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EXACT INEQUALITIES FOR THE NORMS 
OF FACTORS OF POLYNOMIALS 

PETER B.BORWEIN 

ABSTRACT. This paper addresses a number of questions concerning the size of fac­
tors of polynomials. Let p be a monic algebraic polynomial of degree n and suppose 
^1^2 • " ' Qi is a monic factor of/? of degree m. Then we can, in many cases, exactly 
determine 

•| |?i l l l l92l l--- lk.-IM 
I I P I I 

Here || • || is the supremum norm either on [—1,1] or on {|z| < 1}. We do this by 
showing that, in the interval case, for each m and n, the n-th Chebyshev polynomial 
is extremal. This extends work of Gel'fond, Mahler, Granville, Boyd and others. A 
number of variants of this problem are also considered. 

1. Introduction. How large can the norms of factors of a polynomial be? Variations 
of this problem have attracted considerable attention over the years (see [2]—[14]). We 
exactly solve this problem in the following forms: 

Suppose p — q • r where p, q and r are polynomials of degree n, m and n — m respec­
tively. Then for all m and n 

(!) lkll[-U]lkll[-i,i] < Km,n\\p\\\-\M 

where 
m ( 2k — 1 \ n~m ( 2k — 1 

(2) ^ m , n : = 2 w - 1 n ( l + c o s ^ ^ 7 r j n ( l + c o s - ^ - - ^ 

and this bound is exactly attained by the Chebyshev polynomial of degree n. (We denote 
by || • ||[-i,i] the sup norm on the interval [—1,1].) This is the content of Theorem 1. 
(Theorem 1 is originally due to Kneser [10]; see also Aumann [2]. We offer a new proof 
of this result that easily modifies to the other cases we wish to consider.) 

Suppose now that q is a factor of p of degree m and suppose that p and q are both 
monic. Then for each n and m, 

m f 2k — 1 
(3) k ( -2 ) | < 2 ^ n ( l + c o s ^ — T T ) Mh-2,2]. 2n 
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688 PETER B BORWEIN 

This bound is attained by the Chebyshev polynomial of degree n on [—2,2] with q being 
the factor composed of the m roots closest to 2. This is the content of Theorem 2. 

We then generalize these results to the many factors case. We prove in, Theorem 4, 
that 

Iki||[-U]|k2||[-U] ' ' ' k l l [ -U] < 2m "(3.20991 • • -rilpllf-i.i] 

where q\ • • • q}; is a monic factor of degree m of a monic polynomial p of degree n. This 
result is sharp for j > 2. A version of this on the disc is given in Theorem 8. 

If 

2 z 

then 

(4) P(x) = Kz)t{^j 

is a mapping between polynomials of degree n on the interval [—1,1] and self reciprocal 
polynomials, of the above form, of degree In on the boundary of the unit disc. So there is 
some equivalence between factoring self reciprocal polynomials on the disc and factoring 
on the interval. 

From this and Theorem 1 we deduce that if p — q • r are real polynomials of degree n, 
m and n — m respectively then 

lkllDlk||D<(^«^)1/2||p||D 

and that this bound is exactly obtained, for even n and m, by zn + 1. (Here || • \\o is the 
sup norm on the complex unit disc D.) This is done in Theorem 6. 

Boyd [5], using a Mahler measure argument, gives a very pretty proof that 

IMIDIMID < C " I H Z > 

with c — 1.7916 • • • (Here || • ||D is the sup norm on the complex unit disc). This is 
an asymptotically best possible result, and improves on earlier bounds of c — 4 due to 
Gel'fond [7] and c = 2 due to Mahler [11]. However, there is no dependence on the 
degrees of the factors. 

This result is extended to the many factor case in Boyd [6], a result we reproduce by 
different methods as Theorem 7. 

Related problems concerning the size of single factors (with some normalization con­
ditions) are considered in [3], [5] and [14] and various other problems on norms of factors 
and products are treated in [3], [4], [12] and [13]. 

In particular in Boyd [5] it is shown that if p = q • r with/7, q and r all monic then 

(5) \\q\\D<dn\\p\\D 

where d = 1.3813 •• • (•:= M(l +x+y) where M is the Mahler measure of a polynomial). 
This again is asymptotically best possible and improves on earlier results of Granville [9] 
and Glesser [8] who derived (5) with d := (1+^5) and d\—\ respectively. 
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NORMS OF FACTORS OF POLYNOMIALS 689 

Mignotte [14] derives the inequality 

lk||D < 2m||/7||D 

(recall that m is the degree of q) and shows that this is asymptotically sharp for some n 
roughly of size m2 log m. 

A variant of these last results, which is sharper for certain polynomials, such as those 
with integer coefficients, is also given in Section 5. This is Theorem 5. 

2. The two factor case. Throughout this note we will use the notation || || := 
|| ||[-i,i] to denote the supremum norm on [—1,1] and more generally || ||x to denote 
the supremum norm on x- In this section and the next section the polynomials in ques­
tion are algebraic polynomials with possibly complex coefficients. We denote by 7rn the 
set of such polynomials of degree at most n. We begin by offering a new proof of an old 
result. 

THEOREM 1. Let p be any polynomial of degree n and suppose p = q • r where q is 
a factor of degree m and r is a factor of degree n — m. Then 

lkll[-u]IMI[-u] ^ 2Cn 'mC 'Mi~mll /7ll[-U] 

where 

C„,m:= 2 " n ( l + « > s - 2 ^ - 7 r ) . 

Furthermore, for any n and m < n the inequality is sharp in the case thatp is the Cheby-
shev polynomial of degree n. In this case the factor q is chosen to be the factor with m 
roots closest to —I. 

On applying the midpoint rule to log(2 + 2 cos x), we see that 

1 rm/n A / 2 k — l \ f l \ 
- / log(2 + 2cos7T*) = £ l o g ( 2 + 2 c o s — TT +0 . 
nJo £rj V In J y(n — m)zJ 

Recall that the error in the midpoint rule is cf"(Ç) / n2 and in this case/'^x) = ( 1 + ^ , 2 . 
Thus 

c ->gnr=,2(i+cos^7r) 
(6) = ^ / " E L l o g ^ c o s ^ T T ) ^ 

= e0(n/(n-m)2)sl(n,m)y 

where 

Note that 

n/n rm/n 
I(n, m) : = / log(2 + 2 cos x) dx. 

(7) Cn'\nl2\ ~ ieS{' l0g(2+2œS7TX)dX) = (1.7916- • •) 
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and that 

(8) c S « / 3 j ~ (e^ l o g ( 2 + 2 c o s ^ ) = (1.9081 - •). 

(The first constant appears in Boyd [5] as does the square root of the second constant. We 
would expect this from the transformation (4). Similar asymptotics are in [10]). From (7) 
and Theorem 1 we have 

COROLLARY 1. Let p be any polynomial of degree n and suppose p — q • r with q 
and r polynomials then 

, L"/2J / 2k — 1 \ 2 

lkllr-u]IMI[-u] < 2 " I I V l +C0S_^T~^J IHt-u i 

<(3.2099l.--)n |H[-i . i] 

(with equality for the Chebyshev polynomial of degree n). m 

Here and throughout we use an < bn for positive sequences to mean lim sup f- < l. 
The proof of the theorem proceeds through a number of lemmas. For the remainder of 
the proof we assume n and m < n fixed. Let p be of degree n and suppose p = q • r 
where q has degree m and r has degree n — m. It is an easy consequence of the finite 
dimensionality of the set of polynomials of degree n that 

(*) sup m \\n\ 
n M : P = qr, p e TT„, g G 7rm, r G 7rn_w 

is attained for some /?, q, r. We proceed to show that such an extremal p* is in fact the 
Chebyshev polynomial of degree of n (and that the factors q and r are as advertised). 

That is 

\ n , 2k — l 
p*(x) = Tn(x) = cos n cos~l(x) = - Yl 2[x — cos — IT 

and the extremal factors, q* and r*, are 

l ™ / 2 i t - l \ 
—= 2 JC — cos 7T and 
>/2*=i V 2 « 7 

l n 

7f n 

V 2 k=m+\ 
respectively. Note that 

lk*ll = k(-DI 

and 

|H| = IKDI = 

2k-\ 
X — COS 7T 

2ft 

(These elementary properties ofTn are available in [l] or [15].) 
Our first observation is that we may assume that \q\ has a maximum at —1 and |r| has 

a maximum at 1. This follows since the supremum in (*) is invariant under a change of 
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variables x i—» ax + b and a corresponding change on the underlying interval. (That is, 
the sup in (*) is interval independent.) Soif || q \ \ = \q(a)\,ae (—1,1) and ||r|| = \r((3)\, 
(3 G (-1,1). Then 

sup( |k | |frfr | l [-i>suP(i^'' 
I \\P\\[a,(3] J I \\p\\ 

since ||/?||[a,/?] < \\p\\. But we can scale this back to the interval [—1,1] and get a new 
extremal of the desired type. (Note that a — (3 is a trivial case.) 

So we now assume we have an extremal example where q and r attain their maxima 
at —1 and +1 respectively. (From this it follows that the p in the sup in (*) has exact 
degree n.) 

LEMMA 1. Under the above assumption on p, q and r we may assume that p has all 
real roots. 

PROOF. This argument (and most of the following arguments) is a perturbation argu­
ment. We show that a purely complex root may be perturbed a bit to construct an example 
that contradicts extremality. 

So suppose p, with im(p) > 0, is a complex root of q (as in the diagram) 

If we rotate p to p' along a circle of radius \p + 11 in a clockwise fashion. Then \q(—1)| 
and |r(l)| are unchanged and these are still maxima. However, for any x G (—1,1] the 
perturbed p{x) has smaller absolute value then the original p(x). (This is equivalent to 
observing that if p + 1 = relB then \p — x\2 = r2 — 2(x + l)rcos 6 + (x\ )2 is an increasing 
function of 0 for 0 < 0 < IT.) This finishes the proof. • 

So we may add to our assumption on the extremal p that/? has all real roots. 

LEMMA 2. Under the above assumptions on p, q and r we may assume thatp has all 
its roots m [—1,1]. 

PROOF. We consider the case where q has a root p > 1 and observe that a pertur­
bation of p to p' where 1 < p' < p has the effect of leaving r(l) unchanged while 

https://doi.org/10.4153/CJM-1994-038-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-038-8


692 PETER B. BORWEIN 

\q(— l)\/\\p\\ does not increase. (And \q{—1)| is still a maximum of q on [—1,1]). This 
follows because, for fixed XQ G [—1,1]. 

p - ( - D 
p-xo 

is a decreasing function of p on [1, oo). (A similar argument holds for p G [—oo, 1 ) only 
now we perturb p to p' < p < — 1.) • 

It is now clear that the extremal q and r are chosen by splitting the roots of p so that 
the m roots closest to 1 are the roots of q and the remaining n — m roots are the roots 
of r. (Otherwise one would interchange two roots, and increase both \q(—1)| and |r(l)| 
without altering | \p \ | ). 

We have now shown that we may assume our extremal example is of the form 

n—m m 

p(x) = a J ] (x - ak) \{(x - (3k) 
k=\ k=\ 

= ar(x)q(x) 

where 
- 1 < c r i < . . . < an.m < fa < - • • < f5m < 1. 

Furthermore \r(x)\ has a maximum at +1 and \q(x)\ has a maximum at —1. We now also, 
for convenience, assume ||p|| = 1. We are ready to prove Theorem 1. 

PROOF OF THEOREM 1. We show three things 
1] |p ( - l ) | = land 1/7(1)1-1, 
2] \p(x)\ — 1 for some x G (a/, ai+\) i = l,...,n — m— 1 

\p(x)\ = 1 for some x G (ft, ft+i ) / = 1, . . . , m — 1. 
3] \p(x)\ = 1 for somei G (an_m,/3i). 

These three facts show that p is indeed the Chebyshev polynomial ±Tn (since Tn is the 
unique maximally oscillatory polynomial on [—1,1]). 

To prove 1] we observe that if \p(—1)| ^ 1 then we would increase the interval on 
which we consider the problem to [—( 1 +e), 1 ] without increasing the norm of p. However 
since r is monotone on [—oo, a{\ we have (strictly) increased the norm of r and have 
violated extremality. (A similar argument applies to/?(l).) 

To prove 2] we suppose a, and ai+\ are adjacent roots and let 

s(x) = (x-oci)(x- ai+{). 

Let E > 0, we can find 0 < <$i, <$2 < £ so that 

t(x) = (x- (a/ - 6\))(x - (ai+{ + <52)) 

satisfies 

||*(*)-*(*)|| <e 

\t{-\)\ = \s(-l)\ 
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and 
\t(x)\ < \s(x)\ xe (-l,ai-6{]U[ai+i + <52,1). 

Now if |H|[a„ai+1] '^ 1 we have, for sufficiently small e that 

p*(x) := p(x) • t(x) Is(x) 

is a new extremal and is extremal on an interval [—1,1 +<5] (since |p*(l)| < 1). Now if 
p* is scaled back to the interval [—1,1] we violate the extremality of p as in the first part 
of this proof. (The argument for (/?/, (3i+\ ) is identical.) 

To prove 3] we consider the effect of moving f3\ slightly to the right and an-m an equal 
amount to the left. If ||p|| [«„_„,,/?,] i1 1 this increases both \r{—1)| and \q(\)\ but does not 
increase | |p 11 [- I , i ]. This finishes the proof. • 

3. The single factor case. 

THEOREM 2. Suppose thatp is a monic polynomial of degree n and that q is a monic 
factor ofp of degree m. Then 

m / 2k — 1 \ 
\q(~P)\ < \\p\\l-0,li0

m-n2"-i) ft (l +cos - ^ - T T ) 

This bound is attained for each n and m < nby the Chebyshev polynomial of degree n on 
[—(3, [3] (normalized to be monic). In this case q is chosen to be the factor with m roots 
closest to (3. 

COROLLARY 2. Suppose p is a monic polynomial of degree n and q is a monic factor 
ofp of degree m. Then 

m ( 2k — 1 \ 1 
k ( -2 ) | < ||p||[_2,2]2m-1 n ( l + c o s - ^ - — T T ) = - C ^ I I P H H W , 

and the inequality is sharp for all m and n. Furthermore for all m < n, 

C\l^<âl" , - . ~ (1.9081 •••)• 

PROOF OF COROLLARY 2. Take f3 = 2 in Theorem 2. Note that 

where l(n) + 1 (~ ~) is the smallest positive integer k with cos(^|^-7r) < —1/2. 
So 

rxln < rxln 

^n,m ^ ^n,[2n/3\ 

and by (8) 
C j # < (1.9O81.-0. 

https://doi.org/10.4153/CJM-1994-038-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-038-8


694 PETER B. BORWEIN 

This is the real analogue of the complex results cited in the introduction. Since if we 

wish to preserve monicity in the mapping (4) we must use the transformation x = (z+ 7) 

which maps the boundary of the disc onto [—2,2] (not [—1,1]). 

SKETCH OF PROOF OF THEOREM 2. The proof of Theorem 2 is very similar to that 

of Theorem 1 and we only outline it. 

Fix m and n. We consider the maximization problem 

(**) max{|g(—/3)|/||/?|| [-/?,/?] : q divides/?, q G 7rm,p G 7r„, q and/? both monic}. 

We can argue now, exactly as in Lemma 1, that p has all real roots and that these all 

lie in [—/J, 00) since any rotation of roots as in Lemma 1 at least maintains extremality. 

Arguing as in Lemma 2 gives that/? has all roots in [—1,1]. Thus q must be composed 

of the m roots of/? closest to 1. 

The argument of the proof of Theorem 1 now applies essentially verbatim (note that 

all the perturbations preserve monotonicity) and proves that an extremal /? can be chosen 

to be the Chebyshev polynomial on [—(3, /3] normalized to be monic. Thus on f— 1,11 

p(x) 

and 

from which the result follows (on considering /3n/?(;c//3) and (3mq(x/(3) on [—/3, /?]). • 

4. The many factor case. 

THEOREM 3. Suppose thatp is a monic polynomial of degree n and that q and r are 

monic factors ofp of degree m\ and ra2 respectively. (Suppose further that qr is also a 

factor of p.) Then 

k(-/?) | \HM < llpllt-AflOF"*"2-^-1) n ( l +cos A~^j I I ( l +cos ^ - T T ) . 

This bound is attained for the Chebyshev polynomial of degree n on [—/3, /3] normalized 

to be monic. 

The proof of Theorem 3 is analogous to the proofs of Theorem 1 or 2 on considering 

the maximization problem 

(***) max{|<7(-/3)| |K/WIH[-/3,/3] : / ? ,^ , r a s above}. 

THEOREM 4. Suppose that p is monic polynomial of degree n and suppose that p 

has a monic factor of degree m of the form q\qi • • • qj where qi is of degree d[ (so m — 

d\ + • • • + dj). Then 

\kl\\[-P,p]h2\\[-(3,f3] •••|kil|[-^/3] 

n , 

n(*-
k=\v 

2k- 1 n , 

n(*-
k=\v 

In 

m , 

n(*-
k=\ V 

2k- 1 
- cos 

2n 

L f J ' 2k- 1 A
 r X V . 2k- 1 

k=\y 2 n J k-lK 

< ||/?||(2/3)m-w(3. 20991 • • r (m, n -+ 00; 
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(with equality in the first inequality for all j > 2 and all n and m for the Chebyshev 
polynomial of degree n). 

PROOF. For each qt, write 
qi = nsi 

where n is the monic factor of qt composed of the roots of qt in {Re(z) < 0} while si is 
composed of the roots of qi in {Re(z) > 0}. 

So 

Vi\V-m = \rW\ 

and 
\\si\\[-m = k(-/?)l 

Thus 

Iki | |[-^jlk2| |[-^] • • • hj\\[-m < \r\(/3) • • -r7-(/3)| \si(-fi) • -Sj(-/3)\. 

We now apply Theorem 3 to the two factors r\ • • • r, and 51 ••-Sj to finish the proof. • 
Note that the m — n case reproduces Theorem 2 of [6] in the real case. 

5. Inequalities on the disc. We now derive the inequalities on the disc from those 
on the interval. Suppose t G ixn is monic and suppose s G 7rm and v E 7Tn-m are monic 
factors of t. (So t — s- v.) Of course all of t, s and v achieve their maxima on D somewhere 
on the boundary. Now consider 

p(x):=KzW/z) 

and 
q(x):=s(z)s(l/z) r(x):=v(z)v(l/z) 

with 
J C : = ( Z + 1/Z). 

The effect of this transformation on linear factors is as follows 

so p is of degree n, q is of degree m and r is of degree n — m. Also 

IHl-2,2] < | |C 
and for a on the boundary of the unit circle 

\q(a + a~x)\ = \s(a)s(a~l)\. 

Furthermore the leading coefficent of p is essentially just the product of the roots of t 
which is of size |f(0)| while the lead coefficient of q is of size |.s(0)| and the lead coefficient 
of ris of size |r(0)|. 

From these transformations and the interval inequalities we can prove the following 
theorems. 
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THEOREM 5. Suppose t — s • v is a monic polynomial of degree n and s is a monic 
factor t of degree m. Then 

KO)r/2lM|D<(icB^)1/2||f||D-

This is sharp, for even n and m, for t(z) = zn + 1. 

PROOF. We can assume, by performing an initial rotation if necessary, that 

IMID = K - D | . 

So from Corollary 2 we deduce that 

\\s\\l = \s(-l)\2 = \q(-2)\ < \s(0)/t(0)\2m-{ H\l +cos - — ^ y ^ ^ 
(9) k=l 

m / 2k — 1 \ 
< \s(0)/t(0)\2m-{ J ] ( l + cos -^-K) \\t\\l 

Nov/s(0)/t(0) = l/v(0). • 

THEOREM 6. Suppose t = s • v where s £ irm and v E 7rn_m and where t, s and v are 
real polynomials. Then 

| | * | | D | | V | | D < ( -jCnjm ' Cn,n-m) | M | D . 

As before, 
m / Ik— 1 \ 

C „ , m : = 2 m n ( l + c o s ^ r
1 - 7 r ) 

and 
(Cn,m-Cn^JI{2n)<(l. 79162 •••)• 

This is sharp, for even n and m, for t(z) = zn + 1. 

PROOF. From Theorem 1 we deduce, for a and b on the boundary of the unit disc 
and for arbitrary s and v, that 

\s(a)-s(a-l)\\v(b)-v(b-l)\ = \q(a^a-])\\r(b + b'l)\ 

< i Q r n " Cn,n-m\\p\\[a+\/a,b+\/b] 

< -jCnjm ' d,/i-m||/?||[-2,2] 

< —c • c IMI2 

— ry^n,m ^n,n-~m\\l\\D' 

The result now follows on choosing a and b to be points on {\z\ = 1} where s and v 
achieve their norms. • 

The next result reproduces Theorem 2 of Boyd [6]. 
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THEOREM 7. Suppose t — s\S2- • -Sj are real polynomials\ with t of degree n, then 

1 f^^ ( 7k— \ \\ 
lki||z>||*2||z>---|kyllz> < - ^ ^ n 2 (^ l+cos^^—TrjJUf l l^ 

< (1.7916--OIMID 

This is sharp for even nfor t(z) = zn + 1. 

PROOF. Use Theorem 4 and proceed as in the previous theorem. • 

THEOREM 8. Suppose t = vs\S2 - • -Sj with all polynomials real. Suppose t is monic 

of degree n ands\S2 • • -Sj is monic of degree m. Then 

i 1 / ^ l / 2k—\\\ 

iv(0)i? II^I iiz>nj2iiz> • • - ikyiiz> < -^= f n 2 ( 1 + c o s ^ ^ r " 7 1 " ) J "̂"̂  
This is sharp for even n and m for t(z) — zn + 1 forj > 2. 

PROOF. This follows from Theorem 4, as in Theorem 3, with the following addi­

tional detail (as in Theorem 4). We first factor each Sj as 

Sj = UjVj 

where Uj has all roots in {Re(z) < 0} and v7 has all roots in {Re(z) > 0}. It now follows 

that 

Ik ||D • • • \\Sjh < M l ) • --Il/Dl h ( - l ) • • • V;(-l)| 

and we proceed as before. • 

If we don't assume that the polynomials in question are real we can get the following. 

COROLLARY 3. Suppose t = s • v where s £ 7Tm and v £ 7rn_m. Then 

| * ( - l ) | | v ( l ) |< ( iQ m .Q„_ m ) 1 2\\t\\D 

and ift is monic 

\K0)\l,2\\s\\D\\v\\D < l-{Cn,m • Cn/l.m)l/2(\\t\\D)2. 

These are sharp, for even n and m, for t(z) = zn+l. 

PROOF. The first inequality follows as in the proof of Theorem 6 with a := — 1 and 

b :— \. The second part is immediate from (9) of the proof of Theorem 5. • 
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