criteria
were unstable housing, inability to independently complete activ-
ities of daily living, a suicide attempt in the previous 30 days,
untreated psychosis or mania, or severe alcohol or drug use that
would require continuous medical observation. The study proce-
dures were approved by the Institutional Review Board at Rush
University Medical Center with a waiver of consent as all assess-
ments were collected as a part of routine care.

Measures

Veterans were asked to provide demographic information and
complete several self-report measures before and during the
ITP. A complete list of all features that were used in the different
analytic models as well as when they were assessed in ITP can be
found in Table 2.

Clinician administered PTSD scale for DSM-5(CAPS-5)

The CAPS-5 is a structured diagnostic PTSD assessment based on
the DSM-5 criteria, administered at baseline (Weathers et al.,
2018). It assesses the severity of PTSD symptoms across the
four different clusters from 0 (absent) to 4 (extreme): intrusions,
avoidance, alterations in cognition and mood, and hyperarousal.
PTSD symptom severity was based on the past month.
Cronbach’s alpha within the current sample was 0.780.

"The notes appear after the main text.
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Table 1. Demographic characteristics

3-Week ITP (N=361) 2-Week ITP? (N=108)

Variable® N % N %
Sex

Male 230 63.71 51 47.22

Female 131 36.29 57 52.78
Ethnicity

Latinx 70 19.39 19 17.59

Not Latinx 291 80.61 89 82.41
Race

American Indian/Alaskan Native 5 1.39 1 0.93

Asian 5) 1LES) 2 1.87

Black or African American 74 20.50 29 27.10

Native Hawaiian/Pacific Islander 3 0.83 0 0.00

Other 27 7.48 8 7.48

Refusal 1 0.28 0 0.00

Unknown 1 0.28 0 0.00

White 245 67.87 67 62.62
Income category

$0-$20 000 36 10.56 22 9.24

$20 000-$49 999 116 34.02 73 30.67

$50 000-$99 999 109 31.96 90 37.82

>$100 000 80 23.46 53 22.27
Military service branch

Air force 21 5.82 10 9.26

Army 245 67.87 59 54.63

Coast guard 2 0.55 2 1.85

Marines 54 14.96 19 17.59

Navy 39 10.80 18 16.67
Service era

Post 11 September 2001 331 91.61 92 85.19
Deployed

Yes 286 79.22 7 71.30
Military sexual trauma

Yes 154 42.66 28 25.93

M [range] S.D. M [range] S.D.

Age 41.46 (24-74) 9.43 42.93 (26-71) 9.27

PCL-5 Baseline® 55.63 (19-80) 12.33 50.72 (16-80) 15.15

PCL-5 Post-Treatment 33.79 (0-80) 19.38 34.13 (0-74) 16.35

2y? or t test comparisons indicated that significant differences exist between the two programs in sex, race, service era, MST status, and PCL-5 at baseline (ps <0.05).
PPCL-5=PTSD Checklist for DSM-5.

PTSD checklist for DSM-5 (PCL-5) from 0 (not at all) to 4 (extremely). PTSD symptom severity
The PCL-5 is a self-report measure that assess PTSD severity =~ was rated based on the past month during the intake and past
(Weathers et al., 2013). Individuals were asked to rate how  week at every other timepoint after that. In the 3-week program,
much they were bothered by each of the 20 PTSD symptoms the PCL-5 was assessed at baseline and on days 2, 3, 5, 6, 8, 10, 11,
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Table 2. List of features used in machine learning models

Measure Description Scoring Assessment timepoint
Age 1-item measure Baseline
Sex 1-item measure recoded as Male or Female Baseline
Race 1-iteam measure recoded as White or All Other Races Baseline
Ethnicity 1-item measure recoded as non-Hispanic or Hispanic or Latino Baseline
Education 1-item measure dummy coded from No high school diploma (0) to Master’s or Baseline
Doctorate degree (7)
Marital status 1-item measure dummy coded from Married or Domestic Partnership (0) or Not Baseline
Married (1)
Branch 1-item measure dummy coded from U.S. Army & US Army National Guard (0), Baseline
U.S. Air Force (1) U.S. Navy (2), U.S. Marines (3), or All Reserves and Coast Guard
(4)
Deployed Screens lifetime deployment 1-item measured Yes/No Baseline
Served after 11 September 2001 1-item measured Yes/No Baseline
Military sexual trauma Screens endorsement of military sexual 2-items measured Yes/No Baseline
trauma
Referral source Origin of referral 1-item measure dummy coded from Warrior Care Network/Wounded Warrior Baseline
Project (0), Other (1), Employee (2), Veterans Affairs (3), Road Home Program
Outreach (4), Community Provider (5)
Clinician administered PTSD Scale (CAPS-5; Past month PTSD severity 20-items measured Absent (0) - Extreme/Incapacitating (4) Baseline

Weathers et al., 2018)

PTSD Checklist for DSM-5(PCL-5; Bovin et al.,
2016; Weathers et al., 2013)

Past month PTSD severity at baseline;
Past week PTSD severity at all other
timepoints

20-items measured Not At All (0) - Extremely (4)

Baseline, Days 2, 3, 5,
6, 8, 10, 11, 13, Post

Patient Health Questionnaire (PHQ-9; Kroenke Past two weeks depression symptoms 9-items measured Not At All (0) - Nearly Every Day (4) Baseline
et al., 2001)

Alcohol Use Disorder Identification Test (AUDIT-C; Past year alcohol use 3-items measured Never (0) - Four or More Times a Week (4) Baseline
Bush et al., 1998)

Neurobehavioral Symptoms Inventory (NSI) Screens possible symptom 10-items measured None (0) - Very Severe (4) Baseline
Validity-10 (Cicerone & Kalmar, 1995; exaggeration/overreporting on the NSI

Vanderploeg et al., 2014)

Posttraumatic Cognitions Inventory (PTCI; Foa Assesses trauma related cognitions 33-items measured Totally Disagree (1) - Totally Agree (7) Baseline

et al.,, 1999)

auiIpay oa1bojoysfsd
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13, and post-treatment. A total score of 33 is considered the
threshold for ‘probable PTSD.” Cronbach’s alphas ranged from
0.897-0.962 across study timepoints.

Patient health questionnaire (PHQ-9)

The PHQ-9 is a 9-item self-report measure of depressive symp-
toms (Kroenke, Spitzer, & Williams, 2001). Individuals were
asked to rate how much they were bothered by their depression
symptoms from 0 (not at all) to 3 (nearly every day). For the pre-
sent study, depression symptoms were assessed for the past two
weeks at baseline. Cronbach’s alpha within the current sample
was 0.810.

Posttrauma cognition inventory (PTCI)

The PTCI is a 33-item self-report measure of negative posttrauma
cognitions was administered at baseline (Foa, Ehlers, Clark, Tolin,
& Orsillo, 1999). Individuals were asked to rate how much they
agreed or disagreed with a range of beliefs from 1 (totally dis-
agree) to 7 (totally agree). Cronbach’s alpha among study partici-
pants was 0.951.

Alcohol use disorder identification test - consumption (AUDIT-C)
The AUDIT-C is a 3-item self-report measure of alcohol con-
sumption (Bush, Kivlahan, McDonell, Fihn, & Bradley, 1998).
Individuals were asked to rate how often they drank, how many
drinks they had when they were drinking, and how often they
had six or more drinks on one occasion. The AUDIT-C assessed
alcohol consumption over the past year and was administered at
baseline. Cronbach’s alpha in this study was 0.866.

Neurobehavioral symptom inventory - 10-item validity scale
(VAL-10)

(Vanderploeg et al., 2014). The VAL-10 is a 10-item self-report
scale made up of items from the Neurobehavioral Symptom
Inventory, assessed at baseline (Vanderploeg et al., 2014). The
items were selected to identify individuals who may be over-
reporting neurobehavioral symptoms. Cronbach’s alpha among
study participants was 0.907.

Analytic strategy

We employed three mixed-effects-based prediction models
designed to accommodate the longitudinal structure inherent to
assessment of symptom severity during and at the end of the
treatment program®. The first, Mixed Bayesian Additive
Regression Trees (MixedBART) is a recently developed non-
parametric Bayesian approach which accommodates random
effects within machine learning. This approach utilizes an ensem-
ble of decision trees to predict response. Priors, which are utilized
in Bayesian analyses and represent existing beliefs regarding
quantities or distributions in Bayesian analysis, are placed on pro-
gram parameters, including variable selection probabilities.
MixedBART and BART default parameters regarding priors and
number of trees, without extensive cross-validation, are generally
adequate and outperform other machine learning and statistical
methods under many conditions. Based on insight from previous
work (Held et al., 2022b), we used Dirichlet, rather than uniform,
priors for variable selection probabilities. This allows models to
adapt to the existence of more useful predictors in the dataset,
thus accommodating the expectation that clinical features and
updated PTSD severity values are likely to be more useful in pre-
diction than demographic features (Held et al., 2021, 2022b). As a
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Bayesian analytic method, MixBART approaches inference by
sampling from the posterior distribution generated computation-
ally utilizing existing data and relevant priors. We used 10 000
posterior draws with 5000 burn-in draws, which was a conserva-
tive approach compared to other applications of MixBART
(Spanbauer & Sparapani, 2021), but aligns with common prac-
tices and recommendations in Bayesian analysis (e.g. Raftery &
Lewis, 1991) and resulted in good overall model convergence.
Based on prior recommendations using BART approaches we
employed 200 trees (Chipman, George, & McCulloch, 2010),
though we explored reduced numbers of trees to assess import-
ance of individual features due to the tendency for BART models
to potentially incorporate more irrelevant features when the num-
ber of trees is large. However, due to overall consistency across
models with differing numbers of trees we report results of the
primary models utilizing 200 trees here’.

The second approach utilized mixed-effects random forest
(MERF; Hajjem et al., 2011, 2014). This tree-based random forest
approach accommodates random effects for longitudinal or other-
wise clustered data utilizing the expectation-maximization (EM)
algorithm, a maximum likelihood estimation method that pro-
gresses through stages of estimating latent variables and optimiz-
ing the model until convergence is reached. Five-folds cross
validation on the training set was applied. We also progressively
increased numbers of trees and iterations in training set model
development, though asymptotes for the utility of such increases
in both appeared to exist at beyond approximately 150 iterations
and 200-300 trees.

Finally, linear mixed effects regression models (LMMs) were
also explored for machine learning model comparison to trad-
itional statistical model accuracy using the same data. This is an
accepted approach to modeling longitudinal data due to its
accommodation of random effects and missing data, and less
restrictive assumptions (Hedeker & Gibbons, 2006). For this ana-
lysis, we both examined models with all predictors and models
utilizing only the top five predictors as defined by both the
MixedBART and MERF machine learning programs, which
both identified the same five predictors. Since the use of the
top five predictors resulted in models that were as accurate as
those including more, or all, covariates at every timepoint we
examined, we present only these results of the LMM approach.
The same strategy of creating and testing a model on the training
and test sets, respectively, was utilized in order to remain compar-
able to the machine learning models.. Cross validation was not
used in linear mixed model analyses to best approximate typical
applied statistical use of this longitudinal approach.

We randomly split the data from the 3-week ITP approxi-
mately 60:40 into training (n=232) and test (n=130) datasets.
This random split was implemented at the participant-level due
to the nesting of timepoint measurements within individuals.
Training and test sets did not differ on any demographic or clin-
ical variable (ps>0.10). The training set was then used to train
machine learning and LMM models with all baseline demo-
graphic and clinical data (see Table 2) as well as lagged PCL-5
scores predicting post-treatment PCL-5. Following training, we
examined prediction accuracy on the test set at baseline as well
as at each assessment timepoint (see online Supplementary
Table S4 for accuracy using training data). Thus, when examining
accuracy on the test set at baseline only baseline predictors were
used to predict post-treatment PTSD severity. On program days
3, 5, 6, 8, 10, 11, and 13 all baseline features as well as PCL-5
scores for all days up to, and including, that day’s PCL-5
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measurement were used. Only PTSD severity score was continu-
ously updated throughout the program. Accuracy of predictions
was assessed via R* and RMSE. Each analytic approach models
change longitudinally, though our primary emphasis here is on pre-
diction of post-treatment PTSD severity measurement. For
MixedBART these values were obtained via the mean of each parti-
cipant’s predicted values against actual post-treatment PCL-5 scores.

Due to the importance of external validation of prediction
models, we examined the predictive accuracy of these three mod-
els in a sample of 108 participants who had completed a separate,
equally established, 2-week CPT-based ITP with similar program-
ming combining individual CPT with adjunctive services, which
has previously been demonstrated to be non-inferior to the
3-week program (Held et al., 2022¢). Due to the differences in
timeline between the two ITPs, assessment timepoints were
mapped onto the existing time points based on proportion of
the program that had been completed at each measurement time-
point. The three longitudinal prediction models that were gener-
ated with 3-week training data were then used to predict
post-treatment PTSD severity in the 2-week ITP using the same
updating-prediction model approach. In the 2-week ITP we
focused on baseline and mid-program (beginning of week 2) pre-
dictions of post-treatment PTSD severity. MixedBART and LMM
analyses were conducted using the MxBART and LMER4
packages in R version 4.1.1, and MERF analyses were conducted
using the MERF package in Python version 3.6. Figures were cre-
ated using R.

Results
Veterans in the 3-week ITP improved in PTSD severity by an

average of 21.57 points (s.0. = 18.80). Approximately 70% (n = 263)
improved by at least 10 points, with 51% (n=185) finishing
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treatment below the PCL-5 cutoff of 33. As illustrated in Fig. 1,
this constituted meaningful overall change across program time-
points, though considerable variability existed in the amount of
change, particularly as treatment progressed. This increase in vari-
ability across time is generally expected and illustrates the effect of
participants’ differential improvement during treatment. The
demographic and clinical variables in the models other than
PCL-5 accounted for approximately 6% of the variability in treat-
ment response throughout the program beyond what PTSD sever-
ity accounted for, indicating that both initial accuracy and
improvements in predictions were largely driven by PTSD severity
and updated PTSD severity measurements.

Both machine learning approaches identified PCL-5, time,
baseline PTCI, baseline PHQ-9, and CAPS-5 Intrusions as the
most important or utilized features in predicting PTSD severity.
Thus, these were used in subsequent LMMs for comparison
(see online Supplementary Table S5 for comparison of LMM
with all features and only these features). The three analytic
approaches to predicting post-treatment PTSD severity closely
aligned with regards to accuracy. Baseline predictions of final
PCL-5 score on the test sample yielded an overall R* of 0.18 for
final PCL-5 severity score prediction across all three models
(see Table 3). As expected, as updated PTSD severity scores
became available during treatment, the accuracy of final timepoint
predictions increased substantially (see Fig. 2). At the start of the
second week of treatment, (Day 6), all models were able to
account for roughly half of the variability in post-treatment
PTSD severity. This could potentially represent a milestone at
which current treatment progress could be reliably determined
in the 3-week ITP. By mid-program (Day 8) R* exceeded 0.60
for all analytic methods.

Results of external validation with the 2-week ITP suggest
model predictions were similarly accurate as in the 3-week ITP

Y
i

8 10 1 13 14

Program Day

Fig. 1. Distributions of PTSD severity across all participants over time.

Note. Violin plot illustrates distribution at each timepoint, with internal box plots representing median and interquartile range.
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Table 3. Longitudinal updating models comparison

Dale L. Smith and Philip Held

MixedBART MERF LMM top 5 features®
Features R? RMSE R? RMSE R? RMSE
Baseline predictors only® 0.18 17.66 0.18 23.12 0.18 21.97
Baseline + PCL to day 3 0.29 21.37 0.27 21.54 0.29 16.35
Baseline + PCL to day 5 0.48 18.79 0.46 18.50 0.45 14.36
Baseline + PCL to day 6 0.51 16.41 0.49 16.29 0.50 13.71
Baseline + PCL to day 8 0.62 13.38 0.62 13.17 0.62 11.98
Baseline + PCL to day 10 0.74 10.42 0.71 10.68 0.73 10.16
Baseline + PCL to day 11 0.79 9.19 0.80 8.75 0.80 8.57
Baseline + PCL to day 13 0.86 7.70 0.83 8.52 0.85 7.59

?LMMs including more predictors were examined but did not outperform the five-predictor model.

PBaseline model contained all baseline data, including intake PCL-5 score.

70~ =70%
X
<
(]
=R
© 5
3 8
- - 0,
a 50 50% EE
j=2
L
-
]
a
30- =30%
H H H H Ll L} L] L} L] Ll Ll Ll
Fig. 2.. Test set PTSD severity and predictive accuracy 3 5 6 8 10 11 13 14
over time. D
Note. Error bars represent 95% confidence intervals. ay
Table 4. External validation results
MixedBART MERF LMM top 5
Features R? RMSE R? RMSE R? RMSE
Baseline predictors only? 0.20 27.47 0.18 18.26 0.23 14.94
Baseline + PCL-5 to mid-program 0.60 11.82 0.58 11.56 0.55 11.33

?Baseline model contained all baseline data, including intake PCL-5 score, mid-program predictions included baseline data plus PCL-5 scores to mid-program.

despite not training the models on these data (see Table 4).
Baseline predictions generally accounted for about 20% of the
variability in post-treatment PTSD severity. Including PCL-5
data up to mid-program led to being able to account for over
half of the variability in final PTSD severity by that point. This
supports the generalizability of model predictions to similar, but
external, clinical data.

https://doi.org/10.1017/50033291722002689 Published online by Cambridge University Press

Discussion

Our results support the utility of updating prediction models of
PTSD severity as a potential clinical tool for assessing PTSD treat-
ment progress and to help identify timepoints for altering a par-
ticipant’s treatment approach. Before the 3-week ITP’s midpoint,
each model was able to account for a large proportion of the
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variability in post-treatment PTSD severity. This remained true
even in an external 2-week ITP sample. These models can provide
valuable clinical information that support a precision-medicine
approach to PTSD treatment, as the majority of those identified
as likely non-responders with some certainty at mid-program
were found to be non-responders at the end of treatment (see
online Supplementary Fig. S1). Thus, by deploying such relatively
low-cost models in clinical practice, a clinician would be able to
obtain acceptable near real-time estimates about their patient’s
likely endpoint PTSD severity. As such, continuously updating
prediction models may be helpful in PTSD treatment in general
and may be particularly useful for intensive treatments given
the rapid nature of this treatment approach and the limited
time clinicians have to evaluate data before needing to make treat-
ment decisions.

As illustrated, and commonly seen in treatment, improvement
was far from uniform, with the amount of variability in reported
PTSD severity increasing across time. Though generally expected
in longitudinal studies, this highlights the need for increased
attention to individual change, and the utility of assessing such
change during treatment. Indeed, change in PTSD severity during
the program was clearly the most effective predictor of PTSD
severity at endpoint. Other clinical and demographic predictors
accounted for approximately 6% of the variability in endpoint
PTSD severity, with baseline PTSD severity accounting for both
the remaining 14% at baseline and the improvements in these pre-
dictions as additional severity measurements became available.
Thus, the best predictor of heterogeneity in total treatment
response is clearly the amount of improvement that the individual
is making during the program. This highlights the importance of
models that can effectively accommodate this and the additional
assumptions inherent to longitudinal modeling rather than basing
treatment decisions entirely on baseline predictors or a pre-
determined amount of change that needs to have been reached
by mid-treatment without accounting for change trajectories.

Results obtained here do not support the superiority of any
specific analytic method utilized, though all models performed
at least as well as machine learning models that ignore the longi-
tudinal structure of these data, without the potential bias that can
arise when ignoring the lack of independence of observations over
time (see online Supplementary Table S2). Linear mixed effects
regression models were capable of predicting PTSD outcome
severity with the same degree of accuracy as machine learning
models. This result joins a wealth of evidence that traditional stat-
istical approaches can perform similarly to machine learning
models (Cho et al., 2021; Christodoulou et al., 2019; Li et al.,
2021), though, to our knowledge, this study represents the first
such application in a continuously updating prediction model
for psychiatric treatment response.

Despite similarities in prediction accuracy, unique benefits to
each longitudinal approach used exist. LMMs provide easily inter-
pretable slope coefficients and metrics regarding significance of
individual predictors. Assumptions, as well as aspects of longitu-
dinal structure such as covariance structure or autocorrelation, are
easily assessed with this approach, and missing data is easily
accommodated. Conversely, both machine learning approaches
may more readily accommodate more predictors in applications
involving high dimensional datasets or multiple correlated predic-
tors. An additional well-known benefit of Bayesian approaches is
the ability to quantify and visualize uncertainty in estimates.
Although the mean predicted value for each participant from
the posterior is reported in model output and was utilized
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above to obtain model accuracy metrics, the credible intervals
can also be easily obtained to assess the degree of uncertainty
in predictions. However, we found that MixedBART yielded
overly optimistic estimates of variability around prediction
means, so we would caution against use of program generated
credible intervals blindly*.

A number of limitations need to be acknowledged. The use of
self-report assessments may have increased variability in reporting
and it being the only continuously updated variable may be
viewed as a limitation, though our prior work has suggested
that updates in other variables did not improve predictions in
any meaningful way when including lagged PCL-5 scores.
Additionally, the fact that PTSD severity measurements over
time explained most of the variability in treatment response
may have obscured potential roles of other contributing factors.
However, this also highlights the importance of utilizing such
updated severity information. Also, sample size considerations
for some demographic variables, such as race, reduced power
for intensive examination of demographic moderators of treat-
ment response, though our prior work has indicated that such
demographic variables generally did not impact treatment
response for either the 3- or 2-week ITP (Held et al., 2022c).
Only ITP completers were examined, although a completer bias
is unlikely since completion rates were quite high (>90%), and
completers and non-completers did not differ on any baseline
demographic or clinical variables for either sample, except for a
difference in race in the 3-week sample. Although use of a
2-week ITP validation sample is a strength of the current analysis,
it may be similar in many ways to the original sample that an
external sample may not. For example, although the treatment
schedule differed between the 3- and 2-week ITPs with the later
drastically reducing group treatment and adjunctive service com-
ponents, both centered around CPT (Held et al., 2022¢). However,
demographics breakdown between the two programs indicated
that significant differences existed in sex, MST status, race, service
era, and baseline PTSD severity (see Table 1). Finally, although
many of the exclusion criteria resemble those used in other
PTSD treatment, some were specific to ITPs (e.g. stable housing,
ability to travel) and may limit the generalizability of the findings
presented here.

Conclusion

Considerable additional research is warranted to better under-
stand specific individual factors that could interact with the cho-
sen treatment approach to individualized treatment. However, our
demonstration of the use of continuously updating machine
learning or predictive modeling using standard longitudinal stat-
istical approaches to assess progress and predict PTSD treatment
outcomes shows promise for precision medicine in the field of
PTSD. Such models can provide clinicians with information
about which patients may progress through treatment as expected
or benefit from treatment alterations based on their predicted
response. Using the models presented here, such decisions can
relatively reliably be made by mid-treatment in the two ITPs we
examined. Future research should examine the feasibility of inte-
grating these models into clinical care and systematically testing
whether treatment modifications for individuals predicted to
have less favorable treatment responses can improve their out-
comes, as well as whether findings generalize to more traditional
weekly treatment and/or evidence-based PTSD treatments.
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Notes

1 Some participants (i.e., 27% of the original sample) were excluded due to
missing covariate data. Data were missing due to a number of reasons, includ-
ing participants missing assessment sessions due to sickness. However, as this
is a sample of program completers, covariate and outcome missingness was
not associated with any relevant predictors or PTSD severity and can likely
be considered missing at random (MAR). Because of our interest in approxi-
mating clinical applications that may require complete cases in machine learn-
ing approaches, only complete-case results using listwise deletion are reported
here. As a sensitivity analysis we examined robustness of presented results to
results using imputation (MICE) of baseline covariates. See online
Supplementary Table S1 for results of this sensitivity analysis.

2 Traditional machine learning models using updated PCL-5 scores at each
timepoint were also explored with the same training and test sets predicting
PCL-5 at final measurement for comparison. These included Random Forest
with 5-folds cross validation on the training set. We provide a sample of
these results in online supplementary Table S2. Performance was similar,
though R? values were generally slightly lower, in these models ignoring the
longitudinal structure of data.

3 Variations on priors for random effects error estimates were also explored as
recommended, including degrees of freedom for the inverse chi-squared distri-
bution between three and ten, as well as priors on probabilistic structure of
regression trees from cross-validation, allowing for variable selection probabil-
ities to be equal across predictors, as well as differing specification of probabil-
istic structures of regression trees. Test-set performance metrics were largely
unaffected, except that models that assumed equal importance of priors
were always poorer predictors than this using Dirichlet priors (see online sup-
plementary Table S3).

4 Although default settings were used for performance metrics, calibration
resulted in more accurate test-set predictions. Estimates provided with regards
to credible interval estimation are those obtained following tuning of priors
for variability estimates and calibration via linear transformation of predicted
values. Regardless of calibration status, we found credible intervals were often
too narrow, and that between 74 and 86% of the MixedBART-generated 94%
credible intervals contained actual final PCL-5 scores.
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