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NEST ALGEBRAS OF OPERATORS AND THE 
DUNFORD-PETTIS PROPERTY 

TIMOTHY G. FEEMAN 

ABSTRACT. A Banach space X is said to have the Dunford-Pettis Property if every 
weakly compact linear operator T: X —• Y, where Y is any Banach space, is completely 
continuous (that is, T maps weakly convergent sequences to strongly convergent ones). 
In this paper, we prove that if A is a nest algebra of operators on a separable, infinite 
dimensional Hilbert space, then A fails to have the Dunford-Pettis Property. We also 
investigate a certain algebra associated to A, analogous to a construction used by Bour-
gain and others in connection with the Dunford-Pettis Property for function algebras. 
We show that this algebra must lie between A and the quasi-triangular algebra A + %^ 
and we give examples to show that either extreme or something in between is possible. 
Finally, we consider the algebra of analytic Toeplitz operators and give a result for the 
corresponding associated algebra which is analogous to a result of Cima, Jansen, and 
Yale for//00. 

A Banach space X is said to have the Dunford-Pettis Property if every weakly com­
pact linear operator T: X —• F, where Y is any Banach space, is completely continuous 
(that is, T maps weakly convergent sequence to strongly convergent ones). This general 
definition was made in the 1950's by Grothendieck following the earlier work of Dun-
ford and Pettis ([10]) showing that Ll(p,) spaces have this property. There are various 
equivalent formulations of the Dunford-Pettis Property (cf. [9]) of which the following 
will be used in this article. 

(DPP) The Banach space X has the Dunford-Pettis Property provided that, whenever 
the sequence (xn) in X converges weakly to 0 and the sequence (fn) in the dual space X* 
converges weakly to 0, then the sequence (fn(xn)) converges to 0. 

We remark that it is clear from this formulation and the canonical imbedding of a 
Banach space X into its second dual X** that if X* has the Dunford-Pettis Property then 
so does X. 

In studying the Dunford-Pettis Property for nest algebras of operators on Hilbert 
space, we were motivated by the parallels which exist between these algebras and the 
space H°° of functions bounded and analytic in the open unit disc of the complex plane 
and by the fact that H°° satisfies (DPP), proven by Bourgain ([4]) using the theory of 
ultrafilters. In this note, we provide an elementary proof that no nest algebra on a sepa­
rable Hilbert space satisfies (DPP), thus exhibiting an example of the limitations of the 
analogy with//00. 

Bourgain has also shown ([3]) that if X is a subspace of a C(K) space such that a certain 
algebra associated with X coincides with C(K), then X has the Dunford-Pettis Property. 
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Cima et al ([5], [6]) labeled this associated algebra the 'Bourgain algebra' of X and fell 
short of a purely function-theoretic proof that H°° has the Dunford-Pettis Property when 
they showed that the Bourgain algebra of//00 is H°° + C rather than L°°. In this note, we 
will study the 'Bourgain algebra' of a nest algebra and get results somewhat analogous 
to those for//00. 

1. Preliminaries & Notation. Throughout, let H denote a separable, infinite-
dimensional Hilbert space, L(9f) the algebra of all bounded linear operators on 9{, and 
Ĉ the ideal of compact operators in L(9f). The trace-class ideal in % will be denot­

ed by (re) and we remind the reader that, for X G (rc), the trace of X is given by 
tr(X) = E/ (Xej, ej) where { ej} is any orthonormal basis for H. For any vectors x and y 
in fH, the symbol x CED y* denotes the operator on H defined by (x ®y*)z = (z, y)x. Note 
that ||JC (8)/ | | = ||JC|| \\y\\ while tr (x®y*) = (x9y). 

For any Banach space X, the triple dual space X*** can be written as a direct sum 
X*** = X 1 0 X* where X1 denotes the annihilator of X. In light of the duality relations 
9C = (re) and (ref ^ L(H) (cf. [13]), this yields L(Hf ^ %L 0 (re). For cf> G 
L(9{)*, we will customarily write <j> = </>o + <j>x where </>o G ^C1 and <j>x is induced by 
the trace-class operator X, namely, <j>x(A) — tr (XA) for A in L(9f). 

A nest is a set of (self-adjoint) projections in L(9i) which is linearly ordered by range 
inclusion, contains 0 and 1, and is closed in the stong operator topology. If fP is a nest, 
then, for each P in fP, the projection P_ is defined by P_ = sup { Q G <P : Q < P}. 
The nest !P is said to be continuous if P = P_ for all P in fP and purely atomic in 
case T,P<EP(P — P-) — 1. If fP is any nest, then the associated nest algebra is given by 
AlgfP = {T e Uftf) : PTP = TP, for all P G 2}. For a projection P, the projection 
1 — P will be denoted by PL. We will use Arveson's distance formula for nest algebras 
([1]): 
(1.1) dist (7\ AlgfP) = sup { IIP-^PH : P G !P}, for T G £ ( # ) . 

2. Main Results. 

THEOREM 1. Let Si = AlgtP be a nest algebra on a separable infinite-dimensional 
Hilbert space 9{. Then A fails to have the Dunford-Pettis Property. 

PROOF. Since 9{ is infinite-dimensional, there is an orthonormal sequence { en : 
n ^ 1} in 9f such that either e\ 0 e* belongs to A for all n ^ 1 or en 0 e\ is in A for 
all n S 1. The arguments for the two cases are similar so we assume the former and set 
An = ex ®e*. 

First, An —> 0 weakly in A since, if <j> G L(9f)*, then we may write (j) — (j>o + 
0x where (/>o annihilates Ĉ and X is a trace-class operator. Thus, c/>(An) — <j>o(An) + 
tr (XAn) = tr (X î 0 e*) = (Xe\,en). This tends to 0 as « tends to oo since {en} is an 
orthonormal set. 

Next, let Xn = A* = en 0 ^ G (re). For 7 G £ ( # ) , we have tr (XnT) = 
(en,T*e\) —• 0 as « tends to oo. If follows that {<j>xn + ^t 1} converges to 0 weakly 
in the dual space jï* ^ £ ( # ) * / ^ . 

https://doi.org/10.4153/CMB-1991-033-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-033-7


210 TIMOTHY G. FEEMAN 

Finally, we observe that (/>x„(A„) = tr (XnAn) = tr (en®e*) = (en, en) — 1 for all n ^ 1. 
Thus, the condition (DPP) is not satisfied and therefore A fails to have the Dunford-Pettis 
Property. • 

We remark that A = ((re)/ LA)* so that, by reversing the roles of An and Xn, the 
above proof shows that (re)/ LA and, consequently, its dual A fail to have the Dunford-
Pettis Property. 

DEFINITION. For any subset $ of L(9{) the Bourgain algebra of $ is the set 

% = { T E L(9i) : dist <TA„, $) -> 0 whenever An -» 0 weak* in # } . 

It is straightforward to see that % is a norm-closed subalgebra of L(9{) and that, if 
*B is itself a subalgebra of L(tt), then (8& D rB. In particular, if A — Alg(P is a nest 
algebra, then J Î Ç j ^ . 

LEMMA 2. 7f J? = AlgŒ* is a nest algebra, then A C At Ç A + % 

PROOF. We have already discussed the first containment. The second follows from 
the theorem of J. A. Erdos ([11]) that the algebra generated by the rank-one elements of a 
nest algebra is dense in the nest algebra in the weak* topology. Thus, there is a sequence 
{Rn} of compact operators in Si such that (1 — Rn) —•> 0 in the weak* topology. If 
T £ A + 3C, then we have 0 < dist (7, A + 3Q ^ dist (T - TRn, A) for all n so that the 
sequence { dist (7(1 — Rn), A)} does not tend to 0. This implies that T $ At. Hence, 
Sit Q & + % as desired. • 

We remark that Erdos' result has been extended by Laurie and Longstaff ([12]) who 
have shown that, if T is any commutative, completely distributive lattice of projections, 
then the algebra generated by the finite-rank elements of AlgfP is dense in Alg^P in the 
weak* topology. The argument above then applies to this case as well and shows that 
(A\g<P)b Ç AlgfP + % for such lattices. 

COROLLARY 3. If A and (B are two nest algebras for which At = %, then A+J^^ 

PROOF. Lemma 2 and the hypothesis imply that A Ç <B + $C and <3 Ç A + %. 
Hence, J 3 + ^ Ç # + ^ a n d < B + 3 C Ç - # + 3 C from which the conclusion follows. • 

We remark that necessary and sufficient conditions for A+ Ĉ = $ + Ĉ are known, 
(cf. [8]) Also, by the remark following Lemma 2, the Corollary holds as well when A 
and *B are algebras having commutative, completely distributive lattices of projections. 

3. Examples. We will now present a few examples which show that by appropri­
ate choice of the nest algebra A we can have At = A, At = A + ^C, or the proper 
containment A C Sfy, C A + 9C. 

EXAMPLE 1. Let { en : n £ Z} be an orthonormal basis for 9{ and, for each n, let 
En be the projection onto the subspace spanned by {ej : j ^ n}. Let *P = {En : n e 
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Z} U { 0,1} and A = Algî\ We will show that, in this case, At = A + ^ This case 
is analogous to the result of Cima et al ([6]) for H°°. 

Since A Ç At Ç A + % and since At is a linear space, it is enough to show that 
^C Ç J%>. Since At is also norm-closed, it will suffice to show that At contains every 
rank-one operator of the form em <g> e* for m,n G Z. For this, let m and « be integers 
and set R = em 0 e*. If n ^ m then P G J2 Ç j ^ , and we are done. On the other hand, 
if m > n and if T G L(M) then 

( m-l 
E K% *n)\2 

j=—oo 

If, in addition, TEA, then (7^-, £„) = 0 whenever j < n and hence 

Im-X \ V 2 
dist (PF, # ) = I £ \(Tej, en)\

2\ , for F G # . 

Suppose now that the operators { 7\} in A converge to 0 in the weak* topology. Then, 
for eachy with n û j^k m — 1, we have lim^oo| (7ie7-, en)\ = 0. As there are only finitely 
many such j to consider, it follows that lim^oodist (PF^, A) — 0 and, hence, R belongs 
to At as desired. Thus, Ab = A+ *}£. 

Note that a similar argument can be applied to show that (Alg^P)^ = Alg^P + $£ 
whenever the nest (P — { P / : k G Z} U {0,1} where (Pk+i —Pk) is finite-dimensional 
for all k. 

EXAMPLE 2. Suppose that the nest fP contains projections F, P, and Q such that F < 
P < Q and Q — F is finite-rank. Let P be any non-zero operator satisfying R = (Q — 
P)R(P - F). For A G AlgfP we then have RA = R(P - F)A = /?(P - F)AFL = RAFL 

so that ELRAE = 0 whenever £ G 2> satisfies F ^ F or E ^ g. For F < F < g, we 
have IIF-L/MFH ^ ||PAF|| = HiWF1^! ^ | | i M ( g - F)||.Thus, for all A G Alg2>, 

dist (/M, AlgfP) = sup HF^/MFll ^ || PA(g - F)\\. 

If the sequence { A^} in AlgfP converges to 0 in the weak* topology, then, since R and 
(Q — F) are compact, it follows that /M* converges to 0 in the strong operator topology 
and that RAk(Q — F) tends to 0 in norm. Hence, dist (RAk, AlgfP) converges to 0 as k 
tends to oo which implies that R G (Alg^P) .̂ But clearly R does not belong to Alg^P so 
we conclude that, in this case, (Algî^ properly contains Alg(P. 

We remark that if the nest contains a projection P for which P+ — inf { E G (P : 
E > P} > P then, taking Q = P+ in the above argument, we would have dist (RA, 
Alg#) = sup { HF-L/MFll : F < E ^ P} ^ \\RA(P - F)\\ for all A in AlgfP so we 
would only require the assumption that (P — F) is finite-rank in order to conclude that 
R G (AlgfP)* \ AlgfP. 

EXAMPLE 3. Let A = AlgfP where the nest fP contains projections P and Q such 
that 0 < P < Q < 1 and such that Q — P has infinite rank. Then there is an orthonor­
mal set {ej : j ^ 1} in i ^ such that Pe\ = e\ and (Q — P)ej = ej for all./ ^ 2. 

l / Z 
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Clearly, the operator Aj = e\ 0 e* is in A for each j ^ 2. For each X G (rc), we have 
lim/_+oo tr (XA/) = limj-*oo(Xe\, q) = 0 since {e7} is an orthonormal set. Thus, the 
sequence {Aj} converges to 0 in the weak* topology. 

Next, let R be any compact operator satisfying R — QLR and such that \Re\|| = 1. 
For each j ^ 2, we then have 

dist(RAj, A) = sup WE^-RAjEW ^ WQ^RAjQW 
Ee<P 

= \\RAj\\ = \\Rel®e]\\=\\Rel\\\\ej\\ = l. 

It follows that R £ At. Since R is compact, we conclude that, in this case, At is properly 
contained iv\A+%^. 

Note that a similar argument applies in case there is a projection Q for which Q — Q-
is infinite dimensional and either 0 ^ g - < < 2 < l o r 0 < < 2 - < ( 2 = 1. 

We remark also that it is clear from Examples 2 and 3 that we can construct a nest *£ 
so that (AlgfP)^ does not coincide with either AlgfP or AlgfP + ^C. 

EXAMPLE 4. Let the Hilbert space H have the concrete form H = L2([0,1]). For 
0 ^ t^ 1, set fA£, = {/ € . # " : / = 0 a.e. on [U]} • With Wr denoting the projection 
onto 9{j, the nest 9£ = {Nt : 0 ^ t Û 1} is the well-known Volterra nest. Let A = 
AlgfA£. We will show that A = At in this case. (Note that the previous example shows 
that At ^ A + 30) 

Suppose the operator T does not belong to A. Then, for some 0 < t < 1, we have 
N^~TNt ̂  0. Since Ns converges to Nt in the strong operator topology as s increases 
to f, it follows that N^~TNS converges to N^-TNt and, hence, that N^~TNS ^ 0 for some 
0 < s < t. Choose a unit vector/ in H such that/ = NJ and Nj~Tf ^ 0 and select 
an orthonormal sequence {/„ : n ^ 1} of vectors satisfying (Nt — Ns)fn = fn for all n. 
For each n ^ 1, set An — f <£>/*. Then each An belongs to A and the sequence { An} 
converges to 0 in the weak* topology since {/„} tends to 0 weakly in 9{. For n ^ 1, we 
have 

dist(Zan, A) ^ \\N^TAnNt\\ = \\N^Tf ® (#,/„)*|| 

= \\N^Tf\\\\Ntfn\\ = \\N^Tf\\>0. 

Thus, dist (TAn, A) does not tend to 0 which implies that T ^ At. We have shown that 
At Ç A. Since one always has AC At for a nest algebra, we conclude that At — Am 
this case. 

A simple modification of the above argument shows that (Alg(P)t = AlgfP for any 
continuous nest (P. 

EXAMPLE 5. As a last example, we consider the algebra of analytic Toeplitz opera­
tors on the Hilbert space H2 = H2(T), where T denotes the unit circle. For each/ in L°°, 
the operator 7} is defined on H2 by Tfg = Pfpfg where P^i is the projection of L2{T) 
onto H2. The analytic Toeplitz algebra is then *T = { 7} : / G H°°} which coincides 
with the weak* closed subalgebra of L(H2) generated by 1 and the unilateral shift Tz. It is 
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well known that, for each/ G L°°, the operator norm || 7}|| = ||/||oo- Since the unilateral 
shift is a completely non-unitary contraction, the Sz.Nagy - Foias functional Calculus 
then implies that the mapping a : H°° —> T defined by a(f) = Tf is an isometric Ba-
nach algebra isomorphism which is a homeomorphism when H°° and T are equipped 
with their respective weak* topologies, (cf. [2]) 

Since H°° and T are isometrically isomorphic and since Bourgain has shown that 
H°° has the Dunford-Pettis Property, it follows that T has the Dunford-Pettis Property 
as well. 

Cima, Janson, and Yale have shown that 

{/ e L°° : dist (fhn, H°°) -+ 0 whenever hn -» 0 weak* in H°°} =H°° + C. 

Since the mapping a is isometric and a weak* homeomorphism, and since T/Th = Tfh 
for a l l / in L°° and all h in H°°, it follows that 7} belongs to *Z& if and only if/ is in 
H°° + C. In particular, % is not all of L(H2). 

Finally, we show that % contains all compact operators. For this, let { en : n ^ 0} 
denote the usual orthonormal basis for H2. Given non-negative integers n and m, let 
Rnm — en^e*m. For/ G //°° and k ^ 0, we then have 

RnmTfek = (Tfek, em)en = ^v y "' ' 
10, if m < k. 

Suppose now that the sequence { /•} in H°° converges weak* to 0. It is well known that 
this implies that lim^oo fj(k) — 0 for each k è 0. Thus, given e > 0, there exists J such 
that \fj(k)\ ^ c/ A / 2 ^ 1 for all k = 0 , . . . , m and ally ^ 7. For y ^ 7, we then have 

I m 

dlSt (RnmTfp <T)^ \\RnmTfj\\ = £ \fj(k)\2 

\k=0 

Hence, lim/-^ dist (RnmTfp *T) = 0 which implies that Rnm is in % for all non-negative 
integers n and m. Since % is a norm-closed subalgebra of L(H2), it follows that every 
compact operator belongs to %. 

We conclude this note with two questions. First, if A is an operator subalgebra for 
which Ab = L(9{), does it follow that A has the Dunford-Pettis property? For instance, 
if H is finite-dimensional then it can be shown that At = L(0i) and that A satisfies 
(DPP) for every subalgebra A. Example 5 shows that, on an infinite-dimensional space, 
the converse of this question does not hold. Second, if the subalgebra A of L{9{) does 
have the Dunford-Pettis property, must At D %?. Again, the converse question is not 
true as illustrated by Example 1 and Theorem 1. 

1/ £. 
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