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Abstract Croft, Falconer and Guy asked: what is the smallest integer n such that an n-reptile in the
plane has a hole? Motivated by this question, we describe a geometric method of constructing reptiles in
R

d, especially reptiles with holes. In particular, we construct, for each even integer n � 4, an n-reptile
in R

2 with holes. We also answer some questions concerning the topological properties of a reptile whose
interior consists of infinitely many components.
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1. Introduction

An n-reptile (or n-rep tile) T in R
d is a compact set with non-empty interior that can be

tiled by n congruent tiles, each similar to T (see [3,5]). We assume, as in the literature,
that a reptile is the closure of its interior. If the number of pieces n is irrelevant to the
discussion, we will simply call an n-reptile a reptile.

Reptiles form a special class of self-similar sets. Let {fi}n
i=1 be an iterated function

system (IFS) of contractive similitudes on R
d defined as

fi(x) =
1

d
√

n
Rix + di, i = 1, . . . , n,

where Ri is an orthogonal transformation, di ∈ R
d, and the factor 1/ d

√
n is the contraction

ratio of fi. Then there exists a unique compact set T satisfying

T =
n⋃

i=1

fi(T ) (1.1)

(see [4,7]). T is called the self-similar set (or n-repset, or attractor) defined by {fi}n
i=1.

It follows from (1.1) and the uniqueness of T that T is the closure of its interior. If the
interior of T is non-empty, then it follows from (1.1) that T is an n-reptile. Note that the
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similarity dimension (see, for example, [7]) of {fi}n
i=1 is d. Thus, the assumption that T

has a non-empty interior is equivalent to the requirement that {fi}n
i=1 satisfies the open

set condition [11]. Therefore, T is an n-reptile if and only if T is a self-similar set defined
by an iterated function system consisting of n similitudes having the same contraction
ratio 1/ d

√
n and satisfying the open set condition.

Identity (1.1) is equivalent to

d
√

nT =
n⋃

i=1

(RiT + d
√

ndi).

If T is a reptile, then it follows from the above equality and a standard blow-up argument
that R

d can be tiled by essentially disjoint congruent copies of T (see, for example, [8,
Theorem 1.2]).

We say that a reptile T ⊆ R
d has a hole if the complement of the closure of some

component of the interior of T has a bounded component. Answering a question posed
by John Conway, Grünbaum gave an example of a 36-reptile in R

2 which has a hole
(see [3, Figure C17]). In [3, § C17], Croft et al . asked the following question: what is
the least n for which an n-reptile in the plane has any sort of hole? It has been proved
recently by Bandt and Wang [2] and Luo et al . [9] that if the interior of an n-reptile in
R

2 is connected, then the reptile is a topological disc. We will therefore be interested in
reptiles whose interiors are disconnected.

In § 3, we construct, for every m � 2, a 2m-reptile in R
2 that has holes. Define an IFS

on R
2 by

fi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
n

R

(
π

2

)
(x) + (i + 1

2 , 0), −m � i � −1,

1√
n

R

(
−π

2

)
(x) + (i + 1

2 , 0), 0 � i � m − 2,

(1.2)

g(x) =
1√
n

R

(
π

2

)
σy(x) + (−m + 1

2 , 0), (1.3)

where R(θ) is the rotation through the angle θ and σy denotes the reflection about the
y-axis. Let T be the n-repset defined by the IFS F := {g} ∪ {fi}m−2

i=−m (see Figure 1). We
have the following theorem.

Theorem 1.1. Let n = 2m with m � 2, and let T be as defined above. Then T is a
connected n-reptile. Moreover, the interior of T is the union of the largest component,
together with countably many geometrically similar sets, with the closure of each of these
components containing infinitely many holes.

Theorem 1.1 thus reduces the original question in [3] to whether there exist 2-reptiles
or 3-reptiles in the plane with holes. The proof of Theorem 1.1 will be given in § 3.

Theorem 1.1 also answers the following questions raised in [10] in the affirmative:
in the case that the interior of a reptile T in R

2 has infinitely many components, is it
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Figure 1. The first four reptiles in the family: (a) F4, (b) F6, (c) F8, (d) F10.

possible that the closure of some component is not a topological disc, and is it possible
that the closure of every component of the interior of T has a hole?

In § 2 we develop a general method for constructing connected reptiles. To properly
describe the method we will need the following notation, which will be used throughout
this paper.

We let µ = µd be the d-dimensional Lebesgue measure on R
d. For A, B ⊆ R

d, we
denote by A◦, cl(A), and ∂A the interior, closure and boundary of A, respectively, and
say that A and B are essentially disjoint if µ(A ∩ B) = 0. If A is finite, we denote the
cardinality of A by |A|. We let id denote the identity map on R

d. For a sequence of maps
g1, . . . , gk on R

d, we denote the composition g1 ◦ · · · ◦ gk simply by g1 · · · gk. Let R, S
be two sets of mappings on R

d and A ⊆ R
d; we use the following convenient notation:

RS := {rs : r ∈ R, s ∈ S} and R(A) :=
⋃

r∈R
r(A).

Let F = {fi}n
i=1 be an IFS of n similitudes on R

d with contraction ratio 1/ d
√

n. Let T0

be a non-empty compact subset of R
d, invariant under F (i.e. F(T0) ⊆ T0), such that

T ◦
0 �= ∅, cl(T ◦

0 ) = T0 and µ(T ◦
0 ) = µ(T0). (1.4)

Define

Tk := F(Tk−1) for k � 1 and T :=
∞⋂

k=0

Tk. (1.5)

Clearly, T is the attractor of F and is an n-repset.
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Let G be a finite group of orthogonal transformations satisfying the following condition.

Condition 1.2. r(T0) = T0 for all r ∈ G, G(T1) = T0.

Define a subset F1 of F induced by G as

F1 = F1(F ,G) := {f ∈ F : fG ⊆ F}, (1.6)

i.e. f ∈ F1 if and only if fG ⊆ F . Assume that G induces a partition of F into F1 and
F2 := F \ F1 such that the following condition holds.

Condition 1.3. F1 �= ∅ and, for all r ∈ G, rF2 = F2r (i.e. {rf : f ∈ F2} =
{fr : f ∈ F2}).

It is easy to check that (1.6) and Condition 1.3 actually imply that

F1G = F1 and GF2 = F2G. (1.7)

Define

V0 := {f(T0) : f ∈ F1}, Vk := {f(U) : U ∈ Vk−1 and f ∈ F2} ∀k � 1,

V :=
∞⋃

k=0

Vk, Vk :=
⋃

S∈Vk

S ∀k � 0, V :=
∞⋃

k=0

Vk.

⎫⎪⎪⎬
⎪⎪⎭

(1.8)

Note that if F2 = ∅ then Vk = ∅ for all k � 1. The following condition guarantees
connectedness of T .

Condition 1.4. T0 is connected and for some k � 0, some component of
⋃k

i=0 Vi has
non-empty intersection with f(T ◦

0 ) for every f ∈ F .

Theorem 1.5. Let F = {fi}n
i=1 be an IFS with attractor T , let T0 be invariant under

F and satisfy (1.4), and let {Tk}∞
k=0 be described as in (1.5). Suppose there exists a finite

group of orthogonal transformations G on R
d that satisfies Condition 1.2 and induces a

partition {F1,F2} of F satisfying Condition 1.3 above. Then the following hold.

(a) The attractor T is an n-reptile.

(b) If, in addition, Condition 1.4 is satisfied, then T is connected.

Theorem 1.5 provides a new method of constructing reptiles that cannot be obtained
directly by the existing general method described by Bandt [1, Theorem 2]. In Bandt’s
result, the inverse of the linear part of each similitude in the IFS must be an integer
matrix. This is not satisfied by some of the reptiles described in Theorem 1.1.

In § 4, we use the method in § 2 to construct reptiles with various interesting topological
properties. In particular, we construct a connected reptile in R

2 whose interior consists of
infinitely many components, with the closure of some of them having holes and some of
them being topological discs. We also construct a connected reptile in R

2 whose interior
consists of infinitely many components, with the closure of each component having finitely
many holes. Lastly, we construct a connected piecewise polygonal 16-reptile with a hole.
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Although most reptiles constructed in this paper are defined by IFSs that involve
reflections, it is worth pointing out that Example 4.2 is a reptile with a hole and is
defined by an IFS without involving any reflection. The smallest n for which we can
construct such an n-reptile is 16. All other reptiles with holes constructed in this paper
are defined by IFSs that involve at least two distinct orthogonal transformations. We do
not know whether there exist reptiles with holes that are defined by similitudes having
a common orthogonal transformation.

The rest of this paper is organized as follows. In § 2, we describe our construction of
reptiles in R

d and prove Theorem 1.5. In § 3, we study the particular family of reptiles
defined by (1.2) and (1.3) and prove Theorem 1.1. Lastly, in § 4, we construct other
reptiles with various topological properties.

2. The construction

Let T0 be a non-empty compact subset of R
2 satisfying the conditions in (1.4). Let

F = {fi}n
i=1 be an IFS of similitudes with contraction ratio 1/ d

√
n, and thus similarity

dimension d, such that F(T0) ⊆ T0. Let {Tk}∞
k=0 be defined as in (1.5).

Lemma 2.1. {Tk}∞
k=0 is a ⊆-decreasing sequence of compact sets.

Proof. Clearly, T1 ⊆ T0. Suppose we have shown that Tk ⊆ · · · ⊆ T0 for some k. Now
Tk+1 = F(Tk) ⊆ F(Tk−1) = Tk. The compactness is obvious. �

Define T =
⋂∞

k=0 Tk as in (1.5). Then T is the attractor of F and is an n-repset. Let
G be a finite group of orthogonal transformations satisfying Condition 1.2, and assume
that G induces a partition {F1,F2} of F such that Condition 1.3 in § 1 is satisfied. We
will assume that {Tk}∞

k=0, T , F , G, F1 �= ∅ and F2 are fixed as above for the remainder
of this section.

Proposition 2.2. Let {Tk}∞
k=0, T , G, F , F1 and F2 satisfy the hypotheses of Theo-

rem 1.5. Then

(a) G(T ) = T0 and F1(T0) ⊆ T ;

(b) F satisfies the open set condition and T is an n-reptile.

Proof. We prove (a) by induction. Since {Tk}∞
k=0 is ⊆-decreasing, it suffices to show

that, for every integer k � 0, G(Tk) = T0 and F1(T0) ⊆ Tk. This is obviously true for
k = 0 by assumption. Assume that it is true for some k � 0.

Suppose f ∈ F1. Since fr ∈ F for all r ∈ G, we have

Tk+1 ⊇
⋃
r∈G

fr(Tk) = f(G(Tk)) = f(T0).

Thus, F1(T0) ⊆ Tk+1.
It remains to prove that G(Tk+1) = T0. We have shown that F1(T0) ⊆ Tk+1. So we get

GF1(T0) ⊆ G(Tk+1). Next, by (1.7) and the induction hypothesis,

GF2(T0) = F2G(T0) = F2(T0) = F2G(Tk) = GF2(Tk) ⊆ G(Tk+1).
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Combining the two inclusions above, we get GF(T0) ⊆ G(Tk+1). This implies, by the def-
inition F(T0) = T1 and the assumption G(T1) = T0 in Condition 1.2, that T0 ⊆ G(Tk+1).
The reverse inclusion is obvious and this completes the induction.

To prove (b) we use the fact that, since F1 �= ∅, part (a) implies that T ◦ �= ∅. Since
the similarity dimension of F is d, it follows that F satisfies the open set condition [11]
and hence T is an n-reptile. �

We need to study the structure of F1 in more detail. Define an equivalence relation
‘∼’ on F1 by

f ∼ g if and only if f ∈ gG.

Since G is a group, it is easy to see that ‘∼’ is indeed an equivalence relation. Denote
the equivalence class of f ∈ F1 by [f ]. Throughout the rest of this section, we will fix a
complete set of representatives F∗

1 = {f1, . . . , fq} for the quotient set F1/∼.

Lemma 2.3. Assume the same hypotheses as in Theorem 1.5. Let {Vk}∞
k=0 be defined

as in (1.8), and let F∗
1 := {f1, . . . , fq} be a complete set of representatives for the quotient

set F1/∼. Then

(a) |V0| = |F∗
1 | = |F1|/|G|;

(b) |GF∗
1 | = |F1|;

(c) GF∗
1 (T0) = GF1(T0).

Proof. (a) Let f ∈ F1 and assume that f ∈ [f1], say. Then f = f1r for some r ∈ G,
which implies that f(T0) = f1r(T0) = f1(T0). Hence, |V0| � |F∗

1 |.
On the other hand, let f, g ∈ F1 satisfy f(T0) = g(T0). Then by Proposition 2.2(a),

fG(T ) = gG(T ). The open set condition implies that f = gr for some r ∈ G. Hence,
f ∼ g. It follows that |V0| � |F∗

1 |.
To prove the last equality in (a), it suffices to show that, for all f∗, g∗ ∈ F∗

1 ,
|[f∗]| = |[g∗]|. This can be verified directly by showing that the mapping τ : [f∗] → [g∗]
defined by τ(f∗r) = g∗r, r ∈ G, is a bijection.

(b) Define a mapping σ : GF∗
1 → F1 by

σ(rf) = fr for all (r, f) ∈ G × F∗
1 .

It is direct to check that σ is a bijection and thus (b) follows.

(c) It suffices to show that GF∗
1 (T0) ⊇ GF1(T0); the reverse inclusion is obvious. Let

r ∈ G and f ∈ F1. Then there exists f∗ ∈ F∗
1 and s ∈ G such that f = f∗s. Thus,

rf(T0) = rf∗s(T0) = rf∗(T0) ⊆ GF∗
1 (T0),

completing the proof. �

Proposition 2.4. Assume the same hypotheses as in Theorem 1.5. Let {Vk}∞
k=0, V,

{Vk}∞
k=0, and let V be defined as in (1.8). Then

(a) V is a mutually essentially disjoint collection;
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(b) V ⊆ T and µ(V ) = µ(T );

(c) {r(T )}r∈G is a mutually essentially disjoint collection;

(d) G �= {id} if and only if T �= T0;

(e) T0 is an n-reptile.

Proof. To prove (a), it suffices to prove by induction on k the claim that any set in
Vk is essentially disjoint from any distinct set in Vj , j � 0.

We first consider the case k = j = 0. Let R, S ∈ V0 be distinct. Then there exist
distinct f, g ∈ F1 such that R = f(T0) and S = g(T0). Note that, for any r, s ∈ G,
fr �= gs; otherwise, we would have R = f(T0) = fr(T0) = gs(T0) = g(T0) = S. By
Proposition 2.2,

f(T0) =
⋃
r∈G

fr(T ) and g(T0) =
⋃
s∈G

gs(T ).

Now the open set condition implies that g(T0) and f(T0) are essentially disjoint. So any
two distinct sets in V0 are essentially disjoint.

Now let j > 0. Suppose R ∈ V0 and S ∈ Vj . Let S∗ ∈ Vj−1 and f ∈ F2 be such that
f(S∗) = S. Since S∗ ⊆ T and F satisfies the open set condition, S is essentially disjoint
from R. Thus the claim holds for k = 0. Assume that it holds for some k � 0.

Let R ∈ Vk+1 and S ∈ Vj for some j � 0. If j = 0, then the above proof already implies
that R and S are essentially disjoint. So we assume j > 0. Let R∗ ∈ Vk, S∗ ∈ Vj−1 and
f, g ∈ F2 be such that f(R∗) = R and g(S∗) = S. If f �= g, then the open set condition
and the fact that R∗, S∗ ⊆ T yield that f(R∗) and g(S∗) are essentially disjoint. If
f = g, then R∗ �= S∗. So, by the induction hypothesis, R∗ and S∗ are essentially disjoint.
Thus, f(R∗) and g(S∗) are essentially disjoint. This completes the proof of the claim and
(a) follows.

We now prove (b) and (c). The fact that T ⊆ V follows directly from Proposition 2.2(a)
and the construction of V . Let q = |V0| and m = |G|. By Lemma 2.3(a), |F1| = mq, and
therefore |F2| = n − mq. Using (a) above, we find that

µ(V ) =
∞∑

k=0

µ(Vk) =
∞∑

k=0

µ(T0)
q

n

(
n − mq

n

)k

=
µ(T0)

m
.

Since G(T ) = T0, it now follows that {r(T )}r∈G is an essentially disjoint collection and
that µ(V ) = µ(T ).

To prove (d), note that when G = {id}, the relation G(T ) = T0 implies that T = T0.
If G �= {id}, then m = |G| > 1. The proof of (b) and (c) above yields µ(T0) = mµ(T ).
Thus, T �= T0.
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To prove (e), note that if G = {id}, then T0 = T . So we may assume that G �= {id}.
By Proposition 2.2, Lemma 2.3 and (1.7), we find that

T0 = G(T )

= GF1(T ) ∪ GF2(T )

= GF1G(T ) ∪ F2G(T ) (by (1.7))

= GF1(T0) ∪ F2(T0) (by Proposition 2.2(a))

= GF∗
1 (T0) ∪ F2(T0) (by Lemma 2.3(c)).

Thus, T0 is the attractor of GF∗
1 ∪ F2. By (c), {r(T )}r∈G is a mutually essentially dis-

joint collection. Hence, GF∗
1 (T0) = GF1(T ) and F2(T0) = GF2(T ) are essentially disjoint,

and thus GF∗
1 ∩ F2 = ∅. Now, Lemma 2.3(b) implies that |GF∗

1 ∪ F2| = |F| = n. Since
T ◦

0 �= ∅, T0 is an n-reptile. �

We will now strengthen Proposition 2.4(c) to T ◦ ⊆ V and prove Theorem 1.5(b). We
need two lemmas.

Lemma 2.5. Assume the same hypotheses as in Theorem 1.5. Then, for any subset
{h1, . . . , hk} ⊆ F2,

cl((T ∩ h1 · · ·hk(T0))◦) = h1 · · ·hk(T ).

Proof. Fix r ∈ G \ {id}. Since h1 ∈ F2, h1r(T ) ⊆ r(T ). So, h1r(T ) is essentially
disjoint from both T and h1(T ). By Proposition 2.2(a),

(T ∩ h1 · · ·hk(T0))◦ ⊆
(

T ∩
(

h1 · · ·hk(T ) ∪
⋃

r∈G\{id}
h1r(T )

))◦

⊆ ((T ∩ h1 · · ·hk(T )) ∪ ∂T )◦

= (h1 · · ·hk(T ) ∪ ∂T )◦

⊆ h1 · · ·hk(T ).

Hence, cl((T ∩ h1 · · ·hk(T0))◦) ⊆ h1 · · ·hk(T ). The reverse inequality is straightforward
and this completes the proof. �

Lemma 2.6. Assume the same hypotheses as in Theorem 1.5. Suppose h1, . . . , hk ∈ F
and U := h1 · · ·hk(T0) is not a subset of V . Then

cl((T ∩ h1 · · ·hk(T0))◦) = h1 · · ·hk(T ).

Proof. By Lemma 2.5 it is enough to show that hi ∈ F2 for every 1 � i � k. Note that
h1 ∈ F2; otherwise U ⊆ h1(T0) ∈ V0. Assume now that 1 < i � k and that we have shown
h1, . . . , hi−1 ∈ F2. If hi ∈ F1, then hi(T0) ∈ V0. So, h1 · · ·hk(T0) ⊆ h1 · · ·hi(T0) ∈ Vi, a
contradiction. Thus, hi ∈ F2 and the result follows. �

Proposition 2.7. Under the hypotheses of Theorem 1.5, T ◦ ⊆ V .
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Proof. If G = {id}, then T = T0 = V and we are done. So we assume that G �= {id}
and thus T �= T0 by Proposition 2.4(d). Let x ∈ T \ V , let B be an open ball centred
at x, and let h1, . . . , hk ∈ F such that x ∈ h1 · · ·hk(T0) ⊆ B. We claim that B �⊆ T .
Suppose B ⊆ T . We note that since x �∈ V , h1 · · ·hj(T0) �⊆ V . So, by Lemma 2.6,

h1 · · ·hj(T0) = cl((T ∩ h1 · · ·hj(T0))◦) = h1 · · ·hj(T ),

This contradicts T �= T0 and the claim is proved. Since B was arbitrary, x /∈ T ◦ and the
proposition follows. �

Lemma 2.8. Assume the same hypotheses as in Theorem 1.5 and assume in addition
that Condition 1.4 holds. Then T is connected.

Proof. Let W be a component of
⋃k

i=0 Vi that has non-empty intersection with f(T ◦
0 )

for every f ∈ F . Then Proposition 2.4(b) implies that W ⊆ T . By a result of Hata [6,
Theorem 4.6], it is enough to show that W ∩ f(T ) �= ∅ for every f ∈ F .

First, let f ∈ F1. Since f(T0) is connected and W ∩ f(T0) �= ∅, we have f(T0) ⊆ W .
Thus, W ∩ f(T ) �= ∅.

Now assume that F2 �= ∅ and let f ∈ F2. Since W ∩ f(T ◦
0 ) �= ∅ and W = cl(W ◦),

(W ∩ f(T0))◦ �= ∅. It now follows by using Lemma 2.5 that

(W ∩ f(T0))◦ ⊆ cl((W ∩ f(T0))◦) ⊆ cl((T ∩ f(T0))◦) ⊆ f(T ).

Thus, W ∩ f(T ) �= ∅. This completes the proof. �

Theorem 1.5 now follows by combining Propositions 2.2 and Lemma 2.8.

3. A family of planar reptiles with holes

Let n = 2m be an even integer greater than or equal to 4. Let T0 := [−m, m] ×
[−

√
m/2,

√
m/2]. Clearly, T0 satisfies the conditions in (1.4). Let fi, −m � i � m − 2,

and let g be defined as in (1.2) and (1.3), respectively. Let

F := {g} ∪ {fi}m−2
i=−m.

Use these T0 and F to define {Tk}∞
k=0 as in (1.5), and let T =

⋂∞
k=0 Tk be the attractor

of F (see Figure 1). Let

Q0 = [−m,−m + 1] × [−
√

m/2,
√

m/2].

Let G := {id, σy}. Then G is a finite group of orthogonal transformations. Let F1 be the
subset of F induced by G as defined in (1.6) and let F2 = F \ F1.

Lemma 3.1. Let {Tk}∞
k=0, T , F , G, F1 and F2 be defined as above. Then

(a) r(T0) = T0 for all r ∈ G and G(T1) = T0;

(b) F1 = {f−m, g};
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(c) rF2 = F2r for all r ∈ G.

Proof. Proof of (a) follows by a direct verification. To prove (b) we note that f−mσy =
g and thus gσy = f−m. Moreover, for any f ∈ F \{f−m, g}, fσy /∈ F . Proof of (c) follows
by showing that σyfi = f−i−1σy for −m + 1 � i � m − 2. �

Lemma 3.1 shows that both Conditions 1.2 and 1.3 in § 1 hold. Thus, F , {Tk}∞
k=0, T ,

G, F1 and F2 satisfy all hypotheses of Theorem 1.5. Note that Q0 = f−m(T0). So, by
Proposition 2.2, we have the following lemma.

Lemma 3.2. T is an n-reptile, T ∪ σy(T ) = T0 and Q0 ⊆ T .

For the rest of this section, let {Vk}∞
k=0, V, {Vk}∞

k=0 and V be defined as in (1.8).

Lemma 3.3. Condition 1.4 holds and thus T is connected.

Proof. T0 is obviously connected. By examining f(T ◦
0 ) for all f ∈ F , it suffices to

prove that W = V0 ∪V1 ∪V2 is connected. This may be done by a direct verification. �

To describe the components of T ◦, we define three additional sets of maps as follows:

H1 := {fi}−1
i=−m+1, H2 := {fi}m−2

i=0 , H3 := f−m+1H2 = {f−m+1fi}m−2
i=0 .

Note that H1 ∪H2 = F2. We also define a sequence of subsets Qk ⊆ T , k � 1, recursively
as follows:

Q1 := H1(Q0) and Qk := H1(Qk−1) ∪ H3(Qk−2), k � 2.

Let

Q := cl
( ∞⋃

k=0

Qk

)
.

Note that
⋃∞

k=0 Q◦
k is dense in

⋃∞
k=0 Qk, so Q = cl(Q◦). We will show that Q is the

closure of the largest component of T ◦.

Lemma 3.4. Let {Qk}∞
k=0 be defined as above. Then

(a) for all k � 0, Qk ⊆ T ∩ {(x, y) ⊆ R
2 : x � 0};

(b) H1(Q◦) ∩ H3(Q◦) = ∅;

(c) the Qk are mutually essentially disjoint;

(d) Q◦ is connected.

Proof. (a) By Lemma 3.2, Q0 ∪Q1 ⊆ T ∩{(x, y) ⊆ R
2 : x � 0}. The assertion follows

by using induction and the invariance of T under the fi.

(b) By using part (a) and the definitions of H1 and H3, we see that

H1(Q◦) ⊆ {(x, y) ∈ R
2 : y < 0}, H3(Q◦) ⊆ {(x, y) ∈ R

2 : y > 0},

and the result follows.
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(c) Obviously, Q0 and Q1 are essentially disjoint. Assume that, for some k � 1,
Q0, Q1, . . . , Qk are essentially disjoint. Then

Q◦
k+1 ∩ Q◦

0 = [H1(Q◦
k) ∪ H3(Q◦

k−1)] ∩ Q◦
0 ⊆ [H1(T ◦) ∪ H3(T ◦)] ∩ Q◦

0 = ∅.

By using the induction hypothesis and part (b), we have

Q◦
k+1 ∩ Q◦

1 = [H1(Q◦
k) ∪ H3(Q◦

k−1)] ∩ H1(Q◦
0)

= H1(Q◦
k ∩ Q◦

0) ∪ [H3(Q◦
k−1) ∩ H1(Q◦

0)]

= ∅.

Using a similar argument, for 2 � i � k, we have

Q◦
k+1 ∩ Q◦

i = [H1(Q◦
k) ∪ H3(Q◦

k−1)] ∩ [H1(Q◦
i−1) ∪ H3(Q◦

i−2)]

= H1(Q◦
k ∩ Q◦

i−1) ∪ [H1(Q◦
k) ∩ H3(Q◦

i−2)]

∪ [H3(Q◦
k−1) ∩ H1(Q◦

i−1)] ∪ H3(Q◦
k−1 ∩ Q◦

i−2)

= ∅.

This proves part (c).

(d) Let Sk :=
⋃k

j=0 Qj . Since {Sk}∞
k=0 is a ⊆-increasing sequence of sets, it is enough

to show that the interior of Sk is connected for every integer k � 0. We proceed by
induction.

Clearly, S0 = Q0 has a connected interior. When k = 1, note that the left-hand edge
of f−m+1(Q0) is contained in the right-hand edge of Q0 and the left-hand edge of fi(Q0)
is the right-hand edge of fi−1(Q0) for −m + 2 � i � −1. Thus, S1 has a connected
interior. Also, the left-hand edge of

⋃m−2
i=0 f−m+1fi(Q0) is contained in the right-hand

edge of Q0, so Q0 ∪ H3(Q0) has a connected interior. A similar argument actually proves
the inductive step. We omit the details. This proves part (d). �

For any index J = (j1, . . . , jk), 1 � ji � n, let |J | = k denote the length of J . For
any subset A ⊆ R

2, let fJ(A) := fj1 . . . fjk
(A). If J = ∅, we interpret fJ as the identity

function. Given an index J = (j1, . . . , jk) and a symbol j we define j ⊕J = (j, j1 . . . , jk).
We define a sequence of collections of indices {Ik}∞

k=0 recursively as follows:

I0 := {∅},

I1 := {(i) : − m + 2 � i � m − 2},

Ik := {i ⊕ J : J ∈ Ik−1 and − m + 1 � i � m − 2}, k � 2.

Define I :=
⋃∞

k=0 Ik. For A ⊆ R
2 and k � 0 we define

Ik(A) := {fJ(A) : J ∈ Ik} and I(A) :=
∞⋃

k=0

Ik(A).

Let Q∗ := H2(Q). Our next goal is to prove the following proposition, which describes
all components of T ◦.
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Proposition 3.5. The components of T ◦ are {Q◦} ∪ I((Q∗)◦). Moreover, for distinct
I, J ∈ I, |fI(Q∗) ∩ fJ(Q∗)| � 2.

Let D := {(0, 0), (0,
√

m/2)} and E := H2(T ). Define sequences of ordered pairs of
subsets of T as

Rk := {(fJ(E), fJ(D)) : J ∈ Ik}, k � 0, and let R :=
∞⋃

k=0

Rk.

A simple inductive argument shows that K ⊆ H for every (H, K) ∈ R.
Given A, B, X, Y ⊆ R

2 we say that X separates A from B in Y provided that, for
every connected C ⊆ Y , if C ∩ A �= ∅ and C ∩ B �= ∅, then C ∩ X �= ∅.

Lemma 3.6. If (H, K) ∈ R, then K separates H from T \ H in T .

Proof. We leave it to the readers to convince themselves that the lemma holds for all
pairs from steps R0 and R1 of the construction, and that for every H ∈ I1(E) and f ∈ F2

we have f(H) ⊆ (f(T0))◦. Suppose now that k > 1. Assume that the lemma holds for all
pairs in Rk−1 and that for every H ∈ Ik−1(E) and f ∈ F2 we have f(H) ⊆ (f(T0))◦.

Let (H∗, K∗) ∈ Rk. Then there exist (H, K) ∈ Rk−1 and f ∈ F2 such that f(K) = K∗

and f(H) = H∗. By assumption, K separates H from T \ H and H∗ ⊆ (f(T0))◦. So,
K∗ separates H∗ from f(T ) \ H∗ in f(T ). By Lemma 2.5, f(T ) = cl((T ∩ f(T0))◦). So,
K∗ separates H∗ from cl((T ∩ f(T0))◦) \ H∗. Since H∗ ⊆ (f(T0))◦, K∗ separates H∗

from T \ H∗. Moreover, for all g ∈ F2, g(H∗) ⊆ g((f(T0))◦) ⊆ (g(T0))◦, completing the
induction. �

Lemma 3.7. If p ∈ T ◦ \ Q, then there exists (H, K) ∈ R such that p ∈ H and
Q◦ ⊆ T \ H.

Proof. By Proposition 2.7, T ◦ ⊆ V . So, there is some k � 0 such that p ∈ Vk. We use
induction on k. Again we leave the easier cases of k = 0 and k = 1 to the reader.

Assume that k > 1 and suppose that the lemma holds for p ∈ Vk−1. Let p ∈ Vk \ Q

and f ∈ F2 be such that f−1(p) ∈ Vk−1.
If f ∈ H1, then f−1(p) /∈ Q by the definition of Q. Note that f−1(p) ∈ T ◦. By

induction hypothesis, there exists (H, K) ∈ R such that f−1(p) ∈ H and Q◦ ⊆ T \ H.
Since (f(H), f(K)) ∈ R, f(K) separates f(H) from T \ f(H). Note that f(Q◦) ⊆
f(T ) \ f(H) ⊆ T \ f(H). Since f(Q) ⊆ Q and Q◦ is connected and f(K) is finite, we
have Q◦ ⊆ T \ f(H). Also, f−1(p) ∈ H implies that p ∈ f(H).

If f ∈ H2, then p ∈ E. Since (E, D) ∈ R and Q◦ ⊆ T \ E, the assertion follows. �

Lemma 3.8. Q◦ is a component of T ◦ and for any p ∈ T ◦\Q◦ there exists (H, K) ∈ R
such that p ∈ H and Q◦ ⊆ T \ H.

Proof. By Lemma 3.4(d), Q◦ is connected.
By way of contradiction, suppose that Q◦ is a not a maximal connected set in T ◦. Let

N denote the component of T ◦ containing Q◦. Since Q = cl(Q◦), there is a p ∈ N \ Q.
By Lemma 3.7, there is an ordered pair (H, K) ∈ R such that p ∈ H and Q◦ ⊆ T \ H.
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In particular, K is a finite set separating Q◦ from p. Thus, p /∈ N , a contradiction. So,
Q◦ is a component of T ◦.

Let p ∈ T ◦ \Q◦. Since Q◦ is a component of T ◦ and cl(Q◦) = Q, p /∈ Q. By Lemma 3.7,
there exists a (H, K) ∈ R such that p ∈ H and Q◦ ⊆ T \ H. �

Lemma 3.9. Let S ∈ Ik((Q∗)◦). Then S is a component of T ◦ and for any p ∈ T ◦ \S

there is (H, K) ∈
⋃∞

l=k Rk such that p ∈ H and S ⊆ T \ H. In particular, the closures of
any two components of T ◦ meet in at most two points.

Proof. We proceed by induction on k. The cases k = 0 and k = 1 can be verified
directly by Lemmas 3.6 and 3.8. We omit the details.

Suppose k > 1 and assume that the lemma holds for all members of Ik−1((Q∗)◦). Let
S ∈ Ik((Q∗)◦). There are f ∈ F2 and S1 ∈ Ik−1((Q∗)◦) such that S = f(S1). Since S1

is connected, so is f(S1).
Let p ∈ T ◦\S = T ◦\f(S1). Since p /∈ f(S1), f−1(p) /∈ S1. By the induction hypothesis,

there exists (H, K) ∈
⋃∞

l=k−1 Rl such that f−1(p) ∈ H and S1 ⊆ T \ H. Note that
(f(H), f(K)) ∈

⋃∞
l=k Rl. f(K) is finite and by Lemma 3.6 it separates f(H) from T \

f(H). Since p ∈ f(H) and f(S1) ⊆ T \ f(H), p is not in the same component of T ◦ as
f(S1). Thus, f(S1) is a component of T ◦. �

Lemma 3.10. fI((Q∗)◦) ∩ fJ((Q∗)◦) = ∅ for distinct I, J ∈ I and Q◦ ∩ fJ((Q∗)◦) = ∅
for all J ∈ I. In particular, the cardinality of Ik((Q∗)◦) is (2m − 2)k.

Proof. By Lemma 3.9 it is enough to show that all elements of

{Q◦} ∪ {fJ((Q∗)◦) : J ∈ I}

are distinct. Note that diamQ◦ > diam(Q∗)◦. So, Q◦ and (Q∗)◦ are distinct. Since the
maps in F are contractive, every member of I1((Q∗)◦) is distinct from both Q and Q∗.
By the open set condition, the elements of I1((Q∗)◦) are all distinct.

Suppose k > 1 and assume that the sets in Ik−1((Q∗)◦) are distinct from each other
and from members of {Q◦} ∪

⋃k−2
l=0 Il((Q∗)◦). Since the maps in F are contractive, every

member of Ik((Q∗)◦) is distinct from members of

{Q◦} ∪
k−1⋃
l=0

Il((Q∗)◦).

Let I, J ∈ Ik be distinct. There exist I∗, J∗ ∈ Ik−1 and −m + 1 � i, j � m − 2 such
that I = i ⊕ I∗ and J = j ⊕ J∗. If i = j, then I∗ and J∗ are distinct, which implies
that fI((Q∗)◦) = fi(fI∗((Q∗)◦)) and fJ((Q∗)◦) = fi(fJ∗((Q∗)◦)) are distinct. If i �= j,
then the open set condition implies that fI = fi(fI∗((Q∗)◦)) and fJ = fj(fJ∗((Q∗)◦))
are distinct. �

Define
U := Q◦

⋃ ⋃
S∈I((Q∗)◦)

S. (3.1)

To complete the proof of Proposition 3.5, it suffices to show that T = cl(U).
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Let n̄ := 1
2n − 1. Define the infinite sum

s :=
∞∑

k=0

pk

nk
,

where the pk satisfy the following Fibonacci-type relations:

p0 = 1, p1 = n̄, pk = n̄(pk−1 + pk−2) for all k � 2.

We leave it for the reader to verify that s = µ(Q)/µ(Q0).

Lemma 3.11. For all k � 2, pk = n̄k +
∑k

j=2 n̄j−1pk−j .

Proof. We use induction on k. p2 = n̄(p0 +p1) = n̄2 + n̄ and hence the equality holds.
Assume that it holds for some k � 2. Then

pk+1 = n̄(pk + pk−1)

= n̄

(
n̄k +

k∑
j=2

n̄j−1pk−j

)
+ n̄pk−1

= n̄k+1 +
k+1∑
j=2

n̄j−1pk+1−j ,

which completes the induction. �

Lemma 3.12.

s =
n2

n(n − n̄) − n̄
.

In particular,

µ(Q) =
2n5/2

n2 + n + 2
.

Proof. Using Lemma 3.11 and reordering the summations, we obtain

s = 1 +
n̄

n
+

∞∑
k=2

1
nk

(
n̄k +

k∑
j=2

n̄j−1pk−j

)

=
∞∑

k=0

(
n̄

n

)k

+
∞∑

k=2

k∑
j=2

n̄j−1

nk
pk−j

=
n

n − n̄
+

∞∑
�=0

( ∞∑
j=2

n̄j−1

nj+�

)
p�

=
n

n − n̄
+

n̄

n(n − n̄)

∞∑
�=0

p�

n�

=
n

n − n̄
+

n̄

n(n − n̄)
s.
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Solving the resulting equation for s yields the first required equality. The second equality
follows from the facts that s = µ(Q)/µ(Q0), µ(Q0) =

√
n and n̄ = 1

2n − 1. �

Lemma 3.13. Let U denote the union defined in (3.1). Then T = cl(U).

Proof. By summing the areas of the essentially disjoint sets in the union as a geo-
metric series, and using the relation n = 2m, we obtain

µ(U) = µ(Q)
[
1 +

m − 1
n

+
∞∑

k=0

(2m − 2)k(2m − 3)(m − 1)
(

1
n

)k+2 ]

= µ(Q)
[
1 +

m − 1
n

+
(2m − 3)(m − 1)

n2

∞∑
k=0

(
2m − 2

n

)k ]

= µ(Q)
n2 + n + 2

4n
.

Now, by Lemma 3.12, µ(Q) = (2n5/2)/(n2 + n + 2). Combining these results, and using
the fact that µ(T ) = 1

2µ(T0) = 1
2n3/2, we get

µ(U) =
2n5/2

n2 + n + 2
n2 + n + 2

4n
=

n3/2

2
= µ(T ).

It follows that T ◦ ⊆ U and thus T = cl(T ◦) ⊆ cl(U). On the other hand, it is obvious
that cl(U) ⊆ T . Hence T = cl(U). �

Proposition 3.5 now follows by combining Lemmas 3.9 and 3.13.
To complete the proof of Theorem 1.1, it now remains to show that the closure of each

component of T ◦ has infinitely many holes.

Lemma 3.14. Let A and C be non-empty subsets of R
2 such that C is connected,

∂C ⊆ A, and C �⊆ A. If B is a component of R
2 \ A and B ∩ C �= ∅, then B ⊆ C.

Proof. Let B be a component of R
2 \A such that B ∩C �= ∅. By way of contradiction

assume that B �⊆ C. Since B is connected, B ∩ C �= ∅, and B �⊆ C, we have B ∩ ∂C �= ∅.
Since ∂C ⊆ A, we get B ∩ A �= ∅, which contradicts the premise that B ⊆ R

2 \ A. �

Lemma 3.15. If S is a component of T ◦, then cl(S) has infinitely many holes, i.e. R
2\

cl(S) consists of infinitely many bounded components.

Proof. We first show that Q has infinitely many holes. Given a function f , we let f0

denote the identity. Recall that Q1 := H1(Q0). Define

O := Q0 ∪ f−m+1(Q0) ∪ f−m+1(Q1) ∪ f−m+1f−1(Q1) ∪ f−m+1f0(Q1) ∪ H3(Q0).

Note that O ⊆ Q and there is a bounded component C0 of R
2 \ O contained in T ◦

0 . It
may also be verified that ∂C0 ⊆ Q and C0 �⊆ T . In particular, C0 �⊆ Q. Let p ∈ C0 \ T .
Since p /∈ Q, there is a component H0 of R

2 \ Q such that p ∈ H0. By Lemma 3.14,
H0 ⊆ C0 ⊆ T ◦

0 . Since p ∈ H0, H0 �⊆ T .
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Figure 2. A connected 9-reptile with holes.

Suppose that k > 0 and assume that R
2 \ Q has a bounded component Hk−1 ⊆

fk−1
−m+1(T

◦
0 ) such that Hk−1 �⊆ T . Define Ck := f−m+1(Hk−1). Then Ck is connected,

Ck ⊆ fk
−m+1(T

◦
0 ), and Ck �⊆ f−m+1(T ). By Lemma 2.5,

cl(T ∩ (f−m+1(T0))◦) = f−m+1(T ).

So, Ck �⊆ T . In particular, Ck �⊆ Q. Since ∂Hk−1 ⊆ Q, the definition of Q implies
that ∂Ck = f−m+1(∂Hk−1) ⊆ f−m+1(Q) ⊆ Q. Let q ∈ Ck \ T . Since q /∈ Q, there is a
component Hk of R

2 \ Q such that q ∈ Hk. By Lemma 3.14, Hk ⊆ Ck ⊆ fk
−m+1(T

◦
0 ).

Since q ∈ Hk, Hk �⊆ T .
Since the diameters of the terms of the sequence {Hk}∞

k=0 go to 0, Q has infinitely
many holes.

We now show that Q∗ has infinitely many holes. Let H be a bounded component
of R

2 \ Q such that H �⊆ T . Since H is open, H ⊆ T ◦
0 . Therefore, f0(H) ⊆ f0(T ◦

0 ) and
f0(H) �⊆ f0(T ). Lemma 2.5 thus yields f0(H) �⊆ Q∗. Moreover, it is obvious that f0(H) is
connected and ∂(f0(H)) ⊆ Q∗. Let r ∈ f0(H) \ Q∗. Let H∗ be the component of R

2 \ Q∗

which contains r. By Lemma 3.14, H∗ ⊆ f0(H). Thus, H∗ is a hole in Q∗. Since Q has
infinitely many holes of decreasing diameter it follows that the same holds for Q∗.

If S is the closure of a component of T ◦ other than Q or Q∗, then S is similar to Q∗

by virtue of Lemma 3.9. Thus, S has infinitely many holes. �

Lemma 3.15 now completes the proof of Theorem 1.1.
Theorem 1.1 reduces the original question in [3, § C17] to the following one.

Question 1. Are there 2-reptiles or 3-reptiles in R
2 with holes?

4. Reptiles with other topological properties

In this section, we use the method in § 2 to construct reptiles with holes and various
properties.

For n equal to an odd integer, we can also construct certain n-reptiles with holes. The
smallest n we can get is 9, as in the following example.
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Example 4.1. Let T0 = [−3, 3] × [− 3
2 , 3

2 ] and ρ = 1
3 . Define an IFS F = {fi}9

i=1 as

fi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρR( 1
2π)(x) + di, i = 1,

ρR( 1
2π)σy(x) + di, i = 2,

ρx + di, i = 3, 4,

ρσy(x) + di, i = 5, 6,

ρσy(x) + di, i = 7,

ρR(π)(x) + di, i = 8, 9,

where

d1 = d2 = (− 5
2 , 1

2 ), d3 = d5 = (−2,−1), d4 = d6 = (−1, 1),

d7 = (0,−1), d8 = (−1, 0), d9 = (1, 0).

Then the attractor T (see Figure 2) of F is a connected 9-reptile whose interior consists
of infinitely many components, with the closure of each component consisting of infinitely
many holes.

Proof. It is clear that T0 satisfies the conditions in (1.4). Let G = {id, σy}. Then
Condition 1.2 holds. One can check directly that

f1σy = f2, f2σy = f1, f3σy = f5,

f5σy = f3, f4σy = f6, f6σy = f4,

f7σy = σyf7, f8σy = σyf9, f9σy = σyf8.

It follows that F1 := {fi}6
i=1, F2 := {fi}9

i=7, and Condition 1.3 holds. Thus by Theo-
rem 1.5(a), T is a 9-reptile. It is easy to see that, for all f ∈ F , V0 ∩ f(T0) �= ∅, where V0

is defined as in (1.8). Thus, by Theorem 1.5(b), T is connected. The rest of the assertions
can be proved as in § 3. �

To construct n-reptiles in R
2 whose interior consist of finitely many components, and

with the closure of some component having a hole, the smallest n we can obtain is 16.
Note that reflections are not involved in the construction of the following reptile.

Example 4.2. Let T0 = [−8, 8] × [−4, 4] and ρ = 1
4 . Define an IFS F := {fi}16

i=1 as

fi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρR( 1
2π)(x) + di, 1 � i � 5,

ρR(− 1
2π)(x) + di, 6 � i � 10,

ρx + di, 11 � i � 13,

ρR(−π)x + di, 14 � i � 16,

where

d1 = d6 = (−7,−2), d2 = d7 = (−7, 2), d3 = d8 = (−5, 0), d4 = d9 = (−1, 0),

d5 = d10 = (3, 0), d11 = d14 = (−4,−3), d12 = d15 = (−4, 3), d13 = d16 = (0, 3).
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Figure 3. A connected 16-reptile whose interior consists of two components, with the
closure of one of them being a disc and that of the other having a hole.

Then the attractor T of F is a connected 16-reptile whose interior consists of two com-
ponents, with the closure of exactly one of them having a hole (see Figure 3).

Proof. Let G = {id, R(−π)}. Then Condition 1.2 clearly holds. For 1 � i � 5,
fiR(−π) = fi+5, which implies that fi+5R(−π) = fi. For 11 � i � 13, we have
fiR(−π) = fi+3, which implies that fi+3R(−π) = fi. Hence F1 = F and Condition 1.3
also holds. Thus T is a 16-reptile.

For all f ∈ F , V0 ∩ f(T0) �= ∅. Hence T is connected. The last assertion is obvious. �

In view of Example 4.2, it is natural to ask the following questions.

Question 2. What is the smallest n such that a connected n-reptile in R
2, whose

interior consists of finitely many components, has a hole? What is the smallest n such
that a connected piecewise polygonal n-reptile in R

2 has a hole?

We now construct a reptile whose interior consists of infinitely many components,
with the closure of some components having holes and the closure of the others being
topological discs.

Example 4.3. Let T0 = [−4, 4] × [−2, 2] and ρ = 1
4 . Define and IFS F = {fi}16

i=1 as

fi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρR( 1
2π)(x) + di, 1 � i � 5,

ρR( 1
2π)σy(x) + di, 6 � i � 10,

ρx + di, i = 11, 12,

ρσy(x) + di, i = 13, 14,

ρR( 1
2π)(x) + di, i = 15,

ρR(− 1
2π)(x) + di, i = 16,

https://doi.org/10.1017/S001309150400001X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150400001X


Reptiles with holes 669

−3 −2 −1

−1.5

−1.0

0

0.5

0

−0.5

1

1.5

1.0

2

Figure 4. The reptile in Example 4.3.

where

d1 = d6 = (− 3
2 ,−1), d2 = d7 = (− 5

2 ,−1), d3 = d8 = (− 7
2 ,−1),

d4 = d9 = (− 7
2 , 1), d5 = d10 = (− 1

2 , 1), d11 = d13 = (−2, 3
2 ),

d12 = d14 = (2, 1
2 ), d15 = (− 1

2 ,−1), d16 = ( 1
2 ,−1).

Then the attractor T (see Figure 4) of F is a connected 16-reptile whose interior consists
of infinitely many components, with the closure of some of them having holes and the
closure of the others being topological discs.

Proof. Let G = {id, σy}; thus Condition 1.2 holds. We verify directly that, for 1 �
i � 5, fiσy = fi+5 ∈ F , which implies that fi+5σy = fi. For i = 11 or 12, we have fiσy =
fi+2 ∈ F , which implies that fi+2σy = fi. Also, it is easy to check that f15σy = σyf16,
which implies f16σy = σyf15. Thus, F1 = {fi}14

i=1, F2 = {fi}16
i=15, and Condition 1.3 is

satisfied. Therefore, T is a 16-reptile.
For all f ∈ F , V1 ∩ f(T0) �= ∅. Hence T is connected. We omit the proofs of the rest of

the assertions. �

It is not true that if the interior of a reptile consists of infinitely many components,
with the closure of some having holes, then the closure of these components must contain
infinitely many holes. The following is a counterexample.

Example 4.4. Let T0 = [−6, 6] × [−3, 3] and ρ = 1
6 . Define and IFS F = {fi}36

i=1 as

fi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρσy(x) + di, 1 � i � 7,

ρR( 1
2π)x + di, 8 � i � 16,

ρR( 1
2π)σy(x) + di, 17 � i � 25,

ρx + di, 26 � i � 34,

ρσy(x) + di, i = 35,

ρR(π)(x) + di, i = 36,
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Figure 5. A connected 36-reptile whose interior consists of infinitely many components
and the closure of each component contains finitely many holes.
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Figure 6. The 16-reptile S used in the construction of the reptile R in R
3.

where

d1 = d26 = (−4,− 5
2 ), d2 = d27 = (−4, 5

2 ), d3 = d28 = (−2,− 5
2 ),

d4 = d29 = (−2,− 3
2 ), d5 = d30 = (−2, 5

2 ), d6 = d31 = (2,− 1
2 ),

d7 = d32 = (3, 3
2 ), d8 = d17 = (− 11

2 ,−2), d9 = d18 = (− 11
2 , 0),

d10 = d19 = (− 11
2 , 2), d11 = d20 = (− 9

2 ,−1), d12 = d21 = (− 1
2 , 0),

d13 = d22 = (− 1
2 , 2), d14 = d23 = ( 3

2 , 1), d15 = d24 = ( 7
2 ,−1),

d16 = d25 = ( 9
2 , 1), d33 = (−3, 1

2 ), d34 = (3, 1
2 ),

d35 = (0,− 3
2 ), d36 = (0,− 5

2 ).

Then the attractor T (see Figure 5) of F is a connected 36-reptile whose interior consists
of infinitely many components, with the closure of each component consisting of finitely
many holes.
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Proof. It is clear that G = {id, σy} satisfies Condition 1.2. We first note that, for
1 � i � 7, fiσy = fi+25, which implies that fi+25σy = fi. Next, we can check directly
that, for 8 � i � 16, fiσy = fi+9, which implies that fi+9 = fiσy. Lastly, we verify
directly that f35σy = σyf35 and f36σy = σyf36; moreover, f33σy = σyf34, which implies
that f34σy = σyf33. Thus F1 = {fi}32

i=1, F2 = F \ F1, and Condition 1.3 holds. Therefore,
T is a 36-reptile.

For all f ∈ F , V1 ∩ f(T0) �= ∅. Hence T is connected. We omit the proofs of the rest of
the assertions. �

By modifying and extending the reptile T in Example 4.2 (see Figure 3), we can obtain
a reptile in R

3 with a hole. Let S be the 16-reptile shown in Figure 6. Define

R := (S × [−2,−1]) ∪ (T × [−1, 0]) ∪ (T × [0, 1]) ∪ (S × [1, 2]).

Then R is a 64-reptile in R
3 whose interior consists of two components, with the closure

of one them having a hole.
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