NEST ALGEBRAS OF OPERATORS AND THE DUNFORD-PETTIS PROPERTY

TIMOTHY G. FEEMAN

ABSTRACT. A Banach space X is said to have the Dunford-Pettis Property if every weakly compact linear operator $T: X \to Y$, where Y is any Banach space, is completely continuous (that is, T maps weakly convergent sequences to strongly convergent ones). In this paper, we prove that if \mathcal{A} is a nest algebra of operators on a separable, infinite dimensional Hilbert space, then \mathcal{A} fails to have the Dunford-Pettis Property. We also investigate a certain algebra associated to \mathcal{A} , analogous to a construction used by Bourgain and others in connection with the Dunford-Pettis Property for function algebras. We show that this algebra must lie between \mathcal{A} and the quasi-triangular algebra $\mathcal{A} + \mathcal{K}$ and we give examples to show that either extreme or something in between is possible. Finally, we consider the algebra of analytic Toeplitz operators and give a result for the corresponding associated algebra which is analogous to a result of Cima, Jansen, and Yale for H^{∞} .

A Banach space X is said to have the Dunford-Pettis Property if every weakly compact linear operator T: $X \rightarrow Y$, where Y is any Banach space, is completely continuous (that is, T maps weakly convergent sequence to strongly convergent ones). This general definition was made in the 1950's by Grothendieck following the earlier work of Dunford and Pettis ([10]) showing that $L^1(\mu)$ spaces have this property. There are various equivalent formulations of the Dunford-Pettis Property (cf. [9]) of which the following will be used in this article.

(DPP) The Banach space X has the Dunford-Pettis Property provided that, whenever the sequence (x_n) in X converges weakly to 0 and the sequence (f_n) in the dual space X^* converges weakly to 0, then the sequence $(f_n(x_n))$ converges to 0.

We remark that it is clear from this formulation and the canonical imbedding of a Banach space X into its second dual X^{**} that if X^* has the Dunford-Pettis Property then so does X.

In studying the Dunford-Pettis Property for nest algebras of operators on Hilbert space, we were motivated by the parallels which exist between these algebras and the space H^{∞} of functions bounded and analytic in the open unit disc of the complex plane and by the fact that H^{∞} satisfies (DPP), proven by Bourgain ([4]) using the theory of ultrafilters. In this note, we provide an elementary proof that no nest algebra on a separable Hilbert space satisfies (DPP), thus exhibiting an example of the limitations of the analogy with H^{∞} .

Bourgain has also shown ([3]) that if X is a subspace of a C(K) space such that a certain algebra associated with X coincides with C(K), then X has the Dunford-Pettis Property.

208

Received by the editors July 7, 1989.

AMS subject classification: 47D25, 46B20.

[©] Canadian Mathematical Society 1991.

Cima et al ([5], [6]) labeled this associated algebra the 'Bourgain algebra' of X and fell short of a purely function-theoretic proof that H^{∞} has the Dunford-Pettis Property when they showed that the Bourgain algebra of H^{∞} is $H^{\infty} + C$ rather than L^{∞} . In this note, we will study the 'Bourgain algebra' of a nest algebra and get results somewhat analogous to those for H^{∞} .

1. **Preliminaries & Notation.** Throughout, let \mathcal{H} denote a separable, infinitedimensional Hilbert space, $\mathcal{L}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} , and \mathcal{K} the ideal of compact operators in $\mathcal{L}(\mathcal{H})$. The trace-class ideal in \mathcal{K} will be denoted by (τc) and we remind the reader that, for $X \in (\tau c)$, the trace of X is given by $\operatorname{tr}(X) = \sum_j (Xe_j, e_j)$ where $\{e_j\}$ is any orthonormal basis for \mathcal{H} . For any vectors x and yin \mathcal{H} , the symbol $x \otimes y^*$ denotes the operator on \mathcal{H} defined by $(x \otimes y^*)z = (z, y)x$. Note that $||x \otimes y^*|| = ||x|| ||y||$ while tr $(x \otimes y^*) = (x, y)$.

For any Banach space X, the triple dual space X^{***} can be written as a direct sum $X^{***} = X^{\perp} \oplus X^*$ where X^{\perp} denotes the annihilator of X. In light of the duality relations $\mathcal{K}^* \cong (\tau c)$ and $(\tau c)^* \cong \mathcal{L}(\mathcal{H})$ (cf. [13]), this yields $\mathcal{L}(\mathcal{H})^* \cong \mathcal{K}^{\perp} \oplus (\tau c)$. For $\phi \in \mathcal{L}(\mathcal{H})^*$, we will customarily write $\phi = \phi_0 + \phi_X$ where $\phi_0 \in \mathcal{K}^{\perp}$ and ϕ_X is induced by the trace-class operator X, namely, $\phi_X(A) = \text{tr}(XA)$ for A in $\mathcal{L}(\mathcal{H})$.

A nest is a set of (self-adjoint) projections in $\mathcal{L}(\mathcal{H})$ which is linearly ordered by range inclusion, contains 0 and 1, and is closed in the stong operator topology. If \mathcal{P} is a nest, then, for each P in \mathcal{P} , the projection P_- is defined by $P_- = \sup \{ Q \in \mathcal{P} : Q < P \}$. The nest \mathcal{P} is said to be continuous if $P = P_-$ for all P in \mathcal{P} and purely atomic in case $\sum_{P \in \mathcal{P}} (P - P_-) = 1$. If \mathcal{P} is any nest, then the associated nest algebra is given by Alg $\mathcal{P} = \{ T \in \mathcal{L}(\mathcal{H}) : PTP = TP$, for all $P \in \mathcal{P} \}$. For a projection P, the projection 1 - P will be denoted by P^{\perp} . We will use Arveson's distance formula for nest algebras ([1]):

(1.1) $\operatorname{dist} (T, \operatorname{Alg} \mathcal{P}) = \sup \{ \| P^{\perp} T P \| : P \in \mathcal{P} \}, \text{ for } T \in \mathcal{L}(\mathcal{H}).$

2. Main Results.

THEOREM 1. Let $\mathcal{A} = Alg\mathcal{P}$ be a nest algebra on a separable infinite-dimensional Hilbert space \mathcal{H} . Then \mathcal{A} fails to have the Dunford-Pettis Property.

PROOF. Since \mathcal{H} is infinite-dimensional, there is an orthonormal sequence $\{e_n : n \ge 1\}$ in \mathcal{H} such that either $e_1 \otimes e_n^*$ belongs to \mathcal{A} for all $n \ge 1$ or $e_n \otimes e_1^*$ is in \mathcal{A} for all $n \ge 1$. The arguments for the two cases are similar so we assume the former and set $A_n = e_1 \otimes e_n^*$.

First, $A_n \to 0$ weakly in \mathcal{A} since, if $\phi \in \mathcal{L}(\mathcal{H})^*$, then we may write $\phi = \phi_0 + \phi_X$ where ϕ_0 annihilates \mathcal{K} and X is a trace-class operator. Thus, $\phi(A_n) = \phi_0(A_n) + \text{tr } (XA_n) = \text{tr } (Xe_1 \otimes e_n^*) = (Xe_1, e_n)$. This tends to 0 as n tends to ∞ since $\{e_n\}$ is an orthonormal set.

Next, let $X_n = A_n^* = e_n \otimes e_1^* \in (\tau c)$. For $T \in \mathcal{L}(\mathcal{H})$, we have tr $(X_n T) = (e_n, T^*e_1) \to 0$ as *n* tends to ∞ . If follows that $\{\phi_{X_n} + \mathcal{A}^{\perp}\}$ converges to 0 weakly in the dual space $\mathcal{A}^* \cong \mathcal{L}(\mathcal{H})^* / \mathcal{A}^{\perp}$.

TIMOTHY G. FEEMAN

Finally, we observe that $\phi_{X_n}(A_n) = \text{tr } (X_nA_n) = \text{tr } (e_n \otimes e_n^*) = (e_n, e_n) = 1$ for all $n \ge 1$. Thus, the condition (DPP) is not satisfied and therefore \mathcal{A} fails to have the Dunford-Pettis Property.

We remark that $\mathcal{A} \cong ((\tau c)/{}^{\perp}\mathcal{A})^*$ so that, by reversing the roles of A_n and X_n , the above proof shows that $(\tau c)/{}^{\perp}\mathcal{A}$ and, consequently, its dual \mathcal{A} fail to have the Dunford-Pettis Property.

DEFINITION. For any subset \mathcal{B} of $\mathcal{L}(\mathcal{H})$ the Bourgain algebra of \mathcal{B} is the set

 $\mathcal{B}_{b} = \{ T \in \mathcal{L}(\mathcal{H}) : \text{dist}(TA_{n}, \mathcal{B}) \rightarrow 0 \text{ whenever } A_{n} \rightarrow 0 \text{ weak}^{*} \text{ in } \mathcal{B} \}.$

It is straightforward to see that \mathcal{B}_b is a norm-closed subalgebra of $\mathcal{L}(\mathcal{H})$ and that, if \mathcal{B} is itself a subalgebra of $\mathcal{L}(\mathcal{H})$, then $\mathcal{B}_b \supseteq \mathcal{B}$. In particular, if $\mathcal{A} = Alg\mathcal{P}$ is a nest algebra, then $\mathcal{A} \subseteq \mathcal{A}_b$.

LEMMA 2. If $\mathcal{A} = Alg \mathcal{P}$ is a nest algebra, then $\mathcal{A} \subseteq \mathcal{A}_b \subseteq \mathcal{A} + \mathcal{K}$.

PROOF. We have already discussed the first containment. The second follows from the theorem of J. A. Erdos ([11]) that the algebra generated by the rank-one elements of a nest algebra is dense in the nest algebra in the weak* topology. Thus, there is a sequence $\{R_n\}$ of compact operators in \mathcal{A} such that $(1 - R_n) \rightarrow 0$ in the weak* topology. If $T \notin \mathcal{A} + \mathcal{K}$, then we have $0 < \text{dist}(T, \mathcal{A} + \mathcal{K}) \leq \text{dist}(T - TR_n, \mathcal{A})$ for all *n* so that the sequence $\{\text{dist}(T(1 - R_n), \mathcal{A})\}$ does not tend to 0. This implies that $T \notin \mathcal{A}_b$. Hence, $\mathcal{A}_b \subseteq \mathcal{A} + \mathcal{K}$ as desired.

We remark that Erdos' result has been extended by Laurie and Longstaff ([12]) who have shown that, if \mathcal{P} is any commutative, completely distributive lattice of projections, then the algebra generated by the finite-rank elements of Alg \mathcal{P} is dense in Alg \mathcal{P} in the weak* topology. The argument above then applies to this case as well and shows that $(Alg\mathcal{P})_b \subseteq Alg\mathcal{P} + \mathcal{K}$ for such lattices.

COROLLARY 3. If \mathcal{A} and \mathcal{B} are two nest algebras for which $\mathcal{A}_b = \mathcal{B}_b$, then $\mathcal{A} + \mathcal{K} = \mathcal{B} + \mathcal{K}$.

PROOF. Lemma 2 and the hypothesis imply that $\mathcal{A} \subseteq \mathcal{B} + \mathcal{K}$ and $\mathcal{B} \subseteq \mathcal{A} + \mathcal{K}$. Hence, $\mathcal{A} + \mathcal{K} \subseteq \mathcal{B} + \mathcal{K}$ and $\mathcal{B} + \mathcal{K} \subseteq \mathcal{A} + \mathcal{K}$ from which the conclusion follows.

We remark that necessary and sufficient conditions for $\mathcal{A} + \mathcal{K} = \mathcal{B} + \mathcal{K}$ are known. (cf. [8]) Also, by the remark following Lemma 2, the Corollary holds as well when \mathcal{A} and \mathcal{B} are algebras having commutative, completely distributive lattices of projections.

3. **Examples.** We will now present a few examples which show that by appropriate choice of the nest algebra \mathcal{A} we can have $\mathcal{A}_b = \mathcal{A}, \mathcal{A}_b = \mathcal{A} + \mathcal{K}$, or the proper containment $\mathcal{A} \subset \mathcal{A}_b \subset \mathcal{A} + \mathcal{K}$.

EXAMPLE 1. Let $\{e_n : n \in \mathbb{Z}\}$ be an orthonormal basis for \mathcal{H} and, for each *n*, let E_n be the projection onto the subspace spanned by $\{e_j : j \leq n\}$. Let $\mathcal{P} = \{E_n : n \in \mathbb{Z}\}$

 \mathbb{Z} \cup {0,1} and \mathbb{A} = Alg \mathbb{P} . We will show that, in this case, $\mathbb{A}_b = \mathbb{A} + \mathbb{K}$. This case is analogous to the result of Cima et al ([6]) for H^{∞} .

Since $\mathcal{A} \subseteq \mathcal{A}_b \subseteq \mathcal{A} + \mathcal{K}$ and since \mathcal{A}_b is a linear space, it is enough to show that $\mathcal{K} \subseteq \mathcal{A}_b$. Since \mathcal{A}_b is also norm-closed, it will suffice to show that \mathcal{A}_b contains every rank-one operator of the form $e_m \otimes e_n^*$ for $m, n \in \mathcal{Z}$. For this, let m and n be integers and set $R = e_m \otimes e_n^*$. If $n \ge m$ then $R \in \mathcal{A} \subseteq \mathcal{A}_b$ and we are done. On the other hand, if m > n and if $T \in \mathcal{L}(\mathcal{H})$ then

dist
$$(RT, \mathcal{A}) = \sup_{k \in \mathbb{Z}} \|E_k^{\perp} RT E_k\| = \left(\sum_{j=-\infty}^{m-1} |(Te_j, e_n)|^2\right)^{1/2}.$$

If, in addition, $T \in \mathcal{A}$, then $(Te_j, e_n) = 0$ whenever j < n and hence

dist
$$(RT, \mathcal{A}) = \left(\sum_{j=n}^{m-1} |(Te_j, e_n)|^2\right)^{1/2}$$
, for $T \in \mathcal{A}$.

Suppose now that the operators $\{T_k\}$ in \mathcal{A} converge to 0 in the weak* topology. Then, for each *j* with $n \leq j \leq m-1$, we have $\lim_{k\to\infty} |(T_k e_j, e_n)| = 0$. As there are only finitely many such *j* to consider, it follows that $\lim_{k\to\infty} \text{dist}(RT_k, \mathcal{A}) = 0$ and, hence, *R* belongs to \mathcal{A}_b as desired. Thus, $\mathcal{A}_b = \mathcal{A} + \mathcal{K}$.

Note that a similar argument can be applied to show that $(Alg\mathcal{P})_b = Alg\mathcal{P} + \mathcal{K}$ whenever the nest $\mathcal{P} = \{P_k : k \in \mathbb{Z}\} \cup \{0, 1\}$ where $(P_{k+1} - P_k)$ is finite-dimensional for all k.

EXAMPLE 2. Suppose that the nest \mathcal{P} contains projections F, P, and Q such that F < P < Q and Q - F is finite-rank. Let R be any non-zero operator satisfying R = (Q - P)R(P - F). For $A \in \text{Alg}\mathcal{P}$ we then have $RA = R(P - F)A = R(P - F)AF^{\perp} = RAF^{\perp}$ so that $E^{\perp}RAE = 0$ whenever $E \in \mathcal{P}$ satisfies $E \leq F$ or $E \geq Q$. For F < E < Q, we have $||E^{\perp}RAE|| \leq ||RAE|| = ||RAF^{\perp}E|| \leq ||RA(Q - F)||$. Thus, for all $A \in \text{Alg}\mathcal{P}$,

dist (RA, Alg
$$\mathcal{P}$$
) = $\sup_{F < E < Q} ||E^{\perp}RAE|| \leq ||RA(Q - F)||.$

If the sequence $\{A_k\}$ in Alg \mathcal{P} converges to 0 in the weak* topology, then, since R and (Q - F) are compact, it follows that RA_k converges to 0 in the strong operator topology and that $RA_k(Q - F)$ tends to 0 in norm. Hence, dist $(RA_k, Alg\mathcal{P})$ converges to 0 as k tends to ∞ which implies that $R \in (Alg\mathcal{P})_b$. But clearly R does not belong to $Alg\mathcal{P}$ so we conclude that, in this case, $(Alg\mathcal{P})_b$ properly contains $Alg\mathcal{P}$.

We remark that if the nest contains a projection P for which $P_+ = \inf \{E \in \mathcal{P} : E > P\} > P$ then, taking $Q = P_+$ in the above argument, we would have dist (RA, Alg \mathcal{P}) = sup $\{\|E^{\perp}RAE\| : F < E \leq P\} \leq \|RA(P - F)\|$ for all A in Alg \mathcal{P} so we would only require the assumption that (P - F) is finite-rank in order to conclude that $R \in (Alg\mathcal{P})_b \setminus Alg\mathcal{P}$.

EXAMPLE 3. Let $\mathcal{A} = \text{Alg}\mathcal{P}$ where the nest \mathcal{P} contains projections P and Q such that 0 < P < Q < 1 and such that Q - P has infinite rank. Then there is an orthonormal set $\{e_j : j \ge 1\}$ in \mathcal{H} such that $Pe_1 = e_1$ and $(Q - P)e_j = e_j$ for all $j \ge 2$.

Clearly, the operator $A_j = e_1 \otimes e_j^*$ is in \mathcal{A} for each $j \ge 2$. For each $X \in (\tau c)$, we have $\lim_{j\to\infty} \operatorname{tr} (XA_j) = \lim_{j\to\infty} (Xe_1, e_j) = 0$ since $\{e_j\}$ is an orthonormal set. Thus, the sequence $\{A_j\}$ converges to 0 in the weak* topology.

Next, let R be any compact operator satisfying $R = Q^{\perp}R$ and such that $||Re_1|| = 1$. For each $j \ge 2$, we then have

dist
$$(RA_j, \mathcal{A}) = \sup_{E \in \mathcal{P}} ||E^{\perp}RA_jE|| \ge ||Q^{\perp}RA_jQ||$$

= $||RA_j|| = ||Re_1 \otimes e_j^*|| = ||Re_1|| ||e_j|| = 1$

It follows that $R \notin \mathcal{A}_b$. Since *R* is compact, we conclude that, in this case, \mathcal{A}_b is properly contained in $\mathcal{A} + \mathcal{K}$.

Note that a similar argument applies in case there is a projection Q for which $Q - Q_-$ is infinite dimensional and either $0 \le Q_- < Q < 1$ or $0 < Q_- < Q \le 1$.

We remark also that it is clear from Examples 2 and 3 that we can construct a nest \mathcal{P} so that $(Alg\mathcal{P})_b$ does not coincide with either $Alg\mathcal{P}$ or $Alg\mathcal{P} + \mathcal{K}$.

EXAMPLE 4. Let the Hilbert space \mathcal{H} have the concrete form $\mathcal{H} = L^2([0, 1])$. For $0 \leq t \leq 1$, set $\mathcal{N}_t = \{f \in \mathcal{H} : f = 0 \text{ a.e. on } [t,1]\}$. With N_t denoting the projection onto \mathcal{N}_t , the nest $\mathcal{N} = \{N_t : 0 \leq t \leq 1\}$ is the well-known Volterra nest. Let $\mathcal{A} = Alg\mathcal{N}$. We will show that $\mathcal{A} = \mathcal{A}_b$ in this case. (Note that the previous example shows that $\mathcal{A}_b \neq \mathcal{A} + \mathcal{K}$.)

Suppose the operator *T* does not belong to \mathcal{A} . Then, for some 0 < t < 1, we have $N_t^{\perp}TN_t \neq 0$. Since N_s converges to N_t in the strong operator topology as *s* increases to *t*, it follows that $N_t^{\perp}TN_s$ converges to $N_t^{\perp}TN_t$ and, hence, that $N_t^{\perp}TN_s \neq 0$ for some 0 < s < t. Choose a unit vector *f* in \mathcal{H} such that $f = N_s f$ and $N_t^{\perp}Tf \neq 0$ and select an orthonormal sequence $\{f_n : n \ge 1\}$ of vectors satisfying $(N_t - N_s)f_n = f_n$ for all *n*. For each $n \ge 1$, set $A_n = f \otimes f_n^*$. Then each A_n belongs to \mathcal{A} and the sequence $\{A_n\}$ converges to 0 in the weak* topology since $\{f_n\}$ tends to 0 weakly in \mathcal{H} . For $n \ge 1$, we have

dist
$$(TA_n, \mathcal{A}) \ge \|N_t^{\perp}TA_nN_t\| = \|N_t^{\perp}Tf \otimes (N_tf_n)^*\|$$

= $\|N_t^{\perp}Tf\| \|N_tf_n\| = \|N_t^{\perp}Tf\| > 0.$

Thus, dist (TA_n, \mathcal{A}) does not tend to 0 which implies that $T \notin \mathcal{A}_b$. We have shown that $\mathcal{A}_b \subseteq \mathcal{A}$. Since one always has $\mathcal{A} \subseteq \mathcal{A}_b$ for a nest algebra, we conclude that $\mathcal{A}_b = \mathcal{A}$ in this case.

A simple modification of the above argument shows that $(Alg \mathcal{P})_b = Alg \mathcal{P}$ for any continuous nest \mathcal{P} .

EXAMPLE 5. As a last example, we consider the algebra of analytic Toeplitz operators on the Hilbert space $H^2 = H^2(T)$, where *T* denotes the unit circle. For each *f* in L^{∞} , the operator T_f is defined on H^2 by $T_fg = P_{H^2}fg$ where P_{H^2} is the projection of $L^2(T)$ onto H^2 . The analytic Toeplitz algebra is then $\mathcal{T} = \{T_f : f \in H^{\infty}\}$ which coincides with the weak* closed subalgebra of $\mathcal{L}(H^2)$ generated by 1 and the unilateral shift T_z . It is well known that, for each $f \in L^{\infty}$, the operator norm $||T_f|| = ||f||_{\infty}$. Since the unilateral shift is a completely non-unitary contraction, the Sz.Nagy – Foias functional Calculus then implies that the mapping $\alpha : H^{\infty} \to \mathcal{T}$ defined by $\alpha(f) = T_f$ is an isometric Banach algebra isomorphism which is a homeomorphism when H^{∞} and \mathcal{T} are equipped with their respective weak^{*} topologies. (cf. [2])

Since H^{∞} and \mathcal{T} are isometrically isomorphic and since Bourgain has shown that H^{∞} has the Dunford-Pettis Property, it follows that \mathcal{T} has the Dunford-Pettis Property as well.

Cima, Janson, and Yale have shown that

$${f \in L^{\infty} : \text{dist} (fh_n, H^{\infty}) \to 0 \text{ whenever } h_n \to 0 \text{ weak}^* \text{ in } H^{\infty}} = H^{\infty} + C.$$

Since the mapping α is isometric and a weak^{*} homeomorphism, and since $T_f T_h = T_{fh}$ for all f in L^{∞} and all h in H^{∞} , it follows that T_f belongs to T_b if and only if f is in $H^{\infty} + C$. In particular, T_b is not all of $\mathcal{L}(H^2)$.

Finally, we show that \mathcal{T}_b contains all compact operators. For this, let $\{e_n : n \ge 0\}$ denote the usual orthonormal basis for H^2 . Given non-negative integers *n* and *m*, let $R_{nm} = e_n \otimes e_m^*$. For $f \in H^\infty$ and $k \ge 0$, we then have

$$R_{nm}T_f e_k = (T_f e_k, e_m)e_n = \begin{cases} \hat{f}(m-k)e_n, & \text{if } m \ge k; \\ 0, & \text{if } m < k. \end{cases}$$

Suppose now that the sequence $\{f_j\}$ in H^{∞} converges weak* to 0. It is well known that this implies that $\lim_{j\to\infty} \hat{f}_j(k) = 0$ for each $k \ge 0$. Thus, given $\epsilon > 0$, there exists J such that $|\hat{f}_j(k)| \le \epsilon / \sqrt{2^{k+1}}$ for all $k = 0, \ldots, m$ and all $j \ge J$. For $j \ge J$, we then have

dist
$$(R_{nm}T_{f_j}, \mathcal{T}) \leq ||R_{nm}T_{f_j}|| = \left(\sum_{k=0}^m |\hat{f}_j(k)|^2\right)^{1/2}$$

$$\leq \left(\sum_{k=0}^m \epsilon^2 / 2^{k+1}\right)^{1/2} < \epsilon.$$

Hence, $\lim_{j\to\infty} \text{dist}(R_{nm}T_{f_j}, \mathcal{T}) = 0$ which implies that R_{nm} is in \mathcal{T}_b for all non-negative integers *n* and *m*. Since \mathcal{T}_b is a norm-closed subalgebra of $\mathcal{L}(H^2)$, it follows that every compact operator belongs to \mathcal{T}_b .

We conclude this note with two questions. First, if \mathcal{A} is an operator subalgebra for which $\mathcal{A}_b = \mathcal{L}(\mathcal{H})$, does it follow that \mathcal{A} has the Dunford-Pettis property? For instance, if \mathcal{H} is finite-dimensional then it can be shown that $\mathcal{A}_b = \mathcal{L}(\mathcal{H})$ and that \mathcal{A} satisfies (DPP) for every subalgebra \mathcal{A} . Example 5 shows that, on an infinite-dimensional space, the converse of this question does not hold. Second, if the subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ does have the Dunford-Pettis property, must $\mathcal{A}_b \supseteq \mathcal{K}$? Again, the converse question is not true as illustrated by Example 1 and Theorem 1.

TIMOTHY G. FEEMAN

REFERENCES

- 1. William Arveson, Interpolation problems in nest algebras, J. Func. Anal., 20 (1975), 208-233.
- 2. S. Brown, B. Chevreau, and C. Pearcy, *Contractions with rich spectrum have invariant subspaces*, J. Operator. Th., 1 (1979), 123–136.
- **3.** J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras, and the Sobolev spaces, Studia Math., **77** (1984), 245–253.
- **4.** J. Bourgain, New Banach space properties of the disc algebra and H^{∞} , Acta Math., **152** (1984), 1–48.
- 5. J. A. Cima and R. M. Timoney, *The Dunford-Pettis property for certain planar uniform algebras*, Michigan Math. J., **34** (1987), 99–104.
- 6.J. A. Cima, S. Janson, and K. Yale, Completely continuous Hankel operators on H[∞] and Bourgain algebras, preprint.
- 7. K. R. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math., to appear.
- 8. K. R. Davidson, *Similarity and compact perturbations of nest algebras*, J. für die Reine und Angew. Math., 348 (1984), 72–87.
- 9. J. Diestel, *A survey of results related to the Dunford-Pettis property*, in Integration, Topology, and Geometry in Linear Spaces, W. H. Graves, editor, Contemporary Mathematics series, volume 2, American Math. Soc., Providence, 1980.
- 10. N. Dunford and B. J. Pettis, *Linear operations on summable functions*, Trans. Amer. Math. Soc., 47 (1940), 323–392.
- 11. J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc., 43 (1968), 391-397.
- 12. Cecelia Laurie and W. E. Longstaff, A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc., 89 (1983), 293–297.
- 13. Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, band 27, Springer-Verlag, New York Heidelberg Berlin, 1960.

Villanova University Villanova PA 19085 USA