Anna Kamińska and Mieczysław Mastyło

Abstract. A complete description of symmetric spaces on a separable measure space with the Dunford-Pettis property is given. It is shown that ℓ^1 , c_0 and ℓ^{∞} are the only symmetric sequence spaces with the Dunford-Pettis property, and that in the class of symmetric spaces on $(0, \alpha)$, $0 < \alpha \leq \infty$, the only spaces with the Dunford-Pettis property are $L^1, L^{\infty}, L^1 \cap L^{\infty}, L^1 + L^{\infty}, (L^{\infty})^{\circ}$ and $(L^1 + L^{\infty})^{\circ}$, where X° denotes the norm closure of $L^1 \cap L^{\infty}$ in X. It is also proved that all Banach dual spaces of $L^1 \cap L^{\infty}$ and $L^1 + L^{\infty}$ have the Dunford-Pettis property are also presented. As applications we obtain that the spaces $(L^1 + L^{\infty})^{\circ}$ and $(L^{\infty})^{\circ}$ have a unique symmetric structure, and we get a characterization of the Dunford-Pettis property of some Köthe-Bochner spaces.

1 Introduction

A Banach space X is said to have the *Dunford-Pettis property*, shortly (DP)-property or $X \in (DP)$, if for all weakly null sequences (x_n) in X and (f_n) in X^{*} (topological dual), we have $f_n(x_n) \to 0$, or equivalently, if every weakly compact operator from X into an arbitrary Banach space Y is a *Dunford-Pettis operator*. Recall that an operator $T: X \to Y$ between two Banach spaces is a Dunford-Pettis operator, whenever T maps weakly null sequences into norm null sequences. It is easily seen that (DP)-property is inherited by complemented subspaces and if $E, F \in (DP)$ then the direct sum $E \oplus F \in (DP)$. Clearly, every Banach space with the *Schur property* (all weakly null sequences are norm null) has the (DP)-property. Throughout the paper we will also use the obvious fact that $X^* \in (DP)$ implies $X \in (DP)$. For equivalent definitions and various characterizations of the Dunford-Pettis property we refer to [2] and [14].

It is well known that \mathcal{L}^1 -spaces and \mathcal{L}^∞ -spaces (in the sense of [24]), and hence L^1 and L^∞ , have the Dunford-Pettis property. In [22] (*cf.* also [28]) Kislyakov proved that the disc algebra has (DP)-property and Bourgain in [6] (*cf.* also [31]) showed that a large class of subspaces of vector-valued C(K) spaces including ball algebras, polydisc-algebras and Sobolev spaces in uniform norms have (DP)-property as well. He also proved in [5] that the space H^∞ of bounded analytic function on the disc has the Dunford-Pettis property. However, all of these spaces are not isomorphic to Banach lattices; they even fail local unconditional structure [28], [31]. Note also that Lorentz spaces do not have (DP)-property [14], and the same holds for Orlicz spaces distinct from L^1 [29].

The paper is devoted to study the Dunford-Pettis property for Banach lattices. Let us outline briefly the content. Section 2 contains some introductory material, definitions, notations and some results which will be used in the sequel.

Received by the editors November 12, 1998; revised January 25, 2000.

Research supported by KBN Grant 2 P03A 05009.

AMS subject classification: 46E30, 46B42.

[©]Canadian Mathematical Society 2000.

Section 3 consists of the main results of the paper. It contains a complete characterization of symmetric spaces on a separable measure space with the Dunford-Pettis property. In particular it is shown that ℓ^1 , c_0 and ℓ^∞ are the only symmetric sequence spaces (up to equivalence of norms) with (DP)-property. In the case of symmetric spaces on $(0, \infty)$ there are only (up to equivalence of norms) six symmetric spaces: $L^1, L^\infty, L^1 \cap L^\infty, L^1 + L^\infty$, $(L^\infty)^\circ$, $(L^1 + L^\infty)^\circ$ with (DP)-property, where X° denotes the norm closure of $L^1 \cap L^\infty$ in X. It is also proved that all Banach dual spaces of $L^1 \cap L^\infty$ and $L^1 + L^\infty$ have the Dunford-Pettis property. The obtained results answer the question posed to the authors by S. Ya. Novikov, whether the symmetric spaces $L^1 \cap L^\infty$ and $L^1 + L^\infty$ have (DP)-property. While working on this paper we have been kindly informed by N. J. Kalton that the result that $L^1 \cap L^\infty$ and $L^1 + L^\infty$ possess the Dunford-Pettis property has been also proved by F. L. Hernandez and N. J. Kalton [17].

Section 4 contains new examples of Banach spaces showing that the Dunford-Pettis property is not a three-space property. In fact, we present Banach spaces X which do not have the Dunford-Pettis property, while some of their subspaces Y and the corresponding quotient spaces X/Y have the hereditary Dunford-Pettis property (*i.e.*, any closed subspace of the space has (DP)-property). The first example of the Banach space with the above properties has been given in [8] (see also [9]).

In the last section we present some consequences and applications of the main theorems. In particular, it follows that a symmetric sequence Banach space has the Schur property if and only if it coincides with ℓ^1 . We also show that $(L^1 + L^{\infty})^{\circ}$ and $(L^{\infty})^{\circ}$ on $(0, \infty)$, have unique symmetric structure and we give a characterization of some Köthe-Bochner spaces possessing the Dunford-Pettis property. We conclude the paper with some remarks on the inclusion map of $L^1 \cap L^{\infty}$ into *E* being a strictly singular operator.

Acknowledgements We thank A. Pełczyński for a suggestion to study the Dunford-Pettis property in symmetric spaces and for his helpful remarks during preparation of the final version of this article. The research was carried out during a visit of the second named author to the University of Memphis in Spring of 1997. He wishes to thank the University for its hospitality and support.

2 Definition and Notation

Our definition and terminology is standard. For unexplained notation the reader is referred to [2], [3] and [24]. However, we want to explain some frequently used terms and agree on some notations.

Let $\langle X, Y \rangle$ be a dual system of Banach spaces *X*, *Y* under the bilinear form $\langle \cdot, \cdot \rangle$. The *weak topology* $\sigma(X, Y)$ on *X* is the topology of pointwise convergence on *X*, that is, a net (x_{α}) in *X* converges to *x* for $\sigma(X, Y)$ if $\langle x_{\alpha}, y \rangle$ approaches 0 for each $y \in Y$. The *topological dual* of a normed space *X* is denoted by *X*^{*} and the unit ball of *X* by *B_X*.

A Banach lattice *E* is called an AL-*space* (respectively an AM-*space*), if for disjoint vectors $x, y \in E$, we have ||x + y|| = ||x|| + ||y|| (respectively, $||x + y|| = \max\{||x||, ||y||\}$). It is well known (see [2, Thm. 12.22]) that a Banach lattice *E* is an AL-space (resp. an AM-space) if and only if *E*^{*} is an AM-space (resp. an AL-space). It follows by Grothendieck's result (see [2, Thm. 19.6]), that every AL-space and every AM-space has the Dunford-Pettis property.

A Banach lattice $(E, \|\cdot\|)$ is called a *semi-M-space* if it follows from $u_1 \lor u_2 \ge x_n \downarrow 0$ in E with $\|u_1\| = \|u_2\| = 1$, that $\lim_n \|x_n\| \le 1$ (*cf.* [19], [26]).

It is well known that if *E* is a normed lattice, then $E^* = E_c^* \oplus E_s^*$, where E_c^* is the space of order bounded and order continuous functionals on *E* and E_s^* is a *singular part* of E^* , *i.e.*, $E_s^* = (E_c^*)^{\perp}$ is a disjoint complement of E_c^* (see [26, p. 316]).

A Banach lattice *E* is said to have the *Fatou property* if whenever (x_n) is a norm bounded sequence in *E* such that $0 \le x_n \uparrow x = \sup x_n$, then $x \in E$ and $\lim_n ||x_n|| = ||x||$. An element $x \in E$ is said to have an *order continuous norm* if for every sequence $x_n \downarrow 0$ in *E* with $x_n \le x$, we have $||x_n|| \rightarrow 0$. The norm in a Banach lattice *E* is called *order continuous* if every element in *E* has order continuous norm and the largest ideal consisting of all elements with order continuous norms will be denoted by E_a .

Let $(\Omega, \mathcal{B}, \mu)$ (or shortly (Ω, μ)) be a σ -finite measure space. Throughout the paper μ will be always either *nonatomic* or *purely atomic*, *i.e.*, $\Omega = \mathbb{N}$ and $\mu(\{n\}) = 1$ for each $n \in \mathbb{N}$. By $L^0 = L^0(\mu)$ denote a vector lattice of all (equivalence classes) of μ -measurable real-valued functions defined on Ω , equipped with the topology of convergence in measure on μ -finite sets. A Banach space *E* is said to be a *Banach lattice on* (Ω, μ) if *E* is a subspace in L^0 with the following two properties:

(i) $|x| \le |y|, y \in E$ implies $||x|| \le ||y||$,

(ii) there exists $u \in E$ such that u > 0 on Ω .

In what follows a Banach lattice on \mathbb{N} will be called *a Banach sequence space*. The *Köthe dual* E' of a Banach lattice E is then defined as

$$E':=igg\{x\in L^0:\|x\|_{E'}=\sup_{\|y\|_{E}\leq 1}\int_{\Omega}|xy|\,d\mu<\inftyigg\},$$

and E' is a Banach lattice under the norm $\|\cdot\|_{E'}$. The space E_c^* of order bounded and order continuous functionals on E is lattice isometric to the Köthe dual E' [21], which we denote further by $E_c^* \simeq E'$. In particular, if E has order continuous norm then the dual space E^* can be identified with E'. We will say in the sequel that two Banach lattices $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ coincide (or simply that they are equal), whenever E and F coincide as sets and the norms $\|\cdot\|_E$ and $\|\cdot\|_F$ are equivalent.

A Banach lattice on (Ω, μ) is said to be *symmetric* if whenever $x \in E$, $y \in L^0$, and x and y are *equimeasurable* then $y \in E$ and $||x||_E = ||y||_E$. Recall that x and y are equimeasurable if they have identical distributions, that is, $\mu_x(\lambda) := \mu\{\omega \in \Omega : |x(\omega)| > \lambda\} = \mu_y(\lambda)$ for all $\lambda \ge 0$. Given an $x \in L^0$, by x^* we denote its nonincresing rearrangement, *i.e.*, $x^*(t) = \inf\{\lambda \ge 0 : \mu_x(\lambda) \le t\}, t \ge 0$, under the convention $\inf \emptyset = 0$. Obviously x^* is a Lebesgue measurable function defined on the interval $(0, \mu(\Omega))$, and x and x^* are equimeasurable [3] in the sense that $\mu_x(\lambda) = m_{x^*}(\lambda)$ for all $\lambda \ge 0$, where m is the Lebesgue measure on $(0, \infty)$.

Recall also that given a nonatomic measure space (Ω, μ) with $\mu(\Omega) < \infty$, we define Rademacher functions (r_n) on Ω as a sequence of independent random variables with $\mu(\{s \in \Omega : r_n(s) = 1\}) = \mu(\{s \in \Omega : r_n(s) = -1\}) = \mu(\Omega)/2$ for all $n \in \mathbb{N}$.

In what follows we agree on some notations and provide auxiliary facts from interpolation theory [3], [23]. A pair $\overline{X} = (X_0, X_1)$ of Banach spaces is called a *Banach couple* if X_0 and X_1 are both continuously embedded in a Hausdorff topological vector space \mathcal{X} . For a Banach couple $\overline{X} = (X_0, X_1)$, the algebraic sum $X_0 + X_1$ and the intersection $X_0 \cap X_1$ will be denoted by $\Sigma(\overline{X})$ and $\Delta(\overline{X})$, respectively. They are both Banach spaces with the norms $\|x\|_{\Sigma(\overline{X})} = K(1, x; \overline{X})$ and $\|x\|_{\Delta(\overline{X})} = \max\{\|x\|_{X_0}, \|x\|_{X_1}\}$, respectively, where

$$K(t, x; \overline{X}) = \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1} : x = x_0 + x_1\}, \quad t > 0.$$

A Banach space X is called an *intermediate space* between X_0 and X_1 (or with respect to \overline{X}) if $\Delta(\overline{X}) \subset X \subset \Sigma(\overline{X})$. Given two Banach couples \overline{X} and \overline{Y} we denote by $L(\overline{X}, \overline{Y})$ the Banach space of all linear operators $T: \Sigma(\overline{X}) \to \Sigma(\overline{Y})$, and we write it shortly $T: \overline{X} \to \overline{Y}$, such that the restriction of T to the space X_j is a bounded operator from X_j into Y_j (j = 0, 1) with the norm

$$||T||_{\overline{X}\to\overline{Y}} = \max\{||T||_{X_0\to Y_0}, ||T||_{X_1\to Y_1}\}.$$

Intermediate spaces X and Y with respect to \overline{X} and \overline{Y} respectively, are called *interpolation* spaces with respect to \overline{X} and \overline{Y} if every operator $T: \overline{X} \to \overline{Y}$ maps X into Y. The closed graph theorem then implies that there exists a positive constant C such that

$$||T||_{X\to Y} \le C ||T||_{\overline{X}\to\overline{Y}},$$

for any $T: \overline{X} \to \overline{Y}$. If C = 1, X and Y are called *exact* interpolation spaces with respect to \overline{X} and \overline{Y} . If $\overline{X} = \overline{Y}$ and X = Y, then X is called an (exact) interpolation space between X_0 and X_1 .

The Banach lattices $L^1 \cap L^{\infty}$ and $L^1 + L^{\infty}$ over (Ω, μ) will be further denoted by $\Delta = \Delta(\mu)$ and $\Sigma = \Sigma(\mu)$, respectively.

Any symmetric space on (Ω, μ) is an intermediate space between L^1 and L^{∞} and symmetric spaces with the Fatou property or with order continuous norm are exact interpolation spaces between L^1 and L^{∞} [3], [23]. For an intermediate space X with respect to \overline{X} we denote by X° the closure of $\Delta(\overline{X})$ in X. Further we will need the following well known equalities (*cf.* [23])

$$\Sigma^{\circ} = L^1 + (L^{\infty})^{\circ}$$
 and $\Sigma^{\circ} = \Sigma_a = \{x : x^*(t) \to 0 \text{ as } t \to \infty\}.$

If (E_0, E_1) is a couple of Banach lattices on (Ω, μ) then by [25], it follows that $(E_0 + E_1)' = E'_0 \cap E'_1$ and $(E_0 \cap E_1)' = E'_0 + E'_1$, with equality of norms. Recall also that the spaces L^1 , L^{∞} , Σ and Δ have the Fatou property and that the Köthe duals of $L^1, L^{\infty}, \Sigma, \Delta, (L^{\infty})^{\circ}$ and Σ° are $L^{\infty}, L^1, \Delta, \Sigma, L^1$ and Δ , respectively. It is worth noticing that all of them are exact interpolation spaces between Δ and Σ [23]. Given Banach lattices E, F on (Ω, μ) , the weak topology $\sigma(E, F)$ will be always considered under the bilinear form $\langle \cdot, \cdot \rangle$ defined on $E \times F$ by

$$\langle x,y
angle := \int_{\Omega} xy\,d\mu$$

where $x \in E$ and $y \in F$ (in this case $F \hookrightarrow E'$).

3 Symmetric Spaces with the Dunford-Pettis Property

In this section we prove our main results. We show that given an arbitrary nonatomic measure space (Ω, μ) , the spaces Σ , Δ , Σ° and $(L^{\infty})^{\circ}$ have the Dunford-Pettis property, and if, in addition, μ is separable then the only symmetric spaces with (DP)-property are $L^1, L^{\infty}, (L^{\infty})^{\circ}, \Delta, \Sigma$ and Σ° . We also prove that, in the case when μ is purely atomic, the only symmetric spaces with (DP)-property are ℓ^1, c_0 and ℓ^{∞} .

We start with some auxiliary results concerning weak topologies and weak convergence in Δ and $\Sigma.$

Lemma 1 Let (Ω, μ) be a separable measure space. If $E \subset \Sigma$ and F is an intermediate space between L^1 and L^∞ , then the topology $\sigma(E, F)$ is metrizable on $\sigma(E, F)$ -compact sets.

Proof At first we shall show that F contains a countable subset $(y_n)_{n=1}^{\infty}$ which is a total set of functionals on E. We have $\Sigma' = \Delta$ isometrically. This implies that there exists a strictly positive $w \in B_{\Delta}$ such that $\Sigma \hookrightarrow L^1(\nu)$ with $\nu = wd\mu$. By the separability of μ , $L^1(\nu)^*$ contains a countable set of functionals $(f_n)_{n=1}^{\infty}$ that separates points of $L^1(\nu)$. Since $L^1(\nu)^* \simeq L^1(\nu)' \hookrightarrow \Delta$, $f_n(x) = \langle x, y_n \rangle$ for some $y_n \in \Delta \subset F$ and any $x \in \Sigma$. Then the set $(y_n)_{n=1}^{\infty}$ is as required. Now, the metric

$$\rho(x, y) = \sum_{n=1}^{\infty} 2^{-n} \min\{1, |\langle x - y, y_n \rangle|\}, \quad x, y \in K$$

generates a weaker topology than $\sigma(E, F)|_{K}$, and thus they coincide by compactness of K.

The well known Calderón theorem [7] (see also [3], [23]) states that if (Ω_1, μ) and (Ω_2, ν) are two measure spaces and $x \in \Sigma(\mu)$ and $y \in \Sigma(\nu)$ are such that

$$K\left(t, y; \left(L^{1}(\nu), L^{\infty}(\nu)\right)\right) \leq K\left(t, x; \left(L^{1}(\mu), L^{\infty}(\mu)\right)\right)$$

for each t > 0, then there exists an operator $T: (L^1(\mu), L^{\infty}(\mu)) \to (L^1(\nu), L^{\infty}(\nu))$ of norm at most one, such that Tx = y. Since for any $x \in \Sigma(\mu)$ and t > 0,

$$K\Big(t, x; \big(L^{1}(\mu), L^{\infty}(\mu)\big)\Big) = \int_{0}^{t} x^{*}(s) \, dm = K\Big(t, x^{*}; \big(L^{1}(m), L^{\infty}(m)\big)\Big),$$

an immediate consequence of the Calderón result is that for any $x \in \Sigma(\mu)$ there exists an operator $T: (L^1(\mu), L^{\infty}(\mu)) \longrightarrow (L^1(m), L^{\infty}(m))$ of norm at most 1, such that $Tx = x^*$. We will need also the following result.

Lemma 2 Let X and Y be exact interpolation spaces with respect to $\overline{X} = (L^1(\mu), L^{\infty}(\mu))$ and $\overline{Y} = (L^1(\nu), L^{\infty}(\nu))$ defined on nonatomic measure spaces. If a set $B \subset X'$ is relatively compact for $\sigma(X', X)$, then $\{Tx : x \in B, T \in L(\overline{X}, \overline{Y}), \|T\|_{\overline{X} \to \overline{Y}} \leq 1\}$ is relatively compact in Y' for $\sigma(Y', Y \cap \Sigma_a(\nu))$. The above lemma is a modification of Corollary 29 in [15]. The latter result was proved under the assumption that measure spaces are Radon measure spaces defined on locally compact Hausdorff topological spaces. By the Calderón result, the proof presented in [15] works also for arbitrary nonatomic measure spaces.

Proposition 3 Let $x_n, x \in \Sigma$ and $x_n \to x$ for $\sigma(\Sigma, \Delta)$. Then there exists a subsequence (x_{n_k}) of (x_n) such that $(x_{n_k}^*)$ is an order bounded subset in $\Sigma(m)$.

Proof By remarks before Lemma 2 and by the lemma itself it follows that (x_n^*) is a relatively compact subset in Σ for $\sigma(\Sigma, \Delta)$, where $\Sigma = \Sigma(m)$ and $\Delta = \Delta(m)$. It is easily seen (*cf.* [15]) that the set \mathcal{D} of nonnegative, nonincreasing functions is closed in Σ for $\sigma(\Sigma, \Delta)$ and $y_n \to y$ in \mathcal{D} for induced topology $\sigma(\Sigma, \Delta)|_{\mathcal{D}}$ implies $y_n \to y$ a.e. Thus, by Lemma 1, passing to a subsequence if necessary, we may assume that for some $u \in \Sigma$, we have $x_n^* \to u^*$ in Σ for $\sigma(\Sigma, \Delta)$, and $x_n^* \to u^*$ a.e. It follows (*cf.* [15]) that $\int_0^\infty |x_n^* - u^*| y \, dm \to 0$ for every $0 \le y \in \Delta$, which in particular implies that $\int_0^1 |x_n^* - u^*| \, dm \to 0$. Hence there exists a subsequence $(x_{n_k}^*)$ and $z \in L^1(0, 1)$ such that $x_{n_k}^*\chi_{(0,1)} \le z$ a.e. (see [21, Lemma 2, p. 97]). Since $x_n^* \to u^*$ in Σ for $\sigma(\Sigma, \Delta)$, (x_n) is norm bounded, so sup_{n\geq 1} $||x_n||_{\Sigma} = C < \infty$. Thus for every $n \in \mathbb{N}$, $x_n^*(1) \le 2||x_n^*\chi_{(1/2,1)}||_{\Sigma} \le C$. Since $x_n^*\chi_{(1,\infty)} \le x_n^*(1)\chi_{(1,\infty)}$, we conclude that for $u = z + 2C \in \Sigma$, $x_{n_k}^* \le u$ a.e. for all $k \in \mathbb{N}$. This completes the proof.

Before we prove the next theorem, recall that a Banach lattice is said to have *weakly* sequentially continuous lattice operations whenever $x_n \to 0$ weakly implies $|x_n| \to 0$ weakly. By the Riesz Representation Theorem, it follows that a sequence $(x_n) \subset C(K)$ satisfies $x_n \to 0$ weakly if and only if (x_n) is norm bounded and $x_n(t) \to 0$ holds for all $t \in K$. Therefore $x_n \to 0$ weakly in C(K) implies $|x_n| \to 0$. Thus by the Kakutani-Bohnenblust and M. Krein-S. Krein representation theorem (see [2], [24]) in every AM-space the lattice operations are weakly continuous. It appears that the space Δ has a similar property.

We need also to recall that a subset A of an AL-space E is relatively weakly compact if and only if for every $\varepsilon > 0$ there exists $x \ge 0$ such that $A \subset [-x, x] + \varepsilon B_E$, where $[-x, x] = \{z \in E : -x \le z \le x\}$ is an interval in E (see [2, p. 208]).

Proposition 4 In the space Δ the lattice operations are weakly sequentially continuous.

Proof It is clear that Δ is order isomorphic to L^{∞} or to ℓ^1 provided that μ is finite or purely atomic measure, respectively. Thus we need only to consider the case of infinite nonatomic measure space.

Let $x_n \to 0$ weakly in Δ . Then $x_n \to 0$ in Δ for $\sigma(\Delta, \Delta') = \sigma(\Delta, \Sigma)$. In particular we get that $x_n \to 0$ in Δ for $\sigma(\Delta, \Sigma_a)$. We need to show that each subsequence (y_n) of $(|x_n|)$ contains a subsequence (z_n) converging weakly to 0 in Δ . Let (y_n) be any subsequence of $(|x_n|)$ and let f_n be functionals on Σ_a defined by

$$f_n(x) = \int_\Omega x y_n \, d\mu, \quad x \in \Sigma_a.$$

Clearly, $f_n \in (\Sigma_a)^*$. Since $y_n \to 0$ weakly in Δ and $||f_n|| = ||y_n||_{\Delta}$, $C = \sup_n ||f_n|| < \infty$. By the continuous inclusion $L^2 \hookrightarrow \Sigma_a$ and the reflexivity of L^2 , we can extract a subsequence

 (n_k) such that $\lim_k f_{n_k}(x)$ exists for each $x \in L^2$. By the density of L^2 in Σ_a and the Banach-Steinhaus theorem we conclude that there exists $y \in \Delta$ such that $y_{n_k} \to y$ in $\sigma(\Delta, \Sigma_a)$. In particular this implies that $y_{n_k} \to y$ in Δ for both topologies $\sigma(\Delta, L^1)$ and $\sigma(\Delta, (L^{\infty})^{\circ})$.

It is well known (cf. [4, Thm. 2.7.1]) that $\Delta^* = (\Delta, \|\cdot\|_{L^1})^* + (\Delta, \|\cdot\|_{L^\infty})^*$ with equality of norms. Hence a sequence in Δ is weakly convergent if and only if it is weakly convergent in both spaces L^1 and L^∞ . Thus $x_n \to 0$ in Δ for both topologies $\sigma(L^1, L^\infty)$ and $\sigma(L^\infty, (L^\infty)^*)$. Now, by the characterization of weakly compact sets in AL-spaces, it follows that there exists a subsequence (z_n) of (y_{n_k}) such that for some $u \in L^1, z_n \to u$ weakly in L^1 .

Since L^{∞} has weakly sequentially continuous lattice operations, we have $|x_n| \to 0$ weakly in L^{∞} , and thus $z_n \to 0$ in Δ for $\sigma(\Delta, L^1)$. Hence y = 0, and since $z_n \to u$ in $\sigma(L^1, (L^{\infty})^{\circ})$ and also $z_n \to y$ in $\sigma(L^1, (L^{\infty})^{\circ})$, so u = y = 0. Thus $z_n \to 0$ weakly in both spaces L^1 and L^{∞} which completes the proof of the theorem.

Proposition 5 The Banach lattice Σ is a semi-M-space. Consequently, $\Sigma^* = \Sigma_c^* \oplus \Sigma_s^* \simeq \Delta \oplus \Sigma_s^*$, where the singular part Σ_s^* is an AL-space.

Proof We need to consider only nonatomic measure space. Since $\Sigma = \Delta'$ isometrically,

$$\|x\|_{\Sigma} = \sup\left\{\left|\int_{\Omega} xy \, d\mu\right| : \|y\|_{\Delta} \le 1\right\}.$$

This obviously implies that $||x||_{\Sigma} \leq \inf\{(1+\rho(kx))/k : k > 0\}$, where $\rho(x) = \int_{\Omega} \varphi(|x|) d\mu$ with $\varphi(t) = 0$ for $0 < t \leq 1$ and $\varphi(t) = t - 1$ for t > 1. On the other hand by (see [3, Prop. 3.3])

$$\|x\|_{\Sigma} = \int_0^1 x^*(s) \, ds = \sup \left\{ \int_A |x| \, d\mu : \mu(A) \le 1 \right\},$$

we have that if $||x||_{\Sigma} \le 1$, then $\mu(\{\omega : |x(\omega)| > 1\}) \le 1$ and hence $\rho(x) \le 1$. Combining this with $||x||_{\Sigma} \le 1 + \rho(x)$, it easily follows that Σ is a semi-*M*-space. Now, the second part follows from de Jonge's result [19] (see also [26, p. 467]) stating that given an arbitrary normed lattice *E*, the band E_s^* in the Banach dual E^* is an AL-space if and only if *E* is a semi-*M*-space.

Now we are ready to prove the main results of this section.

Theorem 1 Given a σ -finite measure space (Ω, μ) , Δ , Σ , $(L^{\infty})^{\circ}$, Σ° and all their Banach dual spaces have the Dunford-Pettis property.

Proof We need to consider only the case of infinite nonatomic measure space (Ω, μ) .

We shall show at first that Δ has (DP)-property. Let $x_n \to 0$ weakly in Δ and let $f_n \to 0$ weakly in $\Delta^* = \Delta_c^* \oplus \Delta_s^*$. Since Δ_c^* is lattice isometric to the Köthe dual space $\Delta' = \Sigma$, we conclude that for the band projections $P: \Delta^* \to \Delta_c^*$ and Q = Id - P, we have for some $y_n \in \Sigma$

$$Pf_n(x) = \int_{\Omega} x y_n \, d\mu, \quad x \in \Delta.$$

Since $P: \Delta^* \to \Delta_c^*$ is norm continuous, we get $y_n \to 0$ in $\sigma(\Sigma, \Sigma^*)$, and in particular $y_n \to 0$ for $\sigma(\Sigma, \Delta)$ -topology. By applying Proposition 3, we may assume without loss of

generality that $y_n^* \leq u$ a.e. for all $n \in \mathbb{N}$ and some $u \in \Sigma$. This yields by an application of the well known Hardy-Littlewood inequality [3] that

$$|Pf_n(x_n)| \leq \int_{\Omega} |x_n y_n| \, d\mu \leq \int_0^\infty x_n^* y_n^* \, dm \leq \int_0^\infty x_n^* u^* \, dm.$$

Now, we shall show that $x_n^* \to 0$ in $\Delta(m)$ for topology $\sigma(\Delta(m), \Sigma(m))$. Since $x_n \to 0$ weakly in Δ , we also have $|x_n| \to 0$ weakly in Δ , by Proposition 4. In particular this implies that $||x_n||_{L^1} \to 0$ and so $x_n^* \to 0$ a.e.

On the other hand, by $x_n \to 0$ weakly in Δ , we get that $x_n \to 0$ in $\sigma(\Sigma', \Sigma_a)$. By Lemma 2, it follows that $(x_n^*)_{n=1}^{\infty}$ is a relatively compact set in $\Delta(m)$ for $\sigma(\Delta(m), \Sigma_a(m))$. Thus, by Lemma 1 we have

$$x_{n_k}^* \longrightarrow y^*$$
 in $\sigma(\Delta(m), \Sigma_a(m))$

for some subsequence $(x_{n_k}^*)$ of (x_n^*) and some $y \in \Delta$. Hence (*cf.* [15, Prop. 40]) $x_{n_k}^* \to y^*$ a.e. and thus $y^* = 0$ a.e. In view of $||x_n^*||_{L^1(m)} \to 0$, it is now easily seen that

$$x_n^* \longrightarrow 0$$
 in $\sigma(\Delta(m), \Sigma(m))$.

It follows that $Pf_n(x_n) \to 0$. In order to finish the proof we need to show that $Qf_n(x_n) \to 0$.

Since $f_n \to 0$ weakly in Δ^* , we see by the norm continuity of the band projection $Q: \Delta^* \to \Delta_s^*$ that $Qf_n \to 0$ weakly in Δ_s^* . Since Δ is a semi-*M*-space, Δ_s^* is an AL-space by de Jonge's result [19]. Pick up M > 0 such that $||x_n||_{\Delta} \leq M$ holds for all $n \in \mathbb{N}$. By the characterization of relatively weakly sets in AL-spaces, given $\varepsilon > 0$ we obtain that there exists a nonnegative element $g \in (\Delta_s^*)$ satisfying

$$(Qf_n)_{n=1}^{\infty} \subset [-g,g] + \frac{\varepsilon}{2M} B_{\Delta_s^*}.$$

By Proposition 4, Δ has weakly sequentially continuous lattice operations, so $|x_n| \to 0$ weakly in Δ . Thus there exists *m* such that $g(|x_n|) < \varepsilon/2$ for all n > m. In particular, for n > m we have

$$|Qf_n(x_n)| \le |Qf_n|(|x_n|) \le g(|x_n|) + \varepsilon/2 \le \varepsilon_1$$

which yields that $Qf_n(x_n) \to 0$ holds, as desired. It shows, by $Pf_n(x_n) \to 0$, that $f_n(x_n) \to 0$ and thus Δ has the Dunford-Pettis property.

In view of Proposition 5,

$$\Sigma^* = \Sigma^*_c \oplus \Sigma^*_s \simeq \Delta \oplus \Sigma^*_s,$$

where Σ_s^* is an AL-space. Thus Σ^* has (DP)-property as the direct sum of Banach spaces with (DP)-property, and so Σ has (DP)-property as well. Analogously, in view of

$$\Delta^* = \Delta^*_c \oplus \Delta^*_s \simeq \Sigma \oplus \Delta^*_s,$$

it follows that $\Delta^* \in (DP)$. In fact $\Delta_s^* \in (DP)$ by de Jonge's result since Δ is a semi-*M*-space. Finally, since all duals of any of the spaces Δ , Σ , $(L^{\infty})^{\circ}$ or Σ° can be decomposed into direct sums of subspaces with (DP)-property, they also have that property.

Theorem 2 Let E be a symmetric space on a separable measure space (Ω, μ) . Then the following statements hold true.

- (i) If μ is a purely atomic measure, then a symmetric sequence space E possesses the Dunford-Pettis property if and only if it coincides with one of the spaces ℓ¹, ℓ[∞] or c₀.
- (ii) If μ is nonatomic and finite then E has the Dunford-Pettis property if and only if E is either L^1 or L^∞ .
- (iii) If μ is nonatomic and infinite then E has the Dunford-Pettis property if and only if E coincides with one of the following spaces L¹, L[∞], Δ, Σ, (L[∞])[°] or Σ[°].

Proof In the proof we will need the following well known results.

(I) Let *E* be a symmetric sequence space. Then *E* coincides with ℓ^1 if and only if the unit vectors (e_n) do not tend weakly to zero in *E*.

(II) (Th. 2.c.10 in [24]) Let *E* be a symmetric space on a finite and nonatomic measure space (Ω, μ) . Then the Rademacher functions tend weakly to zero in *E* if and only if *E* does not coincide with L^{∞} .

In view of Theorem 1, it is enough to prove only necessity parts of the theorem. Also by the assumption of separability of μ , we restrict our proof to the set of positive integers \mathbb{N} with a counting measure or to the intervals (0, 1) or $(0, \infty)$ with the Lebesgue measure, in the case when μ is purely atomic or μ is nonatomic finite or nonatomic infinite measure, respectively.

Now, assume that *E* has (DP)-property. If *E* is a symmetric sequence space then (e_n) is a basic sequence in both spaces *E* and its Köthe dual *E'*. Moreover, if $E' = \ell^1$ then *E* must coincide with ℓ^{∞} or c_0 . Therefore, assuming that *E* is none of the spaces ℓ^1 , ℓ^{∞} or c_0 , *E'* cannot be equal to ℓ^1 , and so both *E* and *E'* do not coincide with ℓ^1 . Applying now (I), the sequence (e_n) is weakly null in both spaces *E* and *E'*, but $\langle e_n, e_n \rangle = 1$ for every $n \in \mathbb{N}$, which contradicts (DP)-property of *E*.

In the case of interval (0, 1), the arguments are similar. In fact, we observe that $E = L^1$ whenever $E' = L^{\infty}$. Assuming that *E* is neither L^{∞} nor L^1 we obtain that both *E* and *E'* do not coincide with L^{∞} . It follows now by (II), that Rademacher functions r_n are weakly null in both *E* and *E'*, but $\langle r_n, r_n \rangle = 1$ for every $n \in \mathbb{N}$, and this is a contradiction.

Now, consider the space E over the interval $(0, \infty)$. By E_d and E'_d denote the sets of all functions in E and E' respectively, that are constant on all intervals (n - 1, n), $n \in \mathbb{N}$. It is clear that they are closed sublattices of E and E', respectively. It is also clear that the functions $\chi_n = \chi_{(n-1,n)}$, $n \in \mathbb{N}$, form a symmetric basic sequence in both E_d and E'_d . Note that the spaces E_d and E'_d may be identified isometrically with symmetric sequence spaces by $\sum_{n=1}^{\infty} a_n \chi_n \mapsto (a_n)$, and then E'_d is a Köthe dual of E_d . We observe that (χ_n) cannot be weakly null sequence simultaneously in both spaces E and E' in view of the assumption of (DP)-property in E and the obvious fact that $\langle \chi_n, \chi_n \rangle = 1$ for every $n \in \mathbb{N}$. Therefore (χ_n) is not weakly null either in E or in E'. If it is not weakly null in E, equivalently in E_d , then by (I), (χ_n) is equivalent to the unit vector basis (e_n) in ℓ^1 and $E_d = \ell^1$. Analogously, if (χ_n) is not weakly null in E'_d , then also $E'_d = \ell^1$. Therefore $E_d = \ell^\infty$ or $E_d = c_0$.

Now, the complemented subspace $E|_{(0,1)}$ of E has (DP)-property, and since it is symmetric it must be equal either to $L^1(0, 1)$ or to $L^{\infty}(0, 1)$. As we have just proved, $E|_{(0,1)}$ must be one of the spaces $L^1(0, 1)$ or $L^{\infty}(0, 1)$, and E_d coincides with either ℓ^1 or ℓ^{∞} or c_0 , provided that E has (DP)-property. Combining this with the fact that $\Sigma^{\circ} = L^1 + (L^{\infty})^{\circ} = \{x : x^*(t) \to 0 \text{ as } t \to \infty\}$, we obtain the six spaces listed in (iii) of the theorem.

In the case of a nonatomic finite measure space, the same proof presented above for the interval (0, 1) also works, and thus by Theorem 1, we have instantly the following result.

Theorem 3 A symmetric space E over nonatomic finite measure space (Ω, μ) has the Dunford-Pettis property if and only if it coincides with one of the spaces L^1 or L^{∞} .

4 A Three-Space Property and the Dunford-Pettis Property

Recall that a property (\mathcal{P}) is said to be a *three-space property* if, whenever a closed subspace Y of a Banach space X and the corresponding quotient X/Y have (\mathcal{P}), then X also has (\mathcal{P}). In [8] the first example of a Banach space X without Dunford-Pettis property such that a subspace Y and the corresponding quotient X/Y have the hereditary Dunford-Pettis property has been constructed. It shows that (DP)-property is not a three-space property. A Banach space X is said to have the *hereditary Dunford-Pettis property* if any closed subspace of X has (DP)-property. It is known that c_0 possesses the hereditary Dunford-Pettis property (see [14, p. 25]). Below, we present a new example showing that the Dunford-Pettis property is not a three-space property.

Let $w = (w(j))_{j=1}^{\infty}$ be a non-increasing sequence of positive numbers such that $\lim_{j\to\infty} w(j) = 0$ and $\sum_{j=1}^{\infty} w(j) = \infty$. Recall that a Lorentz sequence space λ_w (cf. [24]) is the Banach space of all sequences of scalars $x = (x(j))_{i=1}^{\infty}$ for which

$$\|x\|_{\lambda_w}:=\sum_{j=1}^{\infty}x^*(j)w(j)<\infty.$$

It is well known [23] that the Köthe dual of λ_w coincides isometrically with the *Marcinkiewicz sequence space* m_w of all sequences of scalars $x = (x(j))_{i=1}^{\infty}$ such that

$$\|x\|_{m_w} := \sup_{n \ge 1} \frac{\sum_{j=1}^n x^*(j)}{\sum_{j=1}^n w(j)} < \infty$$

It is also clear that all spaces λ_w , m_w and $m_w^\circ = (m_w)_a$ are symmetric sequence spaces, and thus in view of Theorem 2, none of them has (DP)-property. Observe also that the set of unit vectors (e_n) is a basis in both spaces λ_w and m_w° .

We will consider in the sequel a Banach space $m_w^{\circ} \oplus_1 \ell^1$. It obviously fails (DP)-property. Defining an operator $T: m_w^{\circ} \oplus_1 \ell^1 \to c_0$ by

$$T(x, y) = x + q(y),$$

where $q: \ell^1 \to c_0$ is a continuous surjective operator, T is also a surjective operator, and so a quotient space $m_w^{\circ} \oplus_1 \ell^1 / \ker T \simeq c_0$ has the hereditary Dunford-Pettis property. This and the next result yield that (DP)-property is not a three space property.

Proposition 6 The kernel ker T of the operator $T: m_w^{\circ} \oplus_1 \ell^1 \to c_0$ defined above has the hereditary Dunford-Pettis property.

Proof In fact, by [11] (*cf.* [8]), a Banach space *Z* has the hereditary Dunford-Pettis property if and only if every weakly null sequence (z_n) admits a subsequence (z_{m_k}) such that for

some constant *K* and for all $N \in \mathbb{N}$,

$$\left\|\sum_{k=1}^N z_{m_k}\right\|_Z \leq K.$$

Let (x_n, y_n) be a weakly null sequence in ker *T*. Since ℓ^1 has the Schur property, $y_n \to 0$ in ℓ^1 . This implies by $T(x_n, y_n) = 0$ that $||x_n||_{c_0} \to 0$. If $||x_n||_{m_w^\circ} \to 0$ the proof ends. So assume that (x_n) is a non-convergent sequence in m_w° . Since $x_n \to 0$ weakly in m_w° , we may assume that (x_n) is a basic sequence. Without loss of generality, we may also assume by the Bessaga-Pełczyński selection principle that (x_n) is a normalized block of the unit vector basis (e_n) of c_0 . Thus there exists an increasing sequence (p_n) of integers such that

$$x_n = \sum_{j=p_{n-1}+1}^{p_n} \alpha(j) e_j$$

and $||x_n||_{m_w^{\circ}} = 1$. Clearly we have $\lim_{n\to\infty} (p_{n+1} - p_n) = \infty$ by $||x_n||_{c_0} \to 0$. Let us denote $A_n = \operatorname{supp} x_n$. We construct, by induction, an increasing sequence $(n_k)_{k=1}^{\infty}$ such that for any $k \in \mathbb{N}$ we have

$$\max\{|\alpha(j)| : j \in A_{n_k}\} \le \min\{|\alpha(j)| : j \in A_{n_{k-1}}\}\$$

and

$$S(p_{n_k} - p_{n_{k-1}}) \le S(p_{n_{k+1}} - p_{n_{k+1}-1})/2,$$

where $S(n) = \sum_{j=1}^{n} w(j)$ for $n \ge 1$. It is easily seen that such construction is possible in view of $S(n) \to \infty$, max{ $|\alpha(j)| : j \in A_n$ } $\to 0$ and $p_{n+1} - p_n \to \infty$ as $n \to \infty$.

We will prove the claim if we show that for every $n \in \mathbb{N}$

$$\left\|\sum_{k=1}^n x_{n_k}\right\|_{m_w} \leq 3.$$

Since $|\alpha(j)| \le \min\{|\alpha(j)| : j \in A_{n_{k-1}}\}$ for $j > p_{n_k-1}$, it is enough to prove that for any *m* and *N* with $p_{n_m} < N \le p_{n_m+1}$ the following inequality holds

$$\left\|\sum_{k=1}^{m} x_{n_{k}} + \sum_{j=p_{n_{m+1}}}^{N} \alpha^{*}(j)e_{j}\right\|_{\ell^{1}} \leq 3S(N).$$

In fact, by $||x_{n_k}||_{m_w} = 1$ for all $k \ge 1$, we have

$$\sum_{j=1}^{p_{n_k}-p_{n_k-1}} \alpha^*(j) \le S(p_{n_k}-p_{n_k-1})$$

and

$$\sum_{j=1}^{N-p_{n_m}} \alpha^*(j) \leq S(N-p_{n_m}).$$

Combining the above with the inequality $2S(p_{n_k} - p_{n_{k-1}}) \leq S(p_{n_{k+1}} - p_{n_{k+1}-1})$ it yields

$$\begin{split} \left\| \sum_{k=1}^{m} x_{n_{k}} + \sum_{j=p_{n_{m+1}}}^{N} \alpha^{*}(j) e_{j} \right\|_{\ell^{1}} &\leq \sum_{k=1}^{m} S(p_{n_{k}} - p_{n_{k}-1}) + S(N - p_{n_{m}}) \\ &\leq \sum_{k=1}^{m} 2^{k-m} S(p_{n_{m}} - p_{n_{m}-1}) + S(N - p_{n_{m}}) \\ &< 2S(N) + S(N) = 3S(N), \end{split}$$

which completes the proof.

5 Some Consequences and Remarks

In this section we give some corollaries and applications of the characterization of (DP)-property in symmetric spaces stated in Theorems 1 and 2. We start with a result which is an immediate consequence of Theorem 2(i).

Corollary 1 A symmetric sequence space *E* has the Schur property if and only if $E = \ell^1$.

Corollary 2 Let $\mu(\Omega) = \infty$. Then the inclusion map $\Delta \hookrightarrow L^1$ is a Dunford-Pettis operator which is not weakly compact.

Proof By the Schur property of ℓ^1 we only need to consider nonatomic measure space. Let $x_n \to 0$ weakly in Δ . Then by Proposition 3, $|x_n| \to 0$ weakly in Δ as well. Thus by the continuous inclusion $\Delta \hookrightarrow L^1$, $|x_n| \to 0$ weakly in L^1 and thus $||x_n||_{L^1} \to 0$. This shows that the inclusion map $\Delta \hookrightarrow L^1$ is a Dunford-Pettis operator.

In order to see that the inclusion map id: $\Delta \hookrightarrow L^1$ is not weakly compact, take any sequence of measurable sets (Ω_n) such that $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$, $\Omega_i \cap \Omega_j = \emptyset$, $i \neq j$ and $\mu(\Omega_n) = 1$ for all $n \in \mathbb{N}$. It is clear that the restriction of id to the closure $[\chi_{\Omega_n}]$ of the linear span of (χ_{Ω_n}) in both spaces Δ and L^1 is an isometry. Since $[\chi_{\Omega_n}]$ is isometrically isomorphic to ℓ_1 , id is not a weakly compact operator.

Recall that a Banach space X is said to be a *Grothendieck space* [14] whenever weak* and weak convergence of sequences in X* coincide. In [16], Grothendieck has proved that every σ -Dedekind complete AM-space with unit, and hence L^{∞} , is a Grothendieck space. The following statement, useful in the sequel, is also true.

Lemma 3 Given a separable measure space (Ω, μ) , L^{∞} is the only Grothendieck symmetric space with the Dunford-Pettis property.

Proof In fact, since separable Grothendieck spaces are reflexive, in view of Theorem 2, we need only to show that $(L^{\infty})^{\circ}$, Δ and Σ are not Grothendieck spaces on $(0, \infty)$. Clearly, $L^1(0, 1)$ (resp. c_0) is isometrically isomorphic to a complemented subspace of Σ (resp. $(L^{\infty})^{\circ}$) and thus both Σ and $(L^{\infty})^{\circ}$ are not Grothendieck spaces. Analogously, since $\Delta^* \simeq \Sigma \oplus \Delta^*_s$ and Σ contains a copy of c_0 , Δ^* is not weakly sequentially complete, so Δ is not a Grothendieck space.

It is well known that L^1 and L^{∞} have the unique Banach lattice structure [1] as well as the unique rearrangement-invariant structure [18]. We notice here that this is also a consequence of Theorem 2. As we see below, by application of Theorem 2, we obtain some other examples of symmetric spaces with the unique symmetric structure.

Corollary 3 Let E be a symmetric space on a separable measure space (Ω, μ) . Then the followig statements hold true.

- (i) If E has the Fatou property, then E is isomorphic to an AM-space if and only if $E = L^{\infty}(\mu)$ up to equivalent norms.
- (ii) *E* is isomorphic to an AL-space if and only if $E = L^{1}(\mu)$ up to equivalent norms.

Proof (i) It is well known that a dual of any AL-space is an AM-space with unit [2]. Assuming now that *E* is isomorphic to an AM-space *F*, we obtain that F^{**} is a Dedekind complete AM-space with unit. By the Grothendieck's theorem [16], F^{**} has the Grothendieck property, and so E^{**} as well. By the assumption of the Fatou property and Theorem 8 in [21, p. 297], *E* is one-complemented in E^{**} , and thus *E* has the Grothendieck property. Now, Lemma 3 yields that *E* coincides with $L^{\infty}(\mu)$.

(ii) If *E* is isomorphic to an AL-space, then its dual E^* coincides isometrically with its Köthe dual *E'*, which has the Fatou property and is isomorphic to an AM-space. Now by (i), *E'* coincides with $L^{\infty}(\mu)$, and hence $E'' = L^{1}(\mu) = E$.

Corollary 4 If a symmetric space E on $(0, \infty)$ is isomorphic to Σ° (resp. $(L^{\infty})^{\circ}$) on $(0, \infty)$, then $E = \Sigma^{\circ}$ (resp. $(L^{\infty})^{\circ}$) up to equivalent norms.

Proof In view of Theorem 1, if *E* is isomorphic to either Σ° or $(L^{\infty})^{\circ}$, then *E* possesses the Dunford-Pettis property. By Theorem 2, it is enough to show that none of the spaces Σ° or $(L^{\infty})^{\circ}$ is isomorphic to any of the spaces $L^1, L^{\infty}, \Delta, \Sigma, \Sigma^{\circ}, (L^{\infty})^{\circ}$.

 Σ° is not isomorphic to L^1 since L^1 does not contain a copy of c_0 , but the sequence $(\chi_{(n-1,n)})$ in Σ° is equivalent to the unit vector basis (e_n) in c_0 . Also Σ° is not isomorphic to any other spaces, since Σ° is separable.

The spaces L^{∞} and $(L^{\infty})^{\circ}$ are not isomorphic, since $(L^{\infty})^{\circ}$ contains a complemented subspace of c_0 , while L^{∞} being isomorphic to ℓ^{∞} does not [24].

Finally, if $(L^{\infty})^{\circ}$ was isomorphic to either Δ or Σ , then in view of the Fatou property of both spaces Δ and Σ , and the obvious fact that $(L^{\infty})^{\circ}$ is an AM-space, Δ or Σ would be equal to L^{∞} by Corollary 3(i), which is not true.

The next consequence of the characterization obtained in Theorem 2 concerns Köthe-Bochner spaces. Recall that if *E* is a Banach lattice on (Ω, μ) and *X* is any Banach space then E(X) denotes the Köthe-Bochner space of all strongly measurable functions $x: \Omega \to X$ such that $||x(\cdot)||_X \in E$, with the norm $||x|| = |||x(\cdot)||_X||_E$.

Corollary 5 Let E and F be two symmetric spaces on finite or purely atomic measure space (Ω, μ) . Then E(F) has the Dunford-Pettis property if and only if E or F is one of the spaces L^1 or L^∞ or c_0 .

Proof The necessity follows by Theorem 2 and by an easily verified fact that *E* and *X* embed complementably in E(X).

The sufficiency follows by [13] and [10]. In fact, in [13] it is shown that for finite measure space (Ω, μ) , $L^{\infty}(X)$ has the Dunford-Pettis property if and only if $\ell^{\infty}(X)$ has it. It is also proved in [13] that if either X is any \mathcal{L}^1 -space or any \mathcal{L}^{∞} -space, then $L^{\infty}(X)$ has the Dunford-Pettis property. On the other hand in [10] it is proved that if X is any \mathcal{L}^1 -space or any \mathcal{L}^{∞} -space, then $L^1(X)$ has the Dunford-Pettis property. Since for any Banach lattice X, $c_0(X)$ is a closed ideal in a Banach lattice $\ell^{\infty}(X)$, and the Dunford-Pettis property is inherited by ideals (see [30]), the proof is finished by combining the above.

Finally, as an application of the Dunford-Pettis property of the space Δ , we obtain a generalization (to infinite interval $(0, \infty)$) of the Novikov's result [27], stating that the inclusion map $L^{\infty}(0, 1) \hookrightarrow E(0, 1)$ is a strictly singular operator, which in particular, when $E = L^p(0, 1)$, is the well known Grothendieck's theorem.

Corollary 4 Let E be a symmetric space on (Ω, μ) such that the inclusion map $\Delta \hookrightarrow E$ is weakly compact. Then $\Delta \hookrightarrow E$ is a strictly singular operator, i.e., any infinite-dimensional subspace of Δ is not a closed subspace of E.

References

- [1] Y. A. Abramovich and P. Wojtaszczyk, *On the uniqueness of order in the spaces* ℓ_p *and* $L_p(0, 1)$. Mat. Zametki **18**(1975), 313–325.
- [2] C. D. Aliprantis and O. Burkinshaw, Positive Operators. Academic Press, New York, London, 1985.
- [3] C. Bennett and R. Sharpely, *Interpolation of Operators*. Academic Press, Orlando 1988.
- [4] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction. Grundhlehren Math. Wiss. 223, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [5] J. Bourgain, New Banach space properties of the disc algebra and H^{∞} . Acta Math. 152(1984), 1–48.
- [6] _____, The Dunford-Pettis property for the ball algebras, the polydisc-algebras and the Sobolev spaces. Studia Math. 77(1984), 245–253.
- [7] A. P. Calderón, Spaces between L^1 and L^{∞} and the theorems of Marcinkiewicz. Studia Math. **26**(1996), 273–299.
- [8] J. M. F. Castillo and M. Gonzalez, *The Dunford-Pettis property is not a three-space property*. Israel J. Math. **81**(1993), 297–299.
- [9] _____, *Three-space problems in Banach space theory*. Lecture Notes in Math. **1667**, Springer-Verlag, Berlin, 1997.
- [10] R. Cilia, A remark on the Dunford-Pettis property in $L_1(\mu, X)$. Proc. Amer. Math. Soc. **120**(1994), 183–184.
- [11] P. Cembranos, *The hereditary Dunford-Pettis property in C(K, E)*. Illinois J. Math. **31**(1987), 365–373.
- [12] J. Chaumat, Une généralisation d'un théorème de Dunford-Pettis. Université de Paris XI, Orsay, 1974.
- [13] M. D. Contreras and S. Diaz, On the Dunford-Pettis property in spaces of vector-valued bounded functions. Bull. Austral. Math. Soc. 53(1990), 131–134.
- [14] J. Diestel, A survey of results related to the Dunford-Pettis property. Integration, topology and geometry in linear spaces, Proc. Conf. Chapel Hill, NC, 1979, Contemp. Math. 2(1980), 15–60.
- [15] D. H. Fremlin, Stable subspaces of $L^1 + L^{\infty}$. Proc. Cambridge Philos. Soc. **64**(1968), 625–643.
- [16] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math. **5**(1953), 129–173.
- [17] F. L. Hernandez and N. J. Kalton, personal communication.
- [18] W. B. Johnson, B. Maurey, G. Schechtmann and L. Tzafriri, Symmetric Structures in Banach Spaces. Mem. Amer. Math. Soc. 217, 1979.
- [19] E. de Jonge, The semi-M-property for normed Riesz spaces. Compositio Math. 34(1977), 147–172.
- [20] N. J. Kalton, Lattice Structures on Banach Spaces. Mem. Amer. Math. Soc. 493, 1993.
- [21] L. V. Kantorovich and G. P. Akilov, *Functional Analysis*. 2nd rev. ed., "Nauka", Moscow, 1977; English transl., Pergamon Press, 1982.
- [22] S. V. Kislyakov, The Dunford-Pettis, Pełczyński and Grothendieck conditions. (Russian) Dokl. Akad. Nauk SSSR 225(1975), 1252–1255.
- [23] S. G. Krein, Y. U. Petunin and E. M. Semenov, *Interpolation of Linear Operators*. (Russian) Moscow, 1978; English transl., Amer. Math Soc., Providence, 1982.

- [24] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Springer-Verlag, Berlin-New York, Vol. I, 1977; Vol. II, 1979.
- [25] G. Ya. Lozanovskii, Transformations of ideal Banach spaces by means of concave functions. (Russian) Qualitative and Approximate methods for the investigation of Operator Equations 3(1978), Yaroslav. Gos. Univ., Yaroslavl, 122–148.
- [26] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces II. North-Holland, Amsterdam, 1983.
- [27] S. Ya. Novikov, Boundary spaces for inclusion map between RIS. Collect. Math. 44(1993), 211–215.
- [28] A. Pełczyński, Banach spaces of analytic functions and absolutely summable operators. CBMS, Regional Conference Series in Mathematics 30, Amer. Math. Soc, Providence, RI, 1977.
- [29] W. Wnuk, $\ell^{(p_n)}$ spaces with the Dunford-Pettis property. Comment. Math. Prace Mat. (2) **30**(1991), 483–489.
- [30] _____, Banach lattices with the weak Dunford-Pettis property. Atti. Sem. Mat. Fis. Univ. Modena 42(1994), 227–236.
- [31] P. Wojtaszczyk, Banach Spaces for Analysts. Cambridge University Press, 1996.

Department of Mathematical Sciences The University of Memphis Memphis, TN 38152 USA email: kaminska@msci.memphis.edu Faculty of Mathematics and Computer Science A. Mickiewicz University Matejki 48/49 60-769 Poznań Poland email: mastylo@math.amu.edu.pl