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Distributional Regression Models

This chapter serves as a general introduction to the types of regression models dis-
cussed in this book and has the following four major aims.

• Provide the context for the GAMLSS way of distributional regression modeling.

• Give a brief history of the development of GAMLSS and its relation to other
regression approaches.

• Introduce a first example illustrating some advantages and potential of GAMLSS
analyses.

• Compare GAMLSS with, and delineate from, competing distributional regression
approaches.

We start with setting the scene in Section 1.1, where we describe how our presen-
tation fits into the data analysis circle for working with research data. Afterwards,
we introduce basic terminology for and ingredients of statistical regression models
(Sections 1.2 and 1.3) and briefly summarize the historical developments that led
to the introduction of GAMLSS (Section 1.4). We then introduce the structure of
GAMLSS in a more general and formal way (Section 1.5) and close the chapter with
a discussion of alternative distributional regression approaches (Section 1.6).

1.1 The Data Analysis Circle

The statistical analysis of research data can be seen as a circular process consisting
of the following phases (see Figure 1.1):

(i) Planning the data collection: In the first phase, the process of collecting the data
has to be decided upon. The exact strategy strongly depends on the research
question of interest as well as the purpose of the analysis, and may involve
aspects such as sample size calculation, defining the relevant study population,
choosing an experimental design, defining the sampling process, investigating
sources for already available data, etc. In addition, this step may feature de-
veloping a fixed data analysis plan (for confirmatory analysis, e.g. in clinical
studies), pre-registration of the trial, and other aspects that determine steps
taken later on in the analysis of the data.
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4 Distributional Regression Models

Figure 1.1 The data analysis circle.

(ii) Collecting the data: The second phase implements data collection, which may
range from generating data in experimental settings, to collecting observational
data or scraping data from existing sources.

(iii) Processing the data: To turn the raw data collected in the second phase into a
dataset to be analyzed, it is of utmost importance to pre-process the data. This
includes diverse aspects such as checking for inconsistencies, treating missing
values, implementing transformations, calculating indices, graphical visualiza-
tions, etc.

(iv) Analyzing the data: The fourth phase implements the actual analysis. Through-
out this book, this analysis will be based on statistical modeling, but of course
very different approaches may be taken depending on the purpose of the anal-
ysis. Graphical tools are of particular relevance here to check the validity of
model decisions and assumptions.

(v) Interpreting the results: After having analyzed the data, interpreting the results
with respect to the original research question is crucial. This includes deriving
required quantities from the raw model results, communication with subject
matter scientists, and also publishing the results in appropriate formats, com-
municating the results to the general public, or deriving policy advice. Again,
graphical displays feature prominently in this task.

(vi) Archiving the data and code: To ensure reproducibility and to make data that
have been collected with considerable effort accessible to other researchers, it
has become common practice in many areas to archive research data in repos-
itories (possibly including their publication and attaching a persistent identi-
fier to the data) and to publish the code utilized for their analysis. Of course
there may be limitations, for example owing to data confidentiality, proprietary
rights, etc., but publishing at least a basic set of information including analysis
code is nowadays considered good scientific practice.
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1.1 The Data Analysis Circle 5

(vii) Reusing the data and results: To close the data analysis circle, data collected for
a specific purpose can often be reused for further analyses in different settings
or for different research questions. Similarly, the results achieved in one analysis
often form the basis for future research. In both cases, we considerably benefit
from archived data and code as discussed in the previous step.

The focus in our book is on phases (iv) and (v) of the data analysis circle, that is, we
are concerned with statistical modeling as a specific instance of data analysis and the
thorough interpretation of the results obtained from the statistical model. However,
the other aspects are of course also very relevant when performing data analyses,
even though we do not discuss them in detail in this book. In particular, for a data
analysis to be useful, the following properties are required from the data.

• The data should accurately represent the population under study. The population
consists of the subjects we would like to investigate and the sample (that is, the
data) should be representative of it. For example, this can be ensured by taking a
random sample from the population.

• The data should be collected with integrity so there is no intentional bias.

• Extreme values in the data should be genuine values and not human or machine
errors.

• Missing values should be properly treated rather than ignored, see, for example,
van Buuren (2018).

• Data contamination should be small, if it exists at all. By data contamination
we mean that part of the data is unintentionally corrupt. This phenomenon is
usually treated by“robust”statistical analysis; for example, Aeberhard et al. (2021)
propose robust methods for GAMLSS.

The decisions made in any of the steps of the data analysis circle depend of course
very much on the purpose of the analysis. In particular, data are analyzed with very
different aims, which often can be classified as follows.

• Confirmatory, when a specific hypothesis about an effect of interest is studied. This
often goes along with the goal of establishing a causal link between observables,
which requires either specific choices concerning the data collection process (e.g. an
experimental set-up with random treatment assignment) or additional assumptions
on observational data (e.g. using instrumental variables or graphical models to
establish causal effects);

• Exploratory, when the goal is to derive additional (or new) knowledge about an
empirical phenomenon of interest. In this case, the main focus is on identifying
relevant associations rather than establishing causal relations;

• Prediction-oriented, when the analyst is interested in determining a model that not
only describes the observed data well, but is also able to predict new observations.
In this case, one may set interpretability aside in favour of better prediction, as is
commonly done in machine learning methodology such as deep neural networks.
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6 Distributional Regression Models

Most of our applications fall into the category of exploratory data analysis, but we
will also address applications with an emphasis on prediction. In data mining, the
models are typically exploratory and are used to find interesting patterns in the
data. Medical statistics and econometrics often use confirmatory models, where the
estimated coefficients of the model and their interpretation play an important role. It
is here where likelihood-based and Bayesian ways of fitting the model are prominent.
In machine learning (including classical boosting) and artificial intelligence, the focus
is often on finding models that sacrifice interpretability for the sake of optimized
predictive ability. Statistical boosting approaches (Chapter 7) represent a mixture
between classical statistical modeling and machine learning, allowing the fitting of
an interpretable model with competitive prediction accuracy.

1.2 Statistical Models

This book follows the general scientific principle that “all models are wrong but some
are useful” (Box, 1979) in the sense that no statistical model will usually be complex
enough to fully describe reality. However, statistical models can provide a reasonable
approximation to reality, subject to a certain level of abstraction. Statistical models
consist of a structural component that relies on a mathematical description of how
certain input variables (the covariates in a regression model) determine properties of
the distribution of a response variable. In contrast to deterministic models, statisti-
cal models are equipped with a stochastic component that represents the deviation
between the real data generating process and the approximation by the model, as
well as truly random aspects of the data generation such as measurement errors or
uncertainty stemming from random sampling from a population. In the linear model,
the structural component (the regression predictor of the model) and the stochastic
component (the error term) are nicely separated, whereas this is no longer the case
for GAMLSS.

The process of statistical modeling includes the steps of making reasonable assump-
tions concerning the data generating process, fitting the model to the observed data,
checking the validity of the model, and interpreting the results. As emphasized pre-
viously, all statistical models are derived through simplifying assumptions. If the
assumptions are correct, it is more likely that the conclusions from the model will
also be useful.

General requirements for choosing a good model include the model’s ability to

• answer the right scientific question,

• highlight important features of the data while ignoring the less relevant,

• provide a good trade-off between fidelity to the data and complexity such that we
neither overfit the data (implying restrictions on the generalizability beyond the
observed data for predictions) nor underfit the data (implying a potential bias in
the conclusions).

In essence, a good statistical model should be able to“allow the data to tell its story.”
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1.3 Regression Models 7

Exploratory statistical modeling often relies on the idea of trying different models
to the data and choosing the most appropriate, while accepting the principle that
there could be more than one appropriate and useful model, or occasionally none,
that adequately fits the data of interest.

1.3 Regression Models

Regression models are one specific instance of statistical models that consist of a
response variable y (also denoted as the outcome, dependent variable, or the target
variable), a number of explanatory variables x (also called predictors, covariates,
independent variables, terms), and assumptions as to how the explanatory variables
affect the response.

The set of possible values the response variable can assume (i.e. its support) is crucial
in developing an appropriate model. The most important differentiation is between
continuous and discrete responses, but additional differentiations are possible, for
example relating to nonnegative responses, responses with skewed distributions, re-
sponses with bounded support, mixed discrete–continuous responses, nominal and or-
dinal discrete responses, etc. We will also consider models for multivariate responses.
As we will see in Section 2.6, the support of the response can be the first criterion
when choosing an appropriate distribution and we discuss a number of distribution
classes in Chapter 2.

For the explanatory variables, we distinguish

• continuous covariates assuming values on the real line or an interval subset of
the real line. For example, age and height both assume values on the positive
real line. There are occasions when a continuous explanatory variable needs to
be transformed. Skew distributed values, unusually large or small values, or the
scaling of the explanatory variable are some of the reasons to transform continuous
variables;

• spatial covariates representing either continuous coordinate information or discrete
spatial information in terms of the assignment to a set of pre-specified regions;

• factors, namely categorical variables which can be unordered, for example, eye color
where the levels of the factor do not have a specific order; or ordered, for example,
disease level where the levels “severe”, “moderate”, “mild”, “none”do have a specific
order. Factors are also used as grouping or clustering variables, for example the
identification variable for individuals in longitudinal data.

It is important to remember that not all of the available covariates may be needed to
explain the behavior of the response variable. A central part of statistical modeling
is to determine which of the covariates are indeed important, and in what form(s)
they should be included.
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8 Distributional Regression Models

1.4 From Linear Models to GAMLSS

In this section, we provide a brief history of the development of regression method-
ology from the linear model to GAMLSS. Our goal is not to provide a complete
literature review or a complete enumeration of all regression approaches, but to
motivate the important generalizations of and differences to the most well-known
regression set-ups.

1.4.1 The Linear Model

Historically, the most popular regression model is the linear model, where the re-
sponse variable yi is related to a set of covariates xi1, . . . , xip as

yi = β0 + β1xi1 + · · ·+ βpxip + εi, for i = 1, . . . , n, (1.1)

where εi are the errors or disturbances that quantify the deviations between the
structural part of the model β0 + β1xi1 + · · ·+ βpxip and the observed responses yi.
The very basic assumption about the error terms εi is that they are i.i.d. with zero
mean and constant variance. The additive composition of the error terms and the
structural component yields a separable model where additional assumptions on the
errors entail easy interpretation and estimation of the model.

Note that in this book we use lower-case letters to denote the responses and covari-
ates, irrespective of whether they are random variables or their realizations. Only
in cases where it cannot be easily deduced from the context, will we make explicit
notational distinction between random variables and realizations.

An extra assumption for the error terms, which is particularly helpful for uncertainty
assessment and hypothesis testing, is that they are i.i.d. realizations from a normal
distribution with zero mean and constant variance, that is, εi

ind∼ N (0, σ2). The
assumption of zero means implies that the structural part of the model determines
the (conditional) expectation of the responses such that

E(yi|xi1, . . . , xip) = β0 + β1xi1 + · · ·+ βpxip,

which also yields the famous ceteris paribus (everything else fixed) interpretation
of the regression coefficients: When comparing two observations that differ in one
unit in covariate xj but have the same values for all other covariates, we expect a
difference of βj in the response.

More generally, normally distributed error terms imply

yi|xi1, . . . , xip
ind∼ N (β0 + β1xi1 + · · ·+ βpxip, σ

2),

that is, the responses themselves follow a normal distribution such that inferences
for the regression coefficients can be drawn based on the implied normal likelihood.
This includes not only point estimates based on maximum likelihood theory, but also
the assessment of uncertainties via standard errors, confidence intervals, or statistical
tests.
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1.4 From Linear Models to GAMLSS 9

In matrix notation, the linear model is expressed as

y = Xβ + ε, (1.2)

where y and ε are n-dimensional vectors of the response variable and error terms,
respectively, X is an (n×(p+1))-dimensional design matrix containing the explana-
tory variables as columns (including a column of ones relating to the intercept β0),
and β is the (p+ 1)-dimensional vector of regression coefficients, which shall be esti-
mated from the data. For the vector of error terms, we then obtain the n-dimensional
multivariate normal distribution:

ε ∼ N n(0, σ2In),

which in particular implies E(ε) = 0 and Cov(ε) = σ2In. Similarly, for the responses,
we find

y|X ∼ N n(Xβ, σ2In) (1.3)

and therefore E(y|X) = Xβ and Cov(y|X) = σ2In. The corresponding likelihood
for σ2 and β is given by

L(β, σ2) =

(
1√

2πσ2

)n
exp

(
− 1

2σ2
(y −Xβ)>(y −Xβ)

)
.

Ignoring σ2 for the moment, maximizing the likelihood is equivalent to minimizing

(y −Xβ)>(y −Xβ) = ε>ε =
n∑
i=1

ε2i ,

i.e. the least squares criterion that is often also used as the foundation for determining
regression coefficients in the linear model without relying on the normal distribution
for the error terms. The solution to minimizing the least squares criterion is the
ordinary least squares estimator

β̂ =
(
X>X

)−1
X>y, (1.4)

while the maximum likelihood estimator for the variance of the error terms is given
by

σ̂2
ML =

1

n

(
y −Xβ̂

)> (
y −Xβ̂

)
.

Since σ̂2
ML is biased, a commonly used alternative is the unbiased estimator, which

can also be derived as a restricted maximum likelihood (REML) estimator:

σ̂2
REML =

1

n− p− 1

(
y −Xβ̂

)> (
y −Xβ̂

)
.

We illustrate a simple linear regression model in action with data from the Fourth
Dutch Growth Study Fredriks et al. (2000a,b), a cross-sectional study measuring
growth and development in the Dutch population between the ages 0 and 23 years.
Figure 1.2(a) shows n = 3, 512 observations of the body mass index (BMI) and age of
boys between 10 and 20 years of age. The response variable is BMI, and there is only
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Figure 1.2 Dutch boys’ BMI for boys aged between 10 and 20 years: (a)
the data and the fitted least squares line; (b) QQ-plot of the residuals from
the linear model m1; (c) bucket plot for checking the moment transformed
skewness and kurtosis of the residuals of model m1; (d) histogram and
density estimate of the residuals.

one explanatory variable, age. The fitted least squares line shown in Figure 1.2(a)
is ŷ = 10.87 + 0.577 age and it captures the trend in growth well. We refer to this
linear model as m1.

Unfortunately, other features in the data are not captured well by the linear model.
In Figure 1.2, panels (b) and (c) show residual diagnostics from the linear model.
Panel (b) shows a QQ-plot of the normalized quantile residuals (defined in Section
4.7.1) of the linear model, which checks the normality assumption. Most points in the
QQ-plot are far from the diagonal line, indicating strong deviations from normality.
Panel (c) shows a bucket plot, which is a diagnostic graphical tool checking the
skewness and kurtosis assumption. (See Section 4.7.3 and also De Bastiani et al.
(2022).) The point marked as m1 in Figure 1.2(c) is the transformed moment skewness
(on the x axis) against the transformed moment kurtosis (on the y axis) of the
residuals of model m1. The cloud of red points around m1 are 99 bootstrap points of
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1.4 From Linear Models to GAMLSS 11

transformed moment skewness and kurtosis points, obtained by bootstrapping the
original residuals. This shows the variability of the measures of skewness and kurtosis
of m1. The important feature is the shaded area in the middle of the figure around
the point (0, 0), which represents the normal distribution. This shaded area is a 95%
confidence region based on the Jarque–Bera test for simultaneously testing whether
skewness and kurtosis exist in the data. The point m1 is far from the 95% confidence
region of the the Jarque–Bera test, indicating that the residuals of the model m1
show considerable skewness and kurtosis. The model m1 has not taken the skewness
and kurtosis observed in the data, into account.

Even without diagnostic tools, one can spot more variation above the fitted line in
Figure 1.2(a) than below it. To highlight this, Figure 1.2(d) shows a histogram and
density estimate of the residuals of the of m1 model, which highlights considerable
skewness. This is unlikely to be modeled adequately by the assumption of normality
inherited by the linear model. The fact is, that while we fitted a reasonable model for
the location parameter of the data (the mean in this case), the basic assumptions of
the linear model are inevitably broken and any inference on the parameters or other
features of the model would be affected by this.

Figure 1.2(a) is based on n = 3, 512 observations for children and teenagers from 10
to 20 years old. The situation becomes more complicated if we consider the original
dataset with n = 7, 294 observations with age range of 0.30 to 22.7 years, shown in
Figure 1.3(a). Obviously, the least squares fit of the linear model will fail miserably on
the complete data. The curve shown in Figure 1.3(a) was fitted using P-splines (Eilers
and Marx, 1996, 2021), one of the techniques we will discuss extensively in Chapter 3.
In addition, there are other features in the data which indicate that the assumptions
of normally distributed error terms with constant variance, are not appropriate here.
There is evidence in Figure 1.3(a) of heteroscedasticity (the variance varies with
age); skewness; and possibly kurtosis (since there exist a number of observations
further away from the central line, in both directions, suggesting heavier tails than
the normal distribution). These features suggest that skewness and kurtosis may also
vary with age. The GAMLSS model introduced in Section 1.5 accommodates these
features.

Generally, GAMLSS enables us to

• consider a much wider range of response distributions than the normal distribution,

• deal with heterogeneity, possibly covariate-dependent, in various distributional
features of the response distribution (not only the mean), and

• relax the assumption of a linear predictor such that various kinds of complex
regression relations can be accommodated.

In fact, equation (1.3) provides the simplest example of a GAMLSS, in which nor-
mally distributed responses are assumed with purely linear effects on only the mean
while the variance is the same for all observations. In Sections 1.4.2 to 1.4.4 we dis-
cuss various extensions that preceded the development of GAMLSS. It is convenient
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12 Distributional Regression Models

at this point to introduce a different notation for Equation (1.3) that emphasizes that
the elements of the response vector are independent but not identically distributed.
More precisely, we rewrite model (1.3) as

y
ind∼ N (µ, σ2), µ = Xβ, (1.5)

where the notation indicates that each element yi of y is independently distributed
as yi ∼ N (µi, σ

2) for i = 1, . . . , n. The mean parameter µ is a linear function of the
explanatory variables constituting the columns of X.

1.4.2 Generalized Linear Models

A big step in the development of distributional regression models was the introduc-
tion of Generalized Linear Models (GLMs) by Nelder and Wedderburn (1972). The
GLM was popularized by McCullagh and Nelder (1989) and Dobson and Barnett
(2018) and also by the introduction of the first interactive statistical package GLIM;
see, for example, Francis et al. (1993) and Aitkin (2018).

In a GLM, the normal response distribution in (1.5) is replaced by the exponential
family of distributions such that

y
ind∼ E(µ, φ),

where E denotes the exponential family, µ = E(y) is the expectation of the response
and φ > 0 is a scale parameter. The exponential family includes many important
distributions such as the normal, Bernoulli, Poisson, gamma, inverse Gaussian and
Tweedie distributions, therefore providing a unifying framework for regression analy-
ses in variety of settings. Most importantly, the framework includes the linear model
as a special case, but also allows the analysis of binary responses (based on the
Bernoulli distribution), count responses (based on the Poisson distribution), nonneg-
ative continuous responses (based on the gamma and inverse Gaussian distributions),
and nonnegative continuous responses supplemented with a positive probability of
observing zero (based on the Tweedie distribution).

Regression effects are now assumed for the expectation µ, with a further generaliza-
tion of the linear model, allowing a monotonic link function g(·) that relates µ to
the linear predictor η = Xβ:

g(µ) = η = Xβ.

This opens up the relationship between η and µ to a variety of shapes not possible
under the linear model. For example, if g(·) is the logarithmic function, this implies
a multiplicative relationship between the covariates and the mean response since

log(µi) = β0 + β1xi1 + · · ·+ βpxip

and therefore

µi = exp(β0) · exp(β1xi1) · · · exp(βpxip). (1.6)
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1.4 From Linear Models to GAMLSS 13

The inverse of the link function h(·) = g−1(·) is called the response function and
maps the linear predictor to the expectation of the response, namely

µ = h(η).

Since the domain of µ is often restricted (e.g. to the unit interval in case of the
Bernoulli distribution or to the positive half axis in case of Poisson, gamma, and
inverse Gaussian distributions), the link function also serves as a convenient way of
constraining the distribution parameter µ to the appropriate range when modeled
as a function of the explanatory variables.

Note that unlike in the linear model, GLMs in general entail a non-separable structure
where the regression predictor (the structural part of the model) cannot easily be
disentangled from the random component (the response distribution). Rather, one
specific aspect of this distribution (namely the mean) is related to the structural
model component.

Unifying various regression models under the umbrella of the exponential family al-
lows us to derive general principles and implementations for statistical inference. In
particular, iteratively weighted least squares (IWLS) estimation provides a conve-
nient way of implementing Fisher scoring iterations for determining the maximum
likelihood estimate for the regression coefficients β (see McCullagh and Nelder (1989)
for details). Furthermore, theoretical properties of the exponential family result in
asymptotic normality and the validity of likelihood ratio tests. An important property
of GLM models (which is shared with the generalized estimating equation approach
(Hardin and Hilbe, 2002)) is that it is always consistent in estimating the popula-
tion mean.1 The problem is that if the distribution is not correct it could be a very
inefficient way of doing so. Another important theoretical implication of assuming a
response distribution in the exponential family is that the variance of the responses
is intrinsically linked to the expectation based on a variance function that is specific
to the chosen member of the exponential family. More precisely, we find

V(yi) = V (µi)φ,

that is, the variance is determined by the product of a variance function V (·) and
the scale parameter φ. For example, in case of the normal distribution, the variance
function and scale parameter are given by V (µ) = 1 and φ = σ2, providing one
example where indeed the variance does not depend on the expectation µ but only
on the scale parameter, which then coincides with the error variance. For other
members of the exponential family, variance function and scale parameter are given
by, for example, V (µ) = µ, φ = 1 (Poisson distribution), V (µ) = µ(1 − µ), φ = 1
(Bernoulli distribution), and V (µ) = µ2, φ > 0 (gamma distribution).

1.4.3 Generalized Additive Mixed Models

While generalized linear models enable considerable flexibility with respect to the
response distribution, they keep the restrictive assumption of a purely linear re-

1 The concept of the population of interest is introduced in Chapter 4.
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14 Distributional Regression Models

gression predictor Xβ determining the conditional expectation of the response, via
µ = h(Xβ). Various extensions have been introduced to overcome this limitation,
following the advent of generalized additive models (Hastie and Tibshirani, 1986,
1990) that expanded the predictor to include nonlinear effects of continuous covari-
ates, yielding

ηi = x>i β + s1(xi1) + · · ·+ sJ(xiJ), (1.7)

where the sj(·) are nonlinear smooth functions for the explanatory variables xij . In
this book, we will rely on penalized splines for modeling these nonlinear effects, as
discussed in more detail in Section 3.1. In the wake of generalized additive models,
it became apparent that a multitude of other effects could be integrated into the
regression predictor in similar ways. For example, extended model classes include

• spatial effects sspat(zi) where zi denotes information on the spatial allocation of
individual i, in terms of either coordinates or administrative regions,

• varying coefficient terms xi1s(xi2), where the effect of xi1 (the interaction variable)
smoothly varies with respect to the value of covariate xi2 (the effect modifier), and

• interaction surfaces s(xi1, xi2) of two continuous covariates.

Various approaches for defining such terms will be discussed in Chapter 3.

Figure 1.3(a) shows the benefit of using smoothing techniques (otherwise known
as smoothers) for modeling the relationship between an explanatory term and the
response. The fitted curve for all n = 7294 observations of the BMI dataset fits the
trend in the data very well and it is hard to imagine we could have achieved the same
effect using parametric curve fitting. 2 The GLM/GAM framework provides three
distributions appropriate for modeling a continuous response variable such as BMI:
the normal, the gamma, and the inverse Gaussian distributions. We have fitted all
three distributions; the fitted values for the conditional mean of those distributions
were very similar and indistinguishable from the line shown in Figure 1.3(a), which
plots the fitted values for the inverse Gaussian model. The inverse Gaussian model
had the lowest AIC3 value of the three GAMs. Figure 1.3(b) shows the QQ-plot of
the normalized quantile residuals from the three GLM/GAM fitted models. None
of them fits the data well. Figure 1.3(c) shows the bucket plot of the three fitted
distribution models. The points N, G, and I represent the transformed skewness and
the transformed kurtosis of the normalized quantile residuals of the three GAM
fitted distributions. All points are far from the 95% confidence region of the Jarque–
Bera test. This provides additional evidence that none of the three GLM/GAM
distributions adequately fits skewness and kurtosis in the BMI data. The inability
of the exponential family to model skewness and kurtosis of the BMI data is also
partially shown in Figure 1.3(d), in which the centile curves4 at centiles 3, 10, 25,
50, 75, 90, and 97, of the fitted inverse Gaussian distribution model, are plotted.

2 Note that, to improve the fit, we used the transformed variable x = age1/3 rather than age.
3 Use of the AIC as a way of choosing between models is discussed in Section 4.4.1.
4 A centile is a quantile multiplied by 100.
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Figure 1.3 Dutch boys’ BMI for boys aged between 0 and 23 years: (a) the
data and the fitted smooth curve from a GAM model using an inverse
Gaussian response distribution; (b) QQ-plots of the residuals from GAMs
with normal distribution (N) in blue, gamma distribution (G) in red, and
inverse Gaussian distribution (I) in blue; (c) bucket plot of the normalized
quantile residuals from the three fitted GAM models: N G, and I; (d) fitted
centile curves at centiles values 3, 10, 25, 50, 75, 90, and 97, using the
inverse Gaussian GAM model.

In general, we would expect α% of the data to be below the α centile curve and
(100 − α)% above. For example, in Figure 1.3(d) we would expect 3% of the data
to be below the 3 centile curve (the curve at the bottom of the plot). The observed
percentage is 1.78%. Above the 97 centile curve (at the top of the plot), we would
expect 3% of the data while actually there are 4.2%. The difference does not sound
large, but when the centile curves are used for risk stratification, this could be crucial.

Another extension concerns the ability to adjust for potential correlation induced
by unobserved heterogeneity associated with grouping structures in the data. In
combination with linear predictors, random effect models were introduced by Laird
and Ware (1982), and popularized by Pinheiro and Bates (2000). These are models
which accommodate correlation between observations through the use of random
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16 Distributional Regression Models

intercepts and (optionally) random slopes. (See Section 3.6 for details.) A mixed
effects model in which fixed effect and random effect coefficients coexist is written
as

ηi = x>i β + z>i α,

where xi contains explanatory variables associated with the linear fixed effect coeffi-
cients β, while zi contains explanatory variables associated with the random effects
(coefficients) α. The α are assumed to be normally distributed with zero mean and
covariance matrix Q, namely α ∼ N (0,Q).

The most prominent case for the application of random effects are longitudinal data
with repeated observations on the same set of statistical units (subjects, individuals).
In this case, within-subject correlation is accounted for by the random effects compo-
nent. An alternative perspective is that (individual-specific) random effects account
for individual-specific, unobserved heterogeneity between the statistical units. How-
ever, the application of random effects models is actually much broader since most
smoothers sj(·) in the GAM equation (1.7) (and also most of the extensions men-
tioned earlier) can be represented as random effects models. This connection of the
smoothers to random effect models led to the further understanding and development
of smoothers and also to different ways of estimating their smoothing parameters.
The family of smoothers which fall into this category were called structured additive
terms by Fahrmeir et al. (2004).

The combination of random effects with additive model structures leads to general-
ized additive mixed models, see Ruppert et al. (2003), Wood (2017), and Fahrmeir
et al. (2021) for overviews on the state of the art for this model class.

1.4.4 Mean and Dispersion Models

As an important step towards relaxing the common focus on exclusively modeling
the mean of the response variable in terms of (possibly complex) regression effects,
Aitkin (1987) introduced a model with normally distributed response, in which both
the mean and the variance of the model are functions of explanatory variables:

yi ∼ N (µi, σ
2
i )

g1(µi) = x>i1β1 (1.8)

g2(σi) = x>i2β2,

where xi1 and xi2 are design vectors containing explanatory variables associated
with the mean and the standard deviation, while the link functions g1(·) and g2(·)
are taken to be the identity and log functions, respectively. Smyth (1989) extended
model (1.8) with the gamma response distribution. Both authors used maximum
likelihood for the estimation of model parameters. Rigby and Stasinopoulos (1996)
introduced smoothers into model (1.8). Nelder and Pregibon (1987) considered the
more general case of the exponential family, namely, yi ∼ E(µi, φi), using an extended
quasi-likelihood function for parameter estimation.
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Mean and dispersion models provide one simple special case of generalized additive
models for location, scale, and shape (GAMLSS), in which the mean and dispersion
are modeled in terms of (linear) predictors. GAMLSS considerably extends this by
allowing potentially all parameters characterizing the response distribution to depend
on covariate information.

1.5 Generalized Additive Models for Location, Scale and Shape

1.5.1 GAMLSS as a Distributional Regression Model

In a distributional regression model, the relationship between the response y and
the covariates x is of a stochastic nature. The response y depends on x through
the conditional distribution f(y|x), which is the main subject of interest since it
provides rich information about how the covariates x affect various aspects of the
(conditional) distribution of y.

GAMLSS provides a parametric framework for statistical inference in distributional
regression, in which we approximate the conditional distribution f(y|x) by a para-
metric distribution f(y|θ(x)), where θ(x) = (θ1(x), θ2(x), . . . , θK(x))> is a K-
dimensional vector of (unknown) model parameters which themselves depend on
explanatory terms. The basic idea of statistical inference is to use f(y|θ(x)) to say
something sensible about the population distribution f(y|x), see Chapter 4.

The notation θ(x) emphasizes that any of the model parameters in θ can be func-
tions of any of the explanatory variables x, not only the mean as in equation (1.5).
This is one of the main features of the distributional regression model on which we
focus in this book. The implication of such an approach is that the shape of the
model distribution for y can change according to the values of explanatory variables
x. By modeling all the parameters of f(y|θ(x)) as functions of the explanatory
terms, we explicitly simultaneously model all the characteristics of the distribution
including location, scale (variability), quantiles, moments, skewness, and kurtosis.
Modeling only the mean allows shifts exclusively in the location of the distribution
with all other distribution parameters remaining constant. Consequently, modeling
all parameters allows for various types of changes in the shape of the distribution of
a response variable, based on one or more explanatory variables (e.g., the age of a
child).

The distinction between the basic assumptions of the standard regression model and
those of a GAMLSS is shown in Figure 1.4, in which we depict simulated samples of a
response variable y with a single explanatory variable x. Figure 1.4(a) demonstrates
the distributional assumptions of the linear model. The mean of the normal distri-
bution of the response y varies linearly with x; the shape of the distribution remains
the same over the range of x, since the variance of y is constant. Figure 1.4(b) illus-
trates how the assumptions of a GAMLSS model may operate. A GAMLSS model
allows a nonlinear (smooth) relationship between x and the location parameter of the
distribution, but also allows all the parameters of the distribution to vary with ex-
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Figure 1.4 Different distributional regression models assumptions: (a) the
linear regression model; (b) the GAMLSS model.

planatory terms. It allows the shape of the response distribution to change according
to different values of x.

Figure 1.5(a) displays the BMI data and fitted values for the location parameter
µ of a GAMLSS model fitted using the Box–Cox t (BCTo) distribution, which is a
four-parameter distribution introduced by Rigby and Stasinopoulos (2006). The pa-
rameters are µ (location parameter, approximately the median), σ (scale parameter,
approximately the coefficient of variation), and ν and τ as skewness and kurtosis
parameters, respectively (see Section 2.2.2 and Rigby et al. (2019)). The model was
fitted using smoothers for all of the parameters as functions of age.5 The QQ-plot of
the GAMLSS model, in Figure 1.5(b), shows that the BCTo distribution fits the data
very well. It is only in the lower tail that a few points deviate from the diagonal line.
Given that there are more than 7,000 observations, this behaviour is not unusual. The
bucket plot in Figure 1.5(c) shows that the fitted BCTo distribution corrects prop-
erly for skewness and kurtosis in the data, as the value of the transformed skewness
and transformed kurtosis of the residuals from the BCTo model fall very close to the
origin (0, 0) (representing the normal distribution) and within the 95% confidence
region of the Jarque–Bera test. The fitted centiles from the BCTo distribution shown
in Figure 1.5(d) provide further graphical evidence that the distribution fits well.

In the following, we introduce GAMLSS more formally and discuss the different
ingredients of a GAMLSS specification.

1.5.2 Response Distributions

In a GAMLSS model, the responses are assumed to be generated from aK-parametric
family of distributions with (covariate-dependent) parameters θ(x) = (θ1(x), θ2(x),

5 The transformed variable x = age1/3 was fitted instead of age.
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Figure 1.5 Dutch boys BMI for boys aged between 0 and 23 years: (a) the
data and the fitted smooth curve from a GAMLSS model with BCT
response distribution; (b) QQ-plots of the normalized quantile residuals from
the GAMLSS model; (c) bucket plot of the residuals from the GAMLSS
models; (d) fitted centile curves fitted at centile values 3, 10, 25, 50, 75, 90,
and 97, from the GAMLSS model.

. . . , θK(x))>. Subsequently we allow those K parameters to possibly differ for each
observation i, for i = 1, . . . , n, so we introduce the notation θ[i](xi) = (θi1(xi),
θi2(xi), . . . , θiK(xi))

> for i = 1, . . . , n. By suppressing the explicit dependence of
θik on xi to keep the notation short, we have θ[i] = (θi1, θi2, . . . , θiK)>. We assume
that there is one common type of distribution applying to all observations (such as
normal, Poisson, etc.) but that the K parameters of this distribution are allowed to
vary over the individual observations, that is,

yi
ind∼ D(θi1, . . . , θiK), for i = 1, . . . , n.

We denote the density and the cumulative distribution function of this distribution
as f(yi|θ[i]) and F (yi|θ[i]), respectively. We note that each θik for k = 1, . . . ,K may
depend on different subsets of xi.
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20 Distributional Regression Models

D denotes the response distribution: The GAMLSS framework allows a multitude of
response types, including (but not limited to) (i) models for continuous responses,
enabling us to not only deal with but to systematically study phenomena such as
heteroscedasticity and skewness, (ii) models for continuous nonnegative responses,
potentially featuring a discrete point mass at zero, (iii) count responses potentially
featuring zero inflation and/or overdispersion, (iv) continuous fractional or bounded
responses (e.g. proportions), again including the option for discrete point masses at
one or both endpoints, and (v) multivariate response distributions. More details on
potential choices for response distributions are provided in Chapter 2.

For many univariate continuous distributions defined on the real line R, the first
two parameters θ1 and θ2 are related to location and scale (or dispersion), but this
is not always the case. For K > 2, the remaining parameter(s) are generally shape
parameters, although they may also capture specialized features such as zero infla-
tion. In special cases, θ3 and θ4 are true skewness and true kurtosis parameters (see
Rigby et al. (2019) for the definitions of these concepts). Rigby and Stasinopoulos
(2005) and subsequent publications by those authors use K = 4 parameters with
the notation µ, σ, ν, and τ , respectively. Note, however, that neither the original
definition of GAMLSS (1.10) nor its original fitting algorithms have restrictions on
the number of parameters K.

1.5.3 Link Functions

For each of the distribution parameters θk, a monotonic link function gk(·) and
corresponding response function hk(·) = g−1k (·) relate the regression predictor ηk
with the corresponding parameter, namely,

ηk = gk(θk) and θk = hk(ηk) .

The response function h(·) is often chosen to map the regression predictors from
the real line (where the predictor ηk can take its values) to the correct support for
θk, ensuring that parameters are appropriately constrained. For example, standard
deviation and variance have to be positive while parameters representing probabilities
are restricted to the unit interval [0, 1]. This is an important and useful feature of the
link function, but note that link functions reflect the relationship between parameter
and covariates. For example, in a model with an identity link for θk, the contribution
of each explanatory variable to the distribution parameter θk is additive, while for a
model with a log link the effect is multiplicative, as shown in equation (1.6).

While default choices for the link functions exist (e.g. the logarithmic link for positive
parameters such as variances, or the logit or probit links for parameters restricted to
the unit interval), it is important to emphasize that the choice for a link function also
implies a modeling decision. This decision determines the exact relation between the
covariates and the conditional response distribution and has consequences for both
the fit of the model and the interpretation of the estimated regression effects. It
therefore makes sense to consider competing specifications for the link function and
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1.5 GAMLSS 21

to include the decision on a specific link function in the model building and model
checking process.

An interesting avenue to circumvent the difficulties arising from the need to identify
the most appropriate link function, is to consider flexible link functions estimated
from the data along with the regression effects of interest. In GLMs, this has, for ex-
ample, been addressed under the notion of single index models; see Ichimura (1993),
where kernel density estimates are used to determine the response function, or Yu
and Ruppert (2002), Muggeo and Ferrara (2008), and Yu et al. (2017) who employ
penalized splines for the specification of the response function. Estimated link func-
tions have also been combined with additive model specifications, for example in Tutz
and Petry (2016) and Spiegel et al. (2019). Another way of relaxing the assumption
of one given link function are composite links, where multiple transformations of
linear predictors are additively combined to one composite model specification; see
Thompson and Baker (1981). In this book, we will not pursue these ideas further
but will rather focus on fixed, pre-specified link functions.

1.5.4 Structured Additive Predictors

The simplest case of a GAMLSS is a fully parametric model, where a linear predictor
is specified for each of the distribution parameters, i.e.

ηik = βθk0 + βθk1 x
θk
i1 + · · ·+ βθkJkx

θk
iJk

leading for n observations to the n-dimensional vector

ηk = Xkβk

of predictor evaluations. While looking rather restrictive at first glance, considerable
flexibility can already be achieved in the parametric setting, by considering various
types of transformations such as polynomials or interactions. (See also Section 3.8.1.)
Still more flexibility is achieved when assuming that each of the regression predictors
ηk is additively composed of an intercept βθk0 and a sum of Jk functions sθkj (xi) (or
sjk(xi) for simplicity), j = 1, . . . , Jk, leading to the structured additive predictor

ηik = βθk0 + sθk1 (xi) + · · ·+ sθkj (xi) + · · ·+ sθkJk(xi) (1.9)

or the more compact variant

ηik = β0k + s1k(xi) + · · ·+ sjk(xi) + · · ·+ sJkk(xi) .

The functions sθkj (xi) are used as a generic notation that may represent a variety of
different effects, as discussed in more detail in the following, and in Chapter 3. In
particular, the functions can simply represent a linear effect or more complex effects
such as nonlinear effects of continuous covariates, spatial effects, or random effects.
Notationally, we allow each function to depend on the complete covariate vector,
although in practice each effect will usually only depend on a small subset of xi.
However, to avoid notational complexity, we do not make this explicit. Furthermore,
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to make the model identifiable, appropriate centering constraints have to be applied
to the different functions.

Model equation (1.9) can also include terms that do not fit into the framework of
structured additive terms. For example, the local regression smoothers (loess) of
Cleveland et al. (2017) were part of the original implementation of the GAM models
in Splus since the early 1990s. Decision trees, neural networks, and the fitting of non-
linear terms have been implemented in the gamlss package since 2010. The original
GAMLSS algorithms of Rigby and Stasinopoulos (2005) allow the inclusion of any
statistical regression-type technique which allows prior weights in its implementation.
However, while for the structured additive terms there is a strong theoretical justi-
fication (see Chapter 3), the justification for the techniques mentioned above comes
from the fact that empirically they work well. Dimensionality reduction techniques
such as lasso regression (Tibshirani, 1996) and principal component regression have
also been implemented within gamlss (Stasinopoulos et al., 2022), see Section 5.4.

There is great potential to be gained by merging some of machine learning techniques
with distributional regression. Machine learning originated in the computer science
world, and as a result its language is somewhat different from that of statistical mod-
eling. It generally encompasses algorithms and computational techniques designed to
produce a prediction of an output (response variable) on the basis of given inputs
(explanatory variables). In this respect its aim is similar to statistical modeling. The
difference arises from the fact that while statistical modeling aims to interpret and
understand the underlying structure of relationships, machine learning takes a black
box approach. Both approaches can be helpful in different circumstances but caution
and knowledge of their limitations are crucial.

1.5.5 Basis Function Representation

We use basis function expansions to represent nonlinear effects in the structured ad-
ditive predictors, i.e. each function is approximated in terms of a linear combination
of basis functions such that (after dropping the parameter index θk and the function
index j for notational convenience) we obtain

s(xi) =
L∑
l=1

γlBl(xi),

where γl are the basis amplitudes while Bl(xi) represent different types of basis
functions (discussed in detail in Chapter 3). In matrix notation, each of the predictors
can be written for all observations as

η = β01n +B1γ1 + · · ·+BJγJ .

To enforce specific properties of the function estimates such as smoothness or shrink-
age, each parameter vector γj , j = 1, . . . , J, is supplemented by a quadratic penalty
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term

pen(γj) = λjγ
>
j Kjγj

that is, augmented to the likelihood, λj ≥ 0 is the smoothing parameter determining
the impact of the penalty and Kj is a positive semi-definite penalty matrix. In a
Bayesian framework, the penalty is replaced by the equivalent prior distribution

f(γj|τ 2j ) ∝
(
τ 2j
)− rank(Kj)

2 exp

(
− 1

2τ 2j
γ>j Kjγj

)
1(Ajγj = 0),

where the prior variance τ 2j is related inversely to the smoothing parameter, the
penalty matrix Kj plays the role of a prior precision matrix, and Aj is an appro-
priate constraint matrix that ensures identifiability of the model. In more general
cases, the penalty or prior distribution may involve multiple smoothing parameters
and/or it may be notationally convenient to absorb the smoothing parameter into the
penalty matrix. We then write Kj(λj) to emphasize that, indeed, the penalty term
pen(γj) = γ>j Kj(λj)γj depends on a (possibly vector-valued) hyperparameter λ.

1.5.6 Compact Summary

The GAMLSS model is expressed in matrix notation as

y
ind∼ D(θ1, · · · ,θK) (1.10)

gk(θk) = ηk (1.11)

ηk = β0k1n +B1kγ1k + · · ·+BJkkγJkk (1.12)

γjk ∼ N (0, τ 2jkK
−
jk), (1.13)

where D(θ1, . . . , θK) is a K-parametric distribution and the vectors θk and ηk
are of length n, i.e. θk = (θ1k, θ2k, . . . , θnk)

> for k = 1, . . . ,K. Notice the dif-
ference between the K-dimensional vector θ = (θ1, θ2, . . . , θK)>, which represents
the distribution parameters in general for any x, the K-dimensional vector θ[i] =
(θi1, θi2, . . . , θiK)>, which represents the distribution parameters for the ith obser-
vation, and the n-dimensional vector θk = (θ1k, θ2k, . . . , θnk)

>, which represents the
kth distribution parameter for n observations.6

The assumptions of the GAMLSS models defined by equations (1.10)–(1.13) are
scrutinized and discussed throughout this book. Equation (1.10) concerns the distri-
butional assumptions of a GAMLSS model: Chapter 2 covers some aspects related
to the type of distribution appropriate for the distributional assumption, and gives
practical advice for choosing an appropriate response distribution. Chapter 3 covers
the different terms appropriate for equation (1.12). Link functions appropriate for
equation (1.11) are not particularly targeted in this book and are usually chosen by
default to map the predictors ηk onto the appropriate support of the parameter θk.

6 We use the following terminology: distribution parameters for the θ’s; coefficients for the β’s

and γ’s; and hyperparameters or smoothing parameters for the τ2’s or equivalently the λ’s.
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Chapter 4 introduces general ideas underlying statistical modeling and inference, and
some general tools for working with GAMLSS, in particular with respect to model
choice and interpretation. Different methods of estimating the parameters of equa-
tion (1.12) and the hyperparameters in equation (1.13) are discussed in Chapters 5,
6 and 7.

1.6 Other Distributional Regression Approaches

We outline here some alternative approaches to distributional regression, that is,
other approaches of overcoming the focus on mean-based regression analyses. This
treatment is by no means exhaustive and focuses on quantile regression and con-
ditional transformation model as specific model classes. More extensive reviews are
provided in Kneib (2013) and Kneib et al. (2023)

1.6.1 Quantile Regression

In GAMLSS, the whole distribution of the response is estimated simultaneously,
making all its characteristics available to the researcher based on one convenient and
coherent model assumption. The downside of this approach is that we are strongly
relying on the assumption that we are able to specify a single distribution that fits all
the data well. Quantile regression, in contrast, does not aim at inferring all aspects of
the conditional distribution of a response variable given covariates, but rather focuses
on local features of this conditional distribution, namely conditional quantiles for
given quantile levels. As an advantage, it does not require the assumption of a specific
response distribution,7 alleviating the risk of distribution model misspecification.

Under suitable assumptions on the data generating process, quantile regression pro-
vides us with consistent and asymptotically unbiased estimates of the underlying
population quantiles (given the model is approximately correct). Since a set of quan-
tiles also provides an (indirect) characterization of the conditional response distri-
bution, including the possibility to study features such as variability and skewness,
quantile regression is also a distributional regression approach. There is an impor-
tant general point to be made here. While the distribution-free approach sounds
appealing, it makes it more difficult to check the adequacy of the fitted model. It
seems that the more assumptions we make, the easier it is to check the adequacy of
those assumptions. For example, if we do assume a distribution we can easily define
the residuals of the model and through those residuals check the adequacy of the
distribution. If we do not specify a distribution, the residuals are more difficult to
obtain and therefore it is more difficult to check the model adequacy. Put another
way, within statistical modeling there is no free lunch.

In the following, we briefly sketch the basic approach to quantile regression for mod-
els with linear predictors, while providing some references for more general model
variants at the end of this section.
7 It does assume that the conditional cdf F (y|x). exists, but does not specify the exact form for

it.
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1.6 Other Distributional Regression Approaches 25

The classical linear model specifies the conditional mean of the response variable y
given covariate x as

E(y|x) = x>β

and estimates for the regression are typically obtained by minimizing the least squares
criterion

S2(β) =
n∑
i=1

(
yi − x>i β

)2
with respect to the regression coefficients β. For i.i.d. samples, it is well known that
minimizing the sum of absolute deviations from a central tendency measure yields
the median, such that it seems natural to define regression medians as the minimizers
of the absolute error criterion

S1(β) =
n∑
i=1

∣∣yi − x>i β∣∣.
More generally, considering the asymmetrically weighted absolute error criterion

Sq(β) = (1− q)
∑

i:yi<x>i βq

∣∣yi − x>i βq∣∣+ q
∑

i:yi≥x>i βq

∣∣yi − x>i βq∣∣ (1.14)

for 0 < q < 1 yields regression quantiles, with the special case q = 0.5 reducing to
the regression median.

An alternative perspective that emphasizes the model structure underlying quantile
regression starts from the regression specification

y = x>βq + εq,

where, instead of assuming E(εq) = 0 as in mean-based regression, we assume that
Qq(εq) = 0, that is, the q-quantile of the error term εq is assumed to be zero. This
implies that

Qq(y) = x>βq,

that is, the regression predictor determines the q-quantile of the response distribution.

Comparing quantile regression to GAMLSS, the two main advantages of quantile
regression are the absence of a global distributional assumption; and the robustness
with respect to outliers which is inherent to the definition of quantiles. A typical
example in which quantile regression can work better than GAMLSS is when the
conditional distribution is bimodal while the assumed GAMLSS distribution is uni-
modal.

While individual quantiles, estimated using quantile regression, are consistent and
asymptotically unbiased, a set of estimated quantiles based on the same data may
not be. The locality of the model assumed for quantile regression implies that in fact
no globally consistent model can be defined except for the trivial case of βq ≡ β
independent of the quantile level q. Indeed, if the separate quantile regressions are
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not exactly parallel to each other, the fitted quantiles will inevitably cross at some
point. In many cases, this will only happen well outside the range of the observed
covariates, but for a dense set of quantile levels and small samples, quantile crossing
may also be an issue inside the range of observed covariates.

This is a rather unpleasant feature of quantile regression. There are several attempts
in the literature to rectify the “crossing” problem. The joint estimation of multiple
quantile regressions called quantile sheets was introduced by Schnabel and Eilers
(2013) as a valuable alternative, but unfortunately the methodology only applies to
models with a single explanatory variable; see also Sottile and Frumento (2021) for a
recent attempt. The non-crossing is usually achieved by adding more constraints to
the estimating function of quantile regression (see equation (1.14)). It is hard though
to see how those added constraints will not affect the consistency and unbiasedness
of the resulting estimates.

We advocate a “dual” approach, particularly when the focus of the analysis is on
the quantiles of the conditional distribution, as for example in centile estimation for
growth curves. This consists of fitting a GAMLSS distribution model to the data
and then using different quantile regression curves to check it, or vice versa. Note
that quantile regression is necessarily restricted to continuous response distributions,
while GAMLSS accommodates continuous, discrete, and mixed discrete–continuous
distributions.

The estimation of quantile regression models usually relies on linear programming
such that flexible extensions, for example, models including random effects or pe-
nalized splines, are more difficult to derive. However, one can use the fact that the
quantile estimating function of equation (1.14) is identical to an asymmetric Laplace
distribution probability function, and use GAMLSS to fit it.8 An alternative estima-
tion scheme for quantile regression is statistical boosting (see Chapter 7).

Because of its local nature, quantile regression does not have residuals in the conven-
tional sense, neither is there a general measure for goodness of fit. The only residuals
are binary residuals, which indicate whether an observation is above or below the
fitted quantile curve. While a GAMLSS model is more difficult to find, when it is
found, it provides far more information about the data generating mechanism and
its properties, and checking of its assumptions is easier.

In summary, the effect of a covariate on any part of the conditional response distri-
bution can be easily assessed with quantile regression without needing the specify
a parametric distribution. We illustrate the method on the BMI measurements for
Dutch boys. Figure 1.6 shows quantile curves for the quantile levels q = 0.03, 0.1,
0.25, 0.5, 0.75, 0.9, and 0.97. Panel (a) shows data on boys aged between 10 and
20 years. A linear term for age has been fitted. Panel (b) shows the complete data,
with a nonparametric smoothing term for age. (As previously, the transformed vari-
able x = age1/3 was used instead of age in the fitting process.) The corresponding

8 The asymmetric Laplace distribution is a special case of the GAMLSS distribution SEP3, with

fixed parameters σ = τ = 1 and ν = [(1− q)/q]0.5 where q is the quantile value.
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Figure 1.6 Quantile regression performed on the Dutch boys’ BMI: (a) boys
aged between 10 and 20 years, (b) boys aged between 0 and 23 years. The
fitted quantile curves are evaluated at quantiles 0.03, 0.10, 0.25, 0.50, 0.75,
0.90, and 0.97 and are compared in panel (b) to the corresponding centiles of
the GAMLSS model fitted using the BCT distribution as in Figure 1.5(d).

centiles of the GAMLSS model fitted using the BCT distribution as in Figure 1.5(d)
are also shown, for comparison. As the curves are approximately parallel across the
age range, we can conclude that the effect of age on BMI is similar in all regions of
the distribution of BMI. The quantile regression was implemented using gamlss()

with the asymmetric Laplace response distribution, that is, SEP3 with σ = τ = 1
and ν = [(1 − q)/q]0.5. This produced similar results to the qgam() function in the
qgam package (Fasiolo et al., 2021).

An extensive treatment of quantile regression methodology is provided in the classical
textbook of Koenker (2005). A more recent overview of current developments is
available in the Handbook of Quantile Regression (Koenker et al., 2020), which also
discusses advances on additive quantile regression approaches (see also Fenske et al.,
2011; Waldmann et al., 2013; Fasiolo et al., 2021) and ways of circumventing crossing
quantiles (see also Chernozhukov et al., 2009; Bondell et al., 2010; Rodrigues and
Fan, 2017).

Although quantile regression was originally developed as a distribution-free approach
which does not lend itself well to a Bayesian treatment, Bayesian quantile regression
has been suggested utilizing the asymmetric Laplace distribution as working model
(Yu and Moyeed, 2001). Since the asymmetric Laplace distribution enjoys a repre-
sentation as a location–scale mixture of normals (Kozumi and Kobayashi, 2011; Yue
and Rue, 2011), efficient Bayesian inference can be implemented; this allows complex
predictor structures as in GAMLSS (see for example Waldmann et al., 2013).

An alternative to quantile regression is expectile regression, where instead of consider-
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ing an asymmetrically weighted absolute error criterion, an asymmetrically weighted
squared error criterion is employed. Expectile regression then includes the ordinary
least squared (OLS) based mean regression as a special case, but still allows for
studying the complete response distribution by varying the asymmetry of the esti-
mation criterion. Expectiles were originally suggested in Newey and Powell (1987)
and have regained more interest in recent years due to their ability to accommodate
flexible predictor structures (see, for example, Schnabel and Eilers, 2009; Sobotka
and Kneib, 2012).

1.6.2 Conditional Transformation Models

Conditional transformation models (CTMs) are another approach to the issue of al-
lowing the conditional distribution to be fully responsive to covariate values. Instead
of directly specifying the response distribution of interest, CTMs aim at identifying
the required transformation to map the conditional distribution of the responses to
a simple reference distribution. This is similar in spirit to earlier attempts such as
the Box–Cox transformation, which aims to make the response distribution more
normal-like.

In a very general approach, CTMs can be specified as

h(Y |x)
D
= Z ∼ N (0, 1),

where h(·|x) is a covariate-dependent transformation function that is strictly increas-
ing in y and which is chosen such that the conditional distribution of the response
is matched to a standard normal. Indeed, for continuous distributions, one can show
that a unique transformation of this type always exists, if we are flexible enough
with respect to h(·|x). Note that here we are explicitly denoting random variables
as capital letters to ease the understanding of the model specification.

Due to the monotonicity assumed for the transformation function, the model can be
inverted to

Y
D
= h−1(Z), Z ∼ N (0, 1).

Another perspective on the model is obtained when looking at the conditional cu-
mulative distribution function (cdf) of the response variable, which is given by

FY |x(y) = P(Y ≤ y|x) = Φ(h(y|x)).

Thus the CTM allows us to relate the cdf of Y to the cdf of a standard normal
evaluated at a transformed argument. From the cdf, we can directly determine the
density

fY |x(y) = φ(h(y|x))

∣∣∣∣ ∂∂yh(y|x)

∣∣∣∣
which then also gives rise to likelihood-based inference.

The main difficulties with turning CTMs into practice are the choice of a suitable
parametrization of the transformation function and the interpretation of the resulting

https://doi.org/10.1017/9781009410076.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009410076.003


1.6 Other Distributional Regression Approaches 29

models. For the former, ensuring monotonicity of the transformation function is
the main obstacle, where solutions based on Bernstein polynomials are particularly
attractive since monotonicity constraints can then be enforced via linear constraints;
see Hothorn et al. (2018) for details. While the original formulation of CTMs is
targeted towards univariate, continuous responses, discrete and multivariate versions
have also been suggested, see Siegfried and Hothorn (2020) and Klein et al. (2022).
In addition to a likelihood-based treatment of CTMs, Bayesian variants (Carlan
et al., 2023) and boosting approaches (Hothorn et al., 2014; Hothorn, 2020) are also
conceivable.
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