Canad. Math. Bull. Vol. 23 (1), 1980

A NOTE ON STRONGLY CLOSED 2-SUBGROUPS

BY

PAUL FONG⁽¹⁾ AND MORTON E. HARRIS⁽¹⁾

The purpose of this note is to present a proof of the following:

PROPOSITION. Let T be a Sylow 2-subgroup of the finite group G and let $1 < S \leq T$ with S strongly closed in T with respect to G. Let $\Gamma = \langle C_G(s), N_G(\Omega_1(S)) | s \in \mathcal{I}(S) \rangle$. Suppose that $\Gamma \leq H < G$ for some subgroup H of G. Then $H \cap \langle S^G \rangle$ is strongly embedded in $\langle S^G \rangle$ and $S = T \cap \langle S^G \rangle$ or $S = \Omega_1(T \cap \langle S^G \rangle)$. Also if m(S) = 1, then $S = T \cap \langle S^G \rangle$.

This result has several applications. As an illustration, we utilize the above Proposition to give an alternate proof of [1, Theorem 2(2)] (one of the many fundamental results of [1]).

The proof of our Proposition utilizes some of the basic results on strongly closed 2-subgroups in [2] and [3].

All groups in this article are finite and our notation is standard.

Section 1. A proof of the Proposition.

Throughout this section we assume that S, T, Γ , H and G satisfy the hypotheses of the Proposition. Set $X = \langle S^G \rangle$. Clearly the following two Lemmas imply the Proposition.

LEMMA 1.1. Suppose that m(S) = 1. Then

(1) $S \in Syl_2(X)$; and

(2) $H \cap X$ is strongly embedded in X.

Proof. For (1), we proceed by induction on |G|. Thus we may assume that 0(G) = 1. Clearly [3, Corollary B3] implies that we may assume that S is quaternion, of order 8. Also $\Omega_1(S) \leq G$ by Glauberman's Z*-Theorem. Set $\overline{G} = G/\Omega_1(S)$. Then \overline{S} is strongly closed in \overline{T} with respect to \overline{G} by [3, Lemma 2.2(a)], $\overline{S} \cong E_4$, $\overline{T} \in \text{Syl}_2(\overline{G})$, $0(\overline{G}) = 1$ and $\overline{S} \neq \langle \overline{S}^{\overline{G}} \rangle = \overline{X}$. Also [2, Theorem A] implies that $\overline{X} \cong \text{PSU}(3, 4)$ or $\overline{X} \cong \text{PSL}(2, q)$ for some odd prime power q > 3 with $q \equiv \pm 3 \pmod{8}$. Since the Schur multiplier of PSU(3, 4) is of odd order, it follows that $|X|_2 = |S|$ and (1) holds. Next observe that $\Gamma = C_G(\Omega_1(S)) \leq H < G$. Hence $G = X\Gamma = XH$ and $C_X(\Omega_1(S)) \leq H \cap X < X$. Thus (2) holds and the proof of the lemma is complete.

Received by the editors September 23, 1977 and, in revised form, February 6, 1978.

⁽¹⁾ Research partially supported by the National Science Foundation.

[March

LEMMA 1.2. Suppose that m(S) > 1. Then (1) $H \cap X$ is strongly embedded in X; and (2) $S = T \cap X$ or $S = \Omega_1(T \cap X)$.

Proof. We proceed by induction on |G|. Since $0(G) \le \Gamma \le H$, we may assume that 0(G) = 1. Also $G = XN_G(S) = XH$, $X = \langle S^G \rangle = \langle S^X \rangle$ and $\langle C_X(s), \rangle$ $N_{\mathbf{x}}(\Omega_1(S)) \mid s \in \mathcal{I}(S) \leq H \cap X < X$. Thus we may assume that G = X. Let Y = I $\langle \Omega_1(S)^G \rangle$. Then $G = YN_G(\Omega_1(S)) = YH$ and hence $Y \not\leq H$. Thus $Y \not\leq \langle C_G(s) | s \in \mathcal{I}(S) \rangle$ and Y has a strongly embedded subgroup by [3, Lemma 2.7]. Consequently Y is a simple Bender group and $\Omega_1(S) = \Omega_1(T \cap Y) \leq$ $S \cap Y \leq T \cap Y \in Syl_2(Y)$. If G = Y, then we are clearly done. Thus we may assume that Y < G, $S \not\leq Y$ and $S \cap Y = \Omega_1(S) = \Omega_1(T \cap Y)$ or $S \cap Y = T \cap Y$. Set L = YS and $C = C_L(Y)$. Thus $C = 0_2(L) \le (T \cap Y)S$. Suppose that $C \ne 1$. Choose $c \in \mathcal{I}(C)$ and write $c = t^{-1}s$ where $t \in T \cap Y$ and $s \in S$. Since $Y \not\leq H$, we have $c \notin S$ and $S \cap Y = \Omega_1(S) = \Omega_1(T \cap Y)$. Since $c \notin Y$, we have $s \notin Y$ and $|s| \ge 4$. As s = ct = tc, we also have $|t| \ge 4$. In particular, $T \cap Y =$ $\langle t^{-1}t^n \mid n \in N_Y(T \cap Y) \rangle$. But if $n \in N_Y(T \cap Y)$, then $s^n = ct^n \in T$, $s^n \in S$ and $t^{-1}t^n = s^{-1}s^n \in S \cap Y = \Omega_1(T \cap Y)$. Since this is impossible, we have C = 1. Let $s \in S - Y$ be such that $s^2 \in Y$ and set $L_1 = Y \langle s \rangle$. Then $T_1 = T \cap L_1 =$ $(T \cap Y)(s) \in Syl_2(L_1)$ and T_1 contains an involution τ such that $T_1 = (T \cap Y)(\tau)$ and τ acts like a "field automorphism" on Y. Thus $\zeta(T_1) > \mathscr{I}(S) = \Omega_1(S)^{\#} =$ $\Omega_1(T \cap Y)^{\#}$, $S \cap Y = \Omega_1(S) = \Omega_1(T \cap Y) < T \cap Y$, $Y \cong PSU(3, 2^n)$ for some integer $n \ge 2$ and $\overline{T}_1 = T_1/\Omega_1(T \cap Y)$ is not abelian. However $S \cap T_1 =$ $(S \cap Y)\langle s \rangle = \Omega_1(S)\langle s \rangle = \Omega_1(T \cap Y)\langle s \rangle \leq T_1$ and hence $\overline{S \cap T_1} \leq Z(\overline{T_1})$. But $\overline{T_1} =$ $(\overline{T \cap Y})(\overline{S \cap T_1})$ and $\overline{T \cap Y}$ is abelian, so that $\overline{T_1}$ is abelian. This contradiction establishes Lemma 2.2.

Section 2. An Application of the Proposition.

Recall that a subgroup Q of a finite group G is said to be tightly embedded in G if |Q| is even and if $|Q \cap Q^{g}|$ is odd for every $g \in G - N_{G}(Q)$. The following corollary is [1, Theorem 2(2)].

COROLLARY. Let Q be a tightly embedded subgroup of the finite group G and let $H = N_G(Q)$. Suppose That $|Q^g \cap H|$ is odd for all $g \in G - H$. Then either G = H or H < G and $H \cap \langle Q^G \rangle$ is strongly embedded in $\langle Q^G \rangle$.

Proof. Let $S \in \text{Syl}_2(Q)$ and let $T \in \text{Syl}_2(H)$ with $S \leq T$. The hypotheses imply that $T \in \text{Syl}_2(G)$ and that S is strongly closed in T with respect to G. Suppose that H < G. Clearly $\Gamma_1(S, G) = \langle N_G(U) | 1 \neq U \leq S \rangle \leq H$. Set $X = \langle S^G \rangle$ and $Y = \langle Q^G \rangle$. Then $H \cap X$ is strongly embedded in X and $S = T \cap X$ or $S = \Omega_1(T \cap X)$ by the Proposition. Also $G = XN_G(S) = XH = YH$, $Y = \langle Q^G \rangle = \langle Q^X \rangle = XQ$, |Y|X| is odd and $H \cap Y < Y$. But $T \cap X = T \cap Y \in \text{Syl}_2(Y)$ and $\Gamma_1(T \cap X, Y) \leq Y$. $H \cap Y < Y$ since $\Omega_1(T \cap X) = \Omega_1(S)$. Consequently $H \cap Y$ is strongly embedded in Y and the proof is complete.

REFERENCES

1. M. Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 87-115.

2. D. Goldschmidt, 2-fusion in finite groups, Annals of Math. 99 (1974), 70-117.

3. —, Strongly closed 2-subgroups of finite groups, Annals of Math. 102 (1975), 475-489.

PAUL FONG MATHEMATICS DEPARTMENT UNIVERISTY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS 60680

Morton E. Harris School of Mathematics University of Minnesota Minneapolis, Minnesota 55455