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The experimental data for the mean velocity are analysed in the inner layer for a turbulent
boundary layer at significant adverse pressure gradient and Reynolds numbers up to
Reθ = 57 000. The aim is to determine the resilience of the log law for the mean velocity,
the possible change of the von Kármán constant κ and the appearance of a square-root
law above the log law at significant adverse pressure gradients. In the wind-tunnel
experiment, the adverse pressure gradient is imposed by an S-shaped deflection of the
contour model which is mounted on a wind-tunnel sidewall. A large-scale particle imaging
velocimetry method is applied to measure the streamwise evolution of the flow over a
streamwise distance of 15 boundary layer thicknesses. In the adverse pressure gradient
region, microscopic and three-dimensional Lagrangian particle tracking velocimetry are
used to measure the mean velocity and the Reynolds stresses down to the viscous sublayer.
Oil-film interferometry is used to determine the wall shear stress. The log law in the
mean-velocity profile is found to be a robust feature at adverse pressure gradient, but
its region is thinner than its zero pressure gradient counterpart, and its slope is altered.
A square-root law emerges above the log law, extending to the wall distance the log law
typically occupies at zero pressure gradient. Lower values for κ are found than for zero
pressure gradient turbulent boundary layers, but the reduction is within the uncertainty of
the measurement.
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T. Knopp and others

1. Introduction

Turbulent boundary layers subjected to an adverse pressure gradient still pose many open
questions. At the same time, they have a high relevance in many technical applications,
e.g. airplane wings, turbomachinery blades and wind turbine blades. Here, the flows
around airplane wings are special due to the very high Reynolds numbers (Re). The proper
mathematical description of the statistically averaged mean flow of a turbulent boundary
layer at a significant adverse pressure gradient (APG) is still under debate. For boundary
layers at zero pressure gradient (ZPG), there is large experimental support and agreement
in the literature that, for sufficiently large Reynolds numbers, the mean velocity in a large
part of the inner layer can be described by the log law

u+ = 1
κ

log( y+) + B, (1.1)

see e.g. Marusic et al. (2013). The superscript + denotes viscous units. For the von Kármán
constant κ and for the intercept B, Österlund et al. (2000) found κ = 0.384 and B = 4.17,
compared to κ = 0.41 and B = 5.0 by Coles & Hirst (1969).

The results for the structure of the mean-velocity profile for turbulent boundary layers
at ZPG are supposed to give guidance for the APG case. Traditionally, the boundary layer
is divided into four layers, i.e. the viscous sublayer (y+ < 5), the buffer layer (5 < y+ <

30), the logarithmic layer (30 < y+ < 0.15δ+) and the wake layer (y+ > 0.15δ+), where
δ denotes the boundary layer thickness, see e.g. Wei et al. (2005) for a review. Recent
publications indicate agreement on the outer edge of the log layer near y = 0.15δ, see
Marusic et al. (2013). The extent of the log law in terms of δ depends on the method to
determine δ. Marusic et al. (2013) determined δ from a fit of the composite law of the
wall/law of the wake, and δ defined in this way is approximately 25 % to 35 % larger than
δ99, see e.g. Marusic et al. (2015). The region y < 0.15δ will be referred to as the inner
layer. Regarding the beginning of the log layer, larger values ranging from y+ > 150 up
to y+ > 300 have been proposed recently. A mesolayer located between the buffer layer
and the log layer, first proposed by Long & Chen (1981) and Afzal (1982), was associated
with the region 30 < y+ < 300 in George & Castillo (1997). Another view was given by
Marusic et al. (2013), who found at very high Reynolds numbers the existence of a region
where the log law for the mean velocity and a logarithmic profile for the streamwise (and
spanwise) turbulence intensities hold simultaneously, leading to 3Re1/2

τ < y+ < 0.15Reτ

for the log-law region. An alternative view was given by Wei et al. (2005) based on a
study of the mean momentum balance in differential form. Their log-law region IV is
where the mean viscous force loses leading-order influence, and begins at y+ = 2.6Re1/2

τ ,
see Klewicki, Fife & Wei (2009).

For flows with a significant APG, the discussion described in Alving & Fernholz (1995)
is still open. A first hypothesis is that the log law (1.1) still holds and that κ and B still have
the same values as for a turbulent boundary layer at ZPG, but that the region occupied by
the log law is progressively reduced with increasing APG. This hypothesis was called the
‘progressive breakdown’ of the law of the wall in Galbraith, Sjolander & Head (1977), and
was advocated for by, among others, Coles (1956), Perry (1966) and Coles & Hirst (1969).

In conjunction with the first hypothesis, Perry, Bell & Joubert (1966) proposed that
above the log-law region a so-called half-power-law region arises. In the special case of
a vanishing wall shear stress close to separation, the half-power law extends almost down
to the wall. This proposal by Stratford (1959) was recently supported by direct numerical
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Log law at adverse pressure gradient

simulations in Coleman et al. (2017) and Coleman, Rumsey & Spalart (2018). Modified
versions of this wall law are given in Kader & Yaglom (1978) and in Afzal (2008).

A second hypothesis is that the coefficients κ and B of the log law change their values.
A functional dependence of κ on the pressure gradient parameter in inner scaling �p+

s

�p+
s = ν

ρu3
τ

dPw

ds
(1.2)

was proposed by Nickels (2004), where dPw/ds denotes the pressure gradient at the wall in
the wall-parallel direction, p pressure, ν kinematic viscosity and ρ density. An alternative
relation was given by Dixit & Ramesh (2009). To illustrate the extent of variability of κ ,
the model by Nickels (2004) predicts a reduction from κ = 0.390 at ZPG to κ = 0.370 for
�p+

s = 0.01 at APG. For increasing �p+
s , the model predicts κ = 0.353 for �p+

s = 0.02,
and κ = 0.329 for �p+

s = 0.04. The model by Dixit & Ramesh (2009) predicts a faster
reduction from κ = 0.408 at ZPG to κ = 0.376 for �p+

s = 0.01, κ = 0.346 for �p+
s =

0.02 and κ = 0.293 for �p+
s = 0.04. Therefore, experimental support for the hypothesis

of a variability of κ is supposed to require values of �p+
s > 0.01. Regarding a possible

change of κ and B, a number of data sets were evaluated by Monkewitz, Chauhan & Nagib
(2008), who found an empirical correlation between κ and B. Experimental results by
Nagano, Tagawa & Tsuji (1991) could indicate a change in B, and the direct numerical
simulation (DNS) data by Lee & Sung (2009) give indications that κ and B may change.

A third hypothesis is that the pressure gradient causes ‘[. . . ] a change in the character
of the velocity distribution over the entire region [. . . ]’ occupied by the log law in a ZPG
flow, see Galbraith et al. (1977), called a ‘general breakdown’ of the log law. Some authors
proposed a single formulation for the entire inner layer based on the half-power law (or
square-root law, abbreviated: sqrt-law), see Townsend (1961)

u+ = 1
Ko

[
log( y+) + 2

(√
1 + �p+

s y+ − 1
)

+ 2 log

(
2√

1 + �p+
s y+ + 1

)]
+ Bo.

(1.3)

In the theoretical analysis, the half-power law is assumed to be associated with the total
shear stress growing linearly with the wall distance, see e.g. Brown & Joubert (1969).

In this work, the analysis of a new turbulent boundary layer experiment is presented,
whose aim was to answer the following questions for the mean velocity profile:

(Q1) Does a log-law region still exist at APG?
(Q2) Does the von Kármán constant κ change with �p+

s , see Nickels (2004)?
(Q3) Is there a sqrt-law region above the log law, see e.g. Perry et al. (1966)?

These questions were motivated by a literature study and by the results of the precursor
experiment by Knopp et al. (2014b). Therein, a turbulent boundary layer was studied,
where the flow followed an S-shaped deflection of the geometry model, which caused a
strong APG up to �p+

s = 0.06 and Reθ up to 18 000, see figure 2 in Knopp et al. (2014a).
A three-layer form for the mean velocity as described by Perry et al. (1966) was found,
see figure 3 in Knopp et al. (2014a). A small log-law region was indicated from a thin
plateau of the slope diagnostic function, see figure 5 in Knopp et al. (2014a), and κ was
found to be reduced in the APG region, see figure 6 in Knopp et al. (2014b). A half-power
law was observed above the log law, albeit only over a small region in terms of y+. The
question arose as to whether a higher Re leads to a larger extent of the log law and of the
half-power-law region.
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T. Knopp and others

Several new experiments and numerical simulations for turbulent boundary layers at
APG have been provided during the last decade. Wind-tunnel experiments were performed
by, e.g. Atkinson et al. (2016), Monty, Harun & Marusic (2011), Harun et al. (2013) and
Schatzman & Thomas (2017). New numerical simulations were accomplished by, e.g. Lee
& Sung (2009), Gungor et al. (2016), Coleman et al. (2017) and Coleman et al. (2018).
Regarding the mean flow and the turbulence statistics, most of the work focussed on the
outer part of the boundary layer, whereas the inner layer was studied in detail only in
Coleman et al. (2017) and in Coleman et al. (2018).

Flow experiments with pressure gradients and streamwise surface curvature are rare in
the literature, see Baskaran, Smits & Joubert (1987) and Bandyopadhyay & Ahmed (1993).
Flows with surface curvature alone have been studied in depth since the work by Bradshaw
(1970). For the present work, convex curvature is relevant. The magnitude of curvature
effects depends on the ratio of the local boundary layer thickness δ to the local radius
of curvature Rc. Large curvature effects are associated with values for δ/Rc > 0.05, see
e.g. Gillis & Johnston (1983). Values of δ/Rc < 0.01 are associated with mild curvature,
which were studied e.g. by Ramaprian & Shivaprasad (1978). The relaxation of a turbulent
boundary layer from curvature on a flat plate was studied for the ZPG case by Gillis &
Johnston (1983) and by Alving, Smits & Watmuff (1990).

The focus of the present work is on the behaviour of the mean-velocity profile, and
we only use the single-point statistics. In complementary publications the simultaneous
spatial information provided by the 2D2C data, i.e. planar data (two-dimensional) of
two components (2C) of the velocity, and 3D3C data, i.e. volumetric data for all
three components (3C) of the velocity were exploited. The characterisation of coherent
structures is described in Reuther et al. (2015) and Reuther (2019). The interaction of
coherent flow structures is studied in Bross, Fuchs & Kähler (2019). Their representation
using the attached eddy model is described in Eich et al. (2020), and the intermittent
behaviour is analysed in Reuther & Kähler (2018), Reuther (2019) and Reuther & Kähler
(2020).

This paper is organised as follows. The wind-tunnel experiment is described in § 2. The
description of the flow is given in § 3. The central part is formed by the results in the APG
region and their analysis in § 4. In § 5, history effects in the inner and outer layers are
discussed. The conclusions of the analysis are summarised in § 6.

2. Experimental investigation

The aim of the experiment was to answer the three questions formulated in the
introduction. Regarding the hypothesis by Nickels (2004), (A7) was used to estimate the
supposed change of κ . This led to the first design condition (C1) to reach �p+

s > 0.01
in the focus region of the APG, so that a possible change of κ due to the pressure
gradient is large enough to be distinguished from uncertainties related to the evaluation
of κ and the determination of uτ . For this purpose, the measurements were performed on
the contour geometry model and not on the flat wind-tunnel wall opposite to the model,
since the values of �p+

s are significantly larger on the contour model. The second design
condition (C2) was to reach large Reynolds numbers in the APG focus region, based on
the assumption that only at large Reynolds numbers does the asymptotic structure of the
wall law with significantly thick log-law and sqrt-law regions form.

Two additional conditions were a consequence of the aim to use the measurement
technique as accurate as possible. The third condition (C3) was to use a flat surface in the
APG focus region to enable measurements through a glass plate from behind to reduce the
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Log law at adverse pressure gradient
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Figure 1. Sketch of the wind-tunnel experiment with flow direction (axes not to scale).

issue of reflections of particle imaging methods in the near-wall region. The fourth design
condition (C4) was to achieve large Reynolds numbers at moderately low flow speeds and
large boundary layer thicknesses to enable accurate measurements in the viscous sublayer.
Due to the design condition (C4) in conjunction with the decision to measure on the
geometry model, the issue of surface curvature effects arose. We accepted this issue. The
option was to reach �p+

s > 0.01 on the wind-tunnel wall and a much stronger pressure
gradient on the geometry model, causing the flow to separate. This idea was abandoned,
since it would have meant to either accept a three-dimensional separation or to use flow
actuation to prevent separation. The latter was not pursued due to the technical challenges
to achieve well-defined and reproducible flow conditions.

2.1. Design of the experiment and set-up in the wind tunnel
The experiment was performed in the Eiffel type atmospheric wind tunnel of UniBw in
Munich, which has a 22 m long test section with a rectangular cross-section of 2 m × 2 m.
As described in figure 1, the flow develops on the sidewall of the wind tunnel over around
4 m and is then accelerated along a first ramp of height 0.30 m and of length 1.225 m.
Then, the flow gradually develops along a flat plate of length 4.0 m with ZPG into an
equilibrium. The flow follows a curvilinear deflection of length lc = 0.75 m which initially
causes a small favourable pressure gradient (FPG), and enters into the APG region. The
focus region is an inclined flat plate of length 0.4 m, beginning at x = 9.75 m, at an opening
angle of α = 14.4◦ with respect to the 4.0 m long flat plate. Finally, the flow follows a
second deflection down to the wind-tunnel wall. The opening angle was chosen to keep the
flow remote from separation in a more conservative way than in the precursor experiment
by Knopp et al. (2014b) and was designed based on computational fluid dynamics (CFD)
results with the DLR TAU code using the Spalart–Allmaras model and the shear stress
transport (SST) k-ω model, where k is turbulent kinetic energy and ω is specific dissipation
rate.

The coordinate system shown in figure 1 denotes by x the direction parallel to the floor
of the wind tunnel. The origin x = 0 is defined at the nominal beginning of the test section,
which is located 0.875 m downstream of the thinnest cross-section of the contraction. The
curvilinear deflection can be described by a fourth-order polynomial f (ζ ). Here, ζ denotes
the relative coordinate ζ = x − 8.99 m, i.e. ζ = 0 at the beginning of the curvilinear
element and ζ = lc at its end. Then the conditions of a smooth transition between the
flat plate and the curved wall imply f ′(0) = 0, f ′(lc) = a = arctan(πα/180) with α =
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2D2C PIV LR-μPTV Three-dimensional LPT (STB)

Ue at xref 28.1 m s−1 28.1 m s−1 43.2 m s−1

Field of view 0.44 × 0.37 m2 20 × 17 mm2 50 × 90 × 8 mm3

Resolution 5.9 px mm−1 125 px mm−1 35 px mm−1

Interrogation volume lx × ly × lz 2.7 × 2.7 × 1 mm3 — —
IW size ly/bin size at xref 91δν 0.27δν 2.88δν

δν = ν/uτ at xref 30 μm 30 μm 20 μm

Table 1. Summary of the experimental parameters for the reference position xref = 9.944 m. The flow was
seeded with DEHS droplets with a diameter of approx. 1 μm. px, pixel.

14.4◦, and f ′′(0) = f ′′(lc) = 0, where f ′ and f ′′ denote the first and second derivatives.
This leads to f (ζ ) = −a/(2l3c)ζ

4 + a/l2cζ
3. In order to reduce the effects of the sidewalls,

the dimension of the APG part of the geometry was reduced by a factor of two compared
to the previous experiment by Knopp et al. (2014b).

The experimental results presented here were performed at a free-stream velocity U∞ =
23 m s−1 and U∞ = 36 m s−1, measured at a reference position near the beginning of
the test section. The values for Reθ of 24 400 and 35 900 at x = 8.12 m (ZPG region)
respectively 40 000 and 57 400 at x = 9.944 m (APG region) are among the highest after
the experiments in Coles & Hirst (1969), and comparable to those of Skare & Krogstad
(1994) and Nagib, Christophorou & Monkewitz (2004). The static pressure measurements
were performed using two DTC Initium Systems, where 64 channels were used in parallel,
in the centreline and in different spanwise planes. The free-stream turbulence intensity
(FSTI) was quantified in the empty test section in Schulze (2012). The mean FSTI was
0.14 % measured at x = 2.5 m for U∞ = 38 m s−1, averaged over the entire cross-section.
The FSTI variation was found to be between 0.10 % and up to 0.19 % towards the corners.
The variation of the FSTI was not measured in the flow direction for the wind tunnel with
the contour model. Therefore, a possible influence on the boundary layer could not be
assessed.

2.2. Measurement technique
Different particle imaging approaches were combined in order to measure the mean
velocity and the Reynolds stresses over a streamwise extent of several boundary layer
thicknesses from the outer edge of the boundary layer down to the viscous sublayer.

2.2.1. Large-scale 2D2C particle image velocimetry
For an overview measurement from x = 8 m to x = 10.2 m a multi-camera large-scale
2D2C-particle image velocimetry (PIV) measurement was applied using 9 cameras, named
c1 to c9. The cameras c1 to c7 were located in the region of ZPG, FPG and mild APG,
whereas the cameras c8 and c9 were located in the region of the largest APG. The
2D2C-PIV data were evaluated using a single-pixel ensemble correlation and a window
correlation method, see Reuther et al. (2015). The interrogation window (IW) size was
16 px × 16 px and the interrogation step size was 8 px, corresponding to an overlap of
50 %. From the 2D2C-PIV data, the mean-velocity profiles were extracted at 13 selected
streamwise positions. Details of the PIV method are given in table 1.

The spatial resolution of the PIV method depends mainly on the magnification of the
imaging system, the pixel size of the recording cameras and the selected IW dimensions,
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Log law at adverse pressure gradient

see Kähler, Scharnowski & Cierpka (2012a). To locally capture the entire boundary layer,
the nine sCMOS cameras were equipped with 50 mm Zeiss lenses (c1–c7) and 35 mm
Zeiss lenses (c8–c9), respectively. In the regions of ZPG, FPG and mild APG, the field of
view was 0.32 m × 0.27 m and the interrogation volume size was 2 mm × 2 mm × 1 mm
yielding a resolution of 8 px mm−1 for cameras c1 to c7. Regarding the resolution in
viscous units δν at x = 8.12 m, the IW size was l+y = 125 based on δν = ν/uτ = 16 μm
for U∞ = 23 m s−1. In the APG region the field of view was 0.44 m × 0.37 m and
the interrogation volume lx × ly × lz was 2.7 mm × 2.7 × 1 mm. The IW size in the
wall-normal direction was l+y = 91 for camera c8 at xref = 9.944 m.

2.2.2. Particle tracking velocimetry
To resolve the near-wall region, a high magnification approach using long-range
microscopic particle tracking velocimetry (2D-μPTV), see Kähler, Scharnowski &
Cierpka (2012b), was applied at the position xref = 9.944 m in the APG region. The
wall-normal extent of the field of view was 140δν for the case U∞ = 23 m s−1. The size
of a bin in the wall-normal direction was 0.27δν .

The three-dimensional Lagrangian particle tracking (LPT) approach using the
shake-the-box (STB) method was used for the case U∞ = 36 m s−1, see Novara et al.
(2016). The macroscopic field of view of 50 mm × 90 mm × 8 covered approximately
0.4δ99. In this work we use the data which were sampled over a bin size of 2.88δν in the
wall-normal direction. This evaluation will be referred to as LPT detail.

For a study of the terms of the mean momentum equation, a second evaluation was
performed. The field of view was divided into 111 bins in the wall-normal direction and
5 bins in the wall-parallel direction, corresponding to a bin size of 321 px × 30 px (or
9.2 mm × 0.86 mm) in the streamwise and wall-normal directions. The gradients were
evaluated using a linear interpolation over a kernel of 5 points located in the centre of each
bin. The choice of the large bin size in streamwise direction was motivated by statistical
convergence reasons, as more than 400 000 entries per bin are available to estimate the
mean and fluctuating velocity components. Since the bin size in wall-normal direction
corresponds to around 41δν , this evaluation is referred to as LPT average (abbreviated
LPT ave).

2.2.3. Oil-film interferometry
The wall shear stress was measured using oil-film interferometry (OFI) from x = 8.33 m
to x = 10.02 m. This provides absolute measurements of the wall shear stress independent
of any assumption on the mean-velocity profile. The uncertainty of the OFI measurement
technique for determining the average friction velocity was estimated to be smaller than
2 % (with a 95 % confidence level) based on Thibault & Poitras (2017). For technical
details of the oil-film interferometry measurements we refer to Schülein, Reuther & Knopp
(2017). The experiments using the different measurement techniques were performed at
different days, nominally for the same values of U∞, see table 8 in appendix B. It was not
possible to repeat the OFI measurements to obtain the same Reynolds numbers, since the
contour model was deployed shortly after the measurement campaign.

3. Description of the flow

The flow and its streamwise evolution are described using the overview measurement.
The aim is to show that the experimental set-up provides the intended flow conditions in
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Figure 2. Streamwise distribution of cp and dcp/ds (a) and cf from OFI (b) for U∞ = 23 m s−1.

the APG region. The set-up leads to a streamwise changing pressure gradient and convex
surface curvature effects, which are also described.

3.1. Streamwise evolution of boundary layer parameters
The streamwise distribution of the pressure coefficient cp is shown in figure 2(a).
Moreover, dcp/ds is shown, where s is the coordinate direction tangential to the contour
wall. Note that Uref = U∞ was used for the non-dimensionalisation of cp = ( p −
pref )/qref , with qref = ρref U2

ref /2. The streamwise distribution of cf = τw/qref from OFI
is shown in figure 2(b) for U∞ = 23 m s−1. Therein, Uref = Ue at x = 8.12 m is used
for non-dimensionalisation. In the focus region at x = 9.944 m the flow is not close to
separation. Downstream of x = 10.0 m, the flow remains attached with cf significantly
larger than zero, as inferred from the 2D2C PIV data. There were no indications for corner
flow separation in the junction of the contour model and the wind-tunnel sidewall from
tuft flow visualisation.

The boundary layer thickness was evaluated using different methods, see figure 3(a).
The conventional definition δ99 and δ995 for a flat plate at ZPG uses the wall distance
where the wall-parallel velocity reaches 99 % and 99.5 % of its maximum value along a
wall-normal line. The maximum value could be determined for all profiles in the region
8 m < x < 10.2 m. On the curved wall, the profiles show a distinct maximum. On the flat
wall in the APG region, ∂U/∂y becomes zero when approaching the boundary layer edge,
see figure 3(b). Appendix C describes the other criteria used based on the generalised
velocity Ũ by Coleman et al. (2018), which is shown in figure 3(b), on u′/U by Vinuesa
et al. (2016), on the potential velocity Up for curved walls by Patel & Sotiropoulos (1997)
and on the turbulent/non-turbulent interface (TNTI) by Reuther & Kähler (2018). The
values for δ99 are found to be in close agreement with the different proposals, and are
therefore used to describe the boundary layer thickness in the following.

The pressure gradient along the contour model is shown in terms of �p+
s in figure 4(a)

and the Clauser–Rotta scaling βRC = δ∗/(ρu2
τ ) dPw/ds in figure 4(b). Both become large

in the APG region where uτ becomes small. The pressure gradient parameter βZS =
δ2

99/(ρU2
e δ∗) dPw/ds in the scaling by Zagarola & Smits (1997) and Gungor et al. (2016),

which does not involve uτ , is shown in figure 4(c). Downstream of the ZPG region, βZS
shows significant negative values for the FPG near x = 9.05 m, then changes its sign and
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Figure 3. (a) Streamwise distribution of the boundary layer thickness evaluated using different criteria:
U-tilde: Ũ by Coleman et al. (2018); u′/U: by Vinuesa et al. (2016); Up: by Patel & Sotiropoulos (1997);
TNTI, γ = 0.3: by Reuther & Kähler (2018). (b) Mean velocity profile for U, Ũ and Up at the ZPG position
x = 8.12 m, at x = 9.42 m on the curved wall at APG, and at 10.02 m on the inclined flat wall element at APG
for U∞ = 23 m s−1.
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Figure 4. Streamwise pressure gradient parameter (a) in inner scaling, (b) in Clauser–Rotta scaling and (c) in
the scaling by Zagarola & Smits for U∞ = 23 m s−1.
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Figure 5. (a) Shape factor H12 and (b) δ99/Rc for U∞ = 23 m s−1 (geometry not to scale), and (c) eddy
turnover length δt.o. for U∞ = 36 m s−1.

reaches large positive values with a maximum near x = 9.62 m near the maximum of
dcp/ds. The shape factor H12 is shown in figure 5(a). The local ratio of the boundary layer
thickness δ99 to the radius of curvature Rc is shown in figure 5(b). The values for δ99/Rc
are larger than the value of 0.01 which is associated with mild curvature in the literature.
On the other hand, the value for δ∗/Rc is smaller than 0.005, which is lower by one order
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U∞ x Ue Reθ Reτ δ99 δ995 δ∗ θ H12 uτ �p+
s βRC

m s−1 m m s−1 mm mm mm mm m s−1

23 8.120 28.13 24 358 9304 147.6 161.0 16.77 13.42 1.250 0.977 −0.00015 −0.156
23 9.944 25.50 39 822 6939 203.7 215.5 36.96 24.21 1.530 0.528 0.0185 27.06
36 8.120 43.29 35 908 13 214 142.2 157.2 16.06 12.88 1.247 1.433 −0.00011 −0.167
36 9.944 39.18 57 363 9799 192.9 206.9 34.54 22.73 1.520 0.795 0.0114 26.37

Table 2. Characteristic boundary layer parameters for the 2D2C PIV measurements evaluated by the PIV
single-pixel ensemble correlation method.

of magnitude than the criterion by Bradshaw (1970) for strong curvature. The boundary
layer parameters are summarised in table 2 for the 2D2C PIV measurements evaluated by
the single-pixel method.

The streamwise distance over which the pressure gradient changes may be compared
to the boundary layer reference thickness, which is δ99,ref = 0.15 m at x = 8.12 m. The
curvature first causes an FPG from x = 8.85 m to x = 9.24 m over a streamwise length of
2.6δ99,ref . The change of βZS from a significant FPG to a significant APG from x = 9.05 m
to x = 9.62 m corresponds to 4δ99,ref . In the APG region on the inclined flat plate for x >

9.75 m, the curvature is absent and βZS is slowly decreasing in the streamwise direction.
The focus measurement position at x = 9.944 m in the APG region is located 1.3δ99,ref
downstream of the end of curvature. For more insight, the local boundary layer thickness
is related to the eddy turnover length and to the large-scale coherence.

The eddy turnover length δt.o. = Uτt.o. is the streamwise travelling distance of the local
mean flow U( y) corresponding to the eddy turnover time τt.o., see Sillero, Jimenez &
Moser (2013). Following this work, we assume that the flow relaxes to equilibrium within
2τt.o.. We compute τt.o. using the relation τt.o. = κy/u∗, where two options were used for
the turbulent velocity scale u∗, i.e. u∗ = |u′v′|1/2 and u∗ = k1/2 based on the turbulent
kinetic energy k. In the APG region at x = 9.944 m, we observe 2δt.o. = 0.5δ99 for u∗ =
k1/2 and 2δt.o. = 1.1δ99 for u∗ = |u′v′|1/2 at y = 0.1δ99, see figure 5(c). This is seen as
an indication that the near-wall flow relaxes rapidly, but not instantaneously. In the outer
part of the boundary layer, the turnover length becomes larger. At y/δ99 = 0.5 we observe
2δt.o. = 22δ99 (based on |u′v′|) and 2δt.o. = 7δ99 (based on k).

An alternative streamwise length scale is the large-scale coherence in the flow. The
largest values for the length scale from the two-point correlation map L2 were found at the
wall distance y = 0.2δ99 with L2 = 4δ99 at x = 8.34 m (ZPG), L2 = 4δ99 at x = 9.14 m
(FPG) and L2 = 2δ99 at x = 9.94 m (APG), see Reuther (2019). Similar values were found
for the length scale L1 by Dennis & Nickels (2011).

To summarise, the flow in the inner layer is expected to adjust rapidly, albeit not
instantaneously, to the streamwise changing flow conditions as indicated from the eddy
turnover length δt.o. and the large-scale coherence in the flow.

3.2. Mean-velocity profile in the ZPG region
The mean-velocity profile at x = 8.12 m in the rear part of the flat plate before the flow
enters the pressure gradient region is shown in figure 6(a). The experimental data for a
canonical turbulent boundary layer flow at ZPG for a similar value of Reτ and for a similar
value of Reθ by Marusic et al. (2015) as for the present flow, see table 2, are included,
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Log law at adverse pressure gradient
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0 1.2

1.3

1.4

10

20
u+

y+ Reθ

H12

30
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Figure 6. (a) Mean-velocity profile for U∞ = 23 m s−1 at x = 8.12 m and reference data for a similar value
of Reτ and Reθ in the wind tunnel HRNBLWT (high Reynolds number boundary layer wind tunnel at the
University of Melbourne) by Marusic et al. (2015). (b) Shape factor H12 and reference data in Bailey et al.
(2013) and Marusic et al. (2015) measured in the wind tunnels HRNBLWT and MTL.

U∞ PIV techn. Method 104�p+
s y+

log,min- ylog,max/δ995- uτ κ

m s−1 for cf interval interval m s−1

23 single px. CCM −1.5 [100, 800] [0.1, 0.15] 0.9681 0.3868
23 wind. corr. CCM −1.5 [300, 800] [0.1, 0.15] 0.9627 0.3987
36 single px. CCM −1.1 [100, 800] [0.1, 0.15] 1.4327 0.3916
36 wind. corr. CCM −1.1 [500, 800] [0.1, 0.15] 1.4270 0.4007

Table 3. Statistical evaluation of uτ and κ at x = 8.12 m at almost ZPG by variation of lower bound y+
log,min

and upper bound ylog,max/δ995 assumed for the log-law region. px., pixel; wind. corr., window correlation.

together with the law of the wall by Coles with η = y/δ99 and Π = 0.45

u+ = 1
0.41

log( y+) + 5.0 + 2Π

0.41

(
sin
(πη

2

))2
. (3.1)

The wake of the present data is less pronounced than for the reference data. This
is supposed to be a long-living history effect caused by the flow acceleration over the
ramp. In the log-law region, the present data are close to the reference data. The small
differences are supposed to be due to the small FPG and due to details in the method
used to determine uτ . For the present data, the wall shear stress was determined from a
Clauser chart method (CCM) using (i) κ = 0.41, B = 5.0, (ii) κ = 0.384, B = 4.17 and
(iii) κ = 0.395, B = 4.475, and a variation of the log-law region y+

log,min < y+ < y+
log,max

for the statistical evaluation given in table 3. For the reference data, uτ was determined
using a composite velocity profile, see Marusic et al. (2015).

Then κ and B are determined by a least-squares fit of the data to the log law (1.1) using
the value obtained for uτ . The results are given in table 3. For a statistical evaluation, the
log-law region was varied within the above intervals, leading to κ = 0.395 ± 0.013 for the
mean value of κ averaged over the four data sets in table 3. For the computation of δ∗
and θ , the mean-velocity profile by Chauhan, Monkewitz & Nagib (2009) was used for
y+-values below the first reliable data point.

The shape factor H12 evaluated at x = 8.12 m is shown in figure 6(b). For comparison,
the data by Bailey et al. (2013) and Marusic et al. (2015), measured in the HRNBLWT and
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in the minimum turbulence level wind tunnel (MTL) at the Royal Institute of Technology
(KTH), are included. For the present flow, H12 is smaller than the reference data, consistent
with the smaller wake factor, whereas cf = 0.00244 is larger than cf = 0.00220 for the
reference data. We note that cf = 2u2

τ /U2
e is normalised using the boundary layer edge

velocity Ue at x = 8.12 m for the present flow.

3.3. Summary
The experimental set-up provides the intended flow conditions. In the APG focus region,
significant values of �p+

s > 0.01 are reached and the flow is not close to separation. At
the end of the ZPG region just upstream of the pressure gradient region, the mean velocity
profile shows a well-defined log law in the inner layer and has a slightly smaller wake than
a canonical flow. In the next section the detail measurements in the APG region and their
analysis are presented.

4. Results for the APG region

The goal of this work is to find a description of the mean-velocity profile at APG in
the inner layer and to answer questions (Q1)–(Q3). As classical inner scaling is used,
summarised in appendix A.1, care is needed for the determination of the friction velocity
uτ . The measurement position xref = 9.944 m is in the middle of the inclined flat plate
around 1.14δ99 downstream of the end of curvature. The cf -distribution in figure 2(b)
shows that the flow is far from separation at this station and further downstream.

4.1. Determination of the wall shear stress
The wall shear stress τw was determined using OFI. Additionally, τw was determined from
the mean-velocity profiles. The definition of τw involves the mean-velocity gradient in
wall-normal direction at the wall. The implication of this definition on the resolution
requirements is still open for flows at a significant APG. Since the data points below
y+ = 2 were not considered reliable enough, different indirect methods were used based
on a fit of the data to an assumed mean-velocity profile in a certain y+-region. As a
complementary method, uτ was determined by a least-square fit of the total shear stress
and the remaining terms of the integral momentum balance (A2), see Volino & Schultz
(2018).

4.2. Mean-velocity profiles in the viscous sublayer
The μPTV data for U∞ = 23 m s−1 were considered to be reliable for y+ > 2, and
uτ was determined by a least-squares fit to the relation u+ = y+ in the region y+ ∈
[2 ± 0.1; 4.6 ± 0.6]. This region was found by visual comparison of the data with
u+ = y+ and by inspection of ∂U/∂y. The upper bound is a little lower than y+ = 5
used by Nagano et al. (1991). We obtained uτ = 0.5217 ± 0.0230 m s−1, compared to
uτ = 0.5281 ± 0.0106 m s−1 by OFI. The estimation of the relative uncertainty of 4.4 %
for μPTV is described in F.1, attempting to follow Bailey et al. (2014) for the different
sources of uncertainties discussed in their work. The uncertainty due to a variation of
the y+-range used for the fit, and the uncertainty of the mean-velocity data per bin of
the particle tracking method due to the number of sample events, were quantified using a
Monte Carlo-based error analysis. The results for uτ are summarised in table 4.
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Log law at adverse pressure gradient

Method uτ εuτ 100�p+
s ε�p+

s
κ εκ

for uτ in m s−1 in % in % in %

OFI 0.5281 ± 0.0106 2.0 1.826 ± 0.194 10.6 0.3703 ± 0.0167 4.5
Fit u+ = y+ 0.5217 ± 0.0230 4.4 1.894 ± 0.347 18.3 0.3659 ± 0.0252 6.9
Fit to Nickels (2004) 0.5270 ± 0.0200 3.8 1.837 ± 0.299 16.3 0.3697 ± 0.0233 6.3
CCM 0.5037 ± 0.0307 6.1 2.104 ± 0.503 23.9 0.3530 ± 0.0304 8.6

Table 4. Results for uτ and κ at the APG position for the μPTV data at U∞ = 23 m s−1.

(b)(a) 12

10
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4

2

0 5 10 15

2D μPTV

DNS (ZPG), Reθ
 = 4060

Nickels (2004)

u+ = y+, lin. fit
u+ = y+ + 0.5�p+

s ( y+)2

20
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Figure 7. Two-dimensional μPTV data for U∞ = 23 m s−1 at x = 9.944 m. Mean-velocity profile in the
viscous sublayer in inner units using uτ (a) from OFI and (b) from a linear fit to u+ = y+.

The mean-velocity profiles are shown in figure 7, where the inner scaling uses uτ

from OFI (a) and from the fit u+ = y+ (b). For y+ < 3, the number of data points is
not sufficient to show an advantage of the second-order Taylor-series expansion u+ =
y+ + 1

2�p+
s ( y+)2 for the present value of �p+

s . The mean-velocity profile (A4) by Nickels
(2004) follows the μPTV data very closely up to y+ = 20. The DNS data for ZPG by
Schlatter & Örlü (2010) are close to the APG data near the wall, and the deviation increases
for y+ > 10, where the APG profile turns below the ZPG profile.

The profiles for u+ at U∞ = 36 m s−1 are shown in figure 8. The three-dimensional
LPT data evaluation with the first reliable data point at y+ = 5 was used, and uτ was
determined by a least-squares fit to the profile by Nickels (2004) for y+ < 21, motivated
by the findings for U∞ = 23 m s−1. As a complementary method, uτ was inferred from
a least-square fit of the total shear stress and the remaining terms of the integral mean
momentum balance (A2), see figure 16(b). This approach corresponds to the use of (3) in
Volino & Schultz (2018). The uncertainty for uτ is estimated to be 5 %, see appendix E.
As a cross-check, an empirical correction of the CCM for APG was used, motivated from
the difference found between the CCM and the direct method for uτ at U∞ = 23 m s−1.
The method is described in appendix G. The results for uτ are summarised in table 5.

4.3. On the log law at APG
Regarding questions (Q1) and (Q2), a region where the mean velocity can be fitted by
a log law was found by visual inspection of the plot u+ vs log( y+) for both cases
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Figure 8. Three-dimensional LPT data for U∞ = 36 m s−1 at x = 9.944 m. Mean-velocity profile in the
viscous sublayer in inner units using uτ (a) from a least-squares fit of the total shear stress described in
appendix E and (b) from a least-squares fit to the mean-velocity profile by Nickels (2004).

Method uτ εuτ 100�p+
s ε�p+

s
κ εκ

for uτ in m s−1 in % in % in %

Fit to Nickels (2004) 0.7946 ± 0.0318 4.0 1.144 ± 0.194 17.0 0.3794 ± 0.0197 5.2
Fit of total shear stress 0.7958 ± 0.0398 5.0 1.139 ± 0.231 20.3 0.3802 ± 0.0259 6.2
CCM 0.7710 ± 0.0431 5.6 1.253 ± 0.279 22.3 0.3696 ± 0.0251 6.8
CCM + corr. 0.7885 ± 0.0441 5.6 1.171 ± 0.261 22.3 0.3765 ± 0.0256 6.8

Table 5. Results for uτ and κ at the APG position for the three-dimensional LPT data at U∞ = 36 m s−1.

U∞ = 23 m s−1 and U∞ = 36 m s−1. Its extent is identified using the mean-velocity
slope diagnostic function (A8a,b). For U∞ = 36 m s−1, a thin plateau is found for
84 < y+ < 152, see figure 16(a) in appendix D. For U∞ = 23 m s−1 the log-law region is
86 < y+ < 135.

The von Kármán constant κ was determined using a log–linear regression. For U∞ =
23 m s−1, the lower bound y+

log,min ∈ [82; 92] and upper bound y+
log,max ∈ [126; 138] were

varied for statistical evaluation. The results are given in table 4. The value κ = 0.370 ±
0.017 at �p+

s = 0.0183 was obtained for uτ by OFI. Beyond the bounds of the y+-range,
the values for κ change significantly due to the systematic deviation of the mean-velocity
profile from a log–linear behaviour, in particular for y+ much larger than 140. The log-law
fit is shown in figure 9(a). The uncertainty estimation is described in appendix F.2 and
summarised in table 12. It was guided by the work of Bailey et al. (2014).

For U∞ = 36 m s−1, y+
log,min ∈ [82; 90] and y+

log,max ∈ [142; 150] were used. The
value of κ = 0.379 ± 0.020 at �p+

s = 0.0114 was obtained for uτ determined by the
least-squares fit to the profile by Nickels. The detailed results are given in table 5.
The mean-velocity profile and the log-law fit are shown in figure 9(b). A detailed
discussion of the uncertainties and their quantification is given in appendix F.2 and in
table 13.

An important finding is that the outer limit of the log law is at a much smaller
y+-value than for ZPG flows, i.e. at 0.019δ+

99 for U∞ = 23 m s−1 and at 0.015δ+
99 for
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Figure 9. Mean-velocity profile and least-squares fit in the log-law region at x = 9.944 m (a) for U∞ =
23 m s−1 using uτ from OFI and (b) for U∞ = 36 m s−1 using uτ from a least-squares fit to the profile by
Nickels (2004) for y+ < 20.

U∞ = 36 m s−1. It is even smaller than the widely believed start of the log-law region
in ZPG flows, cf. Wei et al. (2005) and Marusic et al. (2013). This indicates that, at a
given significant value of, say, �p+

s > 0.01, the extent of the log law cannot be simply
increased by increasing Re. This is different to the traditional view for ZPG, where the log
law is associated with an overlap region, whose extent in terms of y+ can be increased by
increasing Re. At APG, a half-power law is found instead in a large part of the overlap
region, and its extent can be increased by increasing Re, see § 4.6.

4.4. Clauser chart method
For the study of the CCM at APG, the same statistical evaluation as in § 4.3 was used. For
U∞ = 23 m s−1, uτ = 0.5037 m s−1 is obtained. The sensitivity of uτ to the values for κ

and B calibrated for ZPG is smaller than 0.3 %, given that the upper and lower bounds for
the log-law region are fixed. The uncertainties are summarised in table 14 in appendix F.3.
For U∞ = 36 m s−1, uτ = 0.7710 m s−1 is obtained, and the uncertainties are given in
table 15. The values for uτ by the Clauser chart are systematically lower than from OFI
and from the viscous sublayer fit, in agreement with Monty et al. (2011).

4.5. Von Kármán constant and log-law intercept
The values for κ and B are correlated with the pressure gradient parameter. In figure 10(a)
κ is plotted vs �p+

s , as proposed by Nickels (2004), see correlation (A7). The error bars
for both quantities �p+

s and κ are also included. The details of the uncertainty analysis are
described in appendix F.2. The uncertainty of �p+

s uses an assumed uncertainty of 3.5 %
for (1/ρ)(dPw/ds) and an uncertainty of 1 % for ν. The symbols indicate the method used
to determine uτ . The values for κ are found to be smaller for U∞ = 23 m s−1 than for
U∞ = 36 m s−1. This is consistent with the proposal by Nickels in the sense that κ is
decreasing with increasing values of �p+

s . For the reference value at ZPG, κ = 0.40 ±
0.02 is assumed. Thus a reduction of κ at APG is found compared to κ = 0.40, but this
reduction is within the estimated uncertainty bounds.

Moreover, a significant role of the method to determine uτ is observed. The standard
CCM yields lower values for uτ , and hence larger values for �p+

s , and smaller values for
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Figure 10. (a) Value of κ vs �p+
s . The symbols show the method for uτ . Two-dimensional μPTV data

for U∞ = 23 m s−1: �, OFI; �, fit to u+ = y+; �, fit to profile by Nickels (2004); �, Clauser chart.
Three-dimensional LPT data for U∞ = 36 m s−1: �, Clauser chart; �, fit to profile by Nickels (2004); �,
Clauser chart with empirical correction. The 2D2C PIV data using OFI for uτ : ♦, x = 8.12 m at almost
ZPG; solid line, correlation by Nickels (2004) for κ0 = 0.39; dashed line, correlation by Nickels (2004) using
κ0 = 0.40. (b) Plot of κB and vs B. Same symbols as in (a); solid line, correlation by Monkewitz et al. (2008).

κ are obtained. This gives a warning that a possible change of κ may appear enlarged, if a
standard CCM is used to determine uτ .

Regarding the intercept B, the values for κB are plotted against B in figure 10(b) and
follow closely the correlation proposed by Monkewitz et al. (2008).

4.6. On the half-power-law region
Then the hypothesis of a half-power-law region (or sqrt-law region) above the log law
is studied, see question (Q3) in the introduction. The mean velocity slope diagnostic
function (A8a,b) is used to identify the region where the mean-velocity profile can be
described by the sqrt law (1.3) following the method for ZPG turbulent boundary layers by
Österlund et al. (2000) and Monkewitz, Chauhan & Nagib (2007). For U∞ = 23 m s−1,
the mean-velocity profile and the fit to the sqrt law are shown in figure 11(a) for the 2D2C
PIV data evaluated by the single-pixel ensemble correlation method and uτ from OFI. The
least-squares fit of (1.3) to the data is computed in the region where the slope diagnostic
function (A8a,b) gives a small plateau, see figure 11(b). The single-pixel data show an
approximative plateau in the region 500 < y+ < 860, whereas the window correlation
data are smoother and show a slightly smaller plateau for 520 < y+ < 840. The outer
edge of the approximative plateau y+ ≈ 840 corresponds to 0.122δ+

99.
For U∞ = 36 m s−1 the mean-velocity profile and the fit to the sqrt law are shown in

figure 12(a) for the three-dimensional LPT data. A region of an approximative plateau
for the slope diagnostic function (A8a,b) can be observed for y+ > 750 which extends up
to approximately y+ ≈ 1260, see figure 12(b). The outer edge y+ ≈ 1260 corresponds to
0.129δ+

99. The outer limit of the plateau in terms of y+ is increasing with increasing U∞,
i.e. with increasing Re. This is similar to the behaviour of the outer edge of the log law in
turbulent boundary layers at ZPG. We note that the mean-velocity profile cannot be fitted
by the sqrt law (1.3) in the entire inner region, say, y+ ∈ [150, 0.13δ+

99].
The outer limit of the plateau is smaller than y/δ = 0.15 found for ZPG by Marusic

et al. (2013), where the boundary layer thickness δ was determined from a fit of the
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Figure 11. The 2D2C PIV results at APG for U∞ = 23 m s−1 at x = 9.944 m. (a) Log-law and sqrt-law
regions. (b) Mean-velocity slope diagnostic function of the sqrt law.
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Ko= 0.32

y+ = 0.122δ+
99

Figure 12. Three-dimensional LPT STB results for U∞ = 36 m s−1 at x = 9.944 m. (a) Log-law and
sqrt-law regions. (b) Mean-velocity slope diagnostic function of the sqrt law.

composite law of the wall/law of the wake. The value 0.15δ given in Marusic et al.
(2013) corresponds to 0.195δ99 if assuming that δ = 1.3δ99. An estimate of historical
effects using 2δt.o. based on u∗ = k1/2 in figure 5(c) gives 2δt.o. = 0.8δ99 at y = 0.13δ99,
2δt.o. = 1.0δ99 at y = 0.15δ99 and 2δt.o. = 1.7δ99 at y = 0.2δ99. Therefore, the outer limit
of the plateau of ξsqrt and the deviation of the mean-velocity profile from the sqrt-law fit
above y+ 	 0.15δ99 could be affected by historical effects, leading to a smaller outer limit
of the sqrt law than for the log law at ZPG, see § 5. The inner limit of the plateau is larger
than the value y+ = 350 inferred from the relation y+ = 3Re1/2

τ for ZPG by Marusic et al.
(2013), assuming again Reτ = δ+ ≈ 1.3δ+

99.
Regarding the significant variation in scatter for figures 11(b) and 12(b), we note that the

gradients for the 2D2C PIV data in figure 11(b) are computed using a central difference
scheme for the unfiltered data. For the three-dimensional LPT data in figure 12(b), a
two-step method was used. In the first step a smoothing of the data was applied, using
a Gaussian filter with a kernel of 7 points, i.e. using the data points i − 3, . . . , i + 3 for
data point i. To compute the gradient at y = yi, a linear function was fitted to the data
points yi−3, . . . , yi, . . . , yi+3 using a least-square fit. Note that yi+3 − yi = 8.7δν can be
seen as the half filter width for smoothing, see also appendix D.

The mean-velocity profile above the square-root-law region looks different from
the wake of a turbulent boundary layer at APG on a flat plate, see figures 11(a) and 12(a).
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This originates from the upstream region of convex surface curvature and streamwise
changing pressure gradient and will be described in § 5.

The value for Ko was determined by a least-square fit to (1.3), yielding Ko = 0.310 and
Bo = −6.39 for the single-pixel data at U∞ = 23 m s−1 and uτ from OFI, and Ko = 0.320
and Bo = −4.66 for the three-dimensional LPT STB data at U∞ = 36 m s−1, where uτ

from the least-squares fit to the profile by Nickels was used. For the comparison of Ko with
values reported in the literature, note that some authors use the form for the half-power law
for zero-skin-friction flow by Stratford (1959)

U( y) = 2
K

(
1
ρ

dP
ds

)1/2

y1/2 (4.1)

instead of (1.3). Stratford used a value of K = 0.66κ = 0.27 for his zero-skin-friction flow.
For the same data, Townsend (1960) found K = 0.5 ± 0.05, whereas Mellor (1966) found
that, at most, K = 0.44 by excluding certain near-wall points. From the DNS by Spalart
& Leonard (1986), K = 0.6 was found. For flows with a non-zero skin friction, some
representative values are 0.48 ± 0.03 by Townsend (1961), 0.48 by Perry (1966), for large
values of (δ/τw)(dP/ds), 0.45 by Kader & Yaglom (1978) and 0.57 by Afzal (2008). The
values depend on the form of the half-power law, i.e. (1.3) or (4.1), and on the region
considered for the least-squares fit. For example, if the half-power-law fit is applied above
the log-law region, as proposed by Perry (1966), then smaller values are obtained than if
the fit is applied to all data in the inner layer above the buffer layer. The latter method was
used e.g. by Afzal (2008). The values obtained for Ko for the present flow are smaller than
other values reported in the literature, despite these details.

As a final remark, Perry (1966) proposed an extension of his three-layer model,
suggesting that the first and second streamwise derivatives of the pressure gradient might
need to be included to account for effects of a streamwise decreasing APG. He proposed
a region IV above the half-power-law region, where the mean-velocity gradients are
proportional to y0 (compared to y−1 in the log-law region and y−1/2 in the half-power-law
region) and are governed by d2P/ds2. Such a region was also proposed by Durbin &
Belcher (1992) for reasons of matching with the outer part of the boundary layer and
called the middle region. For the present data, a region where U ∼ y can be observed from
y+ = 3500 to y+ = 5000, corresponding to 0.35 < y/δ99 < 0.51.

4.7. Summary
The log law in the mean-velocity profile was found to be a robust feature at APG, but its
region is thinner than in zero pressure gradient flows (Q1). The von Kármán constant κ was
found to be reduced, but within the uncertainty of the measurement (Q2). A square-root
law was observed to emerge above the log law in a large part of the region the log law
occupies at ZPG (Q3).

5. Streamwise evolution of the mean velocity

As the focus is on the mean flow scaling and given that the inner and outer regions
are connected by an overlap region, history effects for the inner and outer layer need to
be discussed. Perry et al. (1966) divided the boundary layer into a ‘wall region’ and a
‘historical region’. In the wall region, only the local flow quantities dP/ds, τw/ρ, and
y govern the mean-velocity profile, and higher derivatives of dP/ds and τw/ρ may be
involved above a certain wall distance. In the historical region, the mean-velocity profile
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x in m 8.12 8.62 8.87 9.12 9.32 9.42 9.52 9.72 9.87 9.944 10.02 10.09

x∗
curv −5.80 −2.47 −0.80 0.86 2.20 2.86 3.53 4.86 — — — —

x∗
relax — — — — — — — −0.20 0.70 1.14 1.59 2.00

100�p+
s −0.015 −0.046 −0.095 −0.17 0.037 0.20 0.49 1.34 1.57 1.85 2.26 2.75

βRC −0.16 −0.52 −1.11 −1.73 0.30 1.63 4.50 14.9 18.4 27.1 35.3 47.0

Table 6. Positions for the mean-flow profiles from the 2D2C PIV overview measurement. The values are for
the case U∞ = 23 m s−1 using the values for uτ obtained by OFI.

(a)
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log (y+)/0.39 + 4.1

x = 8.12 m, x*
curv = –5.80, βRC = 0

x = 8.62 m, x*
curv = –2.47

x = 8.87 m, x*
curv = –0.80

x = 9.12 m, x*
curv = 0.86

log (y+)/0.39 + 4.1

x = 8.12 m, x*
curv = –5.80, βRC = 0

x = 9.32 m, x*
curv = 2.20, βRC = 0

x = 9.42 m, x*
curv = 2.86

x = 9.52 m, x*
curv = 3.53

Figure 13. Mean-velocity profiles for U∞ = 23 m s−1 at almost ZPG and in the region of curvature with
change from favourable to APG.

is influenced by ‘upstream events’. To better understand the mean-velocity profile at the
APG focus position x = 9.944 m, the local effects and the historical effects of streamwise
changing pressure gradient, convex curvature and relaxation from curvature are discussed
as the flow evolves downstream. The history effects in the outer region are quantified using
the shape factor H12 due to the issues in the definition of the wake parameter, see Chauhan
et al. (2009) for ZPG flows. Table 6 gives the streamwise positions studied. The distance
x∗

curv = (x − xb)/δ99,ref from the beginning of curvature at xb = 8.990 m is defined as
a multiple of δ99,ref , and x∗

relax = (x − xe)/δ99,apg defines the distance of flow relaxation
downstream of the end of curvature, measured from the end of curvature at xe = 9.750 m,
as a multiple of δ99,apg = 0.17 m at x = 9.72 m.

The change from ZPG to FPG causes a reduction of H12 and of the wake factor Π ,
which is known for FPG, see, e.g. Jones, Marusic & Perry (2001). Moreover, a downward
shift of the entire u+-profile by �u+ = −0.4 is observed, see figure 13(a). This shift
is not observed if uτ from the CCM is used, giving 2 % to 3 % larger values for uτ ,
close to the uncertainty of 2 % of the OFI method. As the FPG becomes strongest near
x = 9.12 m and curvature effects increase, the extent of the log-law region is observed
to be reduced to y+ < 450 (or y/δ99 < 0.047), and above, the velocity profile, plotted
against log( y+), turns downwards below the log law. Regarding the reduction of Π ,
the acceleration parameter K = −ν/U2

e dUe/ds quantifying the strength of the FPG is
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Figure 14. Mean-velocity profiles for U∞ = 23 m s−1 in the APG region.

K = 1.0 × 10−7. Hence, K and �p+
s are smaller than for the smallest FPG case K =

2.7 × 10−7 and �p+
s = −3.3 × 10−3 in Jones et al. (2001). Then the pressure gradient

rapidly changes from increasing to decreasing FPG. History effects in the outer layer are
found at x = 9.32 m, where βRC is (almost) zero. Here H12 remains at the low value of
H12 = 1.20 at x = 9.12 m and is significantly smaller than H12 = 1.25 in the upstream
ZPG region.

The APG region on the curved wall (x 	 9.32 m) is shown in figure 13(b). In the inner
layer, the value of u+ at y+ = 100, denoted by u+(100), remains almost unaltered. For
y+ > 200 (or y/δ99 > 0.024), the profiles begin to turn upwards above the log law. This
is mainly attributed to the APG, which reaches �p+

s = 0.005 at x = 9.52 m. Note that a
reduction of the log-law region and an upward turn above the log law was also observed
in convex curvature flows at ZPG by Gillis et al. (1980), and by Kim & Rhode (2000).
However, the upward turn, quantified by �u+( y+) above the log law, shown therein is
smaller than for the present flow. Regarding the outer layer, H12 is rising downstream
of x > 9.32 m due to the APG, albeit convex curvature was also found to cause a small
increase of H12, see Patel & Sotiropoulos (1997). Another historical effect is found at
x = 9.52 m, where H12 reaches again the value from the ZPG region, albeit at βRC = 4.5
and with a different form of the mean-velocity profile.

Downstream of the end of curvature at x = 9.750 m, the flow is subjected to an APG and
relaxation from curvature. The mean-velocity profiles are shown in figure 14(a). Regarding
the inner layer, the value for u+(100) appears still to be almost unchanged. The upward
turn above the log law is increasing in downstream direction, consistent with the increase
of the slope of the square-root law with increasing �p+

s . For x 	 9.944 m, u+(100) is
found to be decreasing, and in the log-law region the profiles appear to be shifted below
the log law at ZPG, see figure 14(b). The log-law region appears to recover as the flow
relaxes from curvature. The recovery for the ZPG case is described in Gillis et al. (1980)
and Alving et al. (1990). In the square-root-law region, the slope of u+ is continuously
increasing, consistent with the increasing �p+

s values. Regarding the outer layer, Π and
H12 are further increasing due to the APG, but remain substantially smaller than for the
corresponding equilibrium flow.
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Figure 15. (a) Defect shape factor G for U∞ = 23 m s−1 and theory for equilibrium flows by Mellor & Gibson
(1966) with the data by Bradshaw in Coles & Hirst (1969). (b) Mean velocity for U∞ = 36 m s−1 at x =
9.944 m and data by Schubauer & Klebanoff in Coles & Hirst (1969) at similar local flow conditions �p+

s and
�u+

τ,s, see (E2a–c).

Author ID Reθ �p+
s �u+

τ,s × 105 βRC H12

Present, U∞ = 36 m s−1 9.944 m 57363 0.0114 −1.974 26.37 1.520
Schubauer & Klebanoff 2134 53838 0.0117 −2.55 20.286 1.857
Schubauer & Klebanoff 2135 58117 0.0147 −4.57 27.291 1.983

Table 7. Summary of local flow parameters for APG flows shown in figure 15(b).

The cumulative history effect of the present flow is studied in terms of the defect
shape factor G, where H12 = (1 − γ G)−1 with γ = uτ /Ue to account for Re-effects, and
compared with the theory for equilibrium turbulent boundary layer flows by Mellor &
Gibson (1966). Together with the streamwise distribution of βRC given in figure 4(b),
figure 15(a) shows the delayed response of G for the present flow compared to the
corresponding equilibrium flow at the same value of βRC.

Between the outer edge of the square-root law and the wake, an S-shaped bending in the
u+-profile is observed, if plotted against log( y+), appearing at x = 9.42 m and persisting
downstream. From the flow history, the S-shaped bending appears as a combined effect of
the upward turn above the log law due to the APG, starting to grow for x 	 9.42 m, and the
downward turn below the log law originating in the upstream FPG region. This could be a
non-equilibrium effect due to the rapid change in uτ and in dP/ds over a short streamwise
distance, see Spalart (2010).

Finally, the role of local and historical effects on the mean velocity in the inner layer
are discussed for the high-Re case, given that the inner and outer layer are connected by
an overlap region. For the local effects �p+

s and the wall shear stress gradient parameter
�u+

τ,s are considered, motivated by the model for the total shear stress (E2a–c), where
�u+

τ,s describes the local flow acceleration. Figure 15(b) compares the present data with
two profiles by Schubauer & Klebanoff (denoted by 2134 and 2135 in Coles & Hirst 1969)
at almost the same values of �p+

s , �u+
τ,s and Reθ , see table 7. Error bars with a relative
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magnitude of 5 % for u+ and 6 % for y+ are included, based on the relative uncertainty
in uτ of 5 % and in ν of 1 %. In the inner layer, the reduction of the log-law region and
the emerging of the sqrt law above the log law are similar for the two flows. One should
be cautious, however, due to the uncertainty of the uτ -values reported in Coles & Hirst
(1969) which rely on the CCM with κ = 0.41 and B = 5.0, see § 4.4, and deviations of the
u+-profiles within the error bounds are possible. The comparable inner layer behaviour
indicates the influence of the local effects and the rapid response of the inner layer. The
differences in the outer layer are due to the different flow history, leading to larger values
H12 = 1.86 and H12 = 1.98 for the flow by Schubauer & Klebanoff. For comparison,
H12 = 2.0 was found for the equilibrium flow by Skare & Krogstad (1994) at almost the
same �p+

s , Reθ and βRC, but at a much smaller �u+
τ,s. These findings are in agreement

with the result by Bobke et al. (2017), that βRC alone is not sufficient to determine the
mean-velocity profile at APG. A more detailed view reveals that the extent of the sqrt law
is a little smaller for the present flow than for the flow by Schubauer & Klebanoff. This is
an indication that the outer part of the inner layer is probably affected by historical effects
of the outer layer.

To summarise, the observed rapid recovery of the log-law region downstream of the end
of curvature is in agreement with the results for the eddy turnover length δt.o. in figure 5(c),
indicating that the inner layer relaxes rapidly, albeit not instantaneously. The mean velocity
in the outer layer was found to be influenced by history effects due to streamwise changing
pressure gradient and convex curvature in conjunction with the slow response of the outer
layer indicated by the large values for δt.o.. The history effects were found to affect the
outer part of the inner layer, causing the observed reduced extent of the sqrt-law region
compared to the region occupied by the log law at ZPG.

6. Conclusions

The goal of the analysis was to determine the resilience of the log law for the mean
velocity, the possible change of the von Kármán constant κ and the appearance of a
square-root law above the log law at significant APGs. We observed that, while the log
law in the mean-velocity profile is a robust feature at APG, this region is thinner than its
ZPG counterpart, and its slope is altered. A square-root law emerges above the log law in
a large part of the region the log law occupies at ZPG. The square-root law was detected
by a plateau of the mean-velocity slope diagnostic function. As the plateau was found to
have only a moderate extent even for the large Reynolds number Reθ = 57 000, we infer
that the square-root-law region appears only at sufficiently large Reynolds numbers. This
structure of the mean velocity profile confirms the proposal by Perry et al. (1966).

It was found that, when the pressure gradient parameter �p+
s increases from zero to

0.018, the value of κ decreases from 0.395 ± 0.013 to 0.370 ± 0.017. For comparison, the
model by Nickels (2004) predicts a reduction from κ = 0.390 for �p+

s = 0 to κ = 0.365
for �p+

s = 0.018. Using the value for uτ from the Clauser chart was shown to give
erroneously smaller values for κ than if a direct method for uτ was used. The reduction
of κ could not be demonstrated to be significant due to the measurement uncertainty,
and because of possible history effects of the upstream located region of streamwise
changing pressure gradient and convex wall curvature. The major contribution to the
overall uncertainty of κ stems from the wall shear stress. Complementary to OFI, two
indirect methods for the wall shear stress were found to be promising, viz., using a
least-squares fit to the mean-velocity profile by Nickels (2004) in the region y+ < 20, and
the relation for the total shear stress derived from the integral form of the mean momentum
balance, see Volino & Schultz (2018).
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Finally the findings are put in context with other turbulent boundary layer flows at APG.
In the inner layer, the reduction of the log-law region and the emerging of the sqrt law
above the log law were found to be similar to the flow by Schubauer & Klebanoff in Coles
& Hirst (1969). Both data are at a similar Reθ and βRC, and at almost the same values for
�p+

s and wall shear stress gradient parameter �u+
τ,s. This indicates the rapid response of

the inner layer and the role of local effects on the inner layer. Significant historical effects
were observed for the outer layer, and these were found to affect the outer part of the inner
layer and the extent of the sqrt-law region. As most turbulent boundary layer flows of
practical relevance are streamwise evolving flows, future research on non-equilibrium and
history effects seems to be highly appreciated.
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Appendix A. Theoretical relations

A.1. Boundary layer theory and scaling to viscous units
Consider a two-dimensional, incompressible turbulent boundary layer flow. A wall-fitted
local coordinate system with streamwise wall-parallel direction s, wall-normal direction
y and mean-velocity components U (streamwise wall parallel) and V (wall normal) is
assumed together with the following boundary layer equation for U

ν
∂2U
∂y2 − ∂u′v′

∂y
= 1

ρ

dPw

ds
+ U

∂U
∂s

+ V
∂U
∂y

+ ∂

∂s

(
u′2 − v′2

)
. (A1)

Here, the relation P(s, y) = Pw(s) − v′2(s, y) is used, which can be obtained by integration
of the boundary layer equation for V , see Hinze (1975). Then integration of (A1) from the
wall to the wall distance y gives the following relation for the total shear stress τ

τ

ρ
≡ ν

∂U
∂y

− u′v′ = τw

ρ
+ 1

ρ

dPw

ds
y +

∫ y

0
U

∂U
∂s

dỹ

+
∫ y

0
V

∂U
∂ ỹ

dỹ +
∫ y

0

∂

∂s

(
u′2 − v′2

)
dỹ, (A2)

where τw denotes the wall shear stress. The classical scaling to inner viscous units reads

u+ = U
uτ

, y+ = yuτ

ν
, τ+ = τ

τw
, uτ =

√
τw

ρ
, �p+ = ν

ρu3
τ

dPw

ds
. (A3a–e)

A second classical scaling based on the so-called pressure–viscosity velocity up =
ν/ρ|dPw/ds| by Stratford (1959) and Mellor (1966) is not used in this work, since
uτ > 10up in the region of interest of the present work.
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A.2. Relations for the mean velocity at APGs

A.2.1. A model for the viscous sublayer thickness by T. Nickels
Nickels (2004) proposes an analytical model for the mean velocity in boundary layers
subjected to mild and moderately strong pressure gradients, which can be favourable and
adverse. The viscous sublayer solution U+

vis = U+
vis( y+;�p+

s , y+
c ) is given by

U+
vis = y+

c

[
1 −

[
1 + 2

y+

y+
c

+ 1
2

(
3 − �p+

s y+
c
) (y+

y+
c

)2

− 3
2
�p+

s y+
c

(
y+

y+
c

)3
]

e−3(y+/y+
c )

]
,

(A4)

which depends on the local value of �p+
s and a parameter y+

c , which is associated with
the thickness of the viscous sublayer. Then yc is determined by a stability argument using
a critical value Rec of a suitably defined local Reynolds number

Rec = uTyc

ν
, uT =

(
τ |y=yc

ρ

)1/2

, τ+|y=yc = 1 + �p+
s y+

c . (A5a–c)

Here, yc is the critical value of y above which the viscous sublayer becomes unstable. The
assumption that Rec has a universal value for all wall-bounded flows implies that

�p+
s
(

y+
c
)3 + (

y+
c
)2 − Re2

c = 0, (A6)

where Rec is the only free parameter and is chosen from ZPG data to Rec = 12. The
physically relevant solution for yc is the smallest positive root of (A6).

A.2.2. A model for the von Kármán constant κ by T. Nickels
Regarding the von Kármán constant κ , Nickels (2004) argues that two relations to
characterise the vorticity scale in the inner layer should be equal. The first relation is based
on the velocity scale uτ and the second is based on uT . This leads to

∂U
∂y

= uT

κ0y
= uτ

κy
⇔ κ

κ0
= uτ

uT
⇔ κ

κ0
=
√

1
1 + �p+

s y+
c

(A7)

where κ0 is the value of κ for the ZPG case, for which κ0 = 0.39 is chosen.

A.2.3. Mean-velocity slope diagnostic functions
The mean-velocity slope diagnostic function is a method to assess the functional behaviour
of the mean-velocity gradient, see e.g. Österlund et al. (2000) for ZPG flows. The
diagnostic functions for log law and sqrt law (1.3) are

ξ−1
log = y+

(
du+

dy+

)
data

, ξ−1
sqrt = y+√

1 + �p+
s y+

(
du+

dy+

)
data

. (A8a,b)

A plateau region of the slope diagnostic function supports the assumed behaviour of
u+( y+). At ZPG, a plateau can be seen only for Reθ 
 6000, see Österlund et al. (2000).
The overlap of inner and outer layer becomes sufficiently thick in terms of y+ only for
asymptotically high Re. At APG, we suppose that at least Reθ > 10 000 is needed to
observe an asymptotic behaviour with a sufficiently thick overlap region. This was found
in a study of the database by Coles & Hirst (1969) in Knopp (2016).
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Log law at adverse pressure gradient

U∞ Meas. T∞ p∞ ρ∞ μ∞ × 10−5 ν∞ × 10−5

in m s−1 techn. in K in Pa in kg m−3 in Ns m−2 in m2 s−1

23 2D2C PIV 285.43 95 010 1.1600 1.7984 1.5503
23 2D-μPTV 284.1 94 992 1.1648 1.7918 1.5383
23 OFI 296.76 95 006 1.1132 1.8199 1.6349
36 2D2C PIV 284.58 94 415 1.1558 1.7942 1.5524
36 three-dimensional LPT STB 284.58 94 415 1.1564 1.7942 1.5515

Table 8. Summary of flow conditions in the wind tunnel.

Appendix B. Flow conditions during the wind-tunnel measurements

The flow conditions for the different measurement campaigns are summarised in table 8.
The reference pressure p∞ was measured downstream of the contour model near the exit
of the test section.

Appendix C. Determination of the boundary layer thickness

As a boundary layer at APG exists below irrotational free streams with non-zero
wall-normal variations, Coleman et al. (2018) proposed δ̃99 based on the velocity Ũ

Ũ(s, y) = −
∫ y

0
ω̄z(s, y′) dy′, ω̄z = ∂V

∂s
− ∂U

∂y
(C1a,b)

In the APG region on the inclined flat plate, the difference between δ99 and δ̃99 is 1 %. An
advantage of δ̃99 is that Ũ shows a clearer region of ∂Ũ/∂y = 0.

In the convex curvature region the pressure increases with distance to the wall, and there
is a corresponding decrease in velocity in the inviscid flow. Following Patel & Sotiropoulos
(1997), the boundary layer thickness needs to be defined using the potential flow velocity
distribution Up = Upw(1 − Ky), where the curvature K = 1/Rc is positive for a convex
wall, and Upw is the hypothetical potential flow velocity at the wall, which is found from cp
using the Bernoulli equation. Figure 3 shows that U( y) approaches Up( y) at x = 9.42 m
in the region of approximately constant surface curvature. The wall distance, where U
reaches 0.99Up, is δ = 0.144 m compared to δ99 = 0.131 m.

Moreover, the two criteria proposed in Vinuesa et al. (2016) were studied, i.e. the wall
distance where (i) u′/U = 0.02 and (ii) where u′/(U

√
H12) = 0.02. The former gives

better agreement with δ99 and δ̃99. It shows slightly smaller values than δ99. The deviation
is below 5 % in the ZPG region and 3.7 % on the flat wall in the APG region. Finally, the
results for the TNTI by Reuther & Kähler (2018) are used, which were evaluated using
an intermittency factor of γ = 0.3, see Reuther (2019). The deviation of δ99 from these
values is smaller than 2.5 % in the ZPG region and 4 % in the curvature region. In the
APG region, the values are up to 7.5 % larger than δ99.

Appendix D. Mean-velocity slope diagnostic function for the log-law

The mean-velocity slope diagnostic function for the three-dimensional LPT data for the
case U∞ = 36 m s−1 is shown in figure 16(a). The smoothing method described in § 4.6
was applied to the data. An approximative plateau is found in the region 84 < y+ < 152.
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τ+

τ+=1+�ps
+y++Icu

++Icv
++Ir

+

0
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y+
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3

4

500 1000

y+

ξlog

(a) (b)

Figure 16. (a) Mean-velocity slope diagnostic function for the log law for U∞ = 36 m s−1. (b) Determination
of uτ by a least-square fit of the measured total shear stress (denoted by 3D LPT STB, ave) and the remaining
terms of the integral momentum balance (A2), see (3) in Volino & Schultz (2018). For the nomenclature see
(E1a–c).

Appendix E. Method to determine the friction velocity from the mean momentum
balance

In figure 16(b) uτ is determined by a least square fit of the total shear stress and the
remaining terms of the integral mean momentum balance on the right-hand side of (A2),
after scaling both sides to viscous units. Therein a 2 % error bar for the right-hand side of
(A2) is shown. For abbreviation in figure 16(b), we use the notation

Icu( y) =
∫ y

0
U

∂U
∂s

dỹ, Icv( y) =
∫ y

0
V

∂U
∂ ỹ

dỹ, Ir( y) =
∫ y

0

∂

∂s

(
u′2 − v′2

)
dỹ,

(E1a–c)

to denote the integrated convective term and the Reynolds normal stress term. This
approach corresponds to the use of (3) in Volino & Schultz (2018). The estimate of an
uncertainty of 5 % for uτ is based on the uncertainty of 3.5 % for ρ−1 dPw/ds and of
1.5 % for the remaining terms of (E1a–c) for the three-dimensional LPT data.

E.1. A model for the total shear stress
An analytical model for the total shear stress by Coles (1956) and Perry (1966) is based
on the ansatz for the mean-velocity profile in the inner region U(s, y) = uτ (s) f ( y+(s, y))
and y+(s, y) = uτ (s)y/ν to model (E1a–c). By neglecting I+

r ( y+) this gives

τ+( y+) = 1 + �p+
s y+ + �u+

τ,sI
+
u , �u+

τ,s = ν

u2
τ

duτ

ds
I+
u =

∫ y+

0
f 2 dỹ+. (E2a–c)

The local effects on the total shear stress in the inner layer involve �p+
s and the wall

shear stress gradient parameter �u+
τ,s. Note that an extension of the ansatz (E2a–c) using

f = f ( y+(s, y), �p+
s (s)) accounts for higher-order effects on τ+, involving an additional

parameter based on d2P/ds2, see Knopp et al. (2015).
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Sources of uncertainties Uncertainty of uτ

No reliable data points below y+ � 1.9 1.6 %
Spreading in U( y) due to not enough samples 0.5 %
Uncertainty in the wall position (�y+ = 0.3) 0.5 %
Possible measurement error of data points U( y) for y+ < 2.6 (εU of 2 %) 1.3 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.5 %
Estimated total uncertainty 4.4 %

Table 9. Uncertainty quantification for uτ for the least-squares fit to the viscous sublayer profile u+ = y+ in
the region y+ ∈ [2; 4.6] for the μPTV data at U∞ = 23 m s−1.

Sources of uncertainties Uncertainty of uτ

Variation of lower and upper bound for the fit y+ ∈ [4 ± 2, 17 ± 3] <0.1 %
Uncertainty in the wall position (�y+ = 0.3) 1.0 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.3 %
Additional unknown systematic uncertainty due to the fit function (A4) 2.5 %
Estimated total uncertainty 3.8 %

Table 10. Uncertainty quantification for uτ for the least-squares fit to the profile by Nickels (2004) in the
region y+ ∈ [2; 20] for the μPTV data at U∞ = 23 m s−1.

Appendix F. Uncertainty analysis

In this section the uncertainty analysis for the different methods to determine the friction
velocity uτ , and for the evaluation of κ is presented.

F.1. Determination of the friction velocity
For the OFI results at U∞ = 23 m s−1, the uncertainty in uτ is estimated to be 2.0 %. This
estimate is based on the work by Thibault & Poitras (2017). For the current application
case (oil viscosity is calibrated up to a standard uncertainty of 1 %, re-projection of the
interference images onto the model surface with an accuracy on the local scale of better
than 1 %, improving accuracy by statistical and local averaging of multiple independent
measurements, etc.) the standard uncertainty of OFI for determining uτ is expected to be
better than ±2 % (with a 95 % confidence level). For comparison Harun et al. (2013) report
an uncertainty of 1 %.

For the method to determine uτ by a least-squares fit of the data to the relation u+ = y+
in the region y+ ∈ [2 ± 0.1; 4.6 ± 0.6], the sources of uncertainties are listed in table 9.
For the overall uncertainty for uτ the estimate is 4.4 %.

For the method to determine uτ using a least-squares fit of the data to the profile by
Nickels (2004) in the region y+ ∈ [2; 20], the sources of uncertainties are listed in table 10.
The uncertainty due to the assumed profile by Nickels (2004) was estimated by a statistical
evaluation and comparison with the data by Nagano et al. (1991), Manhart & Friedrich
(2002) and Coleman et al. (2018) in the interval given above, and is denoted by additional
unknown systematic uncertainty. The overall uncertainty for uτ is 3.8 %.

The sources of uncertainties for the method to determine uτ using a fit to the profile
by Nickels (2004) in the region y+ ∈ [5; 20] for the three-dimensional LPT data at U∞ =
36 m s−1 are listed in table 11. The overall uncertainty for uτ is estimated to be 4.0 %.
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Sources of uncertainties Uncertainty of uτ

Variation of upper bound for the fit y+ ∈ [5, 16.5 ± 3.5] 0.3 %
Uncertainty in the wall position (�y+ = 0.3) 0.8 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.4 %
Additional unknown systematic uncertainty due to the fit function (A4) 2.5 %
Estimated total uncertainty 4.0 %

Table 11. Uncertainty quantification for uτ for the fit to the profile by Nickels (2004) in the region
y+ ∈ [5; 20] for the three-dimensional LPT data for U∞ = 36 m s−1.

Sources of uncertainties Uncertainty of κ

Variation of y+
log,min, y+

log,max within the specified limits 2.0 %
Uncertainty in the wall position (�y+ = 0.3) 0.25 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.25 %
Uncertainty due to 2 % uncertainty in uτ for OFI 2.0 %
Uncertainty due to 4.4 % uncertainty in uτ for fit to u+ = y+ 4.4 %
Uncertainty due to 3.8 % uncertainty in uτ for fit to profile by Nickels (2004) 3.8 %
Uncertainty due to 6.1 % uncertainty in uτ for CCM 6.1 %

Table 12. Sources of uncertainties for the determination of κ and uncertainty quantification for the μPTV
data for U∞ = 23 m s−1.

Sources of uncertainties Uncertainty of κ

Variation of y+
log,min, y+

log,max within the specified limits 0.9 %
Uncertainty in the wall position (�y+ = 0.3) 0.3 %
Uncertainty due to an estimated uncertainty in ν of 1 % <0.1 %
Uncertainty due to 4.0 % uncertainty in uτ for fit to profile by Nickels 4.0 %
Uncertainty due to 5.6 % uncertainty in uτ for CCM 5.6 %
Uncertainty due to 5.6 % uncertainty in uτ for corrected CCM 5.6 %

Table 13. Sources of uncertainties for the determination of κ and uncertainty quantification for the
three-dimensional LPT data for U∞ = 36 m s−1.

F.2. Determination of the von Kármán constant κ

The sources for uncertainty for κ are summarised in table 12 for U∞ = 23 m s−1 and in
table 13 for U∞ = 36 m s−1. The uncertainty due to the choice of the log-law region
is computed by a statistical variation of y+

log,min and y+
log,max, motivated by the Monte

Carlo-based error analysis in Bailey et al. (2014). For U∞ = 23 m s−1 the lower bound was
y+

log,min ∈ [82; 92] and the upper bound was y+
log,max ∈ [126; 138]. For U∞ = 36 m s−1,

y+
log,min ∈ [82; 90] and y+

log,max ∈ [142; 150] was used. The overall uncertainties for κ are
given in the last column in table 4 for U∞ = 23 m s−1 and in table 5 for U∞ = 36 m s−1.

F.3. Clauser chart method in the APG region
For the uncertainty of the CCM, Monty et al. (2011) report an uncertainty for uτ of 5 % for
βRC 	 2. For the Preston tube, Patel (1965) gives an accuracy within 6 % for �p+

s < 0.015,
see also Brown & Joubert (1969). For the present flow, the deviation of uτ determined by
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Sources of uncertainties Uncertainty of uτ

Variation of y+
log,min, y+

log,max within the specified limits 0.2 %
Variation of log-law coefficients (κ = 0.41, B = 5.0 vs κ = 0.384, B = 4.17) 0.3 %
Uncertainty of the wall position (�y+ = 0.3) 0.4 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.2 %
Systematic error of CCM compared to OFI and fit to u+ = y+ 5.0 %
Estimated total uncertainty 6.1 %

Table 14. Sources of uncertainties for the determination of uτ using the CCM and uncertainty quantification
for the μPTV data at U∞ = 23 m s−1.

Sources of uncertainties Uncertainty of uτ

Variation of y+
log,min, y+

log,max within the specified limits 0.15 %
Variation of log-law coefficients (κ = 0.41, B = 5.0 vs κ = 0.384, B = 4.17) 0.2 %
Uncertainty in the wall position (�y+ = 0.3) 0.05 %
Uncertainty due to an estimated uncertainty in ν of 1 % 0.15 %
Systematic error of CCM compared to OFI and fit to u+ = y+ 5.0 %
Estimated total uncertainty 5.6 %

Table 15. Sources of uncertainties for the determination of uτ using the CCM and uncertainty quantification
for the three-dimensional LPT data at U∞ = 36 m s−1.

the CCM is smaller than 5 % compared to the value for uτ from the most reliable method.
Therefore, a systematic error of 5 % for the CCM is assumed. Moreover, the additional
sources for uncertainties need to be taken into account. The sensitivity with respect to
the interval [y+

log,min, y+
log,max] is estimated by a statistical variation of the lower and upper

bounds. This gives a relative uncertainty based on the ±2σ -interval of 0.65 % for U∞ =
23 m s−1 and a value below 0.1 % for U∞ = 36 m s−1. The results are summarised in
table 14 for U∞ = 23 m s−1 and in table 15 for U∞ = 36 m s−1.

Appendix G. Empirical correction method for the Clauser chart

An empirical method was used to correct the standard CCM for uτ for the
three-dimensional LPT data for U∞ = 36 m s−1. It is based the observation found in
this work and by Monty et al. (2011), that the value for uτ by the CCM is lower than the
value determined by a direct method. For simplicity assume that the correction is a linear
function of �p+

s neglecting higher-order terms. Putting this together, we use the empirical
correction

uτ,CCM+corr,36 = uτ,CCM,36

(
1 + uτ,vis,23 − uτ,CCM,23

uτ,CCM,23

�p+
s,36

�p+
s,23

)
, (G1)

where an additional subscript is for the reference velocity, yielding uτ = 0.7885 m s−1.
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