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Abstract

We give a succinct proof of a duality theorem obtained by Révész [‘Some trigonometric extremal
problems and duality’, J. Aust. Math. Soc. Ser. A 50 (1991), 384–390] which concerns extremal quantities
related to trigonometric polynomials. The key tool of our new proof is an intersection formula on dual
cones in real Banach spaces. We show another application of this intersection formula which is related to
integral estimates of nonnegative positive-definite functions.
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1. Introduction

Let X be a real Banach space and let X′ denote its topological dual space endowed
with the weak-∗ topology. For any set D ⊆ X, the dual cone, D+, of D is defined by

D+ = {ϕ ∈ X′ | ϕ(x) ≥ 0 ∀x ∈ D}

(see, for example, [2, Section 2]). The polar cone, D−, is D− := −D+. Note that
both D+ and D− are weak-∗ closed convex cones in X′, no matter what the set D is.
Moreover, by [2, Lemma 2.1], if C and P are convex sets in X such that 0 ∈ C ∩ P and
C ∩ intP , ∅, then

(C ∩ P)+ = C+ + P+. (1.1)

Consequently, in this case, (C ∩ P)− = C− + P−.
In this short note we give two applications of the formula (1.1) that describes the

structure of the dual cone of the intersection of cones. Both applications are of a
Fourier-analytic nature. We first collect some basic facts and notation on this topic.

(i) For a locally compact abelian group G, the symbol M(G) denotes the set of all
complex-valued regular Borel measures on G with finite total variation. The set M(G)
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is a commutative, unital Banach algebra, where the norm is defined as ‖µ‖ = |µ|(G) and
the multiplication is defined by convolution [6, Corollary 1.3.2].

(ii) The symbol L1(G) stands for the set of all integrable functions on G (with respect
to the Haar measure, denoted by λ). We may consider L1(G) as a subset of M(G) by
the embedding

µ(·) : L1(G)→ M(G), f 7→ µ f ; µ f (E) =

∫
E

f dλ for any Borel set E ⊆ G.

In fact, L1(G) is a Banach subalgebra of M(G) [6, Theorem 1.3.5]. Moreover, L1(G)
is unital if and only if L1(G) = M(G) if and only if G is discrete [6, Theorem 1.7.3].

(iii) L∞(G) stands for the set of all essentially bounded measurable functions on G.

(iv) A continuous group homomorphism from the locally compact abelian group G
into the multiplicative group T = {z ∈ C | |z| = 1} is called a character of G. The set of
all characters of G forms a group (with pointwise multiplication), which is called the
dual group of G and denoted by Ĝ.

(v) For any µ ∈ M(G) (or f ∈ L1(G)), the symbol µ̂ (or f̂ ) denotes the Fourier transform
of µ (or f ), that is,

µ̂ ∈ CĜ; µ̂(γ) =

∫
G
γ dµ (γ ∈ Ĝ)

and
f̂ ∈ CĜ; f̂ (γ) =

∫
G

fγ dλ (γ ∈ Ĝ).

The Fourier transform is a continuous linear transformation from L1(G) into C0(Ĝ),
where C0(Ĝ) denotes the set of all functions on Ĝ vanishing at infinity (the topology
on Ĝ is the weak topology induced by the set of all functions f̂ obtained as Fourier
transforms of L1 functions on G). Moreover, it is a contraction as ‖ f̂ ‖∞ ≤ ‖ f ‖1. (For
details, see [6, Theorem 1.2.4].)

(vi) The following useful formula is an easy consequence of Fubini’s theorem. If
µ ∈ M(G), ν ∈ M(Ĝ) and φ(x) =

∫
Ĝ γ(x) dν(γ) (x ∈ G), then∫

G
φ dµ =

∫
Ĝ
µ̂ dν. (1.2)

Now we turn to the detailed descriptions of the two applications of the intersection
formula (1.1). Section 2 is devoted to the first and Section 3 contains the second.

2. A new proof of a duality theorem

In 1991, Révész proved a duality theorem on certain extremal quantities related to
multivariable trigonometric polynomials [4]. That theorem is general enough to cover
the duality statements appearing in [3, 5, 7]. The setting of the theorem is as follows.
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Let d be a positive integer. Let us use the notation Td = (R/2πZ)d and

Zd
+ = {n = (n1, . . . , nd) ∈ Zd | ∃ j ∈ {1, 2, . . . , d} such that

nk = 0 for any k < j and n j > 0}.

Let M ⊆ Zd
+, L ⊆ Zd

+ and set Mc := Zd
+ \ M, Lc := Zd

+ \ L.
Consider the real Banach space L1

R,s(Z
d) of all symmetric real-valued absolutely

summable functions on Zd with its topological dual space L∞R,s(Z
d). Set

C := { f ∈ L1
R,s(Z

d) | f has finite support, supp ( f+) ⊆ {0} ∪ M ∪ −M

and supp ( f−) ⊆ {0} ∪ L ∪ −L}.

The set C ⊆ L1
R,s(Z

d) is a convex set. It is easy to see that the dual cone of C is

C+ = {t ∈ L∞R,s(Z
d) | supp (t+) ⊆ Lc ∪ −Lc and supp (t−) ⊆ Mc ∪ −Mc}.

Therefore, the polar cone of C is

C− = {t ∈ L∞R,s(Z
d) | supp (t+) ⊆ Mc ∪ −Mc and supp (t−) ⊆ Lc ∪ −Lc}.

Set

P :=
{

f ∈ L1
R,s(Z

d)
∣∣∣∣ f̂ (x) =

∑
n∈Zd

f (n)e−in·x = f (0) + 2
∑
n∈Zd

+

f (n) cos (n · x) ≥ 0∀x ∈ Td
}
.

Clearly, P is a convex set. The following lemma describes its dual cone.

Lemma 2.1. With the notation as above,

P+ = {h ∈ L∞R,s(Z
d) | h� 0, that is, h is positive definite}.

Proof. Recall that a function h ∈ L∞R,s(Z
d) is said to be positive definite if

m∑
i, j=1

ziz jg(ni − n j) ≥ 0

holds for any n1, . . . , nm ∈ Z
d and z1, . . . , zm ∈ C. However, for symmetric real

functions, positive definiteness is equivalent to the a priori weaker condition
m∑

i, j=1

cic jg(ni − n j) ≥ 0 for n1, . . . ,nm ∈ Z
d, c1, . . . , cm ∈ R.

Let us recall Bochner’s theorem [6, Theorem 1.4.3], which says that a function
h ∈ L∞R,s(Z

d) is positive definite if and only if there is a nonnegative symmetric measure
ν ∈ MR,s(Td) such that

h(n) =

∫
Td

ein·x dν(x) (n ∈ Zd).
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Therefore, all the positive-definite functions are in P+ because any positive-definite
h ∈ L∞R,s(Z

d) can be written in the form h(n) =
∫
Td ein·x dν(x) (n ∈ Zd) for some ν with

0 ≤ ν ∈ MR,s(Td) and hence, by (1.2), the inequality∑
n∈Zd

f (n)h(n) =

∫
Td

f̂ (x) dν(x) ≥ 0

holds for any f ∈ P ⊂ L1
R,s(Z

d).
Conversely, if g ∈ L∞R,s(Z

d) and g is not positive definite, that is,
m∑

i, j=1

cic jg(ni − n j) < 0

for some {n1, . . . ,nm} ⊂ Z
d and {c1, . . . , cm} ⊂ R, then∑

n∈Zd

(x ∗ x̃)(n)g(n) < 0,

where x =
∑m

i=1 ciχ{ni} and x̃ is defined by x̃(n) = x(−n) for n ∈ Zd. But, clearly,
x ∗ x̃ ∈ P ⊂ L1

R,s(Z
d), which means that g < P+. �

Now let r ∈ L∞R,s(Z
d) with r(0) = 1 be fixed and let us define the affine subspace

H := { f ∈ L1
R,s(Z

d) | f (0) = 1}.

According to [4, Equations (5) and (12)], let us define the extremal quantities

α := inf
{ ∑

n∈Zd

f (n)r(n)
∣∣∣∣ f ∈ C ∩ P ∩H

}
and

ω := sup{δ ∈ R | ∃t ∈ C− such that r + t − δχ{0} ∈ P+}

= sup{δ ∈ R | ∃t ∈ C− such that δχ{0} − r − t ∈ P−}
= sup{δ ∈ R | δχ{0} − r ∈ C− + P−}.

(It is clear that the definition of α coincides with the definition in [4, Equation (5)]. It is
less obvious that the definition of ω is the same as the one given in [4, Equation (12)].
However, the fact that the nonnegative symmetric measures on Td are in one-to-one
correspondence with the real positive-definite functions on Zd by the Fourier transform
ensures that the definition of ω is also correct.)

We mentioned before that C and P are convex sets in the real Banach space
L1
R,s(Z

d). It is clear that 0 ∈ C ∩ P and C ∩ intP , ∅, as χ{0} ∈ C ∩ intP. (To see that
χ{0} ∈ intP, note that the Fourier transform is a contraction from L1

R,s(Z
d) into CR,s(Td),

and χ̂{0} = 1.) Therefore, by [2, Lemma 2.1], the intersection formula

(C ∩ P)+ = C+ + P+

holds. Consequently, we have (C ∩ P)− = C− + P−. So, by this intersection formula,
ω can be rewritten as

ω = sup{δ ∈ R |δχ{0} − r ∈ (C ∩ P)−}.
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Theorem 2.2 (Révész [4]). With the notation as above,

α = ω.

A short proof. If δχ{0} − r ∈ (P ∩ C)−, then∑
n∈Zd

f (n)r(n) ≥ δ for any f ∈ C ∩ P ∩H ,

because in this case

0 ≥
∑
n∈Zd

f (n)(δχ{0}(n) − r(n)) = δ f (0) −
∑
n∈Zd

f (n)r(n) = δ −
∑
n∈Zd

f (n)r(n).

Therefore, ω ≤ α.
On the other hand, if β > ω, then βχ{0} − r < (C ∩ P)−, that is, there exists some

f ∈ C ∩ P such that ∑
n∈Zd

f (n)(βχ{0}(n) − r(n)) > 0.

This f is necessarily a nonzero element of P and hence f (0) > 0. Therefore, without
loss of generality, we can assume that f (0) = 1. So, there exists f ∈ C ∩ P ∩H such
that ∑

n∈Zd

f (n)(βχ{0}(n) − r(n)) > 0.

That is,
β >

∑
n∈Zd

f (n)r(n)

for some f ∈ C ∩ P ∩H , which means that β > α. We have shown that β > ω implies
that β > α and, therefore, α ≤ ω. The proof is done. �

3. Another application of the intersection formula

The second application concerns integral estimates of nonnegative positive-definite
functions. This problem is related to Wiener’s problem [8, 10] and to the recent works
[1, 9]. The arguments in this section are partially parallel to the arguments presented
in the previous section.

Let L1
R,s(Z) denote the real Banach space of all real-valued, symmetric, summable

functions on Z and let us consider its topological dual space L∞R,s(Z) endowed with the
weak-∗ topology.

Let us define C = { f ∈ L1
R,s(Z) | f ≥ 0} and P = { f ∈ L1

R,s(Z) | f̂ ≥ 0}. Clearly, C
and P are convex cones in L1

R,s(Z). The closedness of C is obvious; P is also
closed as the Fourier transform is a continuous (moreover, norm-nonincreasing) linear
transformation from L1

R,s(Z) into CR,s(T), and the nonnegative functions form a closed
set of CR,s(T) with respect to the maximum norm topology. (The symbol T denotes the
additive group of real numbers modulo 2π and CR,s(T) stands for the Banach space of
all continuous, symmetric real functions on T.)
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Lemma 3.1. With the notation as above,

C+ = {g ∈ L∞R,s(Z)| g ≥ 0}

and
P+ = {h ∈ L∞R,s(Z) | h� 0, that is, h is positive definite}.

Proof. The first statement of Lemma 3.1 is obvious. The proof of the second statement
is very similar to the proof of Lemma 2.1. �

Let L and N be positive integers. Let us define the extremal quantities

C(L,N) := inf
{
C ∈ R

∣∣∣∣ LN∑
k=−LN

f (k) ≤ (C + 1)
N∑

k=−N

f (k) for any f ∈ C ∩ P
}

and

K(L,N) := inf{h(0) | h ∈ L∞R,s(Z), h� 0 and h(k) ≤ −χ{−LN,...,LN}(k) if |k| > N}.

Let us introduce

SL,N := {h ∈ L∞R,s(Z) | h(k) ≤ −χ{−LN,...,LN}(k) if |k| > N}.

Observe that SL,N is closed in the weak-∗ topology, because it is the intersection of
weak-∗ closed sets. Note that

C(L,N) = inf{C ∈ R | (C + 1)χ{−N,...,N} − χ{−LN,...,LN} ∈ (C ∩ P)+}

and, by the result of Lemma 3.1,

K(L,N) = inf{h(0) | h ∈ P+ ∩ SL,N}.

Remark 3.2. Let us note that K(L,N) is finite as the setP+ ∩SL,N is not empty. Indeed,
one can easily check that the function

wL,N(k) :=


2(L − 1)N if k = 0,
−1 if N < |k| ≤ LN,
0 otherwise

is positive definite and, therefore, it is an element of P+ ∩ SL,N .

Theorem 3.3. With the notation as above,

C(L,N) = K(L,N).

Proof. The key idea is the observation that C andP are convex sets in L1
R,s(Z) such that

0 ∈ C ∩ P and C ∩ intP , ∅ as χ{0} ∈ C ∩ intP. Therefore, the intersection formula

(C ∩ P)+ = C+ + P+

holds.
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On the one hand, if h ∈ P+ ∩ SL,N , then

h ≤ (h(0) + 1)χ{−N,...,N} − χ{−LN,...,LN}

as h(0) ≥ h(n) (n ∈ Z) holds for any positive-definite function h ∈ L∞R,s(Z). Therefore,
in this case,

(h(0) + 1)χ{−N,...,N} − χ{−LN,...,LN} ∈ C
+ + P+ = (C ∩ P)+

and so C(L,N) ≤ K(L,N).
On the other hand, by the intersection formula,

C(L,N) = inf{C ∈ R | (C + 1)χ{−N,...,N} − χ{−LN,...,LN} ∈ C
+ + P+}

and the following argument shows the opposite inequality. If

(C + 1)χ{−N,...,N} − χ{−LN,...,LN} ∈ C
+ + P+,

then (C + 1)χ{−N,...,N} − χ{−LN,...,LN} = g + h for some g ∈ C+ and h ∈ P+. Clearly, this h
is an element of P+ ∩ SL,N and h(0) ≤ C; hence, K(L,N) ≤ C(L,N). �

Remark 3.4. We have noted (see Remark 3.2) that K(L, N) is finite. Therefore, the
result of Theorem 3.3 directly implies the finiteness of C(L,N).
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[4] Sz. Gy. Révész, ‘Some trigonometric extremal problems and duality’, J. Aust. Math. Soc. Ser. A

50 (1991), 384–390.
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