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Abstract
An n-vertex graph is called C-Ramsey if it has no clique or independent set of size 𝐶 log2 𝑛 (i.e., if it has near-
optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very
precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This
brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study
of small-ball probability for low-degree polynomials of independent random variables.

The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range
of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic
combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the
quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is
of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and
McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his
notorious monetary prizes.

1. Introduction

An induced subgraph of a graph is called homogeneous if it is a clique or independent set (i.e., all
possible edges are present, or none are). One of the most fundamental results in Ramsey theory, proved
in 1935 by Erdős and Szekeres [38], states that every n-vertex graph contains a homogeneous subgraph
with at least 1

2 log2 𝑛 vertices.1 On the other hand, Erdős [33] famously used the probabilistic method
to prove that, for all 𝑛 ≥ 3, there is an n-vertex graph with no homogeneous subgraph on 2 log2 𝑛
vertices. Despite significant effort (see, for example, [11, 71, 20, 47, 24, 21, 75, 1, 48, 52]), there are
no known nonprobabilistic constructions of graphs with comparably small homogeneous sets, and in
fact the problem of explicitly constructing such graphs is intimately related to randomness extraction in
theoretical computer science (see, for example, [89] for an introduction to the topic).

For some 𝐶 > 0, an n-vertex graph is called C-Ramsey if it has no homogeneous subgraph of
size 𝐶 log2 𝑛. We think of C as being a constant (not varying with n), so C-Ramsey graphs are those
graphs with near-optimal Ramsey behavior. It is widely believed that C-Ramsey graphs must in some
sense resemble random graphs (which would provide some explanation for why it is so hard to find

1Since the original submission of the present paper, this bound was improved to ( 1
2 + 𝜀) log2 for an absolute constant 𝜀 > 0

in breakthrough work by Campos, Griffiths, Morris and Sahasrabudhe [18].
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explicit constructions), and this belief has been supported by a number of theorems showing that certain
structural or statistical properties characteristic of random graphs hold for all C-Ramsey graphs. The
first result of this type was due to Erdős and Szemerédi [39], who showed that every C-Ramsey graph
G has edge-density bounded away from zero and one (formally, for any 𝐶 > 0 there is 𝜀𝐶 > 0 such that
for sufficiently large n, the number of edges in any C-Ramsey graph with n vertices lies between 𝜀𝐶

(𝑛
2
)

and (1− 𝜀𝐶 )
(𝑛
2
)
). Note that this implies fairly strong information about the edge distribution on induced

subgraphs of G because any induced subgraph of G with at least 𝑛𝛼 vertices is itself (𝐶/𝛼)-Ramsey.
This basic result was the foundation for a large amount of further research on Ramsey graphs; over

the years, many conjectures have been proposed and many theorems proved (see, for example, [2, 3,
4, 7, 8, 16, 37, 34, 60, 66, 67, 76, 84, 90, 9, 70]). Particular attention has focused on a sequence of
conjectures made by Erdős and his collaborators, exploring the theme that Ramsey graphs must have
diverse induced subgraphs. For example, for a C-Ramsey graph G with n vertices, it was proved by
Prömel and Rödl [84] (answering a conjecture of Erdős and Hajnal) that G contains every possible
induced subgraph on 𝛿𝐶 log 𝑛 vertices; by Shelah [90] (answering a conjecture of Erdős and Rényi) that
G contains 2𝛿𝐶𝑛 nonisomorphic induced subgraphs; by the first author and Sudakov [66] (answering a
conjecture of Erdős, Faudree and Sós) that G contains 𝛿𝐶𝑛5/2 subgraphs that can be distinguished by
looking at their edge and vertex numbers and by Jenssen, Keevash, Long and Yepremyan [60] (improving
on a conjecture of Erdős, Faudree and Sós proved by Bukh and Sudakov [16]) that G contains an induced
subgraph with 𝛿𝐶𝑛2/3 distinct degrees (all for some 𝛿𝐶 > 0 depending on C).

Only one of Erdős’ conjectures (on properties of C-Ramsey graphs) from this period has remained
open until now: Erdős and McKay (see [34]) made the ambitious conjecture that for essentially any
‘sensible’ integer x, every C-Ramsey graph must necessarily contain an induced subgraph with exactly
x edges. To be precise, they conjectured that there is 𝛿𝐶 > 0 depending on C such that for any
C-Ramsey graph G with n vertices and any integer 0 ≤ 𝑥 ≤ 𝛿𝐶𝑛2, there is an induced subgraph of G
with exactly x edges. Erdős reiterated this problem in several collections of his favorite open problems
in combinatorics [34, 35] (also in [36]) and offered one of his notorious monetary prizes ($100) for its
solution (see [35, 23, 22]).

Progress on the Erdős–McKay conjecture has come from four different directions. First, the canonical
example of a Ramsey graph is (a typical outcome of) an Erdős–Rényi random graph. It was proved by
Calkin, Frieze and McKay [17] (answering questions raised by Erdős and McKay) that for any constants
𝑝 ∈ (0, 1) and 𝜂 > 0, a random graph G(𝑛, 𝑝) typically contains induced subgraphs with all numbers of
edges up to (1 − 𝜂)𝑝

(𝑛
2
)
. Second, improving on initial bounds of Erdős and McKay [34], it was proved

by Alon, Krivelevich and Sudakov [8] that there is 𝛼𝐶 > 0 such that in a C-Ramsey graph on n vertices,
one can always find an induced subgraph with any given number of edges up to 𝑛𝛼𝐶 . Third, improving
on a result of Narayanan, Sahasrabudhe and Tomon [76], the first author and Sudakov [67] proved that
there is 𝛿𝐶 > 0 such that in any C-Ramsey graph on n vertices contains induced subgraphs with 𝛿𝐶𝑛2

different numbers of edges (though without making any guarantee on what those numbers of edges are).
Finally, Long and Ploscaru [72] recently proved a bipartite analog of the Erdős–McKay conjecture.

As our first result, we prove a substantial strengthening of the Erdős–McKay conjecture.2 Let 𝑒(𝐺)
be the number of edges in a graph G.

Theorem 1.1. Fix 𝐶 > 0 and 𝜂 > 0, and let G be a C-Ramsey graph on n vertices, where n is sufficiently
large with respect to C and 𝜂. Then for any integer x with 0 ≤ 𝑥 ≤ (1 − 𝜂)𝑒(𝐺), there is a subset
𝑈 ⊆ 𝑉 (𝐺) inducing exactly x edges.

Given prior results due to Alon, Krivelevich and Sudakov [8], Theorem 1.1 is actually a simple
corollary of a much deeper result (Theorem 1.2) on edge statistics in Ramsey graphs, which we discuss
in the next subsection.

2To see that this implies the Erdős–McKay conjecture, first note that we can assume n is sufficiently large in terms of C
(specifically, we can assume 𝑛 ≥ 𝑛𝐶 for any 𝑛𝐶 ∈ N by taking 𝛿𝐶 small enough that 𝛿𝐶𝑛2

𝐶 < 1). Now, by the above-
mentioned result of Erdős and Szemerédi [39], there is 𝜀𝐶 > 0 such that for every C-Ramsey graph G on n vertices we have
𝑒 (𝐺) ≥ 𝜀𝐶

(𝑛
2
)
≥ 𝜀𝐶𝑛2/4. So, taking 𝛿𝐶 ≤ 𝜀𝐶/8, the Erdős–McKay conjecture follows from the 𝜂 = 1/2 case of Theorem 1.1.
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1.1. Edge statistics and low-degree polynomials

For an n-vertex graph G, observe that the number of edges 𝑒(𝐺 [𝑈]) in an induced subgraph 𝐺 [𝑈] can
be viewed as an evaluation of a quadratic polynomial associated with G. Indeed, identifying the vertex
set of G with {1, . . . , 𝑛} and writing E for the edge set of G, consider the n-variable quadratic polynomial
𝑓 (𝜉1, . . . , 𝜉𝑛) =

∑
𝑖 𝑗∈𝐸 𝜉𝑖𝜉 𝑗 . Then, for any vertex set U, let �𝜉 (𝑈 ) be the characteristic vector of U (with

�𝜉 (𝑈 )
𝑣 = 1 if 𝑣 ∈ 𝑈, and �𝜉 (𝑈 )

𝑣 = 0 if 𝑣 ∉ 𝑈). It is easy to check that the number of edges 𝑒(𝐺 [𝑈]) induced
by U is precisely equal to 𝑓 ( �𝜉 (𝑈 ) ). That is, to say, the statement that G has an induced subgraph with
exactly x edges is precisely equivalent to the statement that there is a binary vector �𝜉 ∈ {0, 1}𝑛 with
𝑓 ( �𝜉) = 𝑥.

There are many combinatorial quantities of interest that can be interpreted as low-degree polynomials
of binary vectors. For example, the number of triangles in a graph, or the number of three-term
arithmetic progressions in a set of integers, can both be naturally interpreted as evaluations of certain
cubic polynomials. More generally, the study of Boolean functions is the study of functions of the form
𝑓 : {0, 1}𝑛 → R; every such function can be written (uniquely) as a multilinear polynomial, and the
degree of this polynomial is a fundamental measure of the ‘complexity’ of the Boolean function.

One of the most important discoveries from the analysis of Boolean functions is that it is fruitful to
study the behavior of (low-degree) Boolean functions evaluated on a random binary vector �𝜉 ∈ {0, 1}𝑛.
This is the perspective we take in this paper: As our main result, for any Ramsey graph G and a random
vertex subset U, we obtain very precise control over the distribution of 𝑒(𝐺 [𝑈]).
Theorem 1.2. Fix 𝐶, 𝜆 > 0, let G be a C-Ramsey graph on n vertices and let 𝜆 ≤ 𝑝 ≤ 1−𝜆. Then if U is
a random subset of 𝑉 (𝐺) obtained by independently including each vertex with probability p, we have

sup
𝑥∈Z

Pr[𝑒(𝐺 [𝑈]) = 𝑥] ≤ 𝐾𝐶,𝜆𝑛
−3/2

for some 𝐾𝐶,𝜆 > 0 depending only on 𝐶, 𝜆. Furthermore, for every fixed 𝐴 > 0, we have

inf
𝑥∈Z

|𝑥−𝑝2𝑒 (𝐺) |≤𝐴𝑛3/2

Pr[𝑒(𝐺 [𝑈]) = 𝑥] ≥ 𝜅𝐶,𝐴,𝜆𝑛
−3/2

for some 𝜅𝐶,𝐴,𝜆 > 0 depending only on 𝐶, 𝐴, 𝜆, if n is sufficiently large in terms of 𝐶, 𝜆 and A.
It is not hard to show that for any C-Ramsey graph G, the standard deviation 𝜎 of 𝑒(𝐺 [𝑈]) is of

order 𝑛3/2. So, Theorem 1.2 says (roughly speaking) that in the ‘bulk’ of the distribution of 𝑒(𝐺 [𝑈])
(i.e., within roughly standard-deviation range of the mean), the point probabilities are all of order 1/𝜎.
In Section 2, we will give the short deduction of Theorem 1.1 from Theorem 1.2 and the aforementioned
theorem of Alon, Krivelevich and Sudakov.
Remark 1.3. Our proof of Theorem 1.2 can be adapted to handle slightly more general types of graphs
than Ramsey graphs. For example, we can obtain the same conclusions in the case where G is a d-regular
graph with 0.01𝑛 ≤ 𝑑 ≤ 0.99𝑛, such that the eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 of the adjacency matrix of
G satisfy max{𝜆2,−𝜆𝑛} ≤ 𝑛1/2+0.01 (i.e., the case where G is a dense graph with near-optimal spectral
expansion). See Remarks 4.5 and 4.2 for some discussion of the necessary adaptations. Notably, this
class of graphs includes Paley graphs, which are ‘random-like’ graphs with an explicit number-theoretic
definition (see, for example, [63]). These graphs are currently one of the most promising candidates
for explicit constructions of Ramsey graphs, though precisely studying the Ramsey properties of these
graphs seems to be outside the reach of current techniques in number theory (see [56, 29] for recent
developments).
Remark 1.4. If 𝑝 = 1/2, then the random set U in Theorem 1.2 is simply a uniformly random subset
of vertices. So, for x close to 𝑒(𝐺)/4, Theorem 1.2 tells us that the number of induced subgraphs
with x edges is of order 2𝑛/𝑛3/2. It would be interesting to investigate the number of x-edge induced
subgraphs for general x (not close to 𝑒(𝐺)/4). From Theorem 1.2, one can deduce a lower bound on
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this number approximately matching the behavior of an appropriate Erdős–Rényi random graph (i.e.,
for any constant 𝜂 > 0, and 𝜂𝑛2 ≤ 𝑥 ≤ (1 − 𝜂)𝑒(𝐺), there are at least exp(𝐻 (

√
𝑥/𝑒(𝐺))𝑛 + 𝑜(𝑛))

subgraphs with x edges, where H denotes the base-e entropy function). However, a corresponding upper
bound does not in general hold: To characterize the number of x-edge induced subgraphs up to any
subexponential error term, one must incorporate more detailed information about the Ramsey graph G
than just its number of edges. (To see this, consider a union of two disjoint independent Erdős–Rényi
random graphs G(𝑛/2, 0.01) � G(𝑛/2, 0.99), and count subgraphs with 0.001𝑛2 edges.)

There has actually been quite some recent interest (see, for example, [68, 44, 73, 45, 6]) studying
random variables of the form 𝑒(𝐺 [𝑈]) for a graph G and a random vertex set U, largely due to a
sequence of conjectures by Alon, Hefetz, Krivelevich and Tyomkyn [6] motivated by the classical
topic of graph inducibility. Specifically, these works studied the anticoncentration behavior of 𝑒(𝐺 [𝑈])
(generally speaking, anticoncentration inequalities provide upper bounds on the probability that a
random variable falls in some small ball or is equal to some particular value). As discussed above,
𝑒(𝐺 [𝑈]) can be naturally interpreted as a quadratic polynomial, so this study falls within the scope
of the so-called polynomial Littlewood–Offord problem (which concerns anticoncentration of general
low-degree polynomials of various types of random variables). There has been a lot of work from
several different directions (see, for example, [26, 61, 65, 92, 78, 55, 91, 87, 77, 79]) on the extent to
which anticoncentration in the (polynomial) Littlewood–Offord problem is controlled by algebraic or
arithmetic structure, and the upper bound in Theorem 1.2 can be viewed in this context: Ramsey graphs
yield quadratic polynomials that are highly unstructured in a certain combinatorial sense, and we see
that such polynomials have strong anticoncentration behavior.

The first author, Sudakov and Tran [68] previously suggested to study anticoncentration of 𝑒(𝐺 [𝑊])
for a Ramsey graph G and a random vertex subset W of a given size. In particular, they asked whether for
a C-Ramsey graph G with n vertices, and a uniformly random subset W of exactly 𝑛/2 vertices, we have
sup𝑥∈Z Pr[𝑒(𝐺 [𝑊]) = 𝑥] ≤ 𝐾𝐶/𝑛 for some 𝐾𝐶 > 0 depending only on C. Some progress was made on
this question by the first and third authors [65]; as a simple corollary of Theorem 1.2, we answer this
question in the affirmative.

Theorem 1.5. For 𝐶 > 0 and 0 < 𝜆 < 1, there is 𝐾 = 𝐾 (𝐶, 𝜆) such that the following holds. Let G be
a C-Ramsey graph on n vertices, and let 𝑊 ⊆ 𝑉 (𝐺) be a random subset of exactly k vertices, for some
given k with 𝜆𝑛 ≤ 𝑘 ≤ (1 − 𝜆)𝑛. Then

sup
𝑥∈Z

Pr[𝑒(𝐺 [𝑊]) = 𝑥] ≤ 𝐾

𝑛
.

It is not hard to show that the upper bound in Theorem 1.5 is the best-possible (indeed, this can be
seen by taking G to be a typical outcome of an Erdős–Rényi random graph G(𝑛, 1/2)). However, in
contrast to the setting of Theorem 1.2, in Theorem 1.5 one cannot hope for a matching lower bound
when x is close to E[𝑒(𝐺 [𝑊])] (as can be seen by considering the case where G is a typical outcome
of the union of two disjoint independent Erdős–Rényi random graphs G(𝑛, 1/4) � G(𝑛, 3/4)).

1.2. Proof ingredients and ideas

We outline the proof of Theorem 1.2 in more detail in Section 3, but here we take the opportunity to
highlight some of the most important ingredients and ideas.

1.2.1. An approximate local limit theorem
A starting point is that, in the setting of Theorem 1.2, standard techniques show that 𝑒(𝐺 [𝑈]) satisfies
a central limit theorem: We have Pr[𝑒(𝐺 [𝑈]) ≤ 𝑥] = Φ((𝑥 − 𝜇)/𝜎) + 𝑜(1/𝜎) for all 𝑥 ∈ R, where Φ is
the standard Gaussian cumulative distribution function, and 𝜇, 𝜎 are the mean and standard deviation
of 𝑒(𝐺 [𝑈]). It is natural to wonder (as suggested in [65] as a potential path towards the Erdős–McKay
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Figure 1. On the left is a cartoon of (one possibility for) the probability mass function of 𝑒(𝐺 [𝑈]) for a
Ramsey graph G and a uniformly random vertex subset U: The large-scale behavior is Gaussian, but on
a small scale we see many smaller Gaussian-like curves. The two images on the right are two different
histograms at different scales, obtained from real data (namely, from two million independent samples
of a uniformly random vertex subset in a graph G obtained as an outcome of the Erdős–Rényi random
graph G(1000, 0.8)).

conjecture) whether this can be strengthened to a local central limit theorem: Could it be that for all 𝑥 ∈ R
we have Pr[𝑒(𝐺 [𝑈]) = 𝑥] = Φ′((𝑥 − 𝜇)/𝜎)/𝜎 + 𝑜(1/𝜎) (where Φ′ is the standard Gaussian density
function)? In fact, the statement of Theorem 1.2 can be interpreted as a local central limit theorem ‘up
to constant factors’. This perspective also suggests a strategy for the proof of Theorem 1.2: Perhaps
we can leverage Fourier-analytic techniques previously developed for local central limit theorems (e.g.,
[51, 94, 13, 12, 50, 64]), obtaining our desired result as a consequence of estimates on the characteristic
function (i.e., Fourier transform) of our random variable 𝑒(𝐺 [𝑈]).

However, it turns out that a local central limit theorem actually does not hold in general: While
the coarse-scale distribution of 𝑒(𝐺 [𝑈]) is always Gaussian, in general 𝑒(𝐺 [𝑈]) may have a rather
nontrivial ‘two-scale’ behavior, depending on the additive structure of the degree sequence of G (see
Figure 1). Roughly speaking, this translates to a certain ‘spike’ in the magnitude of the characteristic
function of 𝑒(𝐺 [𝑈]), which rules out naïve Fourier-analytic approaches. To overcome this issue, we
need to capture the ‘reason’ for the two-scale behavior: It turns out that this ‘spike’ can only happen if
the degree sequence of G is in a certain sense ‘additively structured’, implying that there is a partition
of the vertex set into ‘buckets’ such that vertices in the same bucket have almost the same degree. Then,
if we reveal the size of the intersection of U with each bucket, the conditional characteristic function
of 𝑒(𝐺 [𝑈]) is suitably bounded. We deduce conditional bounds on the point probabilities of 𝑒(𝐺 [𝑈]),
and average these over possible outcomes of the revealed intersection sizes of U with the buckets.

We remark that one interpretation of our proof strategy is that we are decomposing our random
variable into ‘components’ in physical space, in such a way that each component is well behaved in
Fourier space. This is at least superficially reminiscent of certain techniques in harmonic analysis; see,
for example, [54]. Looking beyond the particular statement of Theorem 1.2, we hope that the Fourier-
analytic techniques in its proof will be useful for the general study of small-ball probability for low-degree
polynomials of independent variables, especially in settings where Gaussian behavior may break down.

1.2.2. Small-ball probability for quadratic Gaussian chaos
The general study of low-degree polynomials of independent random variables (sometimes called
chaoses) has a long and rich history. Some highlights include Kim–Vu polynomial concentration [62],
the Hanson–Wright inequality [57], the Bonami–Beckner hypercontractive inequality (see [81]), and
polynomial chaos expansion (see [49]), which are fundamental tools in probabilistic combinatorics,
high-dimensional statistics, the analysis of Boolean functions and mathematical modelling.

Much of this study has focused on low-degree polynomials of Gaussian random variables, which
enjoy certain symmetry properties that make them easier to study. While this direction may not seem
obviously relevant to Theorem 1.2, in part of the proof we are able to apply the celebrated Gaussian
invariance principle of Mossel, O’Donnell and Oleszkiewicz [74], to compare our random variables of
interest with certain ‘Gaussian analogs’. Therefore, a key step in the proof of Theorem 1.2 is to study
small-ball probability for quadratic polynomials of Gaussian random variables.
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The fundamental theorem in this area is the Carbery–Wright theorem [19], which (specialized to
the quadratic case) says that for 0 < 𝜀 < 1 and any real quadratic polynomial 𝑓 = 𝑓 (𝑍1, . . . , 𝑍𝑛) of
independent standard Gaussian random variables 𝑍1, . . . , 𝑍𝑛 ∼ N (0, 1), we have

sup
𝑥∈R

Pr[| 𝑓 − 𝑥 | ≤ 𝜀] = 𝑂
(√

𝜀/𝜎( 𝑓 )
)
.

This is best-possible in general (for example, Pr[|𝑍2
1 | ≤ 𝜀] scales like

√
𝜀 as 𝜀 → 0). However, we are

able to prove (in Section 5) an optimal bound of the form 𝑂 (𝜀/𝜎( 𝑓 )) in the case where the degree-2
part of f robustly has rank at least 3, in the sense of low-rank approximation (i.e., in the case where the
degree-2 part of f is not close, in Frobenius3 norm, to a quadratic form of rank at most 2).

Theorem 1.6. Let �𝑍 = (𝑍1, . . . , 𝑍𝑛) ∼ N (0, 1)⊗𝑛 be a vector of independent standard Gaussian
random variables. Consider a real quadratic polynomial 𝑓 ( �𝑍) of �𝑍 , which we may write as

𝑓 ( �𝑍) = �𝑍ᵀ𝐹 �𝑍 + �𝑓 · �𝑍 + 𝑓0

for some nonzero symmetric matrix 𝐹 ∈ R𝑛×𝑛, some vector �𝑓 ∈ R𝑛 and some 𝑓0 ∈ R. Suppose that for
some 𝜂 > 0 we have

min
𝐹 ∈R𝑛×𝑛

rank(𝐹 ) ≤2

‖𝐹 − 𝐹‖2
F

‖𝐹‖2
F

≥ 𝜂.

Then for any 𝜀 > 0 we have
sup
𝑥∈R

Pr[| 𝑓 ( �𝑍) − 𝑥 | ≤ 𝜀] ≤ 𝐶𝜂 · 𝜀

𝜎( 𝑓 ( �𝑍))

for some 𝐶𝜂 depending on 𝜂.

We remark that our robust-rank-3 assumption is best-possible, in the sense that this stronger bound
may fail for quadratic forms with robust rank 2; for example, 𝑍2

1 − 𝑍2
2 has standard deviation 2, and one

can compute that Pr[|𝑍2
1 − 𝑍2

2 | ≤ 𝜀] scales like 𝜀 log(1/𝜀) as 𝜀 → 0.
We also remark that Theorem 1.6 can be interpreted as a kind of inverse theorem or structure

theorem: the only way for 𝑓 ( �𝑍) to exhibit atypical small-ball behavior is for f to be close to a low-rank
quadratic form (c.f. inverse theorems for the Littlewood–Offord problem [92, 78, 91, 87, 77, 79, 65]).
It is also worth mentioning a different structure theorem due to Kane [61], showing that all bounded-
degree polynomials of Gaussian random variables can be, in a certain sense, ‘decomposed’ into a small
number of parts with typical small-ball behavior.

Finally, we remark that it would be interesting to investigate extensions of Theorem 1.6 to higher-
degree polynomials. Our proof uses diagonalization of quadratic forms in a crucial way, and new ideas
would therefore be required (the ideas in the aforementioned paper of Kane [61] may be relevant).

1.2.3. Rank of Ramsey graphs
In order to actually apply Theorem 1.6, we need to use the fact that Ramsey graphs have adjacency
matrices which robustly have high rank. A version of this fact was first observed by the first and third
authors [65], but we will need a much stronger version involving a partition into submatrices (Lemma
10.1). We believe that the connection between rank and homogeneous sets is of very general interest: For
example, the celebrated log-rank conjecture in communication complexity has an equivalent formulation
(due to Nisan and Wigderson [80]) stating that a zero-one matrix with no large ‘homogeneous rectangle’
must have high rank. As part of our study of the rank of Ramsey graphs, we prove (Proposition 10.2)
that binary matrices which are close to a low-rank real matrix are also close to a low-rank binary matrix.
This may be of independent interest.

3The Frobenius (or Hilbert-Schmidt) norm ‖𝑀 ‖F of a matrix M is the square root of the sum of the squares of its entries.
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1.2.4. Switchings via moments
It turns out that in the setting of Theorem 1.2, Fourier-analytic estimates (in combination with the
previously mentioned ideas) can only take us so far: For a C-Ramsey graph, we can roughly estimate
the probability that 𝑒(𝐺 [𝑈]) falls in a given short interval (whose length depends only on C), but not
the probability that 𝑒(𝐺 [𝑈]) is equal to a particular value. To obtain such precise control, we make use
of the switching method, studying small perturbations to our random set U.

Roughly speaking, the switching method works as follows. To estimate the relative probabilities of
events A and B, one designs an appropriate ‘switching’ operation that takes outcomes satisfying A
to outcomes satisfying B. One then obtains the desired estimate via upper and lower bounds on the
number of ways to switch from an outcome satisfyingA, and the number of ways to switch to an outcome
satisfyingB. This deceptively simple-sounding method has been enormously influential in combinatorial
enumeration and the study of discrete random structures, and a variety of more sophisticated variations
(considering more than two events) have been considered; see [58, 40] and the references therein.

In our particular situation (where we are switching between different possibilities of the set U), it
does not seem to be possible to define a simple switching operation which has a controllable effect
on 𝑒(𝐺 [𝑈]) and for which we can obtain uniform upper and lower bounds on the number of ways to
perform a switch. Instead, we introduce an averaged version of the switching method. Roughly speaking,
we define random variables that measure the number of ways to switch between two classes and study
certain moments of these random variables. We believe this idea may have other applications.

1.3. Notation

We use standard asymptotic notation throughout, as follows. For functions 𝑓 = 𝑓 (𝑛) and 𝑔 = 𝑔(𝑛), we
write 𝑓 = 𝑂 (𝑔) or 𝑓 � 𝑔 to mean that there is a constant C such that | 𝑓 (𝑛) | ≤ 𝐶 |𝑔(𝑛) | for sufficiently
large n. Similarly, we write 𝑓 = Ω(𝑔) or 𝑓 � 𝑔 to mean that there is a constant 𝑐 > 0 such that
𝑓 (𝑛) ≥ 𝑐 |𝑔(𝑛) | for sufficiently large n. Finally, we write 𝑓 � 𝑔 or 𝑓 = Θ(𝑔) to mean that 𝑓 � 𝑔 and
𝑔 � 𝑓 , and we write 𝑓 = 𝑜(𝑔) or 𝑔 = 𝜔( 𝑓 ) to mean that 𝑓 (𝑛)/𝑔(𝑛) → 0 as 𝑛 → ∞. Subscripts on
asymptotic notation indicate quantities that should be treated as constants.

We also use standard graph-theoretic notation. In particular, 𝑉 (𝐺) and 𝐸 (𝐺) denote the vertex set
of a graph G, and 𝑒(𝐺) = |𝐸 (𝐺) | denotes the numbers of vertices and edges. We write 𝐺 [𝑈] to denote
the subgraph induced by a set of vertices 𝑈 ⊆ 𝑉 (𝐺). For a vertex 𝑣 ∈ 𝑉 (𝐺), its neighborhood (i.e.,
the set of vertices adjacent to v) is denoted by 𝑁𝐺 (𝑣), and its degree is denoted deg𝐺 (𝑣) = |𝑁𝐺 (𝑣) |
(the subscript G will be omitted when it is clear from context). We also write 𝑁𝑈 (𝑣) = 𝑈 ∩ 𝑁 (𝑣) and
deg𝑈 (𝑣) = |𝑁𝑈 (𝑣) | to denote the degree of v into a vertex set U.

Regarding probabilistic notation, we write N (𝜇, 𝜎2) for the Gaussian distribution with mean 𝜇 and
variance 𝜎2. As usual, we call a random variable with distribution N (0, 1) a standard Gaussian and
we write N (0, 1)⊗𝑛 for the distribution of a sequence of n independent standard Gaussian variables.
For a real random variable X, we write 𝜑𝑋 : 𝑡 ↦→ E𝑒𝑖𝑡𝑋 for the characteristic function of X. Though less
standard, it is also convenient to write 𝜎(𝑋) =

√
Var 𝑋 for the standard deviation of X.

We also collect some miscellaneous bits of notation. We use notation like �𝑥 to denote (column)
vectors and write �𝑥𝐼 for the restriction of a vector �𝑥 to the set I. We also write 𝑀 [𝐼×𝐽] to denote the
𝐼 × 𝐽 submatrix of a matrix M. For 𝑟 ∈ R, we write ‖𝑟 ‖R/Z to denote the distance of r to the closest
integer, and for an integer 𝑛 ∈ N, we write [𝑛] = {1, . . . , 𝑛}. All logarithms in this paper without an
explicit base are to base e, and the set of natural numbers N includes zero.

2. Short deductions

We now present the short deductions of Theorems 1.1 and 1.5 from Theorem 1.2.

Proof of Theorem 1.1 assuming Theorem 1.2. As mentioned in the introduction, Alon, Krivelevich and
Sudakov [8, Theorem 1.1] proved that there is some 𝛼 = 𝛼(𝐶) > 0 such that the conclusion of Theorem
1.1 holds for all 0 ≤ 𝑥 ≤ 𝑛𝛼.
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Fix 0 < 𝜆 < 1/2 with (1−𝜆)2 ≥ 1−𝜂, and let 𝑝 = 1−𝜆. It now suffices to prove the desired statement
for 𝑛𝛼 ≤ 𝑥 ≤ 𝑝2𝑒(𝐺), so consider such an integer x. Let us identify the vertex set of G with {1, . . . , 𝑛}.
We can find some 𝑚 ∈ {1, . . . , 𝑛} such that 𝑒(𝐺 [{1, . . . , 𝑚}]) ≥ 𝑥/𝑝2 ≥ 𝑒(𝐺 [{1, . . . , 𝑚 − 1}]). Let 𝐺 ′

denote the induced subgraph of G on the vertex set {1, . . . , 𝑚}, and note that

𝑒(𝐺 ′) ≥ 𝑥/𝑝2 ≥ 𝑒(𝐺 [{1, . . . , 𝑚 − 1}]) ≥ 𝑒(𝐺 ′) − 𝑚.

Hence, |𝑥 − 𝑝2𝑒(𝐺 ′) | ≤ 𝑝2𝑚 ≤ 𝑚3/2. As 𝑚2 ≥ 𝑒(𝐺 ′) ≥ 𝑥/𝑝2 ≥ 𝑛𝛼, we have 𝑚 ≥ 𝑛𝛼/2 and therefore
𝐺 ′ is a (2𝐶/𝛼)-Ramsey graph. Thus, for a random subset U of 𝑉 (𝐺 ′) = {1, . . . , 𝑚} that includes each
vertex of 𝐺 ′ with probability p, by Theorem 1.2 (with 𝐴 = 1) we have 𝑒(𝐺 [𝑈]) = 𝑒(𝐺 ′ [𝑈]) = 𝑥 with
probability Ω𝐶,𝜆(𝑚−3/2). In particular, if n and therefore m is sufficiently large with respect to 𝐶, 𝜆,
then there exists a subset 𝑈 ⊆ 𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺) with 𝑒(𝐺 [𝑈]) = 𝑒(𝐺 ′ [𝑈]) = 𝑥. �

Proof of Theorem 1.5 assuming Theorem 1.2. We may assume that n is sufficiently large with respect
to C and 𝜆 (noting that the statement is trivially true for 𝑛 ≤ 𝐾). Let U be a random subset of 𝑉 (𝐺)
obtained by including each vertex with probability 𝑘/𝑛 independently (recalling that Theorem 1.5
concerns a random set W of exactly k vertices). A direct computation using Stirling’s formula shows
that Pr[|𝑈 | = 𝑘] �𝜆 1/

√
𝑛, so for each 𝑥 ∈ Z, Theorem 1.2 yields

Pr[𝑒(𝐺 [𝑊]) = 𝑥] = Pr
[
𝑒(𝐺 [𝑈]) = 𝑥




|𝑈 | = 𝑘
]
≤ Pr[𝑒(𝐺 [𝑈]) = 𝑥]

Pr[|𝑈 | = 𝑘] �𝐶,𝜆
1
𝑛
. �

It turns out that in order to prove Theorem 1.2, it essentially suffices to consider the case 𝑝 = 1/2,
as long as we permit some ‘linear terms’. Specifically, instead of considering random variable 𝑒(𝐺 [𝑈])
we need to consider a random variable of the form 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0, as in the following

theorem.4

Theorem 2.1. Fix 𝐶, 𝐻 > 0. Let G be a C-Ramsey graph with n vertices, and consider 𝑒0 ∈ Z and a
vector �𝑒 ∈ Z𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all 𝑣 ∈ 𝑉 (𝐺). Let𝑈 ⊆ 𝑉 (𝐺) be a random vertex subset obtained
by including each vertex with probability 1/2 independently, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 +𝑒0. Then

sup
𝑥∈Z

Pr[𝑋 = 𝑥] �𝐶,𝐻 𝑛−3/2

and for every fixed 𝐴 > 0,

inf
𝑥∈Z

|𝑥−E𝑋 | ≤𝐴𝑛3/2

Pr[𝑋 = 𝑥] �𝐶,𝐻 ,𝐴 𝑛−3/2.

This theorem implies Theorem 1.2 (which also allows for a sampling probability 𝑝 ≠ 1/2), as we
show next. The rest of the paper will be devoted to proving Theorem 2.1.

Proof of Theorem 1.2 assuming Theorem 2.1. We may assume that n is sufficiently large with respect
to C and 𝜆. We proceed slightly differently depending on whether 𝑝 ≤ 1/2 or 𝑝 > 1/2.

Case 1: 𝑝 ≤ 1/2. In this case, we can realize the distribution of U by first taking a random subset 𝑈0
in which every vertex is present with probability 2𝑝 and then considering a random subset 𝑈 ⊆ 𝑈0 in
which every vertex in 𝑈0 is present with probability 1/2. By a Chernoff bound, we have |𝑈0 | ≥ 𝑝𝑛 ≥ 𝜆𝑛
with probability 1 − 𝑜𝜆 (𝑛−3/2), in which case 𝐺 [𝑈0] is a (2𝐶)-Ramsey graph. We may thus condition
on such an outcome of 𝑈0. By Theorem 2.1, the conditional probability of the event 𝑋 = 𝑥 is at most
𝑂𝐶 (|𝑈0 |−3/2) �𝐶,𝜆 𝑛−3/2, proving the desired upper bound.

4As suggested by one of the anonymous referees, it could also be of interest to consider the case where 𝑒𝑣 is allowed to be
negative (say |𝑒𝑣 | ≤ 𝐻𝑛). In this generality, we can no longer hope for upper bounds of order 𝑛−3/2, but it should be possible to
adjust the methods in this paper to prove a variation of Theorem 2.1.
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For the lower bound, first note that 𝑒(𝐺 [𝑈0]) has expectation (2𝑝)2𝑒(𝐺) and variance
𝜎(𝑒(𝐺 [𝑈0]))2 =

∑
𝑢𝑣,𝑤𝑧∈𝐸 (𝐺) E[(1𝑢,𝑣 ∈𝑈0 − (2𝑝)2) (1𝑤,𝑧∈𝑈0 − (2𝑝)2)] ≤ 𝑛3 (note that there are

at most 𝑛3 nonzero summands since the summands for distinct 𝑢, 𝑣, 𝑤, 𝑧 are zero). Hence, by Cheby-
shev’s inequality and a Chernoff bound, with probability at least 1/2 the outcome of 𝑈0 satisfies
|𝑒(𝐺 [𝑈0]) − (2𝑝)2𝑒(𝐺) | ≤ 2𝑛3/2 and |𝑈0 | ≥ 𝜆𝑛. Conditioning on such an outcome of 𝑈0, the
lower bound in Theorem 1.2 follows from the lower bound in Theorem 2.1 applied to 𝐺 [𝑈0] (not-
ing that 𝑥 ∈ Z with |𝑥 − 𝑝2𝑒(𝐺) | ≤ 𝐴𝑛3/2 differs from E[𝑒(𝐺 [𝑈]) |𝑈0] = 𝑒(𝐺 [𝑈0])/4 by at most
(𝐴 + 1)𝑛3/2 ≤ (𝐴 + 1)/𝜆3 · |𝑈0 |3/2).

Case 2: 𝑝 > 1/2. In this case, we can realize the distribution of U by first taking a random subset 𝑈0 in
which every vertex is present with probability 2𝑝 − 1 and then considering a random superset 𝑈 ⊇ 𝑈0
in which every vertex outside 𝑈0 is present with probability 1/2.

By a Chernoff bound, we have |𝑉 (𝐺) \𝑈0 | ≥ (1− 𝑝)𝑛 ≥ 𝜆𝑛 with probability 1− 𝑜𝜆 (𝑛−3/2), in which
case 𝐺 [𝑉 (𝐺) \𝑈0] is a (2𝐶)-Ramsey graph. Conditioning on such an outcome of 𝑈0, the upper bound
in Theorem 1.2 follows from the upper bound in Theorem 2.1 applied to 𝐺 [𝑉 (𝐺) \𝑈0] (where now we
take 𝑒0 = 𝑒(𝐺 [𝑈0]) and 𝑒𝑣 = deg𝑈0

(𝑣) for each 𝑣 ∈ 𝑉 (𝐺) \𝑈0 and 𝐻 = 1/𝜆).
For the lower bound, observe that E[𝑒(𝐺 [𝑈]) |𝑈0] = 𝑒(𝐺 [𝑈0]) + 𝑒(𝑉 (𝐺) \𝑈0,𝑈0)/2+ 𝑒(𝐺 [𝑉 (𝐺) \

𝑈0])/4 has expectation E𝑒(𝐺 [𝑈]) = 𝑝2𝑒(𝐺) and variance at most 𝑛3 (by a similar calculation as in Case
1). Thus, by Chebyshev’s inequality and a Chernoff bound with probability at least 1/2 the outcome
of 𝑈0 satisfies |E[𝑒(𝐺 [𝑈]) |𝑈0] − 𝑝2𝑒(𝐺) | ≤ 2𝑛3/2 and |𝑉 (𝐺) \ 𝑈0 | ≥ 𝜆𝑛. Conditioning on such an
outcome of 𝑈0, the lower bound in Theorem 1.2 follows from the lower bound in Theorem 2.1 applied
to 𝐺 [𝑉 (𝐺) \𝑈0] (again taking 𝑒0 = 𝑒(𝐺 [𝑈0]) and 𝑒𝑣 = deg𝑈0

(𝑣) for each 𝑣 ∈ 𝑉 (𝐺) \𝑈0 and 𝐻 = 1/𝜆
and observing that |𝑥 − E[𝑒(𝐺 [𝑈]) |𝑈0] | ≤ (𝐴 + 2)/𝜆3 · |𝑉 (𝐺) \𝑈0 |3/2). �

3. Proof discussion and outline

In the previous section, we saw how all of our results stated in the introduction follow from Theorem 2.1.
Here, we discuss the high-level ideas of the proof of Theorem 2.1, and the obstacles that must be
overcome. Afterwards, we will outline the organization of the rest of the paper.

3.1. Central limit theorems at multiple scales

As mentioned in the introduction, our starting point is the possibility that a local central limit theorem
might hold for the random variable 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 in Theorem 2.1. However, some

further thought reveals that such a theorem cannot hold in general. To appreciate this, it is illuminating
to rewrite X in the so-called Fourier–Walsh basis: Define �𝑥 ∈ {−1, 1}𝑉 (𝐺) by taking 𝑥𝑣 = 1 if 𝑣 ∈ 𝑈,
and 𝑥𝑣 = −1 if 𝑣 ∉ 𝑈. Then, we have

𝑋 = E𝑋 + 1
2

∑
𝑣 ∈𝑉 (𝐺)

(
𝑒𝑣 +

1
2

deg𝐺 (𝑣)
)
𝑥𝑣 +

1
4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 . (3.1)

Writing 𝐿 = 1
2
∑

𝑣 ∈𝑉 (𝐺)

(
𝑒𝑣 + 1

2 deg𝐺 (𝑣)
)
𝑥𝑣 and 𝑄 = 1

4
∑

𝑢𝑣 ∈𝐸 (𝐺) 𝑥𝑢𝑥𝑣 , we have 𝑋 = E𝑋 + 𝐿 + 𝑄.
Essentially, we have isolated the ‘linear part’ L and the ‘quadratic part’ Q of the random variable X,
in such a way that the covariance between L and Q is zero. It turns out that L typically dominates the
large-scale behavior of X: The variance of L is always of order 𝑛3, whereas the variance of Q is only
of order 𝑛2. It is easy to show that L satisfies a central limit theorem (being a sum of independent
random variables). However, this central limit theorem may break down at small scales: For example,
it is possible that in G, every vertex has degree exactly 𝑛/2, in which case (for �𝑒 = �0) the linear part L
only takes values in the lattice (𝑛/8)Z.

In this (𝑛/2)-regular case (with �𝑒 = �0), we might hope to prove Theorem 2.1 in two stages: Having
shown that L satisfies a central limit theorem, we might hope to show that Q satisfies a local central
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limit theorem after conditioning on an outcome of L (in this case, revealing L only reveals the number
of vertices in our random set U, so there is still plenty of randomness remaining for Q).

If this strategy were to succeed, it would reveal that in this case the true distribution of X is Gaussian
on two different scales: When ‘zoomed out’, we see a bell curve with standard deviation about 𝑛3/2, but
‘zooming in’ reveals a superposition of many smaller bell curves each with standard deviation about n
(see Figure 1). This kind of behavior can be described in terms of a so-called Jacobi theta function and
has been observed in combinatorial settings before (by the second and fourth authors [88]).

3.2. An additive structure dichotomy

There are a few problems with the above plan. When G is regular, we have the very special property
that revealing L only reveals the number of vertices in U (after which U is a uniformly random vertex
set of this revealed size). There are many available tools to study random sets of fixed size (this setting
is often called the ‘Boolean slice’). However, in general, revealing L may result in a very complicated
conditional distribution.

We handle this issue via an additive structure dichotomy, using the notion of regularized least
common denominator (RLCD) introduced by Vershynin [95] in the context of random matrix theory
(a ‘robust version’ of the notion of essential LCD previously introduced by Rudelson and Vershynin
[87]). Roughly speaking, we consider the RLCD of the degree sequence of G. If this RLCD is small,
then the degree sequence is ‘additively structured’ (as in our (𝑛/2)-regular example), which (as we
prove in Lemma 4.12) has the consequence that the vertices of G can be divided into a small number of
‘buckets’ of vertices which have roughly the same coefficient in L (i.e,. the values of 𝑒𝑣 + deg𝐺 (𝑣)/2
are roughly the same). This means that conditioning on the number of vertices of U inside each bucket
is tantamount to conditioning on the approximate value of L (crucially, this conditioning dramatically
reduces the variance), while the resulting conditional distribution is tractable to analyze.

On the other hand, if the RLCD is large, then the degree sequence is ‘additively unstructured’, and
the linear part L is well mixing (satisfying a central limit theorem at scales polynomially smaller than
n). In this case, it essentially is possible5 to prove a local central limit theorem for X (this is the easier
of the two cases of the additive structure dichotomy). Concretely, an example of this case is when G is
a typical outcome of an inhomogeneous random graph on the vertex set {𝑚/4, . . . , 3𝑚/4}, where each
edge 𝑖 𝑗 is present with probability 𝑖 · 𝑗/𝑚2 independently.

3.3. Breakdown of Gaussian behavior

Recall from the previous subsection that in the ‘additively structured’ case, we study the distribution of
𝑒(𝐺 [𝑈]) after conditioning on the sizes of the intersections of U with our ‘buckets’ of vertices (which,
morally speaking, corresponds to ‘conditioning on the approximate value of L’). It turns out that even
after this conditioning, a local central limit theorem may still fail to hold, in quite a dramatic way: It
can happen that, conditionally, no central limit theorem holds at all (meaning that when we ‘zoom in’
we do not see bell curves but some completely different shapes). For example, if G is a typical outcome
of two independent disjoint copies of the Erdős–Rényi random graph G(𝑛/2, 1/2), then one may think
of all vertices being in the same bucket, and one can show that the limiting distribution of 𝑒(𝐺 [𝑈])
conditioned on the event |𝑈 | = 𝑛/2 (up to translation and scaling) is6 that of 𝑍2

1 + 2
√

3𝑍2, where 𝑍1, 𝑍2
are independent standard Gaussian random variables (see Figure 2).

5Strictly speaking, we do not quite obtain an estimate for point probabilities, but only for probabilities that X falls in very short
intervals (the length of the interval we can control depends on the distance from the mean and the desired multiplicative error).
Throughout this outline, we use the term ‘local limit theorem’ in a rather imprecise way.

6Heuristically, the 𝑍2
1 term can be explained as follows. Conditioning on |𝑈 | = 𝑛/2, the number s of vertices of U on

the left side (i.e., in the left copy of G(𝑛/2, 1/2)) is hypergeometrically distributed and approaches a limiting distribution of
𝑛/4+ (

√
𝑛/4)𝑍1. The number of pairs of vertices in U on the same side of G is roughly (𝑠2 + (𝑛/2− 𝑠)2)/2 = 𝑛2/4+ (𝑠−𝑛/4)2,

and so it is distributed like 𝑛2/4 + (𝑛/16)𝑍2
1 . The linear term involving 𝑍2 comes from the random distribution of the edges in

the two copies of G(𝑛/2, 1/2) .
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Figure 2. On the left, we obtain G as a disjoint union of two independent Erdős–Rényi random graphs
G(800, 0.96), and we consider 500,000 independent samples of a uniformly random vertex subsets
Uwith exactly 800 vertices. The resulting histogram for 𝑒(𝐺 [𝑈]) may look approximately Gaussian, but
closer inspection reveals asymmetry in the tails. This is not just an artifact of small numbers: The limiting
distribution comes from a nontrivial quadratic polynomial of Gaussian random variables. Actually, it
is possible for the skew to be much more exaggerated (the curve on the right shows one possibility for
the limiting probability mass function of 𝑒(𝐺 [𝑈])), but this is difficult to observe computationally, as
this shape only really becomes visible for enormous graphs G.

In general, one can use a Gaussian invariance principle [74, 43, 42] to show that the asymptotic
conditional distribution of 𝑒(𝐺 [𝑈]) always corresponds to some quadratic polynomial of Gaussian
random variables (see also [15, 14]); instead of proving a local central limit theorem, we need to prove
some type of local limit theorem for convergence to that distribution.

In order to prove a local limit theorem of this type, it is necessary to ensure that the limiting
distribution (some quadratic polynomial of Gaussian random variables) is ‘well behaved’. This is where
the tools discussed in Sections 1.2.2 and 1.2.3 come in: We prove that adjacency matrices of Ramsey
graphs robustly have high rank, then apply certain variations of Theorem 1.6.

3.4. Controlling the characteristic function

We are now left with the task of actually proving the necessary local limit theorems. For this, we work
in Fourier space, studying the characteristic functions 𝜑𝑌 : 𝜏 ↦→ E𝑒𝑖𝜏𝑌 of certain random variables
Y (namely, we need to consider both the random variable 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 and certain

conditional random variables arising in the additively structured case). Our aim is to compare Y to
an approximating random variable Z (where Z is either a Gaussian random variable or some quadratic
polynomial of Gaussian random variables). This amounts to proving a suitable upper bound on |𝜑𝑌 (𝜏) −
𝜑𝑍 (𝜏) |, for as broad a range of 𝜏 as possible (if one wants to precisely estimate point probabilities
Pr[𝑌 = 𝑥], it turns out that one needs to handle all 𝜏 in the range [−𝜋, 𝜋]). We use different techniques
for different ranges of 𝜏 ∈ R.

In the regime where 𝜏 is very small (e.g., when |𝜏 | ≤ 𝑛0.01/𝜎(𝑌 )), 𝜑𝑌 (𝜏) controls the large-scale
distribution of Y, so depending on the setting we either employ standard techniques for proving central
limit theorems or a Gaussian invariance principle.

For larger 𝜏, it will be easy to show that our approximating characteristic function 𝜑𝑍 (𝜏) is expo-
nentially small in absolute value, so estimating |𝜑𝑌 (𝜏) − 𝜑𝑍 (𝜏) | amounts to proving an upper bound on
|𝜑𝑌 (𝜏) |, exploiting cancellation in E𝑒𝑖𝜏𝑌 as 𝑒𝑖𝜏𝑌 varies around the unit circle. Depending on the value
of 𝜏, we are able to exploit cancellation from either the ‘linear’ or the ‘quadratic’ part of Y.

To exploit cancellation from the linear part, we adapt a decorrelation technique first introduced
by Berkowitz [12] to study clique counts in random graphs (see also [88]), involving a subsampling
argument and a Taylor expansion. While all previous applications of this technique exploited the
particular symmetries and combinatorial structure of a specific polynomial of interest, here we instead
take advantage of the robustness inherent in the definition of RLCD. We hope that these types of ideas
will be applicable to the study of even more general types of polynomials.
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To exploit cancellation from the quadratic part, we use the method of decoupling, building on
arguments of the first and third authors [65]. Our improvements involve taking advantage of Fourier
cancellation ‘on multiple scales’, which requires a sharpening of arguments of the first author and
Sudakov [67] (building on work of Bukh and Sudakov [16]) concerning ‘richness’ of Ramsey graphs.

The relevant ideas for all the Fourier-analytic estimates discussed in this subsection will be discussed
in more detail in the appropriate sections of the paper (Sections 7 and 8).

3.5. Pointwise control via switching

Unfortunately, it seems to be extremely difficult to study the cancellations in 𝜑𝑋 (𝜏) for very large 𝜏, and
we are only able to control the range where |𝜏 | ≤ 𝜈 for some small constant 𝜈 = 𝜈(𝐶) (recalling that G
is C-Ramsey). As a consequence, the above ideas only prove the following weakening of Theorem 2.1
(where we control the probability of X lying in a constant-length interval instead of being equal to a
particular value).

Theorem 3.1. Fix 𝐶 > 0. There is 𝐵 = 𝐵(𝐶) > 0 so the following holds for any fixed 𝐻 > 0. Let G be
an C-Ramsey graph with n vertices, and consider 𝑒0 ∈ R and a vector �𝑒 ∈ R𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛
for all 𝑣 ∈ 𝑉 (𝐺). Let 𝑈 ⊆ 𝑉 (𝐺) be a random vertex subset obtained by including each vertex with
probability 1/2 independently, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0. Then

sup
𝑥∈Z

Pr[|𝑋 − 𝑥 | ≤ 𝐵] �𝐶,𝐻 𝑛−3/2,

and for every fixed 𝐴 > 0,

inf
𝑥∈Z

|𝑥−E𝑋 | ≤𝐴𝑛3/2

Pr[|𝑋 − 𝑥 | ≤ 𝐵] �𝐶,𝐻 ,𝐴 𝑛−3/2.

Theorem 3.1 already implies the upper bound in Theorem 2.1 but not the lower bound. In Section 13,
we deduce the desired lower bound on point probabilities from Theorem 3.1 (interestingly, this deduction
requires both the lower and the upper bound in Theorem 3.1). As mentioned in the introduction, for
this deduction, we introduce an ‘averaged’ version of the so-called switching method. In particular, for
ℓ ∈ {−𝐵, . . . , 𝐵}, we consider the pairs of vertices (𝑦, 𝑧) with 𝑦 ∈ 𝑈 and 𝑧 ∉ 𝑈 such that modifying U
by removing y and adding z (a ‘switch’) increases 𝑒(𝐺 [𝑈]) by exactly ℓ. We define random variables
that measure the number of ways to perform such switches and deduce Theorem 2.1 by studying certain
moments of these random variables. Here, we again need to use some arguments involving ‘richness’
of Ramsey graphs, and we also make use of the technique of dependent random choice.

3.6. Technical issues

The above subsections describe the high-level ideas of the proof, but there are various technical issues
that arise, some of which have a substantial impact on the complexity of the proof. Most importantly,
in the additively structured case, we outlined how to prove a conditional local limit theorem for the
quadratic part Q, but we completely swept under the rug how to then ‘integrate’ this over outcomes
of the conditioning. Explicitly, if we encode the bucket intersection sizes in a vector �Δ , we have
outlined how to use Fourier-analytic techniques to prove certain estimates on conditional probabilities
of the form Pr[|𝑋 − 𝑥 | ≤ 𝐵 | �Δ], but we then need to average over the randomness of �Δ to obtain
Pr [|𝑋 − 𝑥 | ≤ 𝐵] = E[Pr[|𝑋 − 𝑥 | ≤ 𝐵 | �Δ]] (taking into account that certain outcomes of �Δ give a much
larger contribution than others).

There are certain relatively simple arguments with which we can accomplish this averaging while
losing logarithmic factors in the final probability bound (namely, using a concentration inequality for
Q conditioned on �Δ , we can restrict to only a certain range of outcomes �Δ which give a significant
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contribution to the overall probability Pr[|𝑋 − 𝑥 | ≤ 𝐵]). To avoid logarithmic losses, we need to make
sure that our conditional probability bounds ‘decay away from the mean’, which requires a nonuniform
version of Theorem 1.6 (with a decay term), and some specialized tools for converting control of
|𝜑𝑌 (𝜏) − 𝜑𝑍 (𝜏) | into bounds on small-ball probabilities for Y. Also, we need some delicate moment
estimates comparing dependent random variables of ‘linear’ and ‘quadratic’ types to quantify the
dependence between certain fluctuations in the conditional mean and variance as we vary �Δ .

Furthermore, for the switching argument described in the previous subsection, it is important (for
technical reasons discussed in Remark 13.2) that in the setting of Theorem 3.1, B does not depend on
A and H. To achieve this, we develop Fourier-analytic tools that take into account ‘local smoothness’
properties of the approximating random variable Z.

3.7. Organization of the paper

In Section 4, we collect a variety of (mostly known) tools which will be used throughout the paper. Then,
in Section 5 we prove Theorem 1.6 (our sharp small-ball probability estimate for quadratic polynomials
of Gaussians), and in Section 6 we prove some general ‘relative’ Esseen-type inequalities deducing
bounds on small-ball probabilities from Fourier control.

In Sections 7 and 8, we obtain bounds on the characteristic function 𝜑𝑋 (𝜏) for various ranges of
𝜏 (specifically, bounds due to ‘cancellation of the linear part’ appear in Section 7, and bounds due to
‘cancellation of the quadratic part’ appear in Section 8). This is already enough to handle the additively
unstructured case of Theorem 3.1, which we do in Section 9.

Most of the rest of the paper is then devoted to the additively structured case of Theorem 3.1. In
Section 10, we study the ‘robust rank’ of Ramsey graphs, and in Section 11 we prove some lemmas
about quadratic polynomials on products of Boolean slices. All the ingredients collected so far come
together in Section 12, where the additively structured case of Theorem 3.1 is proved.

Finally, in Section 13 we use a switching argument to deduce Theorem 2.1 from Theorem 3.1.

4. Preliminaries

In this section, we collect some basic definitions and tools that will be used throughout the paper.

4.1. Basic facts about Ramsey graphs

First, as mentioned in the introduction, the following classical result about Ramsey graphs is due to
Erdős and Szemerédi [39].

Theorem 4.1. For any C, there exists 𝜀 = 𝜀(𝐶) > 0 such that for every sufficiently large n, every
C-Ramsey graph G on n vertices satisfies 𝜀

(𝑛
2
)
≤ 𝑒(𝐺) ≤ (1 − 𝜀)

(𝑛
2
)
.

Remark 4.2. In the setting of Remark 1.3, where G has near-optimal spectral expansion, the expander
mixing lemma (see, for example, [10, Corollary 9.2.5]) implies that (for sufficiently large n) all subsets
of G with at least 𝑛1/2+0.02 vertices have density very close to the overall density of G. It is possible to
use this fact in lieu of Theorem 4.1 in our proof of Theorem 2.1.

More recently, building on work of Bukh and Sudakov [16], the first author and Sudakov [67] proved
that every Ramsey graph contains an induced subgraph in which the collection of vertex-neighborhoods
is ‘rich’. Intuitively speaking, the richness condition here means that for all linear-size vertex subsets W,
there are only very few vertex-neighborhoods that have an unusually large or unusually small intersection
with W.

Definition 4.3. Consider 𝛿, 𝜌, 𝛼 > 0. We say that an m-vertex graph G is (𝛿, 𝜌, 𝛼)-rich if for every
subset 𝑊 ⊆ 𝑉 (𝐺) of size |𝑊 | ≥ 𝛿𝑚, there are at most 𝑚𝛼 vertices 𝑣 ∈ 𝑉 (𝐺) with the property that
|𝑁 (𝑣) ∩𝑊 | ≤ 𝜌 |𝑊 | or |𝑊 \ 𝑁 (𝑣) | ≤ 𝜌 |𝑊 |.
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When the parameter 𝛼 is omitted, it is assumed to take the value 1/5. That is to say, we write ‘(𝛿, 𝜌)-
rich’ to mean ‘(𝛿, 𝜌, 1/5)-rich’.

The following lemma is a slight generalization of [67, Lemma 4] (and is proved in the same way).
Lemma 4.4. For any fixed 𝐶, 𝛼 > 0, there exists 𝜌 = 𝜌(𝐶, 𝛼) with 0 < 𝜌 < 1 such that the following
holds. For n sufficiently large in terms of C and 𝛼, for any 𝑚 ∈ R with

√
𝑛 ≤ 𝑚 ≤ 𝜌𝑛, and any

C-Ramsey graph G on n vertices, there is an induced subgraph of G on at least m vertices which is
((𝑚/𝑛)𝜌, 𝜌, 𝛼)-rich.

For two disjoint vertex sets 𝑈,𝑊 in a graph G, we write 𝑒(𝑈,𝑊) for the number of edges between
𝑈,𝑊 and write 𝑑 (𝑈,𝑊) = 𝑒(𝑈,𝑊)/(|𝑈 | |𝑊 |) for the density between 𝑈,𝑊 . We furthermore write
𝑑 (𝑈) = 𝑒(𝑈)/

( |𝑈 |
2
)

for the density inside the set U.

Proof. We introduce an additional parameter K, which will be chosen to be large in terms of C and 𝛼.
We will then choose 𝜌 = 𝜌(𝐶, 𝛼) with 0 < 𝜌 < 1 to be small in terms of K, C and 𝛼. We do not specify
the values of K and 𝜌 ahead of time but rather assume they are sufficiently large or small to satisfy
certain inequalities that arise in the proof.

Let 𝛿 = (𝑚/𝑛)𝜌 and suppose for the purpose of contradiction that every set of at least m vertices
fails to induce a (𝛿, 𝜌, 𝛼)-rich subgraph. We will inductively construct a sequence of induced subgraphs
𝐺 = 𝐺 [𝑈0] ⊇ 𝐺 [𝑈1] ⊇ · · · ⊇ 𝐺 [𝑈𝐾 ] and disjoint vertex sets 𝑆1, . . . , 𝑆𝐾 of size |𝑆1 | = · · · = |𝑆𝐾 | =
�𝑚𝛼/2� such that for each 𝑖 = 1, . . . , 𝐾 , we have |𝑈𝑖 | ≥ (𝛿/4) |𝑈𝑖−1 | and 𝑆𝑖 ⊆ 𝑈𝑖−1 \𝑈𝑖 , as well as[

𝑒(𝑆𝑖 , {𝑢}) ≤ 4𝜌 · |𝑆𝑖 | for all 𝑢 ∈ 𝑈𝑖

]
or

[
𝑒(𝑆𝑖 , {𝑢}) ≥ (1 − 4𝜌) · |𝑆𝑖 | for all 𝑢 ∈ 𝑈𝑖

]
.

This will suffice, as follows. First, note that for each 𝑖 = 1, . . . , 𝐾 , we have[
𝑑 (𝑆𝑖 , 𝑆 𝑗 ) ≤ 4𝜌 for all 𝑗 ∈ {𝑖 + 1, . . . , 𝐾}

]
or

[
𝑑 (𝑆𝑖 , 𝑆 𝑗 ) ≥ 1 − 4𝜌 for all 𝑗 ∈ {𝑖 + 1, . . . , 𝐾}

]
.

Without loss of generality suppose that the first case holds for at least half of the indices 𝑖 = 1, . . . , 𝐾 ,
and let S be the union of the corresponding sets 𝑆𝑖 . Then one can compute 𝑑 (𝑆) ≤ 4𝜌 + 1/𝐾 . On the
other hand, |𝑆 | ≥ (𝐾/2) ·𝑚𝛼/2 ≥ 𝑚𝛼 ≥ 𝑛𝛼/2 and therefore 𝐺 [𝑆] is a (2𝐶/𝛼)-Ramsey graph. However,
now the density bound 𝑑 (𝑆) ≤ 4𝜌 + 1/𝐾 contradicts Theorem 4.1 if 𝜌 is sufficiently small and K is
sufficiently large (in terms of C and 𝛼).

Let 𝑈0 = 𝑉 (𝐺). For 𝑖 = 1, . . . , 𝐾 we will construct the vertex sets 𝑈𝑖 and 𝑆𝑖 , assuming that
𝑈0, . . . ,𝑈𝑖−1 and 𝑆1, . . . , 𝑆𝑖−1 have already been constructed. Note that we have |𝑈𝑖−1 | ≥ (𝛿/4)𝑖−1𝑛 ≥
(𝛿/4)𝐾 𝑛 = (𝑚/𝑛)𝜌𝐾4−𝐾 𝑛 ≥ 𝑚, using that 𝜌𝐾 ≤ 1/3 and 𝑚/𝑛 ≤ 𝜌 ≤ 8−𝐾 for 𝜌 being sufficiently small
with respect to K. Therefore, by our assumption, 𝑈𝑖−1 must contain a set W of at least 𝛿 |𝑈𝑖−1 | vertices
and a set Y of more than |𝑈𝑖−1 |𝛼 ≥ 𝑚𝛼 vertices contradicting (𝛿, 𝜌, 𝛼)-richness. Suppose without loss
of generality that |𝑁 (𝑣) ∩𝑊 | ≤ 𝜌 |𝑊 | for at least half of the vertices 𝑣 ∈ 𝑌 , and let 𝑆𝑖 ⊆ 𝑌 ⊆ 𝑈𝑖−1 be a
set of precisely �𝑚𝛼/2� such vertices 𝑣 ∈ 𝑌 . Then, let 𝑈 = 𝑊 \ 𝑆𝑖 ⊆ 𝑈𝑖−1 \ 𝑆𝑖 , and note that we have
|𝑈 | ≥ |𝑊 |/2 since |𝑊 | ≥ 𝛿 |𝑈𝑖−1 | ≥ 4 · (𝛿/4)𝐾 𝑛 ≥ 4𝑚 ≥ 2|𝑆𝑖 |. Furthermore, let 𝑈𝑖 ⊆ 𝑈 be the set of
vertices 𝑢 ∈ 𝑈 with 𝑒(𝑆𝑖 , {𝑢}) ≤ 4𝜌 · |𝑆𝑖 |. Now, we just need to show |𝑈𝑖 | ≥ (𝛿/4) |𝑈𝑖−1 |. To this end,
note that for all 𝑣 ∈ 𝑆𝑖 we have 𝑒({𝑣},𝑈) = |𝑁 (𝑣) ∩𝑈 | ≤ |𝑁 (𝑣) ∩𝑊 | ≤ 𝜌 |𝑊 | ≤ 2𝜌 |𝑈 |. Hence,

|𝑈 \𝑈𝑖 | · 4𝜌 · |𝑆𝑖 | ≤
∑

𝑤 ∈𝑈\𝑈𝑖

𝑒(𝑆𝑖 , {𝑤}) = 𝑒(𝑆𝑖 ,𝑈 \𝑈𝑖)

≤ 𝑒(𝑆𝑖 ,𝑈) =
∑
𝑣 ∈𝑆𝑖

𝑒({𝑣},𝑈) ≤ |𝑆𝑖 | · 2𝜌 |𝑈 |,

implying that |𝑈 \𝑈𝑖 | ≤ |𝑈 |/2 and hence |𝑈𝑖 | ≥ |𝑈 |/2 ≥ |𝑊 |/4 ≥ (𝛿/4) |𝑈𝑖−1 |, as desired. �

Remark 4.5. In the setting of Remark 1.3, where G is dense and has near-optimal spectral expansion
(and n is sufficiently large), the expander mixing lemma can be used to prove that every induced subgraph
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of G on at least 𝑛0.9 vertices is (𝑛−0.05, 0.005, 𝛼)-rich (and therefore Lemma 4.4 holds) for 𝛼 ≥ 0.2. It
is possible to use this in lieu of Lemma 4.4 in our proof of Theorem 2.1.

4.2. Characteristic functions and anticoncentration

For a real random variable X, recall that the characteristic function 𝜑𝑋 : R→ C is defined by 𝜑𝑋 (𝑡) =
E[𝑒𝑖𝑡𝑋 ]. Note that we have |𝜑𝑋 (𝑡) | ≤ 1 for all 𝑡 ∈ R. If 𝜑𝑋 (𝑡) is absolutely integrable, then X has a
continuous density 𝑝𝑋 , which can be obtained by the inversion formula

𝑝𝑋 (𝑢) =
1

2𝜋

∫ ∞

−∞
𝑒−𝑖𝑡𝑢𝜑𝑋 (𝑡) 𝑑𝑡. (4.1)

Next, recall the Lévy concentration function, which measures the maximum small-ball probability.

Definition 4.6. For a real random variable X and 𝜀 ≥ 0, we define L(𝑋, 𝜀) = sup𝑥∈R Pr[|𝑋 − 𝑥 | ≤ 𝜀].

If X has a density 𝑝𝑋 , then we trivially have L(𝑋, 𝜀) ≤ 𝜀 max𝑥∈R 𝑝𝑋 (𝑥). We can also control
small-ball probabilities using only a certain range of values of the characteristic function, via Esseen’s
inequality (see, for example, [86, Lemma 6.4]):

Theorem 4.7. There is 𝐶4.7 > 0 so that for any real random variable X and any 𝜀 > 0, we have

L(𝑋, 𝜀) ≤ 𝐶4.7 · 𝜀
∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝑡) | 𝑑𝑡.

In Section 6 we will prove some more sophisticated ‘relative’ variants of Theorem 4.7.

4.3. Distance-to-integer estimates and regularized least common denominator

For 𝑟 ∈ R, let ‖𝑟 ‖R/Z denote the (Euclidean) distance of r to the nearest integer. Recall that the
Rademacher distribution is the uniform distribution on the set {−1, 1}. If x is Rademacher distributed,
then for any 𝑟 ∈ R we have the well-known estimate

|E[exp(𝑖𝑟𝑥)] | = |cos(𝑟) | ≤ 1 − ‖𝑟/𝜋‖2
R/Z ≤ exp(−‖𝑟/𝜋‖2

R/Z). (4.2)

If �𝜉 ∈ {0, 1}𝑛 is a uniformly random length-n binary vector, then for any �𝑎 ∈ R𝑛 and any 𝑏 ∈ R, we can
rewrite �𝑎 · �𝜉 + 𝑏 as a weighted sum of independent Rademacher random variables. Specifically, we have
�𝑎 · �𝜉 + 𝑏 = �𝑟 · �𝑥 + E[ �𝑎 · �𝜉 + 𝑏], where �𝑟 = �𝑎/2 ∈ R𝑛 and �𝑥 ∈ {−1, 1}𝑛 is obtained from �𝜉 ∈ {0, 1}𝑛 by
replacing all zeroes by −1’s. Then �𝑥 is uniformly random in {−1, 1}𝑛, so (4.2) yields

E[exp(𝑖( �𝑎 · �𝜉 + 𝑏))] | = |E[exp(𝑖(�𝑟 · �𝑥))] | =
𝑛∏
𝑗=1

|E[exp(𝑖𝑟 𝑗𝑥 𝑗 )] |

≤ exp

(
−

𝑛∑
𝑗=1

‖𝑎 𝑗/(2𝜋)‖2
R/Z

)
. (4.3)

In the case where we want to study �𝑎 · �𝑥 where �𝑥 ∈ {0, 1}𝑛 is a uniformly random binary vector with a
given number of ones (i.e., a random vector on a Boolean slice), one has the following estimate.

Lemma 4.8. Fix 𝑐 > 0. Let �𝑎 ∈ R𝑛, and suppose that for some 0 < 𝛿 ≤ 1/2 there are disjoint pairs
{𝑖1, 𝑗1}, . . . , {𝑖𝑀 , 𝑗𝑀 } ⊆ [𝑛] such that ‖(𝑎𝑖𝑘 − 𝑎 𝑗𝑘 )/(2𝜋)‖R/Z ≥ 𝛿 for each 𝑘 = 1, . . . , 𝑀 . Let s be an
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integer with 𝑐𝑛 ≤ 𝑠 ≤ (1 − 𝑐)𝑛. Then for a random zero-one vector �𝜉 ∈ {0, 1}𝑛 with exactly s ones, we
have

|E[exp(𝑖( �𝑎 · �𝜉))] | � exp
(
−Ω𝑐 (𝑀𝛿2)

)
.

Lemma 4.8 can be deduced from [85, Theorem 1.1]. For the reader’s convenience, we include an
alternative proof, reducing it to (4.3).

Proof. We may assume that 𝑀 ≤ 𝑐𝑛/4 (indeed, noting that 𝑀 ≤ 𝑛/2 we can otherwise just replace M by
�𝑐𝑛/4�). The random vector �𝜉 corresponds to a uniformly random subset 𝑈 ⊆ [𝑛] of size s. Let us first
expose the intersection sizes |𝑈 ∩ {𝑖1, 𝑗1}|, . . . , |𝑈 ∩ {𝑖𝑀 , 𝑗𝑀 }|, one at a time. For each 𝑘 = 1, . . . , 𝑀 ,
we have |𝑈 ∩ {𝑖𝑘 , 𝑗𝑘 }| = 1 with probability at least 𝑐(1− 𝑐)/4 even when conditioning on any outcomes
for the previously exposed intersection sizes |𝑈 ∩ {𝑖1, 𝑗1}|, . . . , |𝑈 ∩ {𝑖𝑘−1, 𝑗𝑘−1}|. Hence, the number
of indices 𝑘 ∈ [𝑀] with |𝑈 ∩ {𝑖𝑘 , 𝑗𝑘 }| = 1 stochastically dominates a binomial random variable with
distribution Bin(𝑀, 𝑐(1− 𝑐)/4). Thus, by a Chernoff bound (see, e.g., Lemma 4.16), with probability at
least 1− exp(−Ω𝑐 (𝑀)) there is a set 𝐾 ⊆ [𝑀] of at least 𝑐(1− 𝑐)𝑀/8 indices k with |𝑈 ∩ {𝑖𝑘 , 𝑗𝑘 }| = 1.
Let us expose and condition on all coordinates of �𝜉 ∈ {0, 1}𝑛 except those in

⋃
𝑘∈𝐾 {𝑖𝑘 , 𝑗𝑘 }. The only

remaining randomness of the vector �𝜉 ∈ {0, 1}𝑛 is that for each 𝑘 ∈ 𝐾 we have either 𝜉𝑖𝑘 = 1 or
𝜉 𝑗𝑘 = 1 (each with probability 1/2, independently for all 𝑘 ∈ 𝐾). Thus, after all of this conditioning, we
have �𝑎 · �𝜉 =

∑
𝑘∈𝐾 (𝑎𝑖𝑘 − 𝑎 𝑗𝑘 )𝜉𝑖𝑘 + 𝑏 for some 𝑏 ∈ R, where (𝜉𝑖𝑘 )𝑘∈𝐾 ∈ {0, 1}𝐾 is uniformly random.

Thus, (4.3) implies |E[exp(𝑖( �𝑎 · �𝜉))] | ≤ exp(−
∑

𝑘∈𝐾 ‖(𝑎𝑖𝑘 − 𝑎 𝑗𝑘 )/(2𝜋)‖2
R/Z) ≤ exp(−Ω𝑐 (𝑀𝛿2)), as

desired. �

The above estimates motivate the notion of the essential least common denominator (LCD) of a
vector �𝑣 ∈ S𝑛−1 ⊆ R𝑛 (where S𝑛−1 is the unit sphere in R𝑛). The following formulation of this notion
was proposed by Rudelson (see [95, (1.17)] and the remarks preceding), in the context of random matrix
theory.
Definition 4.9 (LCD). For 𝑡 > 0, let log+ 𝑡 = max{0, log 𝑡}. For 𝐿 ≥ 1 and �𝑣 ∈ S𝑛−1 ⊆ R𝑛, the
(essential) least common denominator7 𝐷𝐿 (�𝑣) is defined as

𝐷𝐿 (�𝑣) = inf
{
𝜃 > 0 : dist(𝜃�𝑣,Z𝑛) < 𝐿

√
log+(𝜃/𝐿)

}
.

(Here dist(𝜃�𝑣,Z𝑛) =
√∑𝑛

𝑖=1 ‖𝜃𝑣𝑖 ‖2
R/Z denotes the Euclidean distance from 𝜃�𝑣 to the nearest point in the

integer lattice Z𝑛.)
The following lemma gives a lower bound on the LCD of a unit vector �𝑣 in terms of ‖�𝑣‖∞.

Lemma 4.10 [95, Lemma 6.2]. If �𝑣 ∈ S𝑛−1 and 𝐿 ≥ 1, then

𝐷𝐿 (�𝑣) ≥ 1/(2‖�𝑣‖∞).

Proof. Note that for 𝜃 ≤ 1/(2‖�𝑣‖∞) we have that ‖𝜃�𝑣‖∞ ≤ 1/2. Thus, we have that

dist(𝜃�𝑣,Z𝑛) = dist(𝜃�𝑣, �0) = 𝜃 > 𝐿
√

log+(𝜃/𝐿),

where we have used that 𝑥 >
√

log+(𝑥) for 𝑥 > 0. The result follows by the definition of LCD. �

If 𝐷𝐿 (�𝑣) is large, then we can obtain strong control over the characteristic function of random
variables of the form �𝑣 · �𝑥, for an i.i.d. Rademacher vector �𝑥 (specifically, we are able to compare
such characteristic functions to the characteristic function 𝜑𝑍 (𝑡) = 𝑒−𝑡

2/2 of a standard Gaussian
𝑍 ∼ N (0, 1)). However, if 𝐷𝐿 (�𝑣) is small, then in a certain sense �𝑣 is ‘additively structured’, and we

7To briefly explain the name ‘LCD’, recall that the ordinary least common denominator of the entries of a rational vector
�𝑣 ∈ S𝑛−1 ∩ Q𝑛 is inf {𝜃 > 0: dist(𝜃 �𝑣, Z𝑛) = 0}.
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can deduce certain combinatorial consequences. Actually, to obtain the consequences we need, we will
use the following more robust notion known as regularized LCD, introduced by Vershynin [95].

Definition 4.11 (regularized LCD). Fix 𝐿 ≥ 1 and 0 < 𝛾 < 1. For a vector �𝑣 ∈ R𝑛 with fewer than 𝑛1−𝛾

zero coordinates, the regularized least common denominator (RLCD) 𝐷𝐿,𝛾 (�𝑣), is defined as

𝐷𝐿,𝛾 (�𝑣) = max{𝐷𝐿 (�𝑣𝐼 /‖�𝑣𝐼 ‖2) : |𝐼 | = �𝑛1−𝛾�},

where �𝑣𝐼 ∈ R𝐼 denotes the restriction of �𝑣 to the indices in I.

If a vector �𝑑 is ‘additively structured’ in the sense of having small RLCD, we can partition its index
set into a small number of ‘buckets’ such that the values of 𝑑𝑖 are similar inside each bucket. This is
closely related to 𝜀-net arguments using LCD assumptions that have previously appeared in the random
matrix theory literature (see, for example, [86, Lemma 7.2]).

Lemma 4.12. Fix 𝐻 > 0 and 0 < 𝛾 < 1/4 and 𝐿 ≥ 1. Let �𝑑 ∈ R𝑛≥0 be a vector such that ‖ �𝑑‖∞ ≤ 𝐻𝑛

and ‖ �𝑑𝑆 ‖2 ≥ 𝑛3/2−2𝛾 for every subset 𝑆 ⊆ [𝑛] of size |𝑆 | = �𝑛1−𝛾�, and assume that n is sufficiently
large with respect to H, 𝛾 and L.

If 𝐷𝐿,𝛾 ( �𝑑) ≤ 𝑛1/2, then there exists a partition [𝑛] = 𝑅 ∪ (𝐼1 ∪ · · · ∪ 𝐼𝑚) and real numbers
𝜅1, . . . , 𝜅𝑚 ≥ 0 with |𝑅 | ≤ 𝑛1−𝛾 and |𝐼1 | = · · · = |𝐼𝑚 | = �𝑛1−2𝛾� such that for all 𝑗 = 1, . . . , 𝑚 and
𝑖 ∈ 𝐼 𝑗 we have |𝑑𝑖 − 𝜅 𝑗 | ≤ 𝑛1/2+4𝛾 .

Proof. Choose a partition [𝑛] = 𝑅∪ (𝐼1 ∪ · · · ∪ 𝐼𝑚) and 𝜅 𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑚 with |𝐼1 | = · · · = |𝐼𝑚 | =
�𝑛1−2𝛾� such that |𝑑𝑖 − 𝜅 𝑗 | ≤ 𝑛1/2+4𝛾 for all 1 ≤ 𝑗 ≤ 𝑚 and 𝑖 ∈ 𝐼 𝑗 , such that m is as large as possible. It
then suffices to prove that |𝑅 | ≤ 𝑛1−𝛾 .

So let us assume for contradiction that |𝑅 | > 𝑛1−𝛾 , and fix a subset 𝑆 ⊆ 𝑅 of size |𝑆 | = �𝑛1−𝛾�.
Note that 𝐷𝐿 ( �𝑑𝑆/‖ �𝑑𝑆 ‖2) ≤ 𝐷𝐿,𝛾 ( �𝑑) ≤ 𝑛1/2 by Definition 4.11. Furthermore, since ‖ �𝑑𝑆/‖ �𝑑𝑆 ‖2‖∞ ≤
𝐻𝑛/𝑛3/2−2𝛾 = 𝐻𝑛−1/2+2𝛾 , Lemma 4.10 implies 𝐷𝐿 ( �𝑑𝑆/‖ �𝑑𝑆 ‖2) ≥ (𝐻−1/2)𝑛1/2−2𝛾 . Thus, by Definition
4.9, there is some 𝜃 ∈ [(𝐻−1/2)𝑛1/2−2𝛾 , 2𝑛1/2] such that

‖(𝜃/‖ �𝑑𝑆 ‖2) �𝑑𝑆 − �𝑤‖2 ≤ 𝐿
√

log+(𝜃/𝐿) ≤ 𝐿
√

log 𝑛 (4.4)

for some �𝑤 ∈ Z𝑆 . By choosing �𝑤 to minimize the left-hand side, we may assume that �𝑤 has nonnegative
entries (recall that �𝑑 has nonnegative entries).

Now, the number of indices 𝑖 ∈ 𝑆 with | (𝜃/‖ �𝑑𝑆 ‖2)𝑑𝑖 − 𝑤𝑖 | > 𝑛−1/2+2𝛾 is at most

‖(𝜃/‖ �𝑑𝑆 ‖2) �𝑑𝑆 − �𝑤‖2
2

𝑛−1+4𝛾 ≤ 𝐿2 log 𝑛

𝑛−1+4𝛾 ≤ 𝑛1−3𝛾 .

Furthermore, note that 𝜃 ≤ 2𝑛1/2 and (4.4) imply ‖ �𝑤‖2 ≤ 3𝑛1/2, and hence, the number of indices 𝑖 ∈ 𝑆
with 𝑤𝑖 ≥ 𝑛2𝛾/3 is at most 9𝑛1−4𝛾/3. Thus, as |𝑆 | = �𝑛1−𝛾�, there must be at least |𝑆 |/2 ≥ 𝑛1−𝛾/2 indices
𝑖 ∈ 𝑆 with | (𝜃/‖ �𝑑𝑆 ‖2)𝑑𝑖 − 𝑤𝑖 | ≤ 𝑛−1/2+2𝛾 and 𝑤𝑖 ∈ [0, 𝑛2𝛾/3] ∩ Z. Hence, by the pigeonhole principle
there is some 𝜅 ≥ 0 and a subset 𝐼𝑚+1 ⊆ 𝑆 ⊆ 𝑅 of size |𝐼𝑚+1 | = �𝑛1−2𝛾� such that for all 𝑖 ∈ 𝐼𝑚+1 we
have 𝑤𝑖 = 𝜅 and

| (𝜃/‖ �𝑑𝑆 ‖2)𝑑𝑖 − 𝜅 | = | (𝜃/‖ �𝑑𝑆 ‖2)𝑑𝑖 − 𝑤𝑖 | ≤ 𝑛−1/2+2𝛾 =
𝑛1/2−2𝛾

𝑛(1−𝛾)/2𝑛
· 𝑛1/2+(7/2)𝛾

�𝐻
𝜃

‖ �𝑑𝑆 ‖2
· 𝑛1/2+(7/2)𝛾 .

Defining 𝜅𝑚+1 = (‖ �𝑑𝑆 ‖2/𝜃)𝜅 ≥ 0, this implies |𝑑𝑖 − 𝜅𝑚+1 | ≤ 𝑛1/2+4𝛾 for all 𝑖 ∈ 𝐼𝑚+1. But now the
partition 𝑉 (𝐺) = (𝑅 \ 𝐼𝑚+1) ∪ (𝐼1 ∪ · · · ∪ 𝐼𝑚+1) contradicts the maximality of m. �
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4.4. Low-rank approximation

Recall the definition of the Frobenius norm (also called the Hilbert–Schmidt norm): For a matrix
𝑀 ∈ R𝑛×𝑛, we have

‖𝑀 ‖F =
( 𝑛∑
𝑖, 𝑗=1

𝑀2
𝑖 𝑗

)1/2
=
√

trace(𝑀ᵀ𝑀).

If M is symmetric, then ‖𝑀 ‖2
F is the sum of squares of the eigenvalues of M (with multiplicity).

Famously, Eckart and Young [31] proved that for any real matrix M, the degree to which M can be
approximated by a low-rank matrix 𝑀 can be described in terms of the spectrum of M. The following
statement is specialized to the setting of real symmetric matrices.

Theorem 4.13. Consider a symmetric matrix 𝑀 ∈ R𝑛×𝑛, and let 𝜆1, . . . , 𝜆𝑛 be its eigenvalues. Then for
any 𝑟 = 0, . . . , 𝑛 we have

min
𝑀 ∈R𝑛×𝑛

rank(𝑀 ) ≤𝑟

‖𝑀 − 𝑀 ‖2
F = min

𝐼 ⊆[𝑛]
|𝐼 |=𝑛−𝑟

∑
𝑖∈𝐼

𝜆2
𝑖 ,

where the minimum is over all (not necessarily symmetric8) matrices 𝑀 ∈ R𝑛×𝑛 with rank at most r.

4.5. Analysis of Boolean functions

In this subsection, we collect some tools from the theory of Boolean functions. A thorough introduction
to the subject can be found in [81].

Consider a multilinear polynomial 𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑

𝑆⊆[𝑛] 𝑎𝑆
∏

𝑖∈𝑆 𝑥𝑖 . An easy computation shows
that if �𝑥 is a sequence of independent Rademacher or independent standard Gaussian random variables,
then E[ 𝑓 (�𝑥)] = 𝑎∅ and

Var[ 𝑓 (�𝑥)] =
∑

∅≠𝑆⊆[𝑛]
𝑎2
𝑆 . (4.5)

Thus, in the case deg 𝑓 = 2, we can consider the contributions to the variance Var[ 𝑓 (�𝑥)] coming from
the ‘linear’ part and the ‘quadratic’ part. This will be important in our proof of Theorem 2.1.

We will need the following bound on moments of low-degree polynomials of Rademacher or standard
Gaussian random variables (which is a special case of a phenomenon called hypercontractivity).

Theorem 4.14 [81, Theorem 9.21]. Let f be a polynomial in n variables of degree at most d. Let
�𝑥 = (𝑥1, . . . , 𝑥𝑛) either be a vector of independent Rademacher random variables or a vector of
independent standard Gaussian random variables. Then for any real number 𝑞 ≥ 2, we have

E
[
| 𝑓 (�𝑥) |𝑞

]1/𝑞 ≤
(√

𝑞 − 1
)𝑑
E
[
𝑓 (�𝑥)2]1/2

.

We emphasize that we do not require 𝑓 (�𝑥) to have mean zero, so in the general setting of Theorem
4.14 one does not necessarily have E[ 𝑓 (�𝑥)2]1/2 = 𝜎( 𝑓 (�𝑥)) (though in our proof of Theorem 2.1 we
will only apply Theorem 4.14 in the case where E[ 𝑓 (�𝑥)] = 0).

Note that [81, Theorem 9.21] is stated only for Rademacher random variables; the Gaussian case of
Theorem 4.14 follows by approximating Gaussian random variables with sums of Rademacher random
variables, using the central limit theorem.

8It is easy to show that there is always a symmetric matrix 𝑀 which attains this minimum, though this will not be necessary
for us.
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Next, one can use Theorem 4.14 to obtain the following concentration inequality. The Rademacher
case is stated as [81, Theorem 9.23], and the Gaussian case may be proved in the same way.

Theorem 4.15. Let f be a polynomial in n variables of degree at most d. Let �𝑥 = (𝑥1, . . . , 𝑥𝑛) either be
a vector of independent Rademacher random variables or a vector of independent standard Gaussian
random variables. Then for any 𝑡 ≥ (2𝑒)𝑑/2,

Pr
[
| 𝑓 (�𝑥) | ≥ 𝑡 (E[ 𝑓 (𝑥)2])1/2

]
≤ exp

(
− 𝑑

2𝑒
𝑡2/𝑑

)
.

4.6. Basic concentration inequalities

We will frequently need the Chernoff bound for binomial and hypergeometric distributions (see, for
example, [59, Theorems 2.1 and 2.10]). Recall that the hypergeometric distribution Hyp(𝑁, 𝐾, 𝑛) is the
distribution of |𝑍 ∩𝑈 |, for fixed sets 𝑈 ⊆ 𝑆 with |𝑆 | = 𝑁 and |𝑈 | = 𝐾 and a uniformly random size-n
subset 𝑍 ⊆ 𝑆.

Lemma 4.16 (Chernoff bound). Let X be either:

• a sum of independent random variables, each of which take values in {0, 1}, or
• hypergeometrically distributed (with any parameters).

Then for any 𝛿 > 0, we have

Pr[𝑋 ≤ (1 − 𝛿)E𝑋] ≤ exp(−𝛿2E𝑋/2),
Pr[𝑋 ≥ (1 + 𝛿)E𝑋] ≤ exp(−𝛿2E𝑋/(2 + 𝛿)).

We will also need the following concentration inequality, which is a simple consequence of the
Azuma–Hoeffding martingale concentration inequality (a special case appears in [53, Corollary 2.2],
and the general case follows from the same proof).

Lemma 4.17. Consider a partition [𝑛] = 𝐼1 ∪ · · · ∪ 𝐼𝑚, and sequences (ℓ1, . . . , ℓ𝑚), (ℓ′1, . . . , ℓ
′
𝑚) ∈ N𝑚

with ℓ𝑘 + ℓ′𝑘 ≤ |𝐼𝑘 | for 𝑘 = 1, . . . , 𝑚 (and ℓ1 + · · · + ℓ𝑚 + ℓ′1 + · · · + ℓ′𝑚 > 0). Let 𝑆 ⊆ {−1, 0, 1}𝑛 be
the set of vectors �𝑥 ∈ {−1, 0, 1}𝑛 such that �𝑥𝐼𝑘 has exactly ℓ𝑘 entries being 1 and exactly ℓ′𝑘 entries
being −1 for each 𝑘 = 1, . . . , 𝑚. Let 𝑎 > 0 and suppose that 𝑓 : 𝑆 → R is a function such that we have
| 𝑓 (�𝑥) − 𝑓 (�𝑥 ′) | ≤ 𝑎 for any two vectors �𝑥, �𝑥 ′ ∈ 𝑆 which differ in precisely two coordinates (i.e., which
are obtained from each other by switching two entries inside some set 𝐼𝑘 ). Then for a uniformly random
vector �𝑥 ∈ 𝑆 and any 𝑡 ≥ 0 we have

Pr[| 𝑓 (�𝑥) − E 𝑓 (�𝑥) | ≥ 𝑡] ≤ 2 exp
(
− 𝑡2

2 · (ℓ1 + · · · + ℓ𝑚 + ℓ′1 + · · · + ℓ′𝑚) · 𝑎2

)
.

Proof. We sample a uniformly random vector �𝑥 ∈ 𝑆 in ℓ := ℓ1 + · · · + ℓ𝑚 + ℓ′1 + · · · + ℓ′𝑚 steps, as follows.
In the first ℓ1 steps, we pick the ℓ1 indices 𝑖 ∈ 𝐼1 such that 𝑥𝑖 = 1 (at each step, pick an index 𝑖 ∈ 𝐼1
uniformly at random among the indices where 𝑥𝑖 is not yet defined, and define 𝑥𝑖 = 1). In the next ℓ2
steps, we pick the ℓ2 indices 𝑖 ∈ 𝐼2 such that 𝑥𝑖 = 1, and so on. After ℓ1 + · · · + ℓ𝑚 steps, we have defined
all the 1-entries of �𝑥. Now, we repeat the procedure (for ℓ′1 + · · · + ℓ′𝑚 steps) for the −1-entries.

For 𝑡 = 0, . . . , ℓ, define 𝑋𝑡 to be the expectation of 𝑓 (�𝑥) conditioned on the coordinates of �𝑥 defined
up to step t. Then 𝑋0, . . . , 𝑋𝑡 is the Doob martingale associated to our process of sampling �𝑥. Note that
𝑋0 = E 𝑓 (�𝑥) and 𝑋ℓ = 𝑓 (�𝑥).

We claim that we always have |𝑋𝑡 − 𝑋𝑡−1 | ≤ 𝑎 for 𝑡 = 1, . . . , ℓ. Indeed, let us condition on any
outcomes of the first 𝑡 − 1 steps of our process of sampling �𝑥. Now, for any two possible indices i and
𝑖′ chosen the t-th step, we can couple the possible outcomes of �𝑥 if i is chosen in the t-th step with
the possible outcomes of �𝑥 if 𝑖′ is chosen in the t-th step, simply by switching the i-th and the 𝑖′-th
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coordinate. Using our assumption on f, this shows that for any two possible outcomes in the t-th step the
corresponding conditional expectations differ by at most a. This implies |𝑋𝑡 − 𝑋𝑡−1 | ≤ 𝑎, as claimed.

Now, the inequality in the lemma follows from the Azuma–Hoeffding inequality for martingales (see,
for example, [59, Theorem 2.25]). �

5. Small-ball probability for quadratic polynomials of Gaussians

In this section, we prove Theorem 1.6, which we reproduce for the reader’s convenience. For the sake of
convenience in the proofs and statements, in this section the notation 𝑎 � 𝑏 simply means that 𝑎 ≤ 𝐶𝑏
for some constant C (i.e., there is no stipulation that n, the number of variables, be large).

Theorem 1.6. Let �𝑍 = (𝑍1, . . . , 𝑍𝑛) ∼ N (0, 1)⊗𝑛 be a vector of independent standard Gaussian
random variables. Consider a real quadratic polynomial 𝑓 ( �𝑍) of �𝑍 , which we may write as

𝑓 ( �𝑍) = �𝑍ᵀ𝐹 �𝑍 + �𝑓 · �𝑍 + 𝑓0

for some nonzero symmetric matrix 𝐹 ∈ R𝑛×𝑛, some vector �𝑓 ∈ R𝑛 and some 𝑓0 ∈ R. Suppose that for
some 𝜂 > 0 we have

min
𝐹 ∈R𝑛×𝑛

rank(𝐹 ) ≤2

‖𝐹 − 𝐹‖2
F

‖𝐹‖2
F

≥ 𝜂.

Then for any 𝜀 > 0 we have

L( 𝑓 ( �𝑍), 𝜀) �𝜂
𝜀

𝜎( 𝑓 ( �𝑍))
.

Remark 5.1. By Theorem 4.13, the robust rank assumption in Theorem 1.6 is equivalent to the assump-
tion that every subset 𝐼 ⊆ [𝑛] of size |𝐼 | = 𝑛 − 2 satisfies

∑
𝑖∈𝐼 𝜆

2
𝑖 ≥ 𝜂(𝜆2

1 + · · · + 𝜆2
𝑛), where 𝜆1, . . . , 𝜆𝑛

denote the eigenvalues of F.

We remark that for any real random variable X, one can use Chebyshev’s inequality to show that
L(𝑋, 𝜀) = Ω(𝜀/𝜎(𝑋)), so the bound in Theorem 1.6 is best-possible.

In the proof of Theorem 2.1, we will actually need a slightly more technical nonuniform version of
Theorem 1.6 that decays away from the mean (at a high level, this is proved by combining Theorem
1.6 with the hypercontractive tail bound in Theorem 4.15, via a ‘splitting’ technique; for this splitting
technique, we need our rank assumption to be slightly stronger than in Theorem 1.6). We will also need
a lower bound on the probability that 𝑓 ( �𝑍) falls in a given interval of length 𝜀, as long as this interval
is relatively close to E 𝑓 ( �𝑍), and lies on ‘the correct side’ of E 𝑓 ( �𝑍) (this lower bound requires no rank
assumption).

Theorem 5.2. Let �𝑍 = (𝑍1, . . . , 𝑍𝑛) ∼ N (0, 1)⊗𝑛 be a vector of independent standard Gaussian
random variables. Consider a nonconstant real quadratic polynomial 𝑓 ( �𝑍) of �𝑍 , which we may write as

𝑓 ( �𝑍) = �𝑍ᵀ𝐹 �𝑍 + �𝑓 · �𝑍 + 𝑓0

for some symmetric matrix 𝐹 ∈ R𝑛×𝑛, some vector �𝑓 ∈ R𝑛 and some 𝑓0 ∈ R.

1. Suppose that F is nonzero and

min
𝐹 ∈R𝑛×𝑛

rank(𝐹 ) ≤3

‖𝐹 − 𝐹‖2
F

‖𝐹‖2
F

≥ 𝜂.
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Then for any 𝑥 ∈ R and any 0 ≤ 𝜀 ≤ 𝜎( 𝑓 ), we have

Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]] �𝜂
𝜀

𝜎( 𝑓 ) exp
(
−Ω

(
|𝑥 |

𝜎( 𝑓 )

))
.

2. Let 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of F. Suppose that |𝜆𝑖 | ≤ 𝜆1 for 𝑖 = 1, . . . , 𝑛. Then for any 𝐴 > 0
and 0 ≤ 𝜀 ≤ 𝜎( 𝑓 ), we have

inf
0≤𝑥≤𝐴𝜎 ( 𝑓 )

Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]] �𝐴
𝜀

𝜎( 𝑓 ) .

Remark 5.3. Note that the infimum in (2) is only over nonnegative x (this nonnegativity assumption
corresponds to our implicit assumption that 𝜆1 ≥ 0). A two-sided bound is not possible in general, as the
polynomial 𝑓 ( �𝑍) = 𝑍2

1 shows. Also, while the rank assumption in Theorem 1.6 (robustly having rank
at least 3) was best-possible, we believe that the rank assumption in Theorem 5.2(1) (robustly having
rank at least 4) can be improved; it would be interesting to investigate this further (e.g., one might try to
prove Theorem 5.2(1) directly rather than deducing it from Theorem 1.6 via our splitting technique).

In addition, in Theorem 5.2(2), the quantitative bound for implicit constant hidden by ‘�𝐴’ is rather
poor; our proof provides a dependence of the form exp(− exp(𝑂 (𝐴2))). We believe that the correct
dependence is exp(−𝑂 (𝐴2)), and it may be interesting to prove this.

By orthogonal diagonalization of F and the invariance of the distribution of �𝑍 under orthonormal
transformations, in the proofs of Theorems 1.6 and 5.2 we can reduce to the case where 𝑓 ( �𝑍) =
𝑎0 +

∑𝑛
𝑖=1(𝑎𝑖𝑍𝑖 + 𝜆𝑖𝑍

2
𝑖 ) for some 𝑎0, . . . , 𝑎𝑛 ∈ R. This is a sum of independent random variables, so we

can proceed using Fourier-analytic techniques.
The rest of this section proceeds as follows. First, in Section 5.1, we prove Lemma 5.5, which

encapsulates certain Fourier-analytic estimates that are effective when no individual term 𝑎𝑖𝑍𝑖 + 𝜆𝑖𝑍
2
𝑖

contributes too much to the variance of 𝑓 ( �𝑍) (essentially, these are the estimates one needs for a central
limit theorem).

Second, in Section 5.2 we prove the uniform upper bound in Theorem 1.6. In the case where no
individual term contributes too much to the variance of 𝑓 ( �𝑍), we use Lemma 5.5, and otherwise we
need some more specialized Fourier-analytic computations.

Third, in Section 5.3 we prove the lower bound in Theorem 5.2(2). Again, we use Lemma 5.5 in the
case where no individual term contributes too much to the variance of 𝑓 ( �𝑍), while in the case where
one of the terms is especially influential we perform an explicit (non-Fourier-analytic) computation.

Then, in Section 5.4 we deduce the nonuniform upper bound in Theorem 5.2(1) from Theorem 1.6,
using a ‘splitting’ technique.

Finally, in Section 5.5 we prove an auxiliary technical estimate on characteristic functions of quadratic
polynomials of Gaussian random variables, in terms of the ‘rank robustness’ of the quadratic polynomial
(which we will need in the proof of Theorem 3.1).

5.1. Gaussian Fourier-analytic estimates

In this subsection, we prove several Fourier-analytic estimates. First, we state a formula for the absolute
value of the characteristic function of a univariate quadratic polynomial of a Gaussian random variable.
One can prove this by direct computation, but we instead give a quick deduction from the formula for
the characteristic function of a noncentral chi-squared distribution (i.e., of a random variable 𝑍2 where
𝑍 ∼ N (𝜇, 𝜎2); see, for example, [82]).

Lemma 5.4. Let 𝑊 ∼ N (0, 1), and let 𝑋 = 𝑎𝑊 + 𝜆𝑊2 for some 𝑎, 𝜆 ∈ R. We have

|𝜑𝑋 (𝑡) | =
exp(−𝑎2𝑡2/(2 + 8𝜆2𝑡2))

(1 + 4𝜆2𝑡2)1/4 .
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Proof. If 𝜆 = 0, then 𝜑𝑋 (𝑡) = 𝜑𝑎𝑊 (𝑡) = 𝜑𝑊 (𝑎𝑡) = exp(−𝑎2𝑡2/2), as desired. So let us assume 𝜆 ≠ 0.
Note that 𝑋 = 𝑎𝑊 + 𝜆𝑊2 = 𝜆(𝑊 + 𝑎/(2𝜆))2 − 𝑎2/(4𝜆), and thus,

|𝜑𝑋 (𝑡) | = |𝜑𝜆(𝑊 +𝑎/(2𝜆))2 (𝑡) | = |𝜑 (𝑊 +𝑎/(2𝜆))2 (𝜆𝑡) |.

Using the formula for the characteristic function of a noncentral chi-squared distribution with 1 degree
of freedom and noncentrality parameter (𝑎/(2𝜆))2, we obtain

|𝜑 (𝑊 +𝑎/(2𝜆))2 (𝜆𝑡) | =




exp
(
𝑖 ·𝑎2/(4𝜆2) ·𝜆𝑡

1−2𝑖𝜆𝑡

)



|1 − 2𝑖𝜆𝑡 |1/2 =




exp
(
𝑖 ·𝑎2/(4𝜆2) ·𝜆𝑡 · (1+2𝑖𝜆𝑡)

1+4𝜆2𝑡2

)



(1 + 4𝜆2𝑡2)1/4 =

exp
(

−𝑎2𝑡2

2(1+4𝜆2𝑡2)

)
(1 + 4𝜆2𝑡2)1/4 .

�

The crucial estimates in this subsection are encapuslated in the following lemma.

Lemma 5.5. There exist constants 𝐶5.5, 𝐶
′
5.5 > 0 such that the following holds. Let 𝑊1, . . . ,𝑊𝑛 ∼

N (0, 1) be independent standard Gaussian random variables, and fix sequences �𝑎, �𝜆 ∈ R𝑛 not both
zero. Define random variables 𝑋1, . . . , 𝑋𝑛 and X as well as nonnegative 𝜎1, . . . , 𝜎𝑛, 𝜎, Γ ∈ R by

𝑋𝑖 = 𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2
𝑖 − 1), 𝑋 =

𝑛∑
𝑖=1

𝑋𝑖 , 𝜎2
𝑖 = 𝜎(𝑋𝑖)2 = 𝑎2

𝑖 + 2𝜆2
𝑖 , 𝜎2 =

𝑛∑
𝑖=1

𝜎2
𝑖 , Γ =

𝜎3∑𝑛
𝑖=1 𝜎

3
𝑖

.

(a) If
∫ ∞
−∞

∏𝑛
𝑖=1 |𝜑𝑋𝑖 (𝑡) | 𝑑𝑡 < ∞, then X has a continuous density function 𝑝𝑋 : R→ R≥0 satisfying

sup
𝑢∈R





𝑝𝑋 (𝑢) − 𝑒−𝑢
2/(2𝜎2)

𝜎
√

2𝜋





 ≤ 𝐶5.5

(
1
Γ𝜎

+
∫
|𝑡 | ≥Γ/(32𝜎)

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡
)
.

(b) If 𝜎2
𝑖 ≤ 𝜎2/4 for all 𝑖 = 1, . . . , 𝑛, then for any 𝐾 > 0, we have∫

|𝑡 | ≥𝐾/𝜎

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡 ≤
𝐶 ′

5.5
𝐾𝜎

.

Remark 5.6. Note that 𝜎3 =
∑𝑛

𝑖=1 𝜎
2
𝑖 · 𝜎 ≥

∑𝑛
𝑖=1 𝜎

3
𝑖 and therefore Γ ≥ 1.

The first part follows essentially immediately from the classical proof of the central limit theorem
(see, for example, [83]).

Proof of Lemma 5.5(a). First, note that we may assume that there are no indices i with 𝜎𝑖 = 0 (indeed,
if 𝜎𝑖 = 0, then 𝜆𝑖 = 𝑎𝑖 = 0 and we can just omit all such indices). By rescaling, we may assume that
𝜎2 = 1. Note that 𝜑𝑋 (𝑡) =

∏𝑛
𝑖=1 𝜑𝑋𝑖 (𝑡), and hence

∫ ∞
−∞ |𝜑𝑋 (𝑡) | 𝑑𝑡 < ∞. Also recall that the standard

Gaussian distribution has density 𝑢 ↦→ 𝑒−𝑢
2/2/

√
2𝜋 and characteristic function 𝑡 ↦→ 𝑒−𝑡

2/2. Thus, by the
inversion formula (4.1), it suffices to show that

1
2𝜋

∫ ∞

−∞





 𝑛∏
𝑖=1

𝜑𝑋𝑖 (𝑡) − 𝑒−𝑡
2/2





 𝑑𝑡 � 1
Γ
+
∫
|𝑡 | ≥Γ/32

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡. (5.1)

Note thatE[𝑋𝑖] = 0 for 𝑖 = 1, . . . , 𝑛, and let us write 𝐿 = (
∑𝑛

𝑖=1 E[|𝑋𝑖 |3])/(
∑𝑛

𝑖=1 𝜎
2
𝑖 )3/2 =

∑𝑛
𝑖=1 E[|𝑋𝑖 |3].

Then for |𝑡 | ≤ 1/(4𝐿), by [83, Chapter V, Lemma 1] (which is a standard estimate in proofs of central
limit theorems) we have



 𝑛∏

𝑖=1
𝜑𝑋𝑖 (𝑡) − 𝑒−𝑡

2/2




 = 


𝜑𝑋 (𝑡) − 𝑒−𝑡

2/2



 ≤ 16𝐿 · |𝑡 |3𝑒−𝑡2/3.
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By Hölder’s inequality and Theorem 4.14 (hypercontractivity), we have 𝜎3
𝑖 ≤ E[|𝑋𝑖 |3] ≤ 8𝜎3

𝑖 for
𝑖 = 1, . . . , 𝑛, so we obtain 1/Γ ≤ 𝐿 ≤ 8/Γ. Thus, the interval |𝑡 | ≤ Γ/32 contributes at most∫ Γ/32
−Γ/32 16𝐿 · |𝑡 |3𝑒−𝑡2/3 𝑑𝑡 � 𝐿

∫ ∞
−∞ |𝑡 |3𝑒−𝑡2/3 𝑑𝑡 � 𝐿 � 1/Γ to the integral in (5.1). Therefore, we obtain∫

|𝑡 | ≥Γ/32





 𝑛∏
𝑖=1

𝜑𝑋𝑖 (𝑡) − 𝑒−𝑡
2/2





 𝑑𝑡 ≤ ∫
|𝑡 | ≥Γ/32

𝑒−𝑡
2/2 +





 𝑛∏
𝑖=1

𝜑𝑋𝑖 (𝑡)




 𝑑𝑡

�
1
Γ
+
∫
|𝑡 | ≥Γ/32





 𝑛∏
𝑖=1

𝜑𝑋𝑖 (𝑡)




 𝑑𝑡. �

To prove Lemma 5.5(b), we use Hölder’s inequality and Lemma 5.4.

Proof of Lemma 5.5(b). As before, we may assume that there are no indices i with 𝜎𝑖 = 0, and by
rescaling we may assume that 𝜎2 = 1. Via Lemma 5.4, we estimate∫

|𝑡 | ≥𝐾





 𝑛∏
𝑖=1

𝜑𝑋𝑖 (𝑡)




 𝑑𝑡 ≤ 𝑛∏

𝑖=1

( ∫
|𝑡 | ≥𝐾

|𝜑𝑋𝑖 (𝑡) |1/𝜎
2
𝑖 𝑑𝑡

)𝜎2
𝑖

=
𝑛∏
𝑖=1

( ∫
|𝑡 | ≥𝐾

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
(1 + 4𝜆2

𝑖 𝑡
2)1/(4𝜎2

𝑖 )
𝑑𝑡

)𝜎2
𝑖

≤
𝑛∏
𝑖=1

( ∫
|𝑡 | ≥𝐾

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
1 + 𝜆2

𝑖 𝑡
2/𝜎2

𝑖

𝑑𝑡

)𝜎2
𝑖

.

In the first step, we have used Hölder’s inequality with weights 𝜎2
1 , . . . , 𝜎

2
𝑛 (which sum to 1) and in

the final step we have used Bernoulli’s inequality (which says that (1+ 𝑥)𝑟 ≥ 1+ 𝑟𝑥 for 𝑥 ≥ 0 and 𝑟 ≥ 1;
recall that we are assuming that 4(𝑎2

𝑖 + 2𝜆2
𝑖 ) = 4𝜎2

𝑖 ≤ 1 for each i).
Since

∑𝑛
𝑖=1 𝜎

2
𝑖 = 1, it now suffices to prove that for each 𝑖 = 1, . . . , 𝑛 we have

∫
|𝑡 | ≥𝐾

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
1 + 𝜆2

𝑖 𝑡
2/𝜎2

𝑖

𝑑𝑡 �
1
𝐾
.

Fix some i. If |𝜆𝑖 | ≥ |𝑎𝑖 |, then 𝜆2
𝑖 ≥ 𝜎2

𝑖 /3 and

∫
|𝑡 | ≥𝐾

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
1 + 𝜆2

𝑖 𝑡
2/𝜎2

𝑖

𝑑𝑡 ≤
∫
|𝑡 | ≥𝐾

1
1 + 𝑡2/3

𝑑𝑡 �
1
𝐾
.

Otherwise, if |𝑎𝑖 | ≥ |𝜆𝑖 |, we have 𝑎2
𝑖 ≥ 𝜎2

𝑖 /3, 𝜎2
𝑖 ≤ 1, and therefore

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
1 + 𝜆2

𝑖 𝑡
2/𝜎2

𝑖

≤

(
1 + 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )−1

1 + 𝜆2
𝑖 𝑡

2/𝜎2
𝑖

�

(
1 + 𝑡2/(1 + 𝜆2

𝑖 𝑡
2)
)−1

1 + 𝜆2
𝑖 𝑡

2/𝜎2
𝑖

≤
(
1 + 𝑡2/(1 + 𝜆2

𝑖 𝑡
2)
)−1

1 + 𝜆2
𝑖 𝑡

2
=

1
1 + (1 + 𝜆2

𝑖 )𝑡2
.
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It follows that∫
|𝑡 | ≥𝐾

exp
(
− 𝑎2

𝑖 𝑡
2/

(
(2 + 8𝜆2

𝑖 𝑡
2)𝜎2

𝑖

) )
1 + 𝜆2

𝑖 𝑡
2/𝜎2

𝑖

𝑑𝑡 �
∫
|𝑡 | ≥𝐾

1
1 + (1 + 𝜆2

𝑖 )𝑡2
𝑑𝑡 �

1
𝐾
. �

5.2. Uniform anticoncentration

In this subsection, we prove Theorem 1.6. The crucial ingredient is the following Fourier-analytic
estimate.

Lemma 5.7. Recall the definitions and notation in the statement of Lemma 5.5, and fix a parameter
𝜂 > 0. Suppose that 𝑛 ≥ 2 and

∑
𝑖∈𝐼 𝜆

2
𝑖 ≥ 𝜂𝜆2

𝑗 for all 𝐼 ⊆ [𝑛] with |𝐼 | = 𝑛 − 2 and all 𝑗 ∈ [𝑛]. Then∫
|𝑡 | ≥1/(32𝜎)

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡 �𝜂
1
𝜎
.

Proof. We may assume without loss of generality that |𝜆1 | ≥ · · · ≥ |𝜆𝑛 |. By adding at most two terms
with 𝑎𝑖 = 𝜆𝑖 = 0, we may assume n is divisible by 3. Note that if 𝜎2

𝑖 ≤ 𝜎2/4 for all 𝑖 ∈ [𝑛], the result
follows immediately from Lemma 5.5(b). Therefore, it suffices to consider the case when there is an
index j such that 𝜎2

𝑗 ≥ 𝜎2/4.
Note that the given condition implies

∑𝑛/3
𝑘=1 𝜆

2
3𝑘 ≥ 1

3
∑𝑛

𝑘=3 𝜆
2
𝑘 ≥ 𝜂𝜆2

𝑗/3. Now, Lemma 5.4 yields

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | ≤ exp
( −𝑎2

𝑗 𝑡
2

2 + 8𝜆2
𝑗 𝑡

2

) 𝑛∏
𝑖=1

1
(1 + 4𝜆2

𝑖 𝑡
2)1/4

≤ exp
( −𝑎2

𝑗 𝑡
2

2 + 8𝜆2
𝑗 𝑡

2

) 𝑛/3∏
𝑖=1

1
(1 + 4𝜆2

3𝑖𝑡
2)3/4

≤ exp
( −𝑎2

𝑗 𝑡
2

2 + 8𝜆2
𝑗 𝑡

2

) (
1 + 4

𝑛/3∑
𝑖=1

𝜆2
3𝑖𝑡

2
)−3/4

≤ exp
( −𝑎2

𝑗 𝑡
2

2 + 8𝜆2
𝑗 𝑡

2

)
(1 + 𝜂𝜆2

𝑗 𝑡
2)−3/4

≤
(
1 +

𝑎2
𝑗 𝑡

2

2 + 8𝜆2
𝑗 𝑡

2

)−3/4
(1 + 𝜂𝜆2

𝑗 𝑡
2)−3/4

�𝜂 (𝜆2
𝑗 𝑡

2 + 𝑎2
𝑗 𝑡

2)−3/4 � (𝜎𝑗 |𝑡 |)−3/2 � (𝜎 |𝑡 |)−3/2.

Thus, we have ∫
|𝑡 | ≥1/(32𝜎)

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡 �𝜂
∫
|𝑡 | ≥1/(32𝜎)

(𝜎 |𝑡 |)−3/2 𝑑𝑡 � 1/𝜎. �

The proof of Theorem 1.6 is now immediate.

Proof of Theorem 1.6. By rescaling, we may assume 𝜎( 𝑓 ) = 1. It suffices to show that the probability
density function 𝑝 𝑓 −E 𝑓 of 𝑓 − E 𝑓 satisfies 𝑝 𝑓 −E 𝑓 (𝑢) �𝜂 1 for all u.

Since F is a real symmetric matrix, we can write 𝐹 = 𝑄𝐷𝑄ᵀ, where D is a diagonal matrix with
entries 𝜆1, . . . , 𝜆𝑛 and Q is an orthogonal matrix. Let �𝑊 = 𝑄ᵀ �𝑍 , and note that �𝑊 is also distributed as
N (0, 1)⊗𝑛 (since the distribution N (0, 1)⊗𝑛 is invariant under orthogonal transformations). We have

𝑓 ( �𝑍) = 𝑓0 + �𝑓 · �𝑍 + �𝑍ᵀ𝐹 �𝑍 = 𝑓0 + �𝑓 · (𝑄 �𝑊) + �𝑊ᵀ𝑄ᵀ𝐹𝑄 �𝑊 = 𝑓0 + (𝑄ᵀ �𝑓 ) · �𝑊 + �𝑊ᵀ𝐷 �𝑊.
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Let �𝑎 = (𝑎1, . . . , 𝑎𝑛) = 𝑄ᵀ �𝑓 . We have

𝑓 − E 𝑓 =
𝑛∑
𝑖=1

(𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2
𝑖 − 1)).

Let 𝜎1, . . . , 𝜎𝑛 ≥ 0 be such that 𝜎2
𝑖 = 𝑎2

𝑖 + 2𝜆2
𝑖 , so 1 = 𝜎( 𝑓 )2 = 𝜎2

1 + · · · +𝜎2
𝑛 . Note that the assumption

in the theorem statement implies 𝑛 ≥ 3, and combining the assumption with Theorem 4.13 yields

𝜂 ≤ min
𝐹 ∈R𝑛×𝑛

rank(𝐹 ) ≤2

‖𝐹 − 𝐹‖2
F

‖𝐹‖2
F

= min
𝐼 ⊆[𝑛]
|𝐼 |=𝑛−2

∑
𝑖∈𝐼 𝜆

2
𝑖

𝜆2
1 + · · · + 𝜆2

𝑛

.

Hence, for any subset 𝐼 ⊆ [𝑛] with |𝐼 | = 𝑛− 2 and any 𝑗 ∈ [𝑛] we obtain
∑

𝑖∈𝐼 𝜆
2
𝑖 ≥ 𝜂(𝜆2

1 + · · · + 𝜆2
𝑛) ≥

𝜂𝜆2
𝑗 . Let Γ be as in Lemma 5.5, and recall that Γ ≥ 1.
Now, by combining Lemma 5.5(a) and Lemma 5.7, we have that

sup
𝑢∈R

𝑝 𝑓 (𝑢) = sup
𝑢∈R

𝑝 𝑓 −E 𝑓 (𝑢) �
1

√
2𝜋

+ 1
Γ
+
∫
|𝑡 | ≥Γ/32

𝑛∏
𝑖=1

|𝜑𝑋𝑖 (𝑡) | 𝑑𝑡 �𝜂 1.

By integrating over the desired interval, we obtain the bound in Theorem 1.6. �

5.3. Lower bounds on small-ball probabilities

Let us now prove the lower bound in Theorem 5.2(2). Note that Lemma 5.5(b) does not apply when
some 𝜎𝑖 is especially influential; in that case, we will use the following bare-hands estimate.
Lemma 5.8. Fix 𝐴′ ≥ 1, and let 𝑊 ∼ N (0, 1) and for some 𝑎, 𝜆 ∈ R (not both zero) let 𝑋 =
𝑎𝑊 + 𝜆(𝑊2 − 1), so 𝜎(𝑋)2 = 𝑎2 + 2𝜆2. Suppose that
1. 𝜆 ≥ 0, or
2. 𝜎(𝑋) ≥ 10𝐴′ · |𝜆 |.
Then for any 0 ≤ 𝑢 ≤ 𝐴′𝜎(𝑋), we have 𝑝𝑋 (𝑢) �𝐴′ 1/𝜎(𝑋).
Proof. We may assume 𝑎 ≥ 0 (changing a to −𝑎 does not change the distribution of X). First, note that
the case 𝜆 = 0 is easy since then we have 𝜎(𝑋) = 𝑎 and 𝑝𝑋 (𝑢) = 𝑒−(𝑢/𝑎)

2/2/(
√

2𝜋𝑎) �𝐴′ 1/𝜎(𝑋). So
let us assume 𝜆 ≠ 0 and define 𝑔 : R→ R by

𝑔(𝑡) = 𝑎𝑡 + 𝜆(𝑡2 − 1) = 𝜆 ·
(
𝑡 + 𝑎

2𝜆

)2
− 𝜆 − 𝑎2

4𝜆
.

Then for all 𝑡 ∈ R, we have

(𝑔′(𝑡))2 = 4𝜆2 ·
(
𝑡 + 𝑎

2𝜆

)2
= 4𝜆 · 𝑔(𝑡) + 4𝜆2 + 𝑎2 ≤ 4𝜎(𝑋) · |𝑔(𝑡) | + 4𝜎(𝑋)2.

Hence, for any 𝑡 ∈ R with 𝑔(𝑡) = 𝑢, recalling 0 ≤ 𝑢 ≤ 𝐴′𝜎(𝑋), we obtain |𝑔′(𝑡) | ≤√
4(𝐴′ + 1)𝜎(𝑋)2 �𝐴′ 𝜎(𝑋).
We claim that we can find 𝑡 ∈ [−3𝐴′, 3𝐴′] with 𝑔(𝑡) = 𝑢. Indeed, in case (1), we have 𝑔(0) =

−𝜆 ≤ 𝑢 and 𝑔(2𝐴′ + 1) ≥ 2𝐴′𝑎 + 2𝐴′𝜆 ≥ 𝐴′𝜎(𝑋) ≥ 𝑢, and hence by the intermediate value
theorem there exists 𝑡 ∈ [0, 2𝐴′ + 1] ⊆ [−3𝐴′, 3𝐴′] with 𝑔(𝑡) = 𝑢. In case (2), observe that 𝑎2 =
𝜎(𝑋)2 − 2𝜆2 ≥ 100𝐴′2 · 𝜆2 − 2𝜆2 ≥ 81𝐴′2 · 𝜆2, so 𝑎 ≥ 9𝐴′ · |𝜆 | and therefore |𝜆(9𝐴′2 − 1) | ≤ 𝐴′𝑎
and 𝜎(𝑋)2 = 𝑎2 + 2𝜆2 ≤ 4𝑎2. Hence, 𝑔(−3𝐴′) = −3𝐴′𝑎 + 𝜆(9𝐴′2 − 1) ≤ −2𝐴′𝑎 ≤ 0 ≤ 𝑢 and
𝑔(3𝐴′) = 3𝐴′𝑎 + 𝜆(9𝐴′2 − 1) ≥ 2𝐴′𝑎 ≥ 𝐴′𝜎(𝑋) ≥ 𝑢 and we can again conclude that there exists
𝑡 ∈ [−3𝐴′, 3𝐴′] with 𝑔(𝑡) = 𝑢.
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Now, we have

𝑝𝑋 (𝑢) = 𝑝𝑔 (𝑊 ) (𝑔(𝑡)) ≥
𝑝𝑊 (𝑡)
|𝑔′(𝑡) | �𝐴

′
𝑒−(3𝐴

′)2/2

𝜎(𝑋) �𝐴′
1

𝜎(𝑋) . �

We need one more ingredient for the proof of Theorem 5.2(2): A variant of the Paley–Zygmund
inequality which tells us that under a fourth-moment condition, random variables are reasonably likely
to have small fluctuations in a given direction. We include a short proof; the result can also easily be
deduced from [5, Lemma 3.2(i)].

Lemma 5.9. Fix 𝐵 ≥ 1. If X is a real random variable with E[𝑋] = 0 and 𝜎(𝑋) > 0 satisfying
E[𝑋4] ≤ 𝐵𝜎(𝑋)4, then

Pr[−2
√
𝐵𝜎(𝑋) ≤ 𝑋 ≤ 0] ≥ 1/(5𝐵).

Proof. By rescaling, we may assume that 𝜎(𝑋) = 1. Note that then

9𝐵2 · Pr[−2
√
𝐵 ≤ 𝑋 ≤ 0] = E[9𝐵21−2

√
𝐵≤𝑋 ≤0]

≥ E[−𝑋 (𝑋 + 2
√
𝐵) (𝑋 −

√
𝐵)2]

= −E[𝑋4] + 3𝐵 · E[𝑋2] − 2𝐵3/2E[𝑋] = −E[𝑋4] + 3𝐵 ≥ 2𝐵,

where we have used that −𝑥(𝑥 + 2
√
𝐵) (𝑥 −

√
𝐵)2 = (𝐵 − (𝑥 +

√
𝐵)2) (𝑥 −

√
𝐵)2 ≤ 9𝐵21−2

√
𝐵≤𝑥≤0 for all

𝑥 ∈ R. The result follows. �

Now, we prove Theorem 5.2(2).

Proof of Theorem 5.2(2). We may assume 𝜎( 𝑓 ) = 1. Borrowing the notation from the proof of Theo-
rem 1.6, we write

𝑓 − E 𝑓 =
𝑛∑
𝑖=1

(𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2
𝑖 − 1)),

with (𝑊1, . . . ,𝑊𝑛) ∼ N (0, 1)⊗𝑛, and 𝜎2
𝑖 = 𝑎2

𝑖 + 2𝜆2
𝑖 (then we have 1 = 𝜎2 = 𝜎2

1 + · · · + 𝜎2
𝑛). It now

suffices to prove that for all 𝑢 ∈ [0, 𝐴 + 1] we have 𝑝 𝑓 −E 𝑓 (𝑢) �𝐴 1. Let L be a large integer depending
only on A (such that 𝐿 ≥ 2 and 𝐿 ≥ 𝐶5.5(1 + 32𝐶 ′

5.5) · 2
√

2𝜋 · 𝑒 (𝐴+1)2/2 for the constants 𝐶5.5 and 𝐶 ′
5.5

in Lemma 5.5). We break into cases.
First, suppose max𝑖 𝜎𝑖 ≤ 1/𝐿. In this case, we define Γ = 𝜎( 𝑓 )3/

∑𝑛
𝑖=1 𝜎

3
𝑖 = 1/

∑𝑛
𝑖=1 𝜎

3
𝑖 and note that∑𝑛

𝑖=1 𝜎
3
𝑖 ≤ (max𝑖 𝜎𝑖) (

∑𝑛
𝑖=1 𝜎

2
𝑖 ) ≤ 1/𝐿, so Γ ≥ 𝐿. We also have 𝜎2

𝑖 ≤ 1/𝐿2 ≤ 1/4, so Lemma 5.5(b)
applies. So by combining parts (a) and (b) of Lemma 5.5, for all 𝑢 ∈ [0, 𝐴 + 1] we obtain, as desired,

𝑝 𝑓 −E 𝑓 (𝑢) ≥
𝑒−𝑢

2/2
√

2𝜋
−

𝐶5.5(1 + 32𝐶 ′
5.5)

Γ
≥ 𝑒−(𝐴+1)2/2

√
2𝜋

−
𝐶5.5 (1 + 32𝐶 ′

5.5)
𝐿

≥ 1
2
· 𝑒

−(𝐴+1)2/2
√

2𝜋
�𝐴 1.

Otherwise, there is 𝑖∗ ∈ [𝑛] such that 𝜎𝑖∗ ≥ 1/𝐿. We claim that then there is an index 𝑗 ∈ [𝑛]
satisfying at least one of the following two conditions:

(1) 𝜎𝑗 ≥ 1/(10(𝐴 + 19)𝐿2) and 𝜆 𝑗 ≥ 0, or
(2) 𝜎𝑗 ≥ 1/𝐿 and 10(𝐴 + 19)𝐿 · |𝜆 𝑗 | ≤ 𝜎𝑗 .

Indeed, if 10(𝐴 + 19)𝐿 · |𝜆𝑖∗ | ≤ 𝜎𝑖∗ we can simply take 𝑗 = 𝑖∗ and (2) is satisfied. Otherwise, we
have |𝜆𝑖∗ | > 𝜎𝑖∗/(10(𝐴 + 19)𝐿) ≥ 1/(10(𝐴 + 19)𝐿2) and the assumption in Theorem 5.2(2) yields
𝜆1 ≥ |𝜆𝑖∗ | ≥ 1/(10(𝐴 + 19)𝐿2). So in particular 𝜆1 ≥ 0 and 𝜎1 ≥ 𝜆1 ≥ 1/(10(𝐴 + 19)𝐿2), and we can
take 𝑗 = 1 and (1) is satisfied.
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Now, let 𝑋 𝑗 = 𝑎 𝑗𝑊 𝑗+𝜆 𝑗 (𝑊2
𝑗 −1) and let 𝑋 ′ = 𝑓 −E 𝑓 −𝑋 𝑗 =

∑
𝑖≠ 𝑗 (𝑎𝑖𝑊𝑖+𝜆𝑖 (𝑊2

𝑖 −1)) contain all terms
of 𝑓 − E 𝑓 except the term 𝑋 𝑗 . By Theorem 4.14 (hypercontractivity), we have E[(𝑋 ′)4] ≤ 81𝜎(𝑋 ′)4,
and therefore, Lemma 5.9 shows that −18 ≤ −18𝜎(𝑋 ′) ≤ 𝑋 ′ ≤ 0 with probability at least 1/405.

We claim that we can apply Lemma 5.8 to 𝑋 𝑗 and 𝑢 ∈ [0, 𝐴+19], showing that 𝑝𝑋 𝑗 (𝑢) �𝐴 1/𝜎𝑗 ≥ 1.
Indeed, in case (1) we have 0 ≤ 𝑢 ≤ 10(𝐴 + 19)2𝐿2𝜎𝑗 and can apply case (1) of Lemma 5.8 with
𝐴′ = 10(𝐴 + 19)2𝐿2, while in case (2) we have 0 ≤ 𝑢 ≤ (𝐴 + 19)𝐿𝜎𝑗 and can apply case (2) of Lemma
5.8 with 𝐴′ = (𝐴 + 19)𝐿.

Therefore, for any 𝑢 ∈ [0, 𝐴 + 1] we obtain

𝑝 𝑓 −E 𝑓 (𝑢) = 𝑝𝑋 ′+𝑋 𝑗 (𝑢) ≥
∫ 0

−18
𝑝𝑋 ′ (𝑦)𝑝𝑋 𝑗 (𝑢 − 𝑦) 𝑑𝑦

�𝐴

∫ 0

−18
𝑝𝑋 ′ (𝑦) 𝑑𝑦 = Pr[−18 ≤ 𝑋 ′ ≤ 0] � 1. �

5.4. Nonuniform anticoncentration

In this subsection, we prove Theorem 5.2(1), which is essentially a nonuniform version of Theorem 1.6.
We begin with a lemma giving nonuniform anticoncentration bounds for a quadratic polynomial of a
single Gaussian variable, that is, for one of the terms in our sum.

Lemma 5.10. Let 𝑊 ∼ N (0, 1) and for some 𝑎, 𝜆 ∈ R (not both zero) let 𝑋 = 𝑎𝑊 + 𝜆(𝑊2 − 1), so
𝜎2 := 𝜎(𝑋)2 = 𝑎2 + 2𝜆2. Suppose we are given some 𝑥 ≥ 103𝜎 satisfying |𝜆 | · 𝑥 ≤ 𝑎2/10. Then for
each 𝑢 ∈ R with 𝑥/10 ≤ |𝑢 | ≤ 2𝑥, we have

𝑝𝑋 (𝑢) �
1
|𝑎 | exp

(
− 𝑥

𝜎

)
.

Proof. Define the function 𝑔 : R→ R by 𝑔(𝑡) = 𝑎𝑡 + 𝜆(𝑡2 − 1). As in the proof of Lemma 5.8, we can
calculate (𝑔′(𝑡))2 = 4𝜆 · 𝑔(𝑡) + 4𝜆2 + 𝑎2 for all 𝑡 ∈ R. Now, consider some 𝑢 ∈ R with 𝑥/10 ≤ |𝑢 | ≤ 2𝑥.
There are at most two different 𝑡 ∈ R with 𝑔(𝑡) = 𝑢. For any such t, we have (using the assumption that
|𝜆 | · 𝑥 ≤ 𝑎2/10)

(𝑔′(𝑡))2 ≥ 4𝜆2 + 𝑎2 − 4|𝜆 | · 2𝑥 ≥ 𝑎2/5 ≥ 𝑎2/9.

We furthermore claim that any such t must satisfy |𝑡 | ≥ 𝑥/(20|𝑎 |). Indeed, if |𝑡 | < 𝑥/(20|𝑎 |), then
(using that 𝑥 ≥ 103𝜎 ≥ 103𝑎 and the assumption |𝜆 | · 𝑥 ≤ 𝑎2/10)

|𝑔(𝑡) | = |𝑎𝑡 + 𝜆(𝑡2 − 1) | ≤ |𝑎 | · 𝑥

20|𝑎 | + |𝜆 | · max
{

𝑥2

400𝑎2 , 1
}
≤ 𝑥

20
+ |𝜆 | · 𝑥2

400𝑎2 ≤ 𝑥

20
+ 𝑥

4000
<

𝑥

10
.

As |𝑢 | ≥ 𝑥/10, this contradicts 𝑔(𝑡) = 𝑢. Thus, any 𝑡 ∈ R with 𝑔(𝑡) = 𝑢 must indeed also satisfy
|𝑡 | ≥ 𝑥/(20|𝑎 |). Now, we obtain (using again that 𝑥 ≥ 103𝜎 ≥ 103𝑎)

𝑝𝑋 (𝑢) =
∑
𝑡 ∈R

𝑔 (𝑡)=𝑢

𝑝𝑊 (𝑡)
|𝑔′(𝑡) | ≤ 2 · 1

|𝑎 |/3
· exp

(
− 𝑥2

800𝑎2

)
�

1
|𝑎 | exp

(
− 𝑥

𝜎

)
. �

Now, we prove Theorem 5.2(1). The main idea is to divide our random variable 𝑓 − E 𝑓 into
independent parts, to take advantage of exponential tail bounds (by Theorem 4.15 or Lemma 5.10) for
one of the parts, and anticoncentration bounds (by Theorem 1.6) for the rest of the parts.

Proof of Theorem 5.2(1). By rescaling, we may assume 𝜎 := 𝜎( 𝑓 ) = 1. If |𝑥 | ≤ 103 = 103𝜎( 𝑓 ), the
desired bound follows from Theorem 1.6. So we may assume that |𝑥 | ≥ 103𝜎( 𝑓 ). Also, note that the
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assumption in Theorem 5.2(1) implies that 𝜂 ≤ 1. Borrowing the notation from the proof of Theorem
1.6, we write

𝑓 − E 𝑓 =
𝑛∑
𝑖=1

(𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2
𝑖 − 1)),

with (𝑊1, . . . ,𝑊𝑛) ∼ N (0, 1)⊗𝑛 and 𝜎2
𝑖 = 𝑎2

𝑖 + 2𝜆2
𝑖 (then we have 1 = 𝜎2 = 𝜎2

1 + · · · + 𝜎2
𝑛). We may

assume that |𝜆1 | ≥ · · · ≥ |𝜆𝑛 |. Note that using Theorem 4.13 the assumption in Theorem 5.2(1) implies
that for every subset 𝐼 ⊆ [𝑛] of size |𝐼 | = 𝑛 − 3 we have

∑
𝑖∈𝐼 𝜆

2
𝑖 ≥ 𝜂(𝜆2

1 + · · · + 𝜆2
𝑛). In particular,∑𝑛

𝑖=4 𝜆
2
𝑖 ≥ 𝜂(𝜆2

1 + · · · + 𝜆2
𝑛).

By adding at most three terms with 𝑎𝑖 = 𝜆𝑖 = 0, we may assume that 𝑛 ≡ 1(mod 4). For a subset
𝐽 ⊆ [𝑛], let 𝑋𝐽 =

∑
𝑖∈𝐽 (𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2

𝑖 − 1)) and 𝜎2
𝐽 =

∑
𝑖∈𝐽 𝜎2

𝑖 = 𝜎(𝑋𝐽 )2.
Let 𝑖∗ ∈ [𝑛] be chosen such that 𝜎2

𝑖∗ is maximal, and define 𝐽0 = {𝑖∗}. We claim that we can find a
partition of [𝑛] \ 𝐽0 = [𝑛] \ {𝑖∗} into four subsets 𝐽1, 𝐽2, 𝐽3, 𝐽4 satisfying the following conditions.
(a) For ℎ = 1, 2, 3, 4, we have 𝜎2

[𝑛]\𝐽ℎ ≥ 𝜂/2.
(b) For any ℎ = 0, . . . , 4 and any subset 𝐼 ⊆ [𝑛] \ 𝐽ℎ of size |𝐼 | = 𝑛 − |𝐽ℎ | − 2, we have

∑
𝑖∈𝐼 𝜆

2
𝑖 ≥

(𝜂/4) · (𝜆2
1 + · · · + 𝜆2

𝑛).
Indeed, we can build such a partition iteratively: Let us divide [𝑛] \ {𝑖∗} into 𝑛/4 quadruplets (starting
with the four smallest indices, then the next four, and so on). Iteratively, for each quadruplet, distribute
one element to each of 𝐽1, 𝐽2, 𝐽3, 𝐽4 in the following way. We assign the index i in the quadruplet with
the largest 𝜎2

𝑖 to the set 𝐽ℎ which had the smallest value of 𝜎2
𝐽ℎ

at the end of the last step, we assign the
index i with the second-largest 𝜎2

𝑖 to the set 𝐽ℎ which had the second-smallest value of 𝜎2
𝐽ℎ

, and so on.
One can check that this assignment process maintains the property that at the end of any step, the values
𝜎2
𝐽ℎ

for ℎ = 1, 2, 3, 4 differ by at most max𝑖 𝜎2
𝑖 = 𝜎2

𝑖∗ . Hence, 𝜎2
[𝑛]\𝐽1

≥ 𝜎2
𝐽2
+ 𝜎2

𝑖∗ ≥ 𝜎2
𝐽1

= 1 − 𝜎2
[𝑛]\𝐽1

,
so 𝜎2

[𝑛]\𝐽1
≥ 1/2 ≥ 𝜂/2. Analogously, one can show 𝜎2

[𝑛]\𝐽ℎ ≥ 𝜂/2 for ℎ = 2, 3, 4, so (a) is satisfied.
To check (b), note that for each ℎ = 0, . . . , 4 the set [𝑛] \ 𝐽ℎ is missing either one element from each of
the quadruplets considered during the construction (if 1 ≤ ℎ ≤ 4) or is missing one element in total (if
ℎ = 0). For a subset 𝐼 ⊆ [𝑛] \ 𝐽ℎ of size |𝐼 | = 𝑛 − |𝐽ℎ | − 2, two additional elements are missing. Thus,
for every 𝑘 = 1, . . . , 𝑛/4 the set 𝐼 ⊆ [𝑛] is missing at most 𝑘 + 2 of the elements in [4𝑘]. Thus, recalling
that |𝜆1 | ≥ · · · ≥ |𝜆𝑛 |, we obtain∑

𝑖∈𝐼
𝜆2
𝑖 ≥ 𝜆2

4 + (𝜆2
6 + 𝜆2

7 + 𝜆2
8) + (𝜆2

10 + 𝜆2
11 + 𝜆2

12) + · · ·

≥ 𝜆2
4 + 𝜆2

8 + 𝜆2
12 + · · · ≥ 1

4

𝑛∑
𝑖=4

𝜆2
𝑖 ≥ (𝜂/4) · (𝜆2

1 + · · · + 𝜆2
𝑛).

This establishes (b). Thus, the sets 𝐽1, . . . , 𝐽4 indeed satisfy the desired conditions.
By our assumption |𝑥 | ≥ 103𝜎( 𝑓 ) and by 0 ≤ 𝜀 ≤ 𝜎( 𝑓 ), we have |𝑦 | ≥ 0.999|𝑥 | ≥ (5/6) · |𝑥 | for

all 𝑦 ∈ [𝑥, 𝑥 + 𝜀]. Thus, whenever 𝑓 − E 𝑓 =
∑𝑛

𝑖=1(𝑎𝑖𝑊𝑖 + 𝜆𝑖 (𝑊2
𝑖 − 1)) = 𝑋𝐽0 + · · · + 𝑋𝐽4 is contained in

the interval [𝑥, 𝑥 + 𝜀], we must have |𝑋𝐽ℎ | ≥ |𝑥 |/6 for at least one ℎ ∈ {0, . . . , 4}. So, we have

Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]] ≤
4∑

ℎ=0
Pr

[
|𝑋𝐽ℎ | ≥ |𝑥 |/6 and 𝑋[𝑛]\𝐽ℎ ∈ [𝑥 − 𝑋𝐽ℎ , 𝑥 − 𝑋𝐽ℎ + 𝜀]

]
. (5.2)

For ℎ = 1, . . . , 4, note that

Pr
[
|𝑋𝐽ℎ | ≥ |𝑥 |/6 and 𝑋[𝑛]\𝐽ℎ ∈ [𝑥 − 𝑋𝐽ℎ , 𝑥 − 𝑋𝐽ℎ + 𝜀]

]
≤ Pr[|𝑋𝐽ℎ | ≥ |𝑥 |/6] · L(𝑋[𝑛]\𝐽ℎ , 𝜀) �𝜂 exp

(
− 2

2𝑒
· |𝑥 |

6𝜎𝐽ℎ

)
𝜀

𝜎[𝑛]\𝐽ℎ
�𝜂

𝜀

𝜎
exp

(
−Ω

(
|𝑥 |
𝜎

))
, (5.3)
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where in the second step we applied Theorem 4.15 to 𝑋𝐽ℎ with 𝑡 = |𝑥 |/(6𝜎𝐽ℎ ) ≥ |𝑥 |/(6𝜎) and Theorem
1.6 to 𝑋[𝑛]\𝐽ℎ (noting that the assumption of Theorem 1.6 is satisfied by condition (b); see also Remark
5.1), and in the last step we used that 𝜎2

[𝑛]\𝐽ℎ ≥ 𝜂/2 by condition (a).
We now distinguish two cases. First, let us assume that 𝜎[𝑛]\𝐽0 ≥ 𝜂2/(100|𝑥 |). In this case, similarly

to (5.3), we can bound (recalling that 𝜎 = 1)

Pr
[
|𝑋𝐽0 | ≥ |𝑥 |/6 and 𝑋[𝑛]\𝐽0 ∈ [𝑥 − 𝑋𝐽0 , 𝑥 − 𝑋𝐽0 + 𝜀]

]
�𝜂 exp

(
− 2

2𝑒
· |𝑥 |

6𝜎𝐽0

)
· 𝜀

𝜎[𝑛]\𝐽0

�𝜂
𝜀

𝜎
· |𝑥 |

40𝜎
· exp

(
− |𝑥 |

20𝜎

)
≤ 𝜀

𝜎
exp

(
− |𝑥 |

40𝜎

)
,

where in the last step we used that 𝑡𝑒−𝑡 ≤ 1/𝑒 ≤ 1 for all 𝑡 ∈ R (specifically, we used this for
𝑡 = |𝑥 |/(40𝜎)). Together with (5.3), this enables us to bound all five summands on the right-hand side
of (5.2), implying the desired bound for Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]].

It remains to consider the case that 𝜎[𝑛]\𝐽0 < 𝜂2/(100|𝑥 |). Then we in particular have 𝜎2
𝑖∗ =

1 − 𝜎2
[𝑛]\𝐽0

≥ 1 − 𝜂4/(104 |𝑥 |2) ≥ 1 − 𝜂/2. Furthermore, the assumption in Theorem 5.2(1) implies∑
𝑖∈[𝑛]\{𝑖∗ } 𝜆

2
𝑖 ≥ 𝜂(𝜆2

1 + · · · + 𝜆2
𝑛), and therefore 𝜆2

𝑖∗ ≤ (1− 𝜂) (𝜆2
1 + · · · + 𝜆2

𝑛) ≤ (1− 𝜂)/2 (recalling that
1 = 𝜎2 =

∑𝑛
𝑖=1(𝑎2

𝑖 +2𝜆2
𝑖 )). Thus, we obtain 𝑎2

𝑖∗ = 𝜎2
𝑖∗ −2𝜆2

𝑖∗ ≥ (1−𝜂/2) − (1−𝜂) = 𝜂/2. Our assumption
also implies 𝜂4/(104 |𝑥 |2) > 𝜎2

[𝑛]\𝐽0
≥

∑
𝑖∈[𝑛]\{𝑖∗ } 𝜆

2
𝑖 ≥ 𝜂𝜆2

𝑖∗, meaning that |𝜆𝑖∗ | · |𝑥 | ≤ 𝜂/100 ≤ 𝑎2
𝑖∗/10.

Now, we observe

Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]]

≤
4∑

ℎ=1
Pr

[
|𝑋𝐽ℎ | ≥ |𝑥 |/6 and 𝑋[𝑛]\𝐽ℎ ∈ [𝑥 − 𝑋𝐽ℎ , 𝑥 − 𝑋𝐽ℎ + 𝜀]

]
+ Pr

[
|𝑋[𝑛]\𝐽0 | ≤ (4/6) |𝑥 | and 𝑋𝐽0 ∈ [𝑥 − 𝑋[𝑛]\𝐽0 , 𝑥 − 𝑋[𝑛]\𝐽0 + 𝜀]

]
.

Again, (5.3) gives an upper bound for the summands for ℎ = 1, . . . , 4. To bound the last summand, let us
fix any outcome of 𝑋[𝑛]\𝐽0 with |𝑋[𝑛]\𝐽0 | ≤ (4/6) |𝑥 |. Then the probability that 𝑋𝐽0 = 𝑎𝑖∗𝑊𝑖∗ +𝜆𝑖∗ (𝑊2

𝑖∗−1)
lies in the interval [𝑥 − 𝑋[𝑛]\𝐽0 , 𝑥 − 𝑋[𝑛]\𝐽0 + 𝜀] (which has length 𝜀 and is somewhere between 𝑥/10
and 2𝑥) is by Lemma 5.10 bounded by

Pr[𝑋𝐽0 ∈ [𝑥 − 𝑋[𝑛]\𝐽0 , 𝑥 − 𝑋[𝑛]\𝐽0 + 𝜀]] � 𝜀

|𝑎𝑖∗ |
exp

(
− |𝑥 |
𝜎𝐽0

)
�𝜂

𝜀

𝜎
exp

(
− |𝑥 |

𝜎

)
,

where in the last step we used that 𝑎2
𝑖∗ ≥ 𝜂/2 (see above). Thus, we again obtain the desired bound for

Pr[ 𝑓 − E 𝑓 ∈ [𝑥, 𝑥 + 𝜀]]. �

5.5. Control of Gaussian characteristic functions

For later, we also record the fact that under a robust rank assumption, characteristic functions of certain
‘quadratic’ functions of Gaussian random variables decay rapidly.
Lemma 5.11. Fix a positive integer r. Let �𝑍 = (𝑍1, . . . , 𝑍𝑛) ∼ N (0, 1)⊗𝑛 be a vector of independent
standard Gaussian random variables. Consider a real quadratic polynomial 𝑓 ( �𝑍) of �𝑍 , written as

𝑓 ( �𝑍) = �𝑍ᵀ𝐹 �𝑍 + �𝑓 · �𝑍 + 𝑓0

for some symmetric matrix 𝐹 ∈ R𝑛×𝑛, some vector �𝑓 ∈ R𝑛 and some 𝑓0 ∈ R. Let

𝑠 = min
𝐹 ∈R𝑛×𝑛
rank 𝐹 ≤𝑟

‖𝐹 − 𝐹‖2
F.
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Then for any 𝜏 ∈ R, we have

|𝜑 𝑓 ( �𝑍 ) (𝜏) | = |E[exp(𝑖𝜏 𝑓 ( �𝑍))] | �𝑟
1

(1 + 𝜏2𝑠)𝑟/4 .

Proof. Let 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of F, ordered such that |𝜆1 | ≥ · · · ≥ |𝜆𝑛 |. By Theorem 4.13,
we have 𝑠 =

∑𝑛
𝑗=𝑟+1 𝜆

2
𝑗 .

As in the proof of Theorem 1.6, we write 𝑓 ( �𝑍) − E[ 𝑓 ( �𝑍)] =
∑𝑛

𝑗=1 (𝑎 𝑗𝑊 𝑗 + 𝜆𝑖 (𝑊2
𝑗 − 1)), where

(𝑊1, . . . ,𝑊𝑛) ∼ N (0, 1)⊗𝑛 are independent standard Gaussians. From Lemma 5.4, recall that

|E exp(𝑖𝜏(𝑎 𝑗𝑊 𝑗 + 𝜆 𝑗 (𝑊2
𝑗 − 1))) | = |E exp(𝑖𝜏(𝑎 𝑗𝑊 𝑗 + 𝜆 𝑗𝑊

2
𝑗 )) | ≤

1
(1 + 4𝜆2

𝑗𝜏
2)1/4

for 𝑗 = 1, . . . , 𝑛. We then deduce

|E[exp(𝑖𝜏 𝑓 ( �𝑍))] | =
𝑛∏
𝑗=1

|E[exp(𝑖𝜏(𝑎 𝑗𝑊 + 𝜆 𝑗 (𝑊2
𝑗 − 1)))] | ≤

𝑛∏
𝑗=1

1
(1 + 4𝜆2

𝑗𝜏
2)1/4

≤
𝑟∏
𝑗=1

(
1 + 4𝜏2

� (𝑛− 𝑗)/𝑟 �∑
𝑡=0

𝜆2
𝑗+𝑟𝑡

)−1/4

≤
(
1 + 4𝜏2

� (𝑛−𝑟 )/𝑟 �∑
𝑡=0

𝜆2
𝑟+𝑟𝑡

)−𝑟/4

≤ � !1 + 4𝜏2

𝑟

𝑛∑
𝑗=𝑟+1

𝜆2
𝑗
"#$
−𝑟/4

�𝑟
1

(1 + 𝜏2𝑠)𝑟/4 . �

6. Small-ball probability via characteristic functions

Recall that Esseen’s inequality (Theorem 4.7) states that L(𝑋, 𝜀) � 𝜀
∫ 2/𝜀
−2/𝜀 |𝜑𝑋 (𝑡) | 𝑑𝑡 for any real

random variable X. We will need a ‘relative’ version of Esseen’s inequality, as follows.

Lemma 6.1. Let 𝑋,𝑌 be real random variables. For any 𝜀 > 0, we have

L(𝑋, 𝜀) � L(𝑌, 𝜀) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡.

In the proof of Lemma 6.1, we use the Fourier transform: For a function 𝑓 ∈ 𝐿1 (R), we write

𝑓 (𝜉) =
∫ ∞

−∞
𝑒−𝑖𝑡 𝜉 𝑓 (𝑡) 𝑑𝑡.

Proof of Lemma 6.1. By rescaling it suffices to prove the claim when 𝜀 = 1. Let us abbreviate the second
summand on the right-hand side of the desired inequality by 𝐼 :=

∫ 2
−2 |𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡. Furthermore,

let 𝜓 = 1[−1,1] ∗ 1[−1,1] (where ∗ denotes convolution); note that 0 ≤ 𝜓(𝑡) ≤ 2 for all t, and the support
of 𝜓 is inside the interval [−2, 2]. Let 𝑓 (𝑡) = �̂�(𝑡) = (%1[−1,1] (𝑡))2; we compute

𝑓 (𝑡) =
( ∫ 1

−1
𝑒−𝑖𝑡 𝑥 𝑑𝑥

)2
=

(
2 sin 𝑡

𝑡

)2
.

for 𝑡 ≠ 0 and 𝑓 (0) = 22. Note that for |𝑡 | ≤ 1 we have 𝑓 (𝑡) ≥ 1, and for all 𝑡 ∈ R we have
𝑓 (𝑡) ≤ min{4, 4/𝑡2} ≤ 8/(𝑡2 + 1). By the formula for the Fourier transform and the triangle inequality,
for any 𝑥 ∈ R we have
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|E[ 𝑓 (𝑋 − 𝑥) − 𝑓 (𝑌 − 𝑥)] | =




E∫ ∞

−∞
𝜓(𝜃) (𝑒−𝑖 𝜃 (𝑋−𝑥) − 𝑒−𝑖 𝜃 (𝑌−𝑥) ) 𝑑𝜃






≤

∫ ∞

−∞
𝜓(𝜃)



E[𝑒−𝑖 𝜃 (𝑋−𝑥) − 𝑒−𝑖 𝜃 (𝑌−𝑥) ] 

 𝑑𝜃
=
∫ ∞

−∞
𝜓(−𝑡) |𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡 ≤ 2

∫ 2

−2
|𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡 = 2𝐼 .

Now, note that for any 𝑠 ∈ R we have

Pr[|𝑋 − 𝑠 | ≤ 1] = E[1 |𝑋−𝑠 | ≤1] ≤ E[ 𝑓 (𝑋 − 𝑠)] ≤ E[ 𝑓 (𝑌 − 𝑠)] + |E[ 𝑓 (𝑋 − 𝑠) − 𝑓 (𝑌 − 𝑠)] |
≤ E[ 𝑓 (𝑌 − 𝑠)] + 2𝐼,

and therefore

Pr[|𝑋 − 𝑠 | ≤ 1] ≤ E[ 𝑓 (𝑌 − 𝑠)] + 2𝐼 ≤
∑
𝑗∈Z

8
𝑗2 + 1

Pr[|𝑌 − 𝑠 − 𝑗 | ≤ 1] + 2𝐼 (6.1)

≤ L(𝑌, 1)
∑
𝑗∈Z

8
𝑗2 + 1

+ 2𝐼 ≤ 40 · L(𝑌, 1) + 2𝐼 .

Thus, L(𝑋, 1) ≤ 40 · L(𝑌, 1) + 2𝐼 � 𝐿(𝑌, 1) + 𝐼, as desired. �

Next, we will need a slightly more sophisticated exponentially decaying nonuniform version of
Lemma 6.1.

Lemma 6.2. Let 𝑋,𝑌 be real random variables. Suppose that for some 0 < 𝜂 < 1 and 0 < 𝜀 ≤ 𝜎 we
have

Pr[|𝑌 − 𝑥 | ≤ 𝜀] ≤ 𝜀

𝜂𝜎
exp(−𝜂 |𝑥 |/𝜎)

for all 𝑥 ∈ R. Then for all 𝑥 ∈ R,

Pr[|𝑋 − 𝑥 | ≤ 𝜀] � 𝜀2

𝑥2 + 𝜎2 + 𝜀

𝜂𝜎
exp(−𝜂 |𝑥 |/(2𝜎)) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡.

Proof. As in Lemma 6.1, we may assume that 𝜀 = 1, and let us again write 𝐼 :=
∫ 2
−2 |𝜑𝑋 (𝑡) − 𝜑𝑌 (𝑡) | 𝑑𝑡.

Note that the assumption in the lemma statement implies L(𝑌, 1) ≤ 1/(𝜂𝜎) ≤ 𝑒 · 1/(𝜂𝜎) · exp(−𝜂/2).
So if |𝑥 | ≤ 𝜎, the desired bound follows from Lemma 6.1. Otherwise, if |𝑥 | ≥ 𝜎, then (6.1) implies

Pr[|𝑋 − 𝑥 | ≤ 1] �
∑
𝑗∈Z

Pr[|𝑌 − 𝑥 − 𝑗 | ≤ 1]
𝑗2 + 1

+ 𝐼

=
∑
𝑗∈Z

| 𝑗+𝑥 | ≥ |𝑥 |/2

Pr[|𝑌 − 𝑥 − 𝑗 | ≤ 1]
𝑗2 + 1

+
∑
𝑗∈Z

| 𝑗+𝑥 |< |𝑥 |/2

Pr[|𝑌 − 𝑥 − 𝑗 | ≤ 1]
𝑗2 + 1

+ 𝐼

≤ sup
𝑦∈R

|𝑦 | ≥ |𝑥 |/2

Pr[|𝑌 − 𝑦 | ≤ 1] ·
∑
𝑗∈Z

1
𝑗2 + 1

+
∑
𝑗∈Z

| 𝑗−(−𝑥) |< |𝑥 |/2

Pr[|𝑌 − 𝑥 − 𝑗 | ≤ 1]
(𝑥/2)2 + 1

+ 𝐼,

�
𝜀

𝜂𝜎
exp(−𝜂 |𝑥 |/(2𝜎)) + 1

𝑥2 + 1
+ 𝐼

from which the desired result follows (using that 𝑥2 + 1 ≥ 𝑥2 � 𝑥2 +𝜎2 since we assumed |𝑥 | ≥ 𝜎). �
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It turns out that these ideas are not only useful for anticoncentration; we can also derive lower bounds
on the probability that X is close to some point x, given local control over the behavior of Y near x.

Lemma 6.3. There is an absolute constant 𝐶6.3 such that the following holds. Let 𝑋,𝑌 be real random
variables, and suppose Y is continuous with a density function 𝑝𝑌 . Let 𝜀 > 0 and 𝑥 ∈ R, and suppose
that 𝐾 ≥ 1 and 𝑅 ≥ 4 are such that 𝑝𝑌 (𝑦1)/𝑝𝑌 (𝑦2) ≤ 𝐾 for all 𝑦1, 𝑦2 ∈ [𝑥 − 𝑅𝜀, 𝑥 + 𝑅𝜀]. Then

Pr[|𝑋 − 𝑥 | ≤ 104𝐾𝜀] ≥ 1
8

Pr[|𝑌 − 𝑥 | ≤ 𝜀] − 𝐶6.3

(
𝑅−1L(𝑌, 𝜀) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑌 (𝑡) − 𝜑𝑋 (𝑡) | 𝑑𝑡

)
.

The reader may think of K as a constant (in our applications of this lemma, we will take 𝐾 = 2).
We remark that it would be possible to state a cruder version of this lemma with no assumption on the
density 𝑝𝑌 . This would be sufficient to prove a version of Theorem 3.1 where B also depends on A
and H (in addition to depending on C), but this would not be enough for the proof of Theorem 2.1 (for
technical reasons discussed in Remark 13.2).

Proof. It again suffices to prove the claim when 𝜀 = 1. Let the function f and 𝐼 :=
∫ 2
−2 |𝜑𝑋 (𝑡) −𝜑𝑌 (𝑡) | 𝑑𝑡

be as in the proof of Lemma 6.1, and recall that 1[−1,1] (𝑡) ≤ 𝑓 (𝑡) ≤ min{4, 4/𝑡2} ≤ 8/(𝑡2 + 1) for all
𝑡 ∈ R and furthermore |E[ 𝑓 (𝑋 − 𝑥)] − E[ 𝑓 (𝑌 − 𝑥)] | ≤ 2𝐼. We have

Pr[|𝑋 − 𝑥 | ≤ 104𝐾] ≥ 1
4
E[ 𝑓 (𝑋 − 𝑥)1 |𝑋−𝑥 | ≤104𝐾 ] (6.2)

=
1
4
E[ 𝑓 (𝑋 − 𝑥)] − 1

4
E[ 𝑓 (𝑋 − 𝑥)1 |𝑋−𝑥 |>104𝐾 ]

≥ 1
4
E[ 𝑓 (𝑌 − 𝑥)] − 𝐼

2
− 1

4
E[ 𝑓 (𝑋 − 𝑥)1 |𝑋−𝑥 |>104𝐾 ]

≥ 1
4

Pr[|𝑌 − 𝑥 | ≤ 1] − 𝐼

2
−

∑
𝑗∈Z

| 𝑗 | ≥9999𝐾

2
𝑗2 + 1

Pr[|𝑋 − 𝑥 − 𝑗 | ≤ 1] . (6.3)

As in (6.1), we have

Pr[|𝑋 − 𝑥 − 𝑗 | ≤ 1] ≤
∑
𝑘∈Z

8
𝑘2 + 1

Pr[|𝑌 − 𝑥 − 𝑗 − 𝑘 | ≤ 1] + 2𝐼,

so ∑
𝑗∈Z

| 𝑗 | ≥9999𝐾

2
𝑗2 + 1

Pr[|𝑋 − 𝑥 − 𝑗 | ≤ 1] ≤ 16
∑
𝑗 ,𝑘∈Z

| 𝑗 | ≥9999𝐾

Pr[|𝑌 − 𝑥 − 𝑗 − 𝑘 | ≤ 1]
( 𝑗2 + 1) (𝑘2 + 1)

+ 2

(∑
𝑗∈Z

2
𝑗2 + 1

)
𝐼

≤ 16
∑
𝑗 ,𝑘∈Z

9999𝐾 ≤ | 𝑗 | ≤(𝑅−1)/2
|𝑘 | ≤(𝑅−1)/2

𝐾 Pr[|𝑌 − 𝑥 | ≤ 1]
( 𝑗2 + 1) (𝑘2 + 1)

+ 16
∑
𝑗 ,𝑘∈Z

max{ | 𝑗 |, |𝑘 | }> (𝑅−1)/2

L(𝑌, 1)
( 𝑗2 + 1) (𝑘2 + 1)

+ 20𝐼

≤ 16𝐾 · Pr[|𝑌 − 𝑥 | ≤ 1] · 5 · 2
9999𝐾 − 1

+ 16 · 2 · 5 · 2
(𝑅 − 3)/2

· L(𝑌, 1) + 20𝐼

≤ 1
8

Pr[|𝑌 − 𝑥 | ≤ 1] +𝑂 (𝑅−1) · L(𝑌, 1) +𝑂 (𝐼),

where we used that
∑

𝑗∈Z 1/( 𝑗2+1) ≤ 5 and
∑

𝑗∈Z, | 𝑗 | ≥𝑇 1/( 𝑗2+1) ≤ 2
∑

𝑗∈Z, 𝑗≥𝑇 1/( 𝑗 ( 𝑗−1)) ≤ 2/(𝑇−1)
for 𝑇 > 1. Plugging this into (6.3) gives the desired result. �
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7. Characteristic function estimates based on linear cancellation

Consider X as in Theorem 3.1, and let 𝑋∗ = (𝑋 − E𝑋)/𝜎(𝑋). When t is not too large, we can prove
estimates on 𝜑𝑋∗ (𝑡) purely using the linear behavior of X (treating the quadratic part as an ‘error term’).
In this section, we prove two different results of this type.

First, when t is very small, there is essentially no cancellation in 𝜑𝑋∗ (𝑡), and we have the follow-
ing crude estimate. Roughly speaking, we use the simple observation (from Section 3.1) that X can be
interpreted as a sum of independent random variables (a ‘linear part’), plus a ‘quadratic part’ with neg-
ligible variance. We can then use standard estimates for characteristic functions of sums of independent
random variables.

Lemma 7.1. Fix 𝜀, 𝐻 > 0. Let G be an n-vertex graph with density at least 𝜀, and consider 𝑒0 ∈ R and a
vector �𝑒 ∈ R𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all 𝑣 ∈ 𝑉 (𝐺). Let𝑈 ⊆ 𝑉 (𝐺) be a random vertex subset obtained
by including each vertex with probability 1/2 independently, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0. Let

𝑋∗ = (𝑋 −E𝑋)/𝜎(𝑋), and let 𝑍 ∼ N (0, 1) be a standard normal random variable. Then, for all 𝑡 ∈ R,
we have

|𝜑𝑋∗ (𝑡) − 𝜑𝑍 (𝑡) | �𝜀,𝐻 |𝑡 |𝑛−1/2.

We remark that on its own Lemma 7.1 implies a central limit theorem (stating that X is asymptotically
Gaussian) by Lévy’s continuity theorem (see, for example, [30, Theorem 3.3.17]).

Proof. Define the random vector �𝑥 ∈ {−1, 1}𝑉 (𝐺) by taking 𝑥𝑣 = 1 if 𝑣 ∈ 𝑈, and 𝑥𝑣 = −1 if 𝑣 ∉ 𝑈 (so
𝑥𝑣 for 𝑣 ∈ 𝑉 (𝐺) are independent Rademacher random variables). Then, we compute

𝑋 = 𝑒0 +
𝑒(𝐺)

4
+ 1

2

∑
𝑣 ∈𝑉 (𝐺)

𝑒𝑣 +
1
2

∑
𝑣 ∈𝑉 (𝐺)

(
𝑒𝑣 +

1
2

deg𝐺 (𝑣)
)
𝑥𝑣 +

1
4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣

= E𝑋 + 1
2

∑
𝑣 ∈𝑉 (𝐺)

(
𝑒𝑣 +

1
2

deg𝐺 (𝑣)
)
𝑥𝑣 +

1
4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 ,

as in (3.1). Defining 𝑑𝑣 = 𝑒𝑣 + deg𝐺 (𝑣)/2 for 𝑣 ∈ 𝑉 (𝐺), we deduce that

𝑋 − E𝑋 =
1
2
�𝑑 · �𝑥 + 1

4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 .

That is to say, 𝑋 − E𝑋 has a ‘linear part’ 1
2
�𝑑 · �𝑥 and a ‘quadratic part’ 1

4
∑

𝑢𝑣 ∈𝐸 (𝐺) 𝑥𝑢𝑥𝑣 . Recalling
(4.5), we have 𝜎(𝑋)2 = 1

4 ‖ �𝑑‖
2
2 + 1

16 𝑒(𝐺) ≥ 1
4 ‖ �𝑑‖

2
2 ≥ 1

4 ‖ �𝑑‖
2
1/𝑛 �𝜀 𝑛3 (here, we are using our density

assumption as well as the assumption that 𝑒𝑣 ≥ 0 for all 𝑣 ∈ 𝑉 (𝐺)).
First, we compare 𝑋∗ = (𝑋 − E𝑋)/𝜎(𝑋) to its linear part ( �𝑑 · �𝑥)/(2𝜎(𝑋)). For all 𝑡 ∈ R, we have

| exp(𝑖𝑡) − 1| ≤ |𝑡 | and therefore


𝜑𝑋∗ (𝑡) − E[𝑒𝑖𝑡 ( �𝑑 · �𝑥)/(2𝜎 (𝑋 )) ]



 ≤ E


 exp

( 𝑖𝑡

4𝜎(𝑋)
∑

𝑢𝑣 ∈𝐸 (𝐺)
𝑥𝑢𝑥𝑣

)
− 1




 ≤ |𝑡 |
4𝜎(𝑋)E




 ∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣





≤ |𝑡 |

4𝜎(𝑋)
� !E

[( ∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣

)2]"#$
1/2

=
|𝑡 |

4𝜎(𝑋) · 𝑒(𝐺)1/2 ≤ |𝑡 |
Ω𝜀 (𝑛3/2)

· 𝑛 �𝜀 |𝑡 |𝑛−1/2. (7.1)

Next, the linear part can be handled as in a standard proof of a quantitative central limit theorem (c.f.
Lemma 5.5). Let 𝜎1 = 𝜎( �𝑑 · �𝑥) = ‖ �𝑑‖2 and Γ = (

∑
𝑣 ∈𝑉 (𝐺) 𝑑

2
𝑣 )3/2/

∑
𝑣 ∈𝑉 (𝐺) 𝑑

3
𝑣 �𝐻 ‖ �𝑑‖3

2/𝑛
4 �𝜀,𝐻 𝑛1/2

(recalling that ‖ �𝑑‖2
2 �𝜀 𝑛3), and note that 𝜑𝑍 (𝑢) = 𝑒−𝑢

2/2. For |𝑢 | ≤ Γ/4, we have
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E[𝑒𝑖𝑢 ( �𝑑 · �𝑥)/𝜎1] − 𝜑𝑍 (𝑢)



 ≤ 16Γ−1 |𝑢 |3𝑒−𝑢2/3

by [83, Chapter V, Lemma 1]. This yields


E[𝑒𝑖𝑢 ( �𝑑 · �𝑥)/𝜎1] − 𝜑𝑍 (𝑢)



 �𝜀,𝐻 |𝑢 |𝑛−1/2

for all 𝑢 ∈ R (this is trivial for |𝑢 | ≥ Γ/4 �𝜀,𝐻 𝑛1/2). Taking 𝑢 = 𝑡𝜎1/(2𝜎(𝑋)) and using 𝜎1/(2𝜎(𝑋)) =
‖ �𝑑‖2/(‖ �𝑑‖2

2 + 1
4 𝑒(𝐺))1/2 = 1 −𝑂 𝜀 (𝑛−1), we have


E[𝑒𝑖𝑡 ( �𝑑 · �𝑥)/(2𝜎 (𝑋 )) ] − 𝜑𝑍 (𝑡)




 ≤ 


E[𝑒𝑖𝑢 ( �𝑑 · �𝑥)/𝜎1] − 𝜑𝑍 (𝑢)



 + |𝜑𝑍 (𝑢) − 𝜑𝑍 (𝑡) | �𝜀,𝐻 |𝑡 |𝑛−1/2. (7.2)

Here, we used that the function 𝜑𝑍 (𝑢) = 𝑒−𝑢
2/2 has bounded derivative, and therefore |𝜑𝑍 (𝑢)−𝜑𝑍 (𝑡) | �

|𝑢−𝑡 | = |𝜎1/(2𝜎(𝑋))−1| · |𝑡 | = 𝑂 𝜀 (𝑛−1 |𝑡 |). The desired inequality now follows from (7.1) and (7.2). �

As mentioned above, Lemma 7.1 will be used for very small t. When t is somewhat larger we will
need a stronger bound which takes into account the interaction between the linear and quadratic parts of
our random variable. Specifically, writing 𝑍1 and 𝑍2 for the linear and quadratic parts of our normalized
random variable 𝑋∗, we show that 𝑒𝑖𝑡𝑍2 does not ‘correlate adversarially’ with 𝑒𝑖𝑡𝑍1 , using an argument
due to Berkowitz [12]. Roughly speaking, the idea is as follows. Considering �𝑥 ∈ {−1, 1}𝑉 (𝐺) as in the
proof of Lemma 7.1, we can apply Taylor’s theorem to the exponential function to approximate 𝑒𝑖𝑡𝑍2 by a
polynomial in 𝑍2, thereby approximating 𝜑𝑋∗ (𝑡) by a sum of terms of the form E[

∏
𝑖∈𝑆 𝑥𝑆𝑒

𝑖𝑡𝑍1] (where
the sets S are rather small). Then, we observe that it is impossible for terms of the form

∏
𝑖∈𝑆 𝑥𝑆 to

correlate in a pathological way with 𝑒𝑖𝑡𝑍1 , because all but |𝑆 | of the terms in the ‘linear’ random variable
𝑍1 are independent from

∏
𝑖∈𝑆 𝑥𝑆 . We can use this observation to prove very strong upper bounds on

the magnitude of each of our terms E[
∏

𝑖∈𝑆 𝑥𝑆𝑒
𝑖𝑡𝑍1] (we do not attempt to understand any potential

cancellation between these terms, but the resulting loss is not severe as there are not many choices of S).
In some range of t, the above idea can be used to prove a much stronger bound than in Lemma

7.1 (where we obtained a bound of |𝑡 |𝑛−1/2). However, naïvely, this idea is only suitable in the regime
|𝑡 | �

√
𝑛, for two reasons. The first reason is that (one can compute that) the typical order of magnitude

of 𝑍2 is about 1/
√
𝑛, so a Taylor series approximation for 𝑒𝑖𝑡𝑍2 becomes increasingly ineffective as |𝑡 |

increases past
√
𝑛. The second reason is that depending on the structure of our graph G it is possible

that |𝜑𝑍1 (Θ(
√
𝑛)) | � 1, meaning that consideration of the linear part of 𝑋∗ simply does not suffice to

prove our desired bound on 𝜑𝑋∗ (𝑡) (for example, this occurs when �𝑒 = �0 and G is regular).
In order to overcome the first of these issues, we restrict our attention to a small vertex subset I,

taking advantage of the different way that the linear and quadratic parts scale (related ideas appeared
previously in [13]). Specifically, we condition on an outcome of the vertices sampled outside I, leaving
only the randomness within I (corresponding to the sequence �𝑥𝐼 ∈ {−1, 1}𝐼 ). We then redefine 𝑍1 and
𝑍2 to be the linear and quadratic parts of the conditional random variable 𝑋∗ (as a quadratic polynomial
in �𝑥𝐼 ). Dropping to a subset in this way significantly reduces the variance of 𝑍2 but may have a much
milder effect on 𝑍1, in which case the above Taylor expansion techniques described above are effective.

The second issue is more fundamental and is essentially the reason for the case distinction in our
proof of Theorem 3.1 (recall Section 3.2). Specifically, the range of t which we are able to consider
depends on a certain RLCD (recall the definitions in Section 4.3).

Lemma 7.2. Fix 𝐶, 𝐻 > 0 and 0 < 𝛾 < 1/4, and let 𝐿 = �100/𝛾�. Then there is 𝛼 = 𝛼(𝐶, 𝐻, 𝛾) > 0
such that the following holds. Let G be a C-Ramsey graph with n vertices, where n is sufficiently large
with respect to 𝐶, 𝐻 and 𝛾, and consider 𝑒0 ∈ R and a vector �𝑒 ∈ R𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all
𝑣 ∈ 𝑉 (𝐺). Let �𝑑 ∈ R𝑉 (𝐺) be given by 𝑑𝑣 = 𝑒𝑣 + deg𝐺 (𝑣)/2 for all 𝑣 ∈ 𝑉 (𝐺). Next, let 𝑈 ⊆ 𝑉 (𝐺) be a
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random vertex subset obtained by including each vertex with probability 1/2 independently, and define
𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0. Let 𝑋∗ = (𝑋 − E𝑋)/𝜎(𝑋). Then for any 𝑡 ∈ R with

𝑛2𝛾 ≤ |𝑡 | ≤ 𝛼 · min{𝑛𝛾/2𝐷𝐿,𝛾 ( �𝑑), 𝑛1/2+𝛾/8}.

we have

|𝜑𝑋∗ (𝑡) | �𝐶,𝐻 ,𝛾 𝑛−5.

Before proving Lemma 7.2, we record a simple fact about the vector �𝑑 in the lemma statement.

Lemma 7.3. Fix 𝐶 > 0, and let G be a C-Ramsey graph with n vertices, where n is sufficiently large
with respect to C. Consider a vector �𝑒 ∈ R𝑉 (𝐺)

≥0 , and define �𝑑 ∈ R𝑉 (𝐺) by 𝑑𝑣 = 𝑒𝑣 + deg𝐺 (𝑣)/2 for all
𝑣 ∈ 𝑉 (𝐺). Then for any subset 𝐼 ⊆ 𝑉 (𝐺) of size |𝐼 | ≥

√
𝑛, we have ‖ �𝑑𝐼 ‖2 �𝐶 |𝐼 |3/2.

Proof. Note that 𝐺 [𝐼] is a (2𝐶)-Ramsey graph, so by Theorem 4.1 we have 𝑒(𝐺 [𝐼]) �𝐶 |𝐼 |2. Thus,

‖ �𝑑𝐼 ‖2
2 =

∑
𝑣 ∈𝐼

(
𝑒𝑣 +

1
2

deg𝐺 (𝑣)
)2

≥
∑
𝑣 ∈𝑉

(deg𝐺 [𝐼 ] (𝑣)/2)2 ≥ |𝐼 | ·
(
𝑒(𝐺 [𝐼])

|𝐼 |

)2
�𝐶 |𝐼 |3. �

Note that this lemma in particular implies that in the setting of Lemma 7.2 the vector �𝑑 has fewer
than 𝑛1−𝛾 zero coordinates, meaning that 𝐷𝐿,𝛾 ( �𝑑) is well defined (recall Definition 4.11).

In the proof of Lemma 7.2, we will also use the following Taylor series approximation for the
exponential function.

Lemma 7.4. For all 𝑧 ∈ C and 𝐾 ∈ N, we have



𝑒𝑧 − 𝐾∑
𝑗=0

𝑧 𝑗

𝑗!





 ≤ 𝑒max{0,�(𝑧) } |𝑧 |𝐾+1

𝐾!
.

Proof. This follows from Taylor’s theorem with the integral form for the remainder: Note that



 ∫ 𝑧

0
𝑒𝑡 (𝑧 − 𝑡)𝐾 𝑑𝑡





 = |𝑧 |𝐾+1




 ∫ 1

0
𝑒𝑠𝑧 (1 − 𝑠)𝐾 𝑑𝑠





 ≤ 𝑒max{0,�(𝑧) } |𝑧 |𝐾+1. �

Now, we prove Lemma 7.2.

Proof of Lemma 7.2. Let us define �𝑥 ∈ {−1, 1}𝑉 (𝐺) by taking 𝑥𝑣 = 1 if 𝑣 ∈ 𝑈, and 𝑥𝑣 = −1 if 𝑣 ∉ 𝑈
(and note that then �𝑥 is a vector of independent Rademacher random variables). As in the proof of
Lemma 7.1, we obtain 𝑋 − E𝑋 = 1

2
�𝑑 · �𝑥 + 1

4
∑

𝑢𝑣 ∈𝐸 (𝐺) 𝑥𝑢𝑥𝑣 and 𝜎(𝑋) �𝐶 𝑛3/2 (here, we used that
by Theorem 4.1 the graph G has density at least 𝜀 for some 𝜀 = 𝜀(𝐶) > 0 only depending on C). We
furthermore have 𝜎(𝑋) = ( 1

4 ‖ �𝑑‖
2
2 + 1

16 𝑒(𝐺))1/2 �𝐻 𝑛3/2.
By the definition of RLCD (Definition 4.11), there is a subset 𝐼 ⊆ 𝑉 (𝐺) of size |𝐼 | = �𝑛1−𝛾� such that

𝐷𝐿,𝛾 ( �𝑑) = 𝐷𝐿 ( �𝑑𝐼 /‖ �𝑑𝐼 ‖2).

Step 1: Reducing to the randomness of �𝑥𝐼 . The first step is to condition on a typical outcome of
�𝑥𝑉 (𝐺)\𝐼 ∈ {−1, 1}𝑉 (𝐺)\𝐼 so that we can work purely with the randomness of �𝑥𝐼 ∈ {−1, 1}𝐼 . Define the
vector �𝑦 ∈ R𝐼 by taking

𝑦𝑣 =
1
4

∑
𝑢∈𝑉 (𝐺)\𝐼
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢
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for each 𝑣 ∈ 𝐼. Also, let

𝑍1 =
(1
2
�𝑑𝐼 + �𝑦

)
· �𝑥𝐼 , 𝑍2 =

1
4

∑
𝑢,𝑣 ∈𝐼

𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 .

Note that 𝑋 −E[𝑋 | �𝑥𝑉 (𝐺)\𝐼 ] = 𝑍1 + 𝑍2. Using the fact that |E[𝑒𝑖𝑡 (𝑌+𝑐) ] | = |E[𝑒𝑖𝑡𝑌 ] | for any real random
variable Y and nonrandom 𝑐 ∈ R, we have

|𝜑𝑋∗ (𝑡) | = |E[𝑒𝑖𝑡𝑋/𝜎 (𝑋 ) ] | ≤ E|E[𝑒𝑖𝑡𝑋/𝜎 (𝑋 ) |�𝑥𝑉 (𝐺)\𝐼 ] | = E




E [

exp
(
𝑖𝑡 (𝑍1 + 𝑍2)

𝜎(𝑋)

)



�𝑥𝑉 (𝐺)\𝐼

] 



 .
The inner expectation on the right-hand side always has magnitude at most 1. Since deg𝐺 (𝑣) ≤ 𝑛

for 𝑣 ∈ 𝐼, with a Chernoff bound we see that with probability at least 1 − exp(−Ω(𝑛𝛾/4)) we have
|𝑦𝑣 | ≤ 𝑛1/2+𝛾/8 for all 𝑣 ∈ 𝐼. Conditioning on a fixed outcome of �𝑥𝑉 (𝐺)\𝐼 such that this is the case, it
now suffices to show that 



E [

exp
(
𝑖𝑡 (𝑍1 + 𝑍2)

𝜎(𝑋)

)] 



 �𝐶,𝐻 ,𝛾 𝑛−5 (7.3)

for all 𝑡 ∈ R with 𝑛2𝛾 ≤ |𝑡 | ≤ 𝛼 · min{𝑛𝛾/2𝐷𝐿,𝛾 ( �𝑑), 𝑛1/2+𝛾/8}, where 𝛼 = 𝛼(𝐶, 𝐻, 𝛾) > 0 is chosen
sufficiently small (in particular, we may assume 𝛼 < 1).

Step 2: Taylor expansion. Let 𝐾 = �10/𝛾�. By Lemma 7.4, we have



E[ exp
(
𝑖𝑡 (𝑍1 + 𝑍2)

𝜎(𝑋)

)] 



 = 



E[ exp
(
𝑖𝑡𝑍1
𝜎(𝑋)

)
exp

(
𝑖𝑡𝑍2
𝜎(𝑋)

)] 




≤





E[ exp
(
𝑖𝑡𝑍1
𝜎(𝑋)

) 𝐾∑
𝑗=0

1
𝑗!

(
𝑖𝑡𝑍2
𝜎(𝑋)

) 𝑗 ] 



 + E[ 1
𝐾!

(
|𝑡𝑍2 |
𝜎(𝑋)

)𝐾+1]
. (7.4)

Recalling that |𝐼 | = �𝑛1−𝛾� and our assumption that |𝑡 | ≤ 𝑛1/2+𝛾/8, we have

E[(𝑡𝑍2/𝜎(𝑋))2] = 𝑡2

𝜎(𝑋)2 · E[𝑍2
2 ] ≤

𝑡2

𝜎(𝑋)2 · |𝐼 |2 �𝐶
𝑛1+𝛾/4

𝑛3 · 𝑛2−2𝛾 = 𝑛−7𝛾/4.

By Theorem 4.14 (hypercontractivity), we deduce E[(|𝑡𝑍2 |/𝜎(𝑋))𝐾+1] �𝐶,𝛾 𝑛−7𝛾 (𝐾+1)/8. Thus, using
that (𝐾 + 1)𝛾 ≥ 10, we obtain

E

[
1
𝐾!

(
|𝑡𝑍2 |
𝜎(𝑋)

)𝐾+1]
�𝐶,𝛾 𝑛−5. (7.5)

Also, note that
∑𝐾

𝑗=0
1
𝑗! (𝑖𝑡𝑍2/𝜎(𝑋)) 𝑗 is a polynomial of degree 2𝐾 in �𝑥𝐼 . Noting that 𝑥2

𝑣 = 1 for all v,
one can represent this polynomial as a linear combination of at most |𝐼 |2𝐾 < 𝑛2𝐾 multilinear monomials∏

𝑣 ∈𝑆 𝑥𝑣 with |𝑆 | ≤ 2𝐾 . The coefficient of each such monomial has absolute value 𝑂𝐶,𝛾 (1), recalling
that |𝑡 | ≤ 𝑛1/2+𝛾/8 and 𝜎(𝑋) = Ω𝐶 (𝑛3/2) and |𝐼 | = �𝑛1−𝛾� (and 𝐾 = �10/𝛾�). For the rest of the proof,
our goal is now to show that for any set 𝑆 ⊆ 𝐼 with |𝑆 | ≤ 2𝐾 we have



E[ exp

(
𝑖𝑡𝑍1
𝜎(𝑋)

) ∏
𝑣 ∈𝑆

𝑥𝑣

] 



 �𝐶,𝐻 ,𝛾 𝑛−5−2𝐾 . (7.6)

The desired bound (7.3) will then follow from (7.4), bounding the first summand by summing (7.6) over
all choices of S and bounding the second summand via (7.5).
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Step 3: Relating to the LCD. So let us fix some subset 𝑆 ⊆ 𝐼 with |𝑆 | ≤ 2𝐾 . Let �𝑓 = 1
2
�𝑑𝐼 + �𝑦 ∈ R𝐼 ,

so 𝑍1 = �𝑓 · �𝑥𝐼 . Noting that |𝑥𝑣 | ≤ 1 for all 𝑣 ∈ 𝐼, and using (4.2), we have



E[ exp
(
𝑖𝑡𝑍1
𝜎(𝑋)

) ∏
𝑣 ∈𝑆

𝑥𝑣

] 



 = 



E[ ∏
𝑣 ∈𝐼\𝑆

exp
(
𝑖𝑡 𝑓𝑣𝑥𝑣
2𝜎(𝑋)

)
·
∏
𝑣 ∈𝑆

exp
(
𝑖𝑡 𝑓𝑣𝑥𝑣
2𝜎(𝑋)

)
𝑥𝑣

] 




≤

∏
𝑣 ∈𝐼\𝑆





E[ exp
(
𝑖𝑡 𝑓𝑣𝑥𝑣
2𝜎(𝑋)

)] 



 ≤ exp � !−
∑
𝑣 ∈𝐼 \𝑆

(((( 𝑡 𝑓𝑣
2𝜋𝜎(𝑋)

((((2

R/Z

"#$
≤ exp

(
|𝑆 | − dist

(
|𝑡 | �𝑓

2𝜋𝜎(𝑋) ,Z
𝐼

)2
)
. (7.7)

(Here, we used that for any �𝑎 ∈ R𝐼 we have
∑

𝑣 ∈𝐼\𝑆 ‖𝑎𝑣 ‖2
R\Z = dist( �𝑎𝐼 \𝑆 ,Z𝐼\𝑆)2 ≥ dist( �𝑎𝐼 ,Z𝐼 )2 − |𝑆 |.)

Since |𝑡 | ≤ 𝑛1/2+𝛾/8 and 𝜎(𝑋) = Ω𝐶 (𝑛3/2) and we are conditioning on �𝑥𝑉 (𝐺)\𝐼 such that |𝑦𝑣 | ≤
𝑛1/2+𝛾/8 for all 𝑣 ∈ 𝐼, we have (using that |𝐼 | = �𝑛1−𝛾�)

|𝑡 |‖ �𝑦‖2
2𝜋𝜎(𝑋) �𝐶

𝑛1/2+𝛾/8 · ( |𝐼 |1/2) · 𝑛1/2+𝛾/8

𝑛3/2 � 𝑛−𝛾/4,

and therefore |𝑡 |‖ �𝑦‖2/(2𝜋𝜎(𝑋)) ≤ 1 for sufficiently large n. By our assumption |𝑡 | ≤ 𝛼𝑛𝛾/2�̂�𝐿,𝛾 ( �𝑑) =
𝛼𝑛𝛾/2𝐷𝐿 ( �𝑑𝐼 /‖ �𝑑𝐼 ‖2), we have

|𝑡 |‖ �𝑑𝐼 ‖2
4𝜋𝜎(𝑋) �𝐶,𝐻

𝛼𝑛𝛾/2𝐷𝐿 ( �𝑑𝐼 /‖ �𝑑𝐼 ‖2) · |𝐼 |1/2 · 𝑛
𝑛3/2 � 𝛼𝐷𝐿 ( �𝑑𝐼 /‖ �𝑑𝐼 ‖2).

Hence, by choosing 𝛼 = 𝛼(𝐶, 𝐻, 𝛾) > 0 to be sufficiently small in terms of C, H and 𝛾, for sufficiently
large n we obtain |𝑡 |‖ �𝑑𝐼 ‖2/(4𝜋𝜎(𝑋)) < 𝐷𝐿 ( �𝑑𝐼 /‖ �𝑑𝐼 ‖2) and therefore

dist
(

|𝑡 | �𝑓
2𝜋𝜎(𝑋) ,Z

𝐼

)
≥ dist

(
|𝑡 | ( �𝑑𝐼 /2)
2𝜋𝜎(𝑋) ,Z

𝐼

)
− |𝑡 |‖ �𝑦‖2

2𝜋𝜎(𝑋) ≥ dist
(
|𝑡 |‖ �𝑑𝐼 ‖2
4𝜋𝜎(𝑋) ·

�𝑑𝐼
‖ �𝑑𝐼 ‖ 2

,Z𝐼
)
− 1

≥ 𝐿

√
log+

(
|𝑡 |‖ �𝑑𝐼 ‖2

4𝜋𝐿𝜎(𝑋)

)
− 1, (7.8)

where we applied the definition of LCD (see Definition 4.9). Now, |𝑡 |‖ �𝑑𝐼 ‖2/(4𝜋𝐿𝜎(𝑋)) �𝐶,𝐻 ,𝛾 𝑛𝛾/2,
since |𝑡 | ≥ 𝑛2𝛾 and 𝜎(𝑋) �𝐻 𝑛3/2 and ‖ �𝑑𝐼 ‖2 �𝐶 |𝐼 |3/2 � 𝑛(3/2)−3𝛾/2 by Lemma 7.3. Thus, for
sufficiently large n, we have |𝑡 |‖ �𝑑𝐼 ‖2/(4𝜋𝐿𝜎(𝑋)) ≥ 𝑛𝛾/4, and therefore the term (7.8) is at least
𝐿
√

log+(𝑛𝛾/4) − 1 ≥ (𝐿/2)
√

log+(𝑛𝛾/4). Then, recalling that 𝐿 = �100/𝛾� and 𝐾 = �10/𝛾� and
|𝑆 | ≤ 2𝐾 , it follows that

dist
(

|𝑡 | �𝑓
2𝜋𝜎(𝑋) ,Z

𝐼

)2
≥

(
𝐿

2

√
log+(𝑛𝛾/4)

)2
≥ 104

4𝛾2 · 𝛾
4

log 𝑛 ≥ (4𝐾 + 5) log 𝑛 ≥ |𝑆 | + (2𝐾 + 5) log 𝑛.

Combining this with (7.7), we obtain the desired inequality (7.6). �

8. Characteristic function estimates based on quadratic cancellation

In Section 7, we proved some bounds on the characteristic function of a random variable X of the form
𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 purely using the linear part of X. In this section we prove a bound which

purely uses the quadratic part of X (this will be useful for larger t).
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In the setting and notation of Section 7, the regime where this result is effective corresponds to a
range where |𝑡 | is roughly between 𝑛1/2+Ω(1) and 𝑛3/2. However, the bounds in this section will need to
be applied in two slightly different settings (recalling from Section 3.2 that the proof of Theorem 3.1
bifurcates into two cases). To facilitate this, we consider random variables X of a slightly different type
than in Section 7: Instead of studying the number of edges in a uniformly random vertex subset, we
study the number of edges in a uniformly random vertex subset of a particular size. We can interpret this
as studying a conditional distribution, where we condition on an outcome of the number of vertices of
our random subset (if desired, we can deduce bounds in the unconditioned setting simply by averaging
over all possible outcomes).

We remark that in this setting where our random subset has a fixed size, it is no longer true that the
standard deviation 𝜎(𝑋) must have order of magnitude 𝑛3/2. Indeed, the order of magnitude of 𝜎(𝑋)
depends on �𝑒 and the degree sequence of G. Therefore, it is more convenient to study the characteristic
function of X directly, instead of its normalized version 𝑋∗ = (𝑋 − E𝑋)/𝜎(𝑋). To avoid confusion,
we will use the variable name ‘𝜏’ instead of ‘t’ when working with characteristic functions of random
variables that have not been normalized (so, informally speaking, the translation is that 𝜏 = 𝑡/𝜎(𝑋)).

Lemma 8.1. Fix 𝐶 > 0 and 0 < 𝜂 < 1/2. There is 𝜈 = 𝜈(𝐶, 𝜂) > 0 such that the following holds.
Let G be a C-Ramsey graph with n vertices, where n is sufficiently large with respect to C and 𝜂, and
consider a vector �𝑒 ∈ R𝑉 (𝐺) and 𝑒0 ∈ R. Consider ℓ ∈ N with 𝜂𝑛 ≤ ℓ ≤ (1 − 𝜂)𝑛, and let U be a
uniformly random subset of ℓ vertices in G, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0. Then for any 𝜏 ∈ R

with 𝑛−1+𝜂 ≤ |𝜏 | ≤ 𝜈 we have

|𝜑𝑋 (𝜏) | ≤ 𝑛−5.

The proof of Lemma 8.1 depends crucially on decoupling techniques. Generally speaking, such
techniques allow one to reduce from dependent situations to independent ones (see [28] for a book-
length treatment). In our context, decoupling allows us to reduce the study of ‘quadratic’ random
variables to the study of ‘linear’ ones. Famously, a similar approach was taken by Costello, Tao and Vu
[27] to study singularity of random symmetric matrices.

To illustrate the basic idea of decoupling, consider an n-variable quadratic polynomial f and a
sequence of random variables �𝜉 ∈ R𝑛. If [𝑛] = 𝐼 ∪ 𝐽 is a partition of the index set into two subsets, then
we can break �𝜉 = (𝜉1, . . . , 𝜉𝑛) into two subsequences �𝜉𝐼 ∈ R𝐼 and �𝜉𝐽 ∈ R𝐽 (and write 𝑓 ( �𝜉) = 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )).
Let us assume that the random vectors �𝜉𝐼 and �𝜉𝐽 are independent. Now, if �𝜉 ′𝐽 is an independent copy of
�𝜉𝐽 , then 𝑌 := 𝑓 ( �𝜉𝐼 , �𝜉𝐽 ) − 𝑓 ( �𝜉𝐼 , �𝜉 ′𝐽 ), is a linear polynomial in �𝜉𝐼 , after conditioning on any outcomes
of �𝜉𝐽 , �𝜉 ′𝐽 (roughly speaking, this is because ‘the quadratic part in �𝜉𝐼 gets cancelled out’). Then, for any
𝜏 ∈ R, we can use the inequality

|𝜑 𝑓 ( �𝜉 ) (𝜏) |
2 =




E𝑒𝑖𝜏 𝑓 ( �𝜉𝐼 , �𝜉𝐽 ) 


 2 ≤ E
[


E[𝑒𝑖𝜏 𝑓 ( �𝜉𝐼 , �𝜉𝐽 ) | �𝜉𝐼 ]


 2

]
= E

[
E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐼 ]
]

= E
[
E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐽 , �𝜉 ′𝐽 ]
]

≤ E
[


E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐽 , �𝜉 ′𝐽 ]



] . (8.1)

(This inequality appears as [65, Lemma 3.3]; similar inequalities appear in [12, 77].) Crucially, the
expression E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐽 , �𝜉 ′𝐽 ] can be interpreted as an evaluation of the characteristic
function of a linear polynomial in �𝜉𝐼 , which is easy to understand.

In general, (8.1) incurs some loss (one generally obtains bounds which are about the square root of
the truth). However, under certain assumptions about the degree-2 part of f, this square-root loss ‘in
Fourier space’ does not seriously affect the final bounds one gets ‘in physical space’. Specifically, the
first and third authors [65] observed that it suffices to assume that the degree-2 part of f ‘robustly has
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high rank’, and observed that quadratic forms associated with Ramsey graphs always satisfy this robust
high rank assumption (we will prove a similar statement in Lemma 10.1).

Our proof of Lemma 8.1 will be closely related to the proof of the main result in [65], although
our approach is slightly different, as we need to take more care with quantitative aspects. In particular,
instead of working with a qualitative robust-high-rank assumption we will directly make use of the fact
that in any Ramsey graph, there are many disjoint tuples of vertices with very different neighborhoods
(this can be interpreted as a particular sense in which the adjacency matrix of G robustly has high rank).

Lemma 8.2. For any 𝐶, 𝛽 > 0, there is 𝜁 = 𝜁 (𝐶, 𝛽) > 0 such that the following holds for all sufficiently
large n. Let G be a C-Ramsey graph with n vertices, and let 𝑞 = �𝜁 log 𝑛�. Then there is a partition
𝑉 (𝐺) = 𝐼 ∪ 𝐽 and a collection V ⊆ 𝐼𝑞 of at least 𝑛1−𝛽 disjoint q-tuples of vertices in I such that for all
(𝑣1, . . . , 𝑣𝑞) ∈ V we have

|𝐽 \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑟 )) | ≥ 𝑛1−𝛽 and | (𝐽 ∩ 𝑁 (𝑣𝑟 )) \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑟−1)) | ≥ 𝑛1−𝛽 (8.2)

for all 𝑟 = 1, . . . , 𝑞.

Proof. By Lemma 4.4 (applied with 𝑚 = 𝑛1−𝛽/2 and 𝛼 = 1/5), for some 𝜌 = 𝜌(𝐶) with 0 < 𝜌 < 1
we can find a vertex subset 𝑅 ⊆ 𝑉 (𝐺) with |𝑅 | ≥ 𝑛1−𝛽/2, such that the induced subgraph 𝐺 [𝑅] is
(𝑛−𝜌𝛽/2, 𝜌)-rich. Let us now define 𝜁 = 𝛽𝜌/(2 log(1/𝜌)) > 0, and let 𝑞 = �𝜁 log 𝑛�.

We claim that for any subset 𝑈 ⊆ 𝑅 of at size at least |𝑈 | > 𝑛1/5, we can iteratively construct a
q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ 𝑈𝑞 with

|𝑅 \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑟 )) | ≥ 𝜌𝑟 |𝑅 | and | (𝑅 ∩ 𝑁 (𝑣𝑟 )) \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑟−1)) | ≥ 𝜌𝑟 |𝑅 |
(8.3)

for 𝑟 = 1, . . . , 𝑞. Indeed, for any 0 ≤ 𝑘 < 𝑞, consider a k-tuple (𝑣1, . . . , 𝑣𝑘 ) ∈ 𝑈𝑘 satisfying (8.3) for
𝑟 = 1, . . . , 𝑘 . Since 𝜌𝑘 ≥ 𝜌𝑞 ≥ 𝜌𝜁 log 𝑛 = 𝑛−𝜌𝛽/2, we can apply the definition of 𝐺 [𝑅] being (𝑛−𝜌𝛽/2, 𝜌)-
rich (see Definition 4.3) to the set 𝑊 := 𝑅 \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑘 )) of size |𝑊 | ≥ 𝜌𝑘 |𝑅 | and conclude
that there are at most |𝑅 |1/5 ≤ 𝑛1/5 vertices 𝑣 ∈ 𝑈 satisfying | (𝑅 ∩ 𝑁 (𝑣)) \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑘 )) | =
|𝑁 (𝑣) ∩𝑊 | ≤ 𝜌 |𝑊 | or |𝑅 \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑘 ) ∪ 𝑁 (𝑣)) | = |𝑊 \ 𝑁 (𝑣) | ≤ 𝜌 |𝑊 |. Hence, as |𝑈 | > 𝑛1/5,
there exists a vertex 𝑣𝑘+1 ∈ 𝑈 with | (𝑅 ∩ 𝑁 (𝑣𝑘+1)) \ (𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑘 )) | > 𝜌 |𝑊 | ≥ 𝜌𝑘+1 |𝑅 | and
|𝑅\(𝑁 (𝑣1)∪· · ·∪𝑁 (𝑣𝑘+1)) | > 𝜌 |𝑊 | ≥ 𝜌𝑘+1 |𝑅 |. So we can indeed construct a q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ 𝑈𝑞

satisfying (8.3) for 𝑟 = 1, . . . , 𝑞.
By repeatedly applying the above claim, we can now greedily construct a collection V ⊆ 𝑅𝑞

of �𝑛1−𝛽� disjoint q-tuples of vertices in R such that each such q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ V satisfies
(8.3) for 𝑟 = 1, . . . , 𝑞 (indeed, as long as our collection V has size |V | < 𝑛1−𝛽 , the number of
vertices appearing in some q-tuple in V is at most 𝑞 · 𝑛1−𝛽 < (𝜁 log 𝑛) · 𝑛1−𝛽 < 𝑛1−𝛽/2/2 ≤ |𝑅 |/2,
and hence there are at least |𝑅 |/2 > 𝑛1/5 vertices in R remaining). Now, define I to be the set of
the 𝑞 · �𝑛1−𝛽� ≤ (𝜁 log 𝑛) · 2𝑛1−𝛽 ≤ 𝑛1−𝛽 (1+𝜌)/2/2 vertices appearing in the q-tuples in V , and let
𝐽 = 𝑉 (𝐺) \ 𝐼. We claim that now for every (𝑣1, . . . , 𝑣𝑞) ∈ V and every 𝑟 = 1, . . . , 𝑞 the desired
conditions in (8.2) follows from (8.3). Indeed, by (8.3) the sets appearing in (8.2) have size at least
𝜌𝑟 |𝑅 | − |𝑅 ∩ 𝐼 | ≥ 𝜌𝑞 · 𝑛1−𝛽/2 − |𝐼 | ≥ 𝑛−𝛽𝜌/2 · 𝑛1−𝛽/2 − 𝑛1−𝛽 (1+𝜌)/2/2 = 𝑛1−𝛽 (1+𝜌)/2/2 ≥ 𝑛1−𝛽(using that
𝜌 < 1 and n is sufficiently large). �

Roughly speaking, the condition in (8.2) states that (𝑣1, . . . , 𝑣𝑞) have very different neighborhoods.
This allows us to obtain strong joint probability bounds on degree statistics, as follows.

Lemma 8.3. Fix 𝜂 > 0. In an n-vertex graph G, let (𝑣1, . . . , 𝑣𝑞) be a tuple of vertices satisfying (8.2)
(for all 𝑟 = 1, . . . , 𝑞) for some vertex subset 𝐽 ⊆ 𝑉 (𝐺) and some 0 < 𝛽 < 1. For some ℓ ∈ N with
𝜂𝑛 ≤ ℓ ≤ (1 − 𝜂)𝑛, let U be a random subset of ℓ vertices of G. Consider any 𝜏 ∈ R \ {0}, any
0 < 𝛿 ≤ 1/2, and �𝑥 ∈ R𝑞 . Then
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Pr
[((𝜏 deg𝑈∩𝐽 (𝑣𝑟 ) − 𝜏 deg𝑈∩𝐽 (𝑣1) + 𝑥𝑟

((
R/Z < 𝛿 for 𝑟 = 2, . . . , 𝑞

]
≤

(
𝑂𝜂

(
(|𝜏 | + 𝛿) (|𝜏 | + 𝑛−(1−𝛽)/2)

|𝜏 |

))𝑞−1

.

To prove Lemma 8.3, we will need the following estimate for hypergeometric distributions.

Lemma 8.4. Fix 𝜂 > 0. For some even positive integer k, let 𝑍 ∼ Hyp(𝑘, 𝑘/2, ℓ) with 𝜂𝑘 ≤ ℓ ≤ (1−𝜂)𝑘 .
Then for any 𝜏 ∈ R \ {0}, any 0 < 𝛿 ≤ 1/2 and 𝑥 ∈ R, we have

Pr
[
‖𝜏𝑍 + 𝑥‖ R/Z ≤ 𝛿

]
�𝜂

(|𝜏 | + 𝛿) (|𝜏 | + 1/
√
𝑘)

|𝜏 | .

Proof. We may assume that 𝑥 ∈ [−𝜏E𝑍,−𝜏E𝑍 + 1], which implies that 𝑥/𝜏 differs from −E𝑍 by at
most 1/|𝜏 |. Note that the standard deviation of Z is Θ𝜂 (

√
𝑘); by direct computation or a nonuniform

quantitative central limit theorem for the hypergeometric distribution (for example, [69, Theorem 2.3]),
for any 𝑦 ∈ R we have

Pr[𝑍 − E𝑍 = 𝑦] �𝜂
exp

(
−Ω𝜂 (𝑦2/𝑘)

)
√
𝑘

.

It follows that

Pr
[
‖𝜏𝑍 + 𝑥‖ R/Z ≤ 𝛿

]
≤

∑
𝑖∈Z

Pr
[



𝑍 + 𝑥

𝜏
− 𝑖

𝜏





 ≤ 𝛿

|𝜏 |

]
�𝜂

∑
𝑖∈Z

∑
𝑗∈Z

| 𝑗+𝑥/𝜏−𝑖/𝜏 | ≤𝛿/ |𝜏 |

exp
(
−Ω𝜂 (( 𝑗 − E𝑍)2/𝑘)

)
√
𝑘

�𝜂
∑
𝑖∈Z

(
1 + 2

𝛿

|𝜏 |

) exp
(
−Ω𝜂

(
(max{0, |𝑖/𝜏 | − (1 + 𝛿)/|𝜏 |})2/𝑘

) )
√
𝑘

≤
(
1 + 2

𝛿

|𝜏 |

) �   !
∑
𝑖∈Z
|𝑖 |>4

exp
(
−Ω𝜂

(
𝑖2/(4𝜏2𝑘)

) )
√
𝑘

+
∑
𝑖∈Z
|𝑖 | ≤4

1
√
𝑘

"###$
�𝜂

|𝜏 | + 𝛿

|𝜏 | ·
(
|𝜏 |

√
𝑘

√
𝑘

+ 1
√
𝑘

)
=

(|𝜏 | + 𝛿) (|𝜏 | + 1/
√
𝑘)

|𝜏 | ,

where in the third step we used that for any 𝑖 ∈ Z there are at most 1 + 2𝛿/|𝜏 | integers 𝑗 ∈ Z satisfying
| 𝑗 + 𝑥/𝜏 − 𝑖/𝜏 | ≤ 𝛿/|𝜏 |, and for every such integer we have | 𝑗 − E𝑍 | ≥ |𝑖 |/𝜏 − 1/|𝜏 | − 𝛿/|𝜏 | (since 𝑥/𝜏
differs from −E𝑍 by at most 1/|𝜏 |). �

From this, we deduce Lemma 8.3.

Proof of Lemma 8.3. For 𝑟 = 2, . . . , 𝑞, let E𝑟 be the event that ‖𝜏 deg𝑈∩𝐽 (𝑣𝑖)−𝜏 deg𝑈∩𝐽 (𝑣1) +𝑥𝑖 ‖R/Z <
𝛿. We claim that

Pr[E𝑟 | E2 ∩ · · · ∩ E𝑟−1] �𝜂
(|𝜏 | + 𝛿) (|𝜏 | + 𝑛−(1−𝛽)/2)

|𝜏 | .
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for every 𝑟 = 2, . . . , 𝑞. This will suffice, since the desired probability in the statement of Lemma 8.3 is

Pr[E2 ∩ · · · ∩ E𝑞] =
𝑞∏
𝑟=2

Pr[E𝑟 | E2 ∩ · · · ∩ E𝑟−1] .

Now, fix 𝑟 ∈ {2, . . . , 𝑞}. By assumption both of the sets appearing in condition (8.2) have size at
least �𝑛1−𝛽�. Inside each of these two sets, we choose some subset of size exactly �𝑛1−𝛽� and we define
𝑆 ⊆ 𝐽\(𝑁 (𝑣1)∪· · ·∪𝑁 (𝑣𝑟−1)) to be the union of these two subsets. Then |𝑆 | = 2�𝑛1−𝛽� and |𝑆∩𝑁 (𝑣𝑟 ) | =
�𝑛1−𝛽�. For the random set 𝑈 ⊆ 𝑉 (𝐺) of size ℓ, let us now condition on an outcome of |𝑈 ∩ 𝑆 | such that
(𝜂/2) |𝑆 | ≤ |𝑈 ∩ 𝑆 | ≤ (1 − 𝜂/2) |𝑆 | (by a Chernoff bound for hypergeometric random variables, as in
Lemma 4.16, this happens with probability 1−𝑛−𝜔𝜂 (1) ≥ 1−((|𝜏 | +𝛿)/|𝜏 |) ·𝑛−(1−𝛽)/2), and condition on
any outcome of𝑈\𝑆 (as S is disjoint from 𝑁 (𝑣1)∪· · ·∪𝑁 (𝑣𝑟−1), this determines the value of deg𝑈∩𝐽 (𝑣 𝑗 )
for 𝑗 = 1, . . . , 𝑟 − 1 and in particular determines whether the events E 𝑗 hold for 𝑗 = 2, . . . , 𝑟 − 1). Now,
conditionally, deg𝑈∩𝑆 (𝑣𝑟 ) = |𝑈∩𝑆∩𝑁 (𝑣𝑟 ) | has a hypergeometric distribution Hyp(|𝑆 |, |𝑆 |/2, |𝑈∩𝑆 |),
so the claim follows from Lemma 8.4 (taking 𝑥 = 𝜏 deg(𝑈∩𝐽 )\𝑆 (𝑣1) − 𝜏 deg𝑈∩𝐽 (𝑣1) + 𝑥𝑟 ), recalling that
|𝑆 | = 2�𝑛1−𝛽�. �

We are now ready to prove Lemma 8.1.

Proof of Lemma 8.1. We apply Lemma 8.2 with 𝛽 = 𝜂/3, obtaining a partition 𝑉 (𝐺) = 𝐼 ∪ 𝐽 and
a collection V ⊆ 𝐼𝑞 of at least 𝑛1−𝜂/3 disjoint q-tuples of vertices in I, where 𝑞 = �𝜁 log 𝑛� with
𝜁 = 𝜁 (𝐶, 𝜂/3) > 0, such that each q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ V satisfies (8.2) for 𝑟 = 1, . . . , 𝑞. Let A denote
the adjacency matrix of G, and let �𝜉 ∈ {0, 1}𝑛 be the characteristic vector of the random set U (meaning
�𝜉𝑣 = 1 if 𝑣 ∈ 𝑈, and �𝜉𝑣 = 0 if 𝑣 ∉ 𝑈), so �𝜉 ∈ {0, 1}𝑛 is a uniformly random vector with precisely ℓ
ones. We define

𝑓 ( �𝜉) := 𝑋 = 𝑒(𝐺 [𝑈]) +
∑
𝑣 ∈𝑈

𝑒𝑣 + 𝑒0 =
1
2
�𝜉ᵀ𝐴 �𝜉 + �𝑒 · �𝜉 + 𝑒0.

For the rest of the proof, we condition on an outcome of |𝑈 ∩ 𝐼 | satisfying (𝜂/2) |𝐼 | ≤ |𝑈 ∩ 𝐼 | ≤
(1− 𝜂/2) |𝐼 |. By a Chernoff bound for hypergeometric random variables, as in Lemma 4.16, this occurs
with probability 1 − 𝑛−𝜔𝜂 (1) (as 𝜂𝑛 ≤ ℓ ≤ (1 − 𝜂)𝑛 and |𝐼 | ≥ 𝑛1−𝜂/3), so the characteristic function for
the random variable X under this conditioning differs from the original characteristic function 𝜑𝑋 by at
most 𝑛−𝜔𝜂 (1) . Hence, it suffices to prove that |𝜑𝑋 (𝜏) | ≤ 𝑛−6 (for 𝑛−1+𝜂 ≤ |𝜏 | ≤ 𝜈) for our conditional
random variable X.

Let �𝜉𝐼 and �𝜉𝐽 be the restrictions of �𝜉 to the index sets I and J. Having conditioned on |𝑈 ∩ 𝐼 |, these
vectors �𝜉𝐼 and �𝜉𝐽 are independent from each other. Let �𝜉 ′𝐽 be an independent copy of �𝜉𝐽 ; by (8.1), we
have

|𝜑𝑋 (𝜏) |2 = |𝜑 𝑓 ( �𝜉 ) (𝜏) |
2 =




E𝑒𝑖𝜏 𝑓 ( �𝜉𝐼 , �𝜉𝐽 ) 


 2 ≤ E
[


E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐽 , �𝜉 ′𝐽 ]



] . (8.4)

Now, we can write 𝑓 ( �𝜉𝐼 , �𝜉𝐽 ) − 𝑓 ( �𝜉𝐼 , �𝜉 ′𝐽 ) =
∑

𝑖∈𝐼 𝑎𝑖𝜉𝑖 + 𝑏, where 𝑎𝑖 =
∑

𝑗∈𝐽 𝐴𝑖, 𝑗 (𝜉 𝑗 − 𝜉 ′𝑗 ) for each
𝑖 ∈ 𝐼 and b only depends on �𝜉𝐽 and �𝜉 ′𝐽 (but not on �𝜉𝐼 ). Let 𝛿 = 𝑛−1/2+𝜂/3.

Claim 8.5. With probability at least 1 − 𝑛−12/2 the outcome of ( �𝜉𝐽 , �𝜉 ′𝐽 ) is such that

‖𝜏𝑎𝑖/(2𝜋) − 𝜏𝑎𝑖′/(2𝜋)‖ R/Z ≥ 𝛿

for at least |V | /2 ≥ 𝑛1−𝜂/3/2 disjoint pairs (𝑖, 𝑖′) ∈ 𝐼2.
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Assuming Claim 8.5, it follows from Lemma 4.8 that with probability at least 1−𝑛−12/2, the outcome
of �𝜉𝐽 and �𝜉 ′𝐽 is such that


E[𝑒𝑖𝜏 ( 𝑓 ( �𝜉𝐼 , �𝜉𝐽 )− 𝑓 ( �𝜉𝐼 , �𝜉 ′

𝐽 )) | �𝜉𝐽 , �𝜉 ′𝐽 ]



 = 


E[𝑒𝑖𝜏 (∑𝑖∈𝐼 𝑎𝑖 𝜉𝑖+𝑏) | �𝜉𝐽 , �𝜉 ′𝐽 ]





=



E[𝑒𝑖∑𝑖∈𝐼 𝜏𝑎𝑖 𝜉𝑖 | �𝜉𝐽 , �𝜉 ′𝐽 ]




 � 𝑒−Ω𝜂 (𝑛𝜂/3) .

For sufficiently large n, the right-hand side is bounded by 𝑛−12/2. Noting that the expectation on the
left-hand side is bounded by 1 for all outcomes of �𝜉𝐽 and �𝜉 ′𝐽 , we can conclude that the right-hand side
of (8.4) is bounded by 𝑛−12 and therefore |𝜑𝑋 (𝜏) | ≤ 𝑛−6 for sufficiently large n, as desired. It remains
to prove Claim 8.5.

Proof of Claim 8.5. Let us also condition on any outcome of �𝜉 ′𝐽 . We say that a q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ V
is bad if no pair (𝑣𝑟 , 𝑣1) ∈ 𝐼2 with 𝑟 ∈ {2, . . . , 𝑞} has the property in the claim. In other words,
(𝑣1, . . . , 𝑣𝑞) is bad if for all 𝑟 = 2, . . . , 𝑞 we have

((𝜏𝑎𝑣𝑟 /(2𝜋) − 𝜏𝑎𝑣1/(2𝜋)
((
R/Z < 𝛿.

For any q-tuple (𝑣1, . . . , 𝑣𝑞) ∈ V , we can bound the probability that (𝑣1, . . . , 𝑣𝑞) is bad by applying
Lemma 8.3 with 𝑥𝑟 = −(𝜏/(2𝜋))

∑
𝑗∈𝐽 (𝐴𝑣𝑟 , 𝑗 − 𝐴𝑣1 , 𝑗 )𝜉 ′𝑗 for 𝑟 = 2, . . . , 𝑞 (recall that (𝑣1, . . . , 𝑣𝑞)

satisfies (8.2)), obtaining

Pr[(𝑣1, . . . , 𝑣𝑞) is bad]
= Pr

[((𝜏𝑎𝑣𝑟 /(2𝜋) − 𝜏𝑎𝑣1/(2𝜋)
((
R/Z < 𝛿 for 𝑟 = 2, . . . , 𝑞

]
= Pr

[(((𝜏/(2𝜋)) deg𝑈∩𝐽 (𝑣𝑟 ) − (𝜏/(2𝜋)) deg𝑈∩𝐽 (𝑣1) + 𝑥𝑟
((
R/Z < 𝛿 for 𝑟 = 2, . . . , 𝑞

]
≤

(
𝑂𝜂

(
(|𝜏/(2𝜋) | + 𝛿) (|𝜏/(2𝜋) | + 𝑛−(1−𝛽)/2)

|𝜏/(2𝜋) |

))𝑞−1

≤
(
𝑂𝜂

(
(|𝜏 | + 𝑛−1/2+𝜂/3) (|𝜏 | + 𝑛−1/2+𝜂/6)

|𝜏 |

))𝑞−1

≤
(
𝑂𝜂 (𝜈 + 𝑛−𝜂/2)

) �𝜁 log 𝑛�−1
,

using that 𝑛−1+𝜂 ≤ |𝜏 | ≤ 𝜈. Now, if 𝜈 is sufficiently small with respect to C and 𝜂 (and consequently
also sufficiently small with respect to 𝜁), we deduce that Pr[(𝑣1, . . . , 𝑣𝑞) is bad] ≤ 1/(4𝑛12). Hence, the
expected number of bad tuples (𝑣1, . . . , 𝑣𝑞) ∈ V is at most |V |/(4𝑛12). Thus, by Markov’s inequality,
with probability at least 1 − 𝑛−12/2 there are at most |V |/2 bad q-tuples in V . When this is the case,
among each of the at least |V |/2 different q-tuples (𝑣1, . . . , 𝑣𝑞) ∈ V that are not bad we can find a pair
(𝑣𝑟 , 𝑣1) ∈ 𝐼2 with the desired property that

((𝜏𝑎𝑣𝑟 /(2𝜋) − 𝜏𝑎𝑣1/(2𝜋)
((
R/Z ≥ 𝛿. Since the q-tuples in V

are all disjoint, this gives at least |V |/2 disjoint pairs in 𝐼2 with this property, thus proving the claim. �

As we saw earlier, this finishes the proof of Lemma 8.1. �

9. Short interval control in the additively unstructured case

Now, we can combine the characteristic function estimates in Sections 7 and 8 to prove Theorem 3.1 in
the ‘additively unstructured’ case (recall the outline in Section 3.2), defined as follows. This definition
is chosen so that the term 𝐷𝐿,𝛾 ( �𝑑) appearing in Lemma 7.2 is large, meaning that Lemma 7.2 can be
applied to a wide range of |𝑡 |.

Definition 9.1. Fix 0 < 𝛾 < 1/4, consider a graph G with n vertices and a vector �𝑒 ∈ R𝑉 (𝐺)
≥0 and

let 𝑑𝑣 = 𝑒𝑣 + deg𝐺 (𝑣)/2 for all 𝑣 ∈ 𝑉 (𝐺). Say that (𝐺, �𝑒) is 𝛾-unstructured if 𝐷𝐿,𝛾 ( �𝑑) ≥ 𝑛1/2, for
𝐿 = �100/𝛾�. Otherwise, (𝐺, �𝑒) is 𝛾-structured.

From now on, we fix 𝛾 = 10−4. For our proof of Theorem 3.1, we split into two cases, depending
on whether (𝐺, �𝑒) is 𝛾-structured. In this section, we will prove Theorem 3.1 in the case where (𝐺, �𝑒)
is 𝛾-unstructured. Eventually (in Section 12), we will handle the case where (𝐺, �𝑒) is 𝛾-structured, that

https://doi.org/10.1017/fmp.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.17


Forum of Mathematics, Pi 43

is, where 𝐷𝐿,𝛾 ( �𝑑) < 𝑛1/2. While the arguments in this section work for any constant 0 < 𝛾 < 1/4, the
proof of the 𝛾-structured case in Section 12 requires 𝛾 to be sufficiently small (this is why we define
𝛾 = 10−4).

Proof of Theorem 3.1 in the 𝛾-unstructured case. Fix 𝐶, 𝐻 > 0, let G and �𝑒 ∈ R𝑉 (𝐺) and 𝑒0 ∈ R be as
in Theorem 3.1 and assume that (𝐺, �𝑒) is 𝛾-unstructured and that n is sufficiently large with respect to
C and H. Recall that U is a uniformly random subset of 𝑉 (𝐺) and 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0, and

also recall (e.g., from the proof of Lemma 7.2) that 𝜎(𝑋) = Θ𝐶,𝐻 (𝑛3/2). Let 𝑍 ∼ N (E𝑋, 𝜎(𝑋)) be a
Gaussian random variable with the same mean and variance as X.

First, note that for any 𝜏 ∈ R, Lemma 7.1 implies

|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | =


𝜑 (𝑋−E𝑋 )/𝜎 (𝑋 ) (𝜏𝜎(𝑋)) − 𝜑 (𝑍−E𝑋 )/𝜎 (𝑋 ) (𝜏𝜎(𝑋))




�𝐶,𝐻 |𝜏 |𝜎(𝑋)𝑛−1/2 �𝐶,𝐻 |𝜏 |𝑛

(noting that the graph G has density at least Ω𝐶 (1) by Theorem 4.1). Then, note that since |𝜑𝑍 (𝜏) | =
exp(−𝜎(𝑋)2𝜏2/2), for |𝜏 | ≥ 𝑛2𝛾/𝜎(𝑋) we have |𝜑𝑍 (𝜏) | ≤ exp(−𝑛4𝛾/2). Furthermore, in Lemma 7.2
we have 𝐷𝐿,𝛾 ( �𝑑) ≥ 𝑛1/2 by our assumption that (𝐺, �𝑒) is 𝛾-unstructured. Hence, for 𝛼 = 𝛼(𝐶, 𝐻, 𝛾) > 0
as in Lemma 7.2, we obtain that |𝜑𝑋 (𝜏) | = |𝜑 (𝑋−E𝑋 )/𝜎 (𝑋 ) (𝜏𝜎(𝑋)) | �𝐶,𝐻 ,𝛾 𝑛−5 for 𝑛2𝛾/𝜎(𝑋) ≤ |𝜏 | ≤
𝛼𝑛1/2+𝛾/8/𝜎(𝑋).

Let 𝜈 = 𝜈(𝐶, 𝛾/9) > 0 be as in Lemma 8.1. Note that by a Chernoff bound we have 𝑛/4 ≤ |𝑈 | ≤ 3𝑛/4
with probability 1−𝑒−Ω(𝑛) . If we condition on such an outcome of |𝑈 |, then for 𝑛−1+𝛾/9 ≤ |𝜏 | ≤ 𝜈, Lemma
8.1 shows that the conditional characteristic function of X is bounded in absolute value by 𝑛−5 (assuming
that n is sufficiently large). It follows that for this range of |𝜏 | we have |𝜑𝑋 (𝜏) | �𝐶,𝐻 𝑛−5+𝑒−Ω(𝑛) � 𝑛−5.

Recalling that 𝜎(𝑋) = Θ𝐶,𝐻 (𝑛3/2) (and therefore 𝑛−1+𝛾/9 ≤ 𝛼𝑛1/2+𝛾/8/𝜎(𝑋) for sufficiently large
n), we can conclude that for 𝑛2𝛾/𝜎(𝑋) ≤ |𝜏 | ≤ 𝜈 we have |𝜑𝑋 (𝜏) | �𝐶,𝐻 𝑛−5 and |𝜑𝑋 (𝜏)−𝜑𝑍 (𝜏) | �𝐶,𝐻

𝑛−5 + exp(−𝑛4𝛾/2) � 𝑛−5. Hence, defining 𝜀 = 2/𝜈 > 0 (which only depends on C), we obtain∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 �𝐶,𝐻

∫ 𝑛2𝛾/𝜎 (𝑋 )

−𝑛2𝛾/𝜎 (𝑋 )
|𝜏 |𝑛 𝑑𝜏 + 2𝜈 · 𝑛−5 �𝐶,𝐻 𝑛4𝛾−2.

Let 𝐵 = 𝐵(𝐶) = 104 · 2𝜀. For the upper bound in Theorem 3.1, note that by Lemma 6.1 for all 𝑥 ∈ R we
have (using that L(𝑍, 𝜀) ≤ 2𝜀/𝜎(𝑋) �𝐶,𝐻 𝑛−3/2 as 𝑝𝑍 (𝑢) ≤ 1/𝜎(𝑋) for all 𝑢 ∈ R)

Pr[|𝑋 − 𝑥 | ≤ 𝐵] ≤ 2 · 104 · L(𝑋, 𝜀) � L(𝑍, 𝜀) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 �𝐶,𝐻 𝑛−3/2.

For the lower bound in Theorem 3.1, fix some 𝐴 > 0. We can apply Lemma 6.3 with 𝐾 = 2 and any
fixed 𝑅 ≥ 4 (which we will chose sufficiently large in terms of 𝐶, 𝐻, 𝛾 and A). Indeed, note that for any
fixed 𝐴 > 0 and 𝑅 ≥ 4, for 𝑥 ∈ Z with |𝑥 − E𝑋 | ≤ 𝐴𝑛3/2 and 𝑦1, 𝑦2 ∈ [𝑥 − 𝑅𝜀, 𝑥 + 𝑅𝜀], we have that
𝑝𝑍 (𝑦1)/𝑝𝑍 (𝑦2) ≤ exp(−((𝑦1 − E𝑋)2 − (𝑦2 − E𝑋)2)/(2𝜎(𝑋)2)) ≤ exp(2𝑅𝜀 · 4𝐴𝑛3/2/Θ𝐶,𝐻 (𝑛3)) ≤ 2
if n is sufficiently large with respect to 𝐶, 𝐻, 𝐴 and R. Hence, Lemma 6.3 yields

Pr[|𝑋 − 𝑥 | ≤ 𝐵] ≥ 1
8

Pr[|𝑍 − 𝑥 | ≤ 𝜀] − 𝐶6.3

(
𝑅−1L(𝑍, 𝜀) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑌 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏

)
≥ 𝜀 · exp(−𝐴2𝑛3/(2𝜎(𝑋)2))

8
√

2𝜋𝜎(𝑋)
− 𝐶6.3

𝑅
· 2𝜀
𝜎(𝑋) − 𝐶6.3 · 𝑂𝐶,𝐻 (𝑛4𝛾−2)

�𝐶,𝐻 ,𝐴 𝑛−3/2,

if R is chosen to be large enough with respect to 𝐶, 𝐻 and A (recall again that 𝜎(𝑋) = Θ𝐶,𝐻 (𝑛3/2)). �
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10. Robust rank of Ramsey graphs

In [65], the first and third authors observed that the adjacency matrix of a Ramsey graph is far from any
matrix with rank 𝑂 (1). We will need a much stronger version of this fact: The adjacency matrix of a
Ramsey graph is far from all matrices built out of a small number of rank-𝑂 (1) ‘blocks’ (in the proof of
Theorem 3.1, these blocks will correspond to the buckets of vertices with similar values of 𝑑𝑣 ). Recall
that ‖𝑀 ‖2

F is the sum of the squares of the entries of M.

Lemma 10.1. Fix 0 < 𝛿 < 1, 𝐶 > 0, 𝑟 ∈ N and consider a C-Ramsey graph G on n vertices with
adjacency matrix A. Suppose we are given a partition 𝑉 (𝐺) = 𝐼1 ∪ · · · ∪ 𝐼𝑚, with |𝐼1 | = · · · = |𝐼𝑚 |
and 𝑛𝛿/2 ≤ 𝑚 ≤ 2𝑛𝛿 . Then, for any 𝐵 ∈ R𝑛×𝑛 with rank(𝐵[𝐼 𝑗× 𝐼𝑘 ]) ≤ 𝑟 for all 𝑗 , 𝑘 ∈ [𝑚], we have
‖𝐴 − 𝐵‖2

F �𝐶,𝑟 , 𝛿 𝑛2.

The proof of Lemma 10.1 has several ingredients, including the fact that if a binary matrix is close
to a low-rank matrix, then it is actually close to a binary low-rank matrix. Note that for binary matrices
𝐴,𝑄, the squared Frobenius norm ‖𝐴 − 𝑄‖2

F can be interpreted as the edit distance between A and B:
The minimum number of entries that must be changed to obtain B from A.

Proposition 10.2. Fix 𝑟 ∈ N. Consider a binary matrix 𝐴 ∈ {0, 1}𝑛×𝑛 and a real matrix 𝐵 ∈ R𝑛×𝑛 such
that rank 𝐵 ≤ 𝑟 and ‖𝐴 − 𝐵‖2

F ≤ 𝜀𝑛2 for some 𝜀 > 0. Then there is a binary matrix 𝑄 ∈ {0, 1}𝑛×𝑛 with
rank𝑄 ≤ 𝑟 and ‖𝐴 −𝑄‖2

F ≤ 𝐶𝑟
√
𝜀𝑛2, for some 𝐶𝑟 depending only on r.

We remark that it is possible to give a more direct proof of a version of Proposition 10.2 with
dramatically worse quantitative aspects (i.e., replacing

√
𝜀 by a function that decays extremely slowly

as 𝜀 → 0), using a bipartite version of the induced graph removal lemma (see, for example, [25,
Theorem 3.2]). For the application in this paper, quantitative aspects are not important, but we still
believe our elementary proof and the strong bounds in Proposition 10.2 are of independent interest
(induced removal lemmas typically require the so-called strong regularity lemma, which is notorious
for its terrible quantitative aspects). Our proof of Proposition 10.2 relies on the following lemma.

Lemma 10.3. Fix 𝑟 ∈ N. Let 𝜂 > 0, and let 𝐴 ∈ {0, 1}𝑛×𝑛 be a binary matrix where every entry is
colored either red or green, in such a way that fewer than 𝜂2/(10 · 2𝑟 )2 · 𝑛2 entries are red. Suppose
that every (𝑟 + 1) × (𝑟 + 1) submatrix of A consisting only of green entries is singular. Then there exists
a binary matrix 𝑄 ∈ {0, 1}𝑛×𝑛 with rank𝑄 ≤ 𝑟 which differs from A in at most 𝜂 · 𝑛2 entries.

Proof. For ℓ ∈ N, let us call an ℓ × ℓ submatrix of some matrix green if all its ℓ2 entries are green.
First, consider all rows and columns of A that contain at least 𝜂/(10 · 22𝑟 ) · 𝑛 red entries. There

can be at most (𝜂/10) · 𝑛 such rows and at most (𝜂/10) · 𝑛 such columns. Let us define a new matrix
𝐴1 ∈ {0, 1}𝑛×𝑛 where we replace each of these rows by an all-zero row and each of these columns
by an all-zero column, and where we recolor all elements in these replaced rows and columns green.
Note that then 𝐴1 and A differ in at most (2𝜂/10) · 𝑛2 entries, and 𝐴1 still has the property that each
green (𝑟 + 1) × (𝑟 + 1) submatrix is singular. Furthermore, each row and column in 𝐴1 contains at most
𝜂/(10 · 22𝑟 ) · 𝑛 red entries.

Now, choose ℓ maximal such that 𝐴1 contains a nonsingular green ℓ × ℓ submatrix. Clearly, ℓ ≤ 𝑟 ,
and without loss of generality we assume that the ℓ × ℓ submatrix 𝐴1 [ [ℓ]×[ℓ] ] in the top-left corner of
𝐴1 is nonsingular and green. By the choice of ℓ, every green (ℓ+1) × (ℓ+1) submatrix in 𝐴1 is singular.

Now, in the first ℓ rows of 𝐴1 there are at most ℓ · 𝜂/(10 · 22𝑟 ) · 𝑛 ≤ (𝜂/10)𝑛 red entries. For each
of these red entries in the first ℓ rows of 𝐴1, let us replace its entire column by green zeroes (i.e., an
all-zero column with all entries colored green). Similarly, in the first ℓ columns of 𝐴1 there are at most
(𝜂/10)𝑛 red entries, and for each of these red entries let us replace its entire row by green zeroes. We
obtain a new matrix 𝐴2 ∈ {0, 1}𝑛×𝑛 differing from 𝐴1 in at most (2𝜂/10) · 𝑛2 entries. In this matrix
𝐴2, it is still true that each green (ℓ + 1) × (ℓ + 1) submatrix in 𝐴1 is singular but that 𝐴2 [ [ℓ]×[ℓ] ] is
nonsingular. Furthermore, 𝐴2 has no red entries anywhere in the first ℓ rows or first ℓ columns.

Next, consider the set of columns of 𝐴2 ∈ {0, 1}𝑛×𝑛 with indices in {ℓ+1, . . . , 𝑛}. There is a partition
{ℓ + 1, . . . , 𝑛} = 𝐼1 ∪ · · · ∪ 𝐼2𝑟 such that for each 𝑘 = 1, . . . , 2𝑟 , the columns of 𝐴2 with indices in 𝐼𝑘 all
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agree in their first ℓ rows. For each 𝑘 = 1, . . . , 2𝑟 with |𝐼𝑘 | ≤ 𝜂/(10 · 2𝑟 ) · 𝑛, let us replace all columns
with indices in 𝐼𝑘 by green all-zero columns. Similarly, there is a partition {ℓ+1, . . . , 𝑛} = 𝐽1 ∪ · · ·∪ 𝐽2𝑟

such that the rows with indices in the same set 𝐽𝑘 all agree in their first ℓ columns. For each 𝑘 = 1, . . . , 2𝑟
with |𝐽𝑘 | ≤ 𝜂/(10 · 2𝑟 ) · 𝑛, replace all rows with indices in 𝐽𝑘 with green all-zero rows. In this way, we
obtain a new matrix 𝐴3 ∈ {0, 1}𝑛×𝑛 differing from 𝐴2 in at most (2𝜂/10) · 𝑛2 entries. Still, all green
(ℓ + 1) × (ℓ + 1) submatrices in 𝐴3 are singular, 𝐴3 [ [ℓ]×[ℓ] ] is nonsingular, and all entries in the first
ℓ rows and in the first ℓ columns of 𝐴3 are green.

Finally, define the matrix 𝑄 ∈ {0, 1}𝑛×𝑛 by replacing the red entries in 𝐴3 as follows. For each red
entry ( 𝑗 , 𝑖) in 𝐴3 we have 𝑗 ∈ 𝐽𝑘 and 𝑖 ∈ 𝐼𝑘′ for some k and 𝑘 ′ such that |𝐽𝑘 |, |𝐼𝑘′ | > 𝜂/(10 · 2𝑟 ) · 𝑛.
So, the submatrix 𝐴3 [𝐽𝑘 × 𝐼𝑘′ ] of 𝐴3 must contain at least one green entry (since 𝐴3 has fewer than
𝜂2/(10 · 2𝑟 )2 · 𝑛2 red entries). Let us now replace the red ( 𝑗 , 𝑖)-entry in 𝐴3 by some green entry in
𝐴3 [𝐽𝑘× 𝐼𝑘′ ]. Replacing all red entries in this way, we obtain a matrix 𝑄 ∈ {0, 1}𝑛×𝑛 differing from 𝐴3
in at most 𝜂2/(10 · 2𝑟 )2 · 𝑛2 ≤ (𝜂/10) · 𝑛2 entries.

All in all, Q differs from A in at most (7𝜂/10) · 𝑛2 ≤ 𝜂 · 𝑛2 entries. The ℓ × ℓ submatrix 𝑄 [ [ℓ]×[ℓ] ]
is still nonsingular. We claim that whenever we extend this ℓ × ℓ submatrix in Q to an (ℓ + 1) × (ℓ + 1)
submatrix by taking an additional row 𝑗 ∈ {ℓ + 1, . . . , 𝑛} and an additional column 𝑖 ∈ {ℓ + 1, . . . , 𝑛},
the resulting (ℓ + 1) × (ℓ + 1) submatrix of Q is singular. If the ( 𝑗 , 𝑖)-entry in 𝐴3 is green, then this
(ℓ + 1) × (ℓ + 1) submatrix of Q agrees with the corresponding submatrix in 𝐴3, which is green and
therefore singular. If the ( 𝑗 , 𝑖)-entry in 𝐴3 is red, then the ( 𝑗 , 𝑖)-entry in Q agrees with some green
( 𝑗 ′, 𝑖′)-entry in 𝐴3, where 𝑗 , 𝑗 ′ ∈ 𝐽𝑘 and 𝑖, 𝑖′ ∈ 𝐼𝑘′ for some 𝑘, 𝑘 ′. Hence, the desired (ℓ + 1) × (ℓ + 1)
submatrix of Q agrees with the (ℓ+1) × (ℓ+1) submatrix 𝐴3 [ ([ℓ] ∪ {𝑖′})×([ℓ] ∪ { 𝑗 ′}) ] of 𝐴3, which is
green and therefore singular. Hence, we have shown that all (ℓ+1)× (ℓ+1) submatrices of Q that contain
𝑄 [ [ℓ]×[ℓ] ] are singular. Since 𝑄 [ [ℓ]×[ℓ] ] is nonsingular, this implies that rank𝑄 = ℓ ≤ 𝑟 . �

Now, we are ready to prove Proposition 10.2.

Proof of Proposition 10.2. Choose some 0 < 𝑐𝑟 < 1 depending only on r such that9

𝑐𝑟 < inf{‖𝑆 − 𝑇 ‖2
∞ : 𝑆 ∈ {0, 1}(𝑟+1)×(𝑟+1) nonsingular, 𝑇 ∈ R(𝑟+1)×(𝑟+1) singular},

where ‖𝑆 − 𝑇 ‖∞ denotes the maximum absolute value | (𝑆 − 𝑇)𝑖, 𝑗 | among the entries of 𝑆 − 𝑇 .
Let A and B be matrices as in the lemma statement. Let us color each entry 𝐴𝑖, 𝑗 of A red if

|𝐴𝑖, 𝑗 − 𝐵𝑖, 𝑗 |2 > 𝑐𝑟 and green otherwise. Then, as ‖𝐴 − 𝐵‖2
F ≤ 𝜀𝑛2, there are fewer than 𝜀𝑛2/𝑐𝑟 red

entries in A. Furthermore, as rank 𝐵 ≤ 𝑟 , by the choice of 𝑐𝑟 , every (𝑟 + 1) × (𝑟 + 1) submatrix of A
consisting only of green entries must be singular. Thus, taking 𝐶𝑟 = 10 · 2𝑟/√𝑐𝑟 the desired statement
follows from Lemma 10.3 with 𝜂 = (10 · 2𝑟 )

√
𝜀/𝑐𝑟 . �

We also need the simple fact that low-rank binary matrices can be partitioned into a small number
of homogeneous parts. This essentially corresponds to a classical bound on the log-rank conjecture.

Lemma 10.4. Fix 𝑟 ∈ N, and let 𝑠 = 2𝑟 . For any binary matrix 𝑄 ∈ {0, 1}𝑛×𝑛 with rank𝑄 ≤ 𝑟 , we can
find partitions 𝑃1 ∪ · · ·∪𝑃𝑠 and 𝑅1 ∪ · · ·∪𝑅𝑠 of [𝑛] such that for all 𝑖, 𝑗 ∈ [𝑠], the submatrix 𝑄 [𝑃𝑖×𝑅 𝑗 ]
consists of only zeroes or only ones.

Proof. First, we claim that the matrix Q has most 2𝑟 different row vectors: Indeed, let 𝑟 ′ = rank𝑄 ≤ 𝑟
and suppose without loss of generality that the submatrix 𝑄 [ [𝑟 ′]×[𝑟 ′] ] is nonsingular. Then each row
of Q can be expressed as a linear combination of the first 𝑟 ′ rows, and any two rows of Q which agree
in the first 𝑟 ′ entries must be given by the same linear combination. Hence, there can be at most 2𝑟 = 𝑠

9For the sake of giving explicit bounds, note that we can take any 𝑐𝑟 < (2−𝑟/(𝑟 ! · 𝑟2))2. Indeed, note that any matrix
𝑆 ∈ {0, 1}(𝑟+1)×(𝑟+1) which is nonsingular has |det(𝑆) | ≥ 1. Suppose there is a matrix T such that det(𝑇 ) = 0 and ‖𝑆 −𝑇 ‖∞ <

𝑐
1/2
𝑟 . This implies that ‖𝑇 ‖∞ ≤ 2 and therefore switching entries of S and T one by one changes the determinant by at most

𝑟 ! · 2𝑟 · 𝑐1/2
𝑟 < 𝑟−2. As we switch 𝑟2 entries and det(𝑆) ≥ 1 while det(𝑇 ) = 0, we obtain a contradiction.

https://doi.org/10.1017/fmp.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.17


46 M. Kwan et al.

different row vectors in the matrix Q, and we obtain a partition [𝑛] = 𝑃1 ∪ · · · ∪ 𝑃𝑠 such that any two
rows with indices in the same set 𝑃𝑖 are identical.

Similarly, there is a partition [𝑛] = 𝑃1 ∪ · · · ∪ 𝑃𝑠 such that any two columns with indices in the same
set 𝑅 𝑗 are identical. Now, for all 𝑖, 𝑗 ∈ [𝑠], all entries of the submatrix 𝑄 [𝑃𝑖×𝑅 𝑗 ] must be identical to
each other, that is, must be either all zeroes or all ones. �

Apart from Proposition 10.2 and Lemma 10.4, in our proof of Lemma 10.1 we will also use the fact
that every n-vertex graph has a clique or independent set of size at least 1

2 log 𝑛 (this is a quantitative
version of Ramsey’s theorem proved by Erdős and Szekeres [38], as mentioned in the introduction).

Proof of Lemma 10.1. By Theorem 4.1, there exists some 𝛼 = 𝛼(𝐶, 𝛿) > 0 such that every 2𝐶/(1− 𝛿)-
Ramsey graph on sufficiently many vertices has density at least 𝛼 and at most 1 − 𝛼. Fix a sufficiently
large integer 𝐷 = 𝐷 (𝐶, 𝛿) such that 1/log2 𝐷 < 𝛼/4, and choose 𝜀 = 𝜀(𝐶, 𝑟, 𝛿) > 0 small enough such
that

√
𝜀 < 1/𝐷2 and 𝜀1/4 < 𝛼/(22𝑟𝐷+1𝐶𝑟 ), where 𝐶𝑟 is the constant in Proposition 10.2. It suffices to

prove that we have ‖𝐴 − 𝐵‖2
F ≥ 𝜀𝑛2 if n is sufficiently large with respect to 𝐶, 𝛿, and r. So let us assume

for contradiction that ‖𝐴 − 𝐵‖2
F < 𝜀𝑛2.

Note that
∑

1≤𝑘< 𝑗≤𝑚
(((𝐴−𝐵) [𝐼 𝑗×𝐼𝑘 ]

((2
F ≤ ‖𝐴−𝐵‖2

F ≤ 𝜀𝑛2, so there can be at most
√
𝜀𝑚2 pairs ( 𝑗 , 𝑘)

with 1 ≤ 𝑗 < 𝑘 ≤ 𝑚 such that
(((𝐴−𝐵) [𝐼 𝑗×𝐼𝑘 ]

((2
F ≥

√
𝜀(𝑛/𝑚)2. Hence, a uniformly random subset of [𝑚]

of size D contains such a pair ( 𝑗 , 𝑘) with probability at most
(𝐷

2
)
·
√
𝜀 < 1. Thus, there exists a subset of

[𝑚] of size D not containing any such pair ( 𝑗 , 𝑘), and we may assume without loss of generality that [𝐷]
is such a subset. Then for any 1 ≤ 𝑗 < 𝑘 ≤ 𝐷 we have

(((𝐴−𝐵) [𝐼 𝑗×𝐼𝑘 ]
((2

F <
√
𝜀(𝑛/𝑚)2 =

√
𝜀 · |𝐼 𝑗 | · |𝐼𝑘 |.

For any 1 ≤ 𝑗 < 𝑘 ≤ 𝐷, by Proposition 10.2 (recalling that rank(𝐵[𝐼 𝑗×𝐼𝑘 ]) ≤ 𝑟) we can find a binary
matrix 𝑄 ( 𝑗 ,𝑘) ∈ {0, 1}𝐼 𝑗×𝐼𝑘 with rank(𝑄 ( 𝑗 ,𝑘) ) ≤ 𝑟 and ‖𝐴[𝐼 𝑗×𝐼𝑘 ] −𝑄 ( 𝑗 ,𝑘) ‖2

F ≤ 𝐶𝑟𝜀
1/4 (𝑛/𝑚)2. Now, by

Lemma 10.4, we can find partitions of 𝐼 𝑗 and 𝐼𝑘 into 2𝑟 parts each, such that the corresponding (2𝑟 )2

submatrices of 𝑄 ( 𝑗 ,𝑘) each consist either only of zeroes or only of ones. Let us choose such partitions for
all pairs ( 𝑗 , 𝑘) with 1 ≤ 𝑗 < 𝑘 ≤ 𝐷, and for each of the sets 𝐼1, . . . , 𝐼𝐷 , let us take a common refinement
of the 𝐷 − 1 partitions of that set. This way, for each of the sets 𝐼1, . . . , 𝐼𝐷 we obtain a partition into
2𝑟 (𝐷−1) parts in such a way that for all 1 ≤ 𝑗 < 𝑘 ≤ 𝐷 each of the submatrices of 𝑄 ( 𝑗 ,𝑘) induced by the
partitions of 𝐼 𝑗 and 𝐼𝑘 consist either only of zeroes or only of ones.

For each 𝑗 = 1, . . . , 𝐷, inside one of the parts of this partition of 𝐼 𝑗 , we can now choose a subset
𝐼 ′𝑗 ⊆ 𝐼 𝑗 of size |𝐼 ′𝑗 | = �|𝐼 𝑗 |/2𝑟 (𝐷−1) � = �𝑛/(2𝑟 (𝐷−1)𝑚)�. Then for all 1 ≤ 𝑗 < 𝑘 ≤ 𝐷, the submatrix
𝑄 ( 𝑗 ,𝑘) [𝐼 ′𝑗 , 𝐼 ′𝑘 ] consists either only of zeroes or only of ones. Consider the graph H on the vertex set [𝐷]
where for 1 ≤ 𝑗 < 𝑘 ≤ 𝐷 we draw an edge if all entries of 𝑄 ( 𝑗 ,𝑘) [𝐼 ′𝑗 , 𝐼 ′𝑘 ] are one (and we don’t draw
an edge if all entries are zero). Then, by Ramsey’s theorem (specifically, Erdős and Szekeres’ classical
bound [38]), this graph H must have a clique or independent set 𝑆 ⊆ [𝐷] of size |𝑆 | ≥ (log2 𝐷)/2.
Without loss of generality, assume that 𝑆 = {1, . . . , |𝑆 |}. Let us now consider the induced subgraph of
the original graph G on the vertex set 𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | .

If 𝑆 = {1, . . . , |𝑆 |} is an independent set in H, then for all 1 ≤ 𝑗 < 𝑘 ≤ |𝑆 | the matrix 𝑄 ( 𝑗 ,𝑘) [𝐼 ′𝑗×𝐼 ′𝑘 ] is
all-zero, so 𝐴[𝐼 𝑗×𝐼𝑘 ] ∈ {0, 1}𝐼 𝑗×𝐼𝑘 can contain at most𝐶𝑟𝜀

1/4 (𝑛/𝑚)2 ones (since ‖𝐴[𝐼 𝑗×𝐼𝑘 ]−𝑄 ( 𝑗 ,𝑘) ‖2
F ≤

𝐶𝑟𝜀
1/4(𝑛/𝑚)2). In other words, for all 1 ≤ 𝑗 < 𝑘 ≤ |𝑆 | the graph 𝐺 [𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | ] has at most

𝐶𝑟𝜀
1/4(𝑛/𝑚)2 ≤ 𝐶𝑟𝜀

1/4 · 22𝑟 (𝐷−1) · |𝐼 ′𝑗 | · |𝐼 ′𝑘 | ≤ (𝛼/2) · |𝐼 ′𝑗 | · |𝐼 ′𝑘 | edges between 𝐼 ′𝑗 and 𝐼 ′𝑘 . As
|𝐼 ′1 | = · · · = |𝐼 ′|𝑆 | |, the edges within the sets 𝐼1, . . . , 𝐼𝑘 also contribute at most 1/|𝑆 | ≤ 2/log2 𝐷 < 𝛼/2
to the density of 𝐺 [𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | ]. Thus, the graph 𝐺 [𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | ] has density less than 𝛼, but it is
a 2𝐶/(1 − 𝛿)-Ramsey graph since |𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | | ≥ 𝑛/(2𝑟 (𝐷−1)𝑚) ≥ 𝑛1−𝛿/2𝑟 (𝐷−1)+1 ≥ 𝑛(1−𝛿)/2. This
is a contradiction.

Similarly, if 𝑆 = {1, . . . , |𝑆 |} is a clique in H, then for all 1 ≤ 𝑗 < 𝑘 ≤ |𝑆 | the matrix 𝑄 ( 𝑗 ,𝑘) [𝐼 ′𝑗 , 𝐼 ′𝑘 ] is
an all-ones matrix, and we can perform a similar calculation for the number of nonedges in 𝐺 [𝐼 ′1 ∪ · · · ∪
𝐼 ′|𝑆 | ]. We find that 𝐺 [𝐼 ′1 ∪ · · · ∪ 𝐼 ′|𝑆 | ] has density greater than 1 − 𝛼, which is again a contradiction. �
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11. Lemmas for products of Boolean slices

In this section we study products of Boolean slices (that is, we consider random vectors �𝑥 ∈ {−1, 1}𝑛
whose index set is divided into ‘buckets’, uniform among all vectors with a particular number of ‘1’s in
each bucket). The main outputs we will need from this section are summarized in the following lemma.
Namely, for a ‘well behaved’ quadratic polynomial f, a Gaussian vector �𝑧 and a vector �𝑥 sampled from
an appropriate product of slices, we can compare 𝑓 (�𝑥) with 𝑓 (�𝑧). Our assumptions on f are certain
bounds on the coefficients, and that our polynomial is in a certain sense ‘balanced’ within each bucket.

Lemma 11.1. Fix 0 < 𝛿 < 1/4. Suppose we are given a partition [𝑛] = 𝐼1∪· · ·∪𝐼𝑚, with |𝐼1 | = · · · = |𝐼𝑚 |
and 𝑛𝛿/2 ≤ 𝑚 ≤ 2𝑛𝛿 , where n is sufficiently large with respect to 𝛿. Consider a symmetric matrix
𝐹 ∈ R𝑛×𝑛, a vector �𝑓 ∈ R𝑛 and a real number 𝑓0 satisfying the following conditions:

(a) ‖ �𝑓 ‖∞ ≤ 𝑛1/2+3𝛿 .
(b) |𝐹𝑖, 𝑗 | ≤ 1 for all 𝑖, 𝑗 ∈ [𝑛].
(c) For each 𝑘 = 1, . . . , 𝑚, the sum of the entries in �𝑓𝐼𝑘 is equal to zero.
(d) For all 𝑘, ℎ ∈ [𝑚], in the submatrix 𝐹 [𝐼𝑘×𝐼ℎ] of F all row and column sums are zero.

Consider a sequence (ℓ1, . . . , ℓ𝑚) ∈ N𝑚 with |ℓ𝑘 − |𝐼𝑘 |/2| ≤
√
𝑛1−𝛿 log 𝑛 for 𝑘 = 1, . . . , 𝑚. Then, let

�𝑥 ∈ {−1, 1}𝑛 be a uniformly random vector such that �𝑥𝐼𝑘 has exactly ℓ𝑘 ones for each 𝑘 = 1, . . . , 𝑚,
and let �𝑧 ∼ N (0, 1)⊗𝑛 be a vector of independent standard Gaussian random variables. Define 𝑋 =
𝑓0 + �𝑓 · �𝑥 + �𝑥ᵀ𝐹�𝑥 and 𝑍 = 𝑓0 + �𝑓 · �𝑧 + �𝑧ᵀ𝐹�𝑧. Then the following three statements hold.

1. E𝑋 = 𝑓0 +
∑𝑛

𝑖=1 𝐹𝑖,𝑖 +𝑂 (𝑛3/4+4𝛿) and E𝑍 = 𝑓0 +
∑𝑛

𝑖=1 𝐹𝑖,𝑖 .
2. 𝜎(𝑋)2 = 2‖𝐹‖2

F + ‖ �𝑓 ‖2
2 +𝑂 (𝑛7/4+7𝛿) and 𝜎(𝑍)2 = 2‖𝐹‖2

F + ‖ �𝑓 ‖2
2 .

3. For any 𝜏 ∈ R, we have

|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | � |𝜏 |4 · 𝑛3+12𝛿 + |𝜏 | · 𝑛3/4+4𝛿 .

We will apply this lemma in the additively structured case of our proof of Theorem 3.1. In that proof,
we will use Lemma 4.12 to partition (most of) the vertices of our graph into ‘buckets’, where vertices
in the same bucket have similar values of 𝑑𝑣 (for the vector �𝑑 defined in Definition 9.1). This choice of
buckets will ensure that (a) holds, for a conditional random variable obtained by conditioning on the
number of vertices in each bucket (the resulting conditional distribution is a product of slices).

We also remark that the precise form of the right-hand side of the inequality in (3) is not important;
we only need that

∫
|𝜏 | ≤𝑛−0.99 |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 is substantially smaller than 1/𝜎(𝑋) (for small 𝛿).

Lemma 11.1 can be interpreted as a type of Gaussian invariance principle, comparing quadratic
functions of products of slices to Gaussian analogs. There are already some invariance principles
available for the Boolean slice (see [43, 42]), and it would likely be possible to prove Lemma 11.1 by
repeatedly applying results from [43, 42] to the individual factors of our product of slices. However, for
our specific application it will be more convenient to deduce Lemma 11.1 from a Gaussian invariance
principle for products of Rademacher random variables.

Indeed, we will first compare X to its ‘independent Rademacher analog’ (i.e., to the random variable
Y defined as 𝑌 = 𝑓0 + �𝑓 · �𝑦 + �𝑦ᵀ𝐹 �𝑦, where �𝑦 ∈ {−1, 1}𝑛 is uniformly random). In order to do this, we
will first show that for different choices of the sequence (ℓ1, . . . , ℓ𝑚), we can closely couple the resulting
random variables X (essentially, we just randomly ‘flip the signs’ of an appropriate number of entries
in each 𝐼𝑘 ). Note that the ‘balancedness’ conditions (c) and (d) in Lemma 11.1 ensure that the expected
value of X does not depend strongly on the choice of (ℓ1, . . . , ℓ𝑚).
Lemma 11.2. Fix 0 < 𝛿 < 1/4, and consider a partition [𝑛] = 𝐼1 ∪ · · · ∪ 𝐼𝑚 as in Lemma 11.1, as well
as a symmetric matrix 𝐹 ∈ R𝑛×𝑛, a vector �𝑓 ∈ R𝑛 and a real number 𝑓0 satisfying conditions (a–d).
Assume that n is sufficiently large with respect to 𝛿.

Consider sequences (ℓ1, . . . , ℓ𝑚), (ℓ′1, . . . , ℓ
′
𝑚) ∈ N𝑚 with |ℓ𝑘 − |𝐼𝑘 |/2| ≤

√
𝑛1−𝛿 log 𝑛 and |ℓ′𝑘 −

|𝐼𝑘 |/2| ≤
√
𝑛1−𝛿 log 𝑛 for 𝑘 = 1, . . . , 𝑚. Then, let �𝑥 ∈ {−1, 1}𝑛 be a uniformly random vector such that
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�𝑥𝐼𝑘 has exactly ℓ𝑘 ones for each 𝑘 = 1, . . . , 𝑚 and let �𝑥 ′ ∈ {−1, 1}𝑛 be a uniformly random vector such
that �𝑥 ′𝐼𝑘 has exactly ℓ′𝑘 ones for each 𝑘 = 1, . . . , 𝑚. Let 𝑋 = 𝑓0+ �𝑓 · �𝑥+ �𝑥ᵀ𝐹�𝑥 and 𝑋 ′ = 𝑓0+ �𝑓 · �𝑥 ′ + �𝑥 ′ᵀ𝐹�𝑥 ′.
Then we can couple �𝑥 and �𝑥 ′ such that |𝑋 − 𝑋 ′ | ≤ 𝑛3/4+4𝛿 with probability at least 1 − exp(−𝑛𝛿/2).

Proof. Let us couple the random vectors �𝑥 and �𝑥 ′ in the following way. First, independently for each 𝑘 =
1, . . . , 𝑚, let us choose a uniformly random subset 𝑅𝑘 ⊆ 𝐼𝑘 of size |𝐼𝑘 |−2�|𝐼𝑘 |/2−

√
𝑛1−𝛿 log 𝑛�. Note that

then |𝐼𝑘 \𝑅𝑘 | is even and 2
√
𝑛1−𝛿 log 𝑛 ≤ |𝑅𝑘 | ≤ 3

√
𝑛1−𝛿 log 𝑛. We also have 0 ≤ ℓ𝑘 − |𝐼𝑘 \𝑅𝑘 |/2 ≤ |𝑅𝑘 |

and 0 ≤ ℓ′𝑘 − |𝐼𝑘 \ 𝑅𝑘 |/2 ≤ |𝑅𝑘 |. Let us now sample �𝑥𝑅𝑘 ∈ {−1, 1}𝑅𝑘 by taking a uniformly random
vector with exactly ℓ𝑘 − |𝐼𝑘 \ 𝑅𝑘 |/2 ones, and independently let us sample �𝑥 ′𝑅𝑘

∈ {−1, 1}𝑅𝑘 by taking
a uniformly random vector with exactly ℓ′𝑘 − |𝐼𝑘 \ 𝑅𝑘 |/2 ones. Furthermore, let us sample a random
vector in {−1, 1}𝐼𝑘\𝑅𝑘 with exactly |𝐼𝑘 \ 𝑅𝑘 |/2 ones and define both of �𝑥𝐼𝑘\𝑅𝑘

and �𝑥 ′
𝐼𝑘\𝑅𝑘

to agree with
this vector. After doing this for all 𝑘 = 1, . . . , 𝑚, we have defined �𝑥 and �𝑥′ with the appropriate number
of ones in each index set 𝐼𝑘 . For convenience, write 𝑅 = 𝑅1 ∪ · · · ∪ 𝑅𝑘 .

We now need to check that |𝑋 − 𝑋 ′ | ≤ 𝑛3/4+4𝛿 with probability at least 1 − exp(−𝑛𝛿/2). Since �𝑥 and
�𝑥 ′ agree in all coordinates outside R, all terms that do not involve coordinates in R cancel out in 𝑋 − 𝑋 ′.
We may therefore write 𝑋 − 𝑋 ′ = 𝑔𝑅 (�𝑥) − 𝑔𝑅 (�𝑥 ′), where (using that F is symmetric)

𝑔𝑅 (�𝑥) :=
∑
𝑖∈𝑅

𝑓𝑖𝑥𝑖 +
∑

(𝑖, 𝑗) ∈[𝑛]
𝑖∈𝑅 or 𝑗∈𝑅

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 =
∑
𝑖∈𝑅

𝑓𝑖𝑥𝑖 +
∑

(𝑖, 𝑗) ∈𝑅2

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 + 2
∑
𝑖∉𝑅

∑
𝑗∈𝑅

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 (11.1)

(and similarly for 𝑔𝑅 (�𝑥 ′)). It suffices to prove that with probability at least 1 − exp(−𝑛𝛿/2)/2 we have
|𝑔𝑅 (�𝑥) | ≤ 𝑛3/4+4𝛿/2 (then the same holds analogously for |𝑔𝑅 ( �𝑥 ′) | and overall we obtain |𝑋 − 𝑋 ′ | =
|𝑔𝑅 (�𝑥) − 𝑔𝑅 (�𝑥 ′) | ≤ 𝑛3/4+4𝛿 with probability at least 1 − exp(−𝑛𝛿/2)).

Let us first consider the first two summands on the right-hand side of (11.1). Their expectation is

E

⎡⎢⎢⎢⎢⎣
∑
𝑖∈𝑅

𝑓𝑖𝑥𝑖 +
∑

(𝑖, 𝑗) ∈𝑅2

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗

⎤⎥⎥⎥⎥⎦ =
𝑛∑
𝑖=1

𝑓𝑖 · E[1𝑖∈𝑅𝑥𝑖] +
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐹𝑖, 𝑗 · E[1𝑖, 𝑗∈𝑅𝑥𝑖𝑥 𝑗 ] . (11.2)

Now, note that for each 𝑘 = 1, . . . , 𝑚, the expectation E[1𝑖∈𝑅𝑥𝑖] is the same for all indices 𝑖 ∈ 𝐼𝑘 . Since∑
𝑖∈𝐼𝑘 𝑓𝑖 = 0 by condition (c), this means that the first summand on the right-hand side of (11.2) is zero.

For the second summand in (11.2), note that for any 𝑘, ℎ ∈ [𝑚] the expectation E[1𝑖, 𝑗∈𝑅𝑥𝑖𝑥 𝑗 ] has the
same value 𝐸𝑘,ℎ for all indices 𝑖 ∈ 𝐼𝑘 and 𝑗 ∈ 𝐼ℎ with 𝑖 ≠ 𝑗 . For all 𝑖 ∈ 𝐼𝑘 and 𝑗 ∈ 𝐼ℎ , the magnitude of
this expectation is at most Pr[𝑖 ∈ 𝑅] ≤ 3

√
𝑛1−𝛿 log 𝑛/|𝐼𝑘 | ≤ 𝑛−1/2+𝛿 (noting that |𝐼𝑘 | = 𝑛/𝑚 ≥ 𝑛1−𝛿/2).

By (d) we have
∑

𝑖∈𝐼𝑘
∑

𝑗∈𝐼ℎ 𝐹𝑖, 𝑗 = 0, and so we can conclude that





E
⎡⎢⎢⎢⎢⎣
∑
𝑖∈𝑅

𝑓𝑖𝑥𝑖 +
∑

(𝑖, 𝑗) ∈𝑅2

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗

⎤⎥⎥⎥⎥⎦






 =






 𝑚∑
𝑘=1

∑
𝑖∈𝐼𝑘

𝐹𝑖,𝑖 (E[1𝑖∈𝑅𝑥
2
𝑖 ] − 𝐸𝑘,𝑘 )







≤

𝑛∑
𝑖=1

|𝐹𝑖,𝑖 | · 2𝑛−1/2+𝛿 ≤ 2𝑛1/2+𝛿 ,

where in the last step we used (b). Furthermore, note that∑
𝑖∈𝑅

𝑓𝑖𝑥𝑖 +
∑

(𝑖, 𝑗) ∈𝑅2

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 = �𝑓 · �𝑥𝑅 + �𝑥ᵀ𝑅𝐹�𝑥𝑅, (11.3)

where here by slight abuse of notation we consider �𝑥𝑅 as a vector in {−1, 0, 1}𝑛 given by extending
�𝑥𝑅 ∈ {−1, 1}𝑅 by zeroes for the coordinates outside R. Note that this describes a random vector
in {−1, 0, 1}𝑛 such that for each set 𝐼𝑘 for 𝑘 = 1, . . . , 𝑚, exactly ℓ𝑘 ≤ 𝑛1/2 entries are 1, exactly
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|𝐼𝑘 | − 2�|𝐼𝑘 |/2 −
√
𝑛1−𝛿 log 𝑛� − ℓ𝑘 ≤ 3

√
𝑛1−𝛿 − ℓ𝑘 log 𝑛 ≤ 𝑛1/2 − ℓ𝑘 entries are −1 and the remaining

entries are 0. Note that for any two outcomes of such a random vector differing by switching two entries,
the resulting values of �𝑓 · �𝑥𝑅 + �𝑥ᵀ𝑅𝐹�𝑥𝑅 differ by at most 5𝑛1/2+3𝛿 (indeed, by (a) the linear term �𝑓 · �𝑥𝑅
differs by at most 4‖ 𝑓 ‖∞ ≤ 4𝑛1/2+3𝛿 , and by (b) the term �𝑥ᵀ𝑅𝐹�𝑥𝑅 differs by at most 8|𝑅 | ≤ 𝑛1/2+3𝛿).
Thus, we can apply Lemma 4.17 and conclude that with probability at least 1 − 2 exp(−𝑛3/2+8𝛿/(16 ·
2𝑚 · 𝑛1/2 · 25𝑛1+6𝛿)) ≥ 1−2 exp(−𝑛𝛿/800) the quantity in (11.3) differs from its expectation by at most
𝑛3/4+4𝛿/4. Given the above bound for this expectation, we can conclude that with probability at least
1 − 2 exp(−𝑛𝛿/800), 





∑𝑖∈𝑅 𝑓𝑖𝑥𝑖 +

∑
(𝑖, 𝑗) ∈𝑅2

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗







 ≤ 𝑛3/4+4𝛿/3. (11.4)

It remains to bound the third summand on the right-hand side of (11.1).
In order to do so, we first claim that with probability at least 1−2𝑛 exp(−𝑛𝛿/256) for each 𝑖 = 1, . . . , 𝑛

we have |
∑

𝑗∈𝑅 2𝐹𝑖, 𝑗𝑥 𝑗 | ≤ 𝑛1/4+𝛿 . Indeed, for any fixed i, the sum
∑

𝑗∈𝑅 2𝐹𝑖, 𝑗𝑥 𝑗 can be interpreted
as a linear function (with coefficients bounded by 2 in absolute value by (b)) of a random vector
in {−1, 0, 1}𝑛 such that for each set 𝐼𝑘 for 𝑘 = 1, . . . , 𝑚, exactly ℓ𝑘 ≤ 𝑛1/2 entries are 1, exactly
|𝐼𝑘 | −2�|𝐼𝑘 |/2−

√
𝑛1−𝛿 log 𝑛� −ℓ𝑘 ≤ 𝑛1/2−ℓ𝑘 entries are −1, and the remaining entries are 0. So for each

𝑖 = 1, . . . , 𝑛, by Lemma 4.17 (noting that E[
∑

𝑗∈𝑅 𝐹𝑖, 𝑗𝑥 𝑗 ] = 0 by (d)) we have |
∑

𝑗∈𝑅 𝐹𝑖, 𝑗𝑥 𝑗 | ≤ 𝑛1/4+𝛿

with probability at least 1 − 2 exp(−𝑛1/2+2𝛿/(2𝑚 · 𝑛1/2 · 82)) ≥ 1 − 2 exp(−𝑛𝛿/256).
Let us now condition on an outcome of R and �𝑥𝑅 such that we have |

∑
𝑗∈𝑅 2𝐹𝑖, 𝑗𝑥 𝑗 | ≤ 𝑛1/4+𝛿 for

𝑖 = 1, . . . , 𝑛. Note that

2
∑
𝑖∉𝑅

∑
𝑗∈𝑅

𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 =
∑
𝑖∉𝑅

(∑
𝑗∈𝑅

2𝐹𝑖, 𝑗𝑥 𝑗

)
𝑥𝑖 .

Subject to the randomness of the coordinates outside R (which are chosen to be half 1 and half −1 inside
each set 𝐼𝑘 \ 𝑅𝑘 for 𝑘 = 1, . . . , 𝑚), the expectation of this quantity is 0 (since for each individual 𝑥𝑖
with 𝑖 ∈ 𝑅 we have E𝑥𝑖 = 0). Furthermore, this quantity can be interpreted as a linear function of the
entries 𝑥𝑖 with 𝑖 ∉ 𝑅, with coefficients bounded in absolute value by 𝑛1/4+𝛿 . Thus, by Lemma 4.17 we
have |2

∑
𝑖∉𝑅

∑
𝑗∈𝑅 𝐹𝑖, 𝑗𝑥𝑖𝑥 𝑗 | ≤ 𝑛3/4+3𝛿 with probability at least 1 − 2 exp(−𝑛3/2+6𝛿/(2𝑛 · 16𝑛1/2+2𝛿) ≥

1 − 2 exp(−𝑛𝛿).
Combining this with (11.4) and (11.1), we conclude that |𝑔𝑅 (�𝑥) | ≤ 𝑛3/4+4𝛿/2 with probability at

least 1 − 2(𝑛 + 2) exp(−𝑛𝛿/800) ≥ 1 − exp(−𝑛𝛿/2)/2. �

The following lemma gives a comparison between the random variable X in Lemma 11.1 and
its ‘independent Rademacher analog’. This lemma is a simple consequence of Lemma 11.2 since a
uniformly random vector �𝑦 ∈ {−1, 1}𝑛 can be interpreted as a mixture of different Boolean slices.

Lemma 11.3. Fix 0 < 𝛿 < 1/4, and consider a partition [𝑛] = 𝐼1 ∪ · · · ∪ 𝐼𝑚 as in Lemma 11.1, as well
as a symmetric matrix 𝐹 ∈ R𝑛×𝑛, a vector �𝑓 ∈ R𝑛 and a real number 𝑓0 satisfying conditions (a–d).
Assume that n is sufficiently large with respect to 𝛿.

Consider a sequence (ℓ1, . . . , ℓ𝑚) ∈ N𝑚 with |ℓ𝑘 − |𝐼𝑘 |/2| ≤
√
𝑛1−𝛿 log 𝑛 and for 𝑘 = 1, . . . , 𝑚, and

let �𝑥 ∈ {−1, 1}𝑛 be a uniformly random vector such that �𝑥𝐼𝑘 has exactly ℓ𝑘 ones for each 𝑘 = 1, . . . , 𝑚.
Furthermore let �𝑦 ∈ {−1, 1}𝑛 be a uniformly random vector (with independent coordinates). Let
𝑋 = �𝑓0 + 𝑓 · �𝑥 + �𝑥ᵀ𝐹�𝑥 and𝑌 = 𝑓0 + �𝑓 · �𝑦 + �𝑦ᵀ𝐹 �𝑦. Then we can couple �𝑥 and �𝑦 such that |𝑋 −𝑌 | ≤ 𝑛3/4+4𝛿

with probability at least 1 − exp(−(log 𝑛)2/8).

Proof. For 𝑘 = 1, . . . , 𝑚, consider independent binomial random variables ℓ′𝑘 ∼ Bin(|𝐼𝑘 |, 1/2). We can
sample �𝑦 by taking a random vector in {−1, 1}𝑛 with exactly ℓ′𝑘 ones among the entries with indices in 𝐼𝑘
for each 𝑘 = 1, . . . , 𝑚. Note that altogether this gives precisely a uniformly random vector in {−1, 1}𝑛.
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We now need to define the desired coupling of �𝑥 and �𝑦. By the Chernoff bound (see Lemma 4.16), with
probability at least 1−4𝑛𝛿 ·exp(−(log 𝑛)2/4) ≤ 1−exp(−(log 𝑛)2/6) we have |ℓ′𝑘−|𝐼𝑘 |/2| ≤

√
𝑛1−𝛿 log 𝑛

for 𝑘 = 1, . . . , 𝑚 (here, we used that 𝑚 ≤ 2𝑛𝛿 and |𝐼𝑘 | = 𝑛/𝑚 ≤ 2𝑛1−𝛿). Whenever this is the case, then
by Lemma 11.2 we can couple �𝑥 and �𝑦 in such a way that we have |𝑋 −𝑌 | ≤ 𝑛3/4+4𝛿 with probability at
least 1 − exp(−𝑛𝛿/2). Otherwise, let us couple �𝑥 and �𝑦 arbitrarily.

Now, the overall probability of having |𝑋−𝑌 | ≤ 𝑛3/4+4𝛿 is at least 1−exp(−(log 𝑛)2/6)−exp(−𝑛𝛿/2) ≥
1 − exp(−(log 𝑛)2/8), as desired. �

In order to obtain the comparison of the characteristic functions of X and Z in Lemma 11.1(3), we
will use Lemma 11.3 to relate X to Y. It then remains to compare the characteristic functions of Y and
Z. To do so, we use the Gaussian invariance principle of Mossel, O’Donnell and Oleszkiewicz [74].
The version stated in Theorem 11.5 below is a special case of [81, (11.29)].

Definition 11.4. Given a multilinear polynomial 𝑔(𝑥1, . . . , 𝑥𝑛) =
∑

𝑆⊆[𝑛] 𝑎𝑆
∏

𝑖∈𝑆 𝑥𝑖 , for 𝑡 = 1, . . . , 𝑛
the influence of the variable 𝑥𝑡 is defined as

Inf𝑡 [𝑔] =
∑

𝑆⊆[𝑛]
𝑡 ∈𝑆

𝑎2
𝑆 .

Theorem 11.5. Let g be an n-variable multilinear polynomial of degree at most k. Let �𝑦 ∈ {−1, 1}𝑛
be a uniformly random vector (i.e., a vector of independent Rademacher random variables), and let
�𝑧 ∼ N (0, 1)⊗𝑛 be a vector of independent standard Gaussian random variables. Then for any four-
times-differentiable function 𝜓 : R→ R, we have


E[𝜓(𝑔(�𝑦)) − 𝜓(𝑔(�𝑧))]




 ≤ 9𝑘

12
· ‖𝜓 (4) ‖∞

𝑛∑
𝑡=1

Inf𝑡 [𝑔]2.

As a simple consequence of Theorem 11.5, we obtain the following lemma.

Lemma 11.6. Fix 0 < 𝛿 < 1/4. Consider a vector �𝑓 ∈ R𝑛 with ‖ �𝑓 ‖∞ ≤ 𝑛1/2+3𝛿 and a matrix 𝐹 ∈ R𝑛×𝑛
with entries bounded in absolute value by 1, as well as a real number 𝑓0. Assume that n is sufficiently
large with respect to 𝛿.

Let �𝑦 ∈ {−1, 1}𝑛 be a uniformly random vector, and let �𝑧 ∼ N (0, 1)⊗𝑛 be a vector of independent
standard Gaussian random variables. Let 𝑌 = 𝑓0 + �𝑓 · �𝑦 + �𝑦ᵀ𝐹 �𝑦 and 𝑍 = 𝑓0 + �𝑓 · �𝑧 + �𝑧ᵀ𝐹�𝑧. Then for any
four-times-differentiable function 𝜓 : R→ R, we have


E[𝜓(𝑌 ) − 𝜓(𝑍)]




 � ‖𝜓 (4) ‖∞ · 𝑛3+12𝛿 + ‖𝜓 ′‖∞ · 𝑛1/2.

Proof. Let 𝐹 ′ be obtained from F by setting each diagonal entry to zero. Define the multilinear
polynomial g by 𝑔(�𝑥) = 𝑓0 + �𝑓 · �𝑥 + �𝑥ᵀ𝐹 ′�𝑥 +

∑
𝑖 𝐹𝑖,𝑖 , and let 𝑌 ′ = 𝑔(�𝑦) and 𝑍 ′ = 𝑔(�𝑧). Note that

Inf𝑡 [𝑔] ≤ (𝑛1/2+3𝛿)2 + 𝑛 ≤ 2𝑛1+6𝛿 for 𝑡 = 1, . . . , 𝑛, so
∑𝑛

𝑡=1 Inf𝑡 [𝑔]2 ≤ 4𝑛3+12𝛿 . Theorem 11.5 then
implies that 


E[𝜓(𝑌 ′) − 𝜓(𝑍 ′)]




 ≤ 27‖𝜓 (4) ‖∞ · 𝑛3+12𝛿 .

Furthermore, we always have 𝑦2
𝑖 = 1 for 𝑖 = 1, . . . , 𝑛, meaning that 𝑌 ′ = 𝑌 and in particular E[𝜓(𝑌 ′) −

𝜓(𝑌 )] = 0. By the Cauchy–Schwarz inequality, we also have

|E[𝜓(𝑍 ′) − 𝜓(𝑍)] | ≤ E|𝜓(𝑍 ′) − 𝜓(𝑍) | ≤ ‖𝜓 ′‖∞ · E|𝑍 ′ − 𝑍 | ≤ ‖𝜓 ′‖∞ · (E[(𝑍 ′ − 𝑍)2])1/2

≤ 2‖𝜓 ′‖∞𝑛1/2,
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where we used E[(𝑍 ′ − 𝑍)2] = E[(𝐹1,1 (𝑧2
1 − 1) + · · · + 𝐹𝑛,𝑛 (𝑧2

𝑛 − 1))2] = 2|𝐹1,1 |2 + · · · + 2|𝐹𝑛,𝑛 |2 ≤ 2𝑛
in the last step. Combining these estimates gives the desired result. �

Let us now prove Lemma 11.1.

Proof of Lemma 11.1. We may assume that n is sufficiently large with respect to 𝛿. Let �𝑦 ∈ {−1, 1}𝑛 be
a uniformly random vector, and define 𝑌 = 𝑓0 + �𝑓 · �𝑦 + �𝑦ᵀ𝐹 �𝑦. By Lemma 11.3, we can couple �𝑥 and �𝑦
such that |𝑋 − 𝑌 | ≤ 𝑛3/4+4𝛿 with probability at least 1 − exp(−(log 𝑛)2/8).

We can now compute E𝑌 = E𝑍 = 𝑓0 +
∑𝑛

𝑖=1 𝐹𝑖,𝑖 . Furthermore, since |𝑋 − 𝑌 | � 𝑛2 always holds,
we have |E𝑋 − E𝑌 | ≤ E|𝑋 − 𝑌 | � 𝑛3/4+4𝛿 + exp(−(log 𝑛)2/8) · 𝑛2 � 𝑛3/4+4𝛿 and therefore E𝑋 =
𝑓0 +

∑𝑛
𝑖=1 𝐹𝑖,𝑖 +𝑂 (𝑛3/4+4𝛿). This proves (1).

Note that 𝑌 − E𝑌 = �𝑓 · �𝑦 +
∑

𝑖< 𝑗 2𝐹𝑖, 𝑗 𝑦𝑖𝑦 𝑗 (here, we are using that 𝑦2
𝑖 = 1 and that F is symmetric).

Therefore, (4.5) gives 𝜎(𝑌 )2 = ‖ �𝑓 ‖2
2 +

∑
𝑖< 𝑗 4𝐹2

𝑖, 𝑗 = 2‖𝐹‖2
F + ‖ �𝑓 ‖2

2 −2
∑𝑛

𝑖=1 𝐹2
𝑖,𝑖 = 2‖𝐹‖2

F + ‖ �𝑓 ‖2
2 +𝑂 (𝑛)

(and so in particular 𝜎(𝑌 )2 � 𝑛2+6𝛿). Furthermore (using the Cauchy–Schwarz inequality), we have

|𝜎(𝑋)2 − 𝜎(𝑌 )2 |
=


E [

(𝑋 − E𝑋)2 − (𝑌 − E𝑌 )2] 

 ≤ E [|𝑋 − 𝑌 − E𝑋 + E𝑌 | · |𝑋 + 𝑌 − E𝑋 − E𝑌 |]

≤
(
E
[
(|𝑋 − 𝑌 | + |E𝑋 − E𝑌 |)2] )1/2

·
(
E
[
(|𝑋 − E𝑋 | + |𝑌 − E𝑌 |)2] )1/2

≤
(
E

[
(|𝑋 − 𝑌 | +𝑂 (𝑛3/4+4𝛿))2

] )1/2
·
(
2E

[
|𝑋 − E𝑋 |2

]
+ 2E

[
|𝑌 − E𝑌 |2

] )1/2

�
(
E[|𝑋 − 𝑌 |2] + E|𝑋 − 𝑌 | · 𝑂 (𝑛3/4+4𝛿) +𝑂 (𝑛3/2+8𝛿)

)1/2
·
(
𝜎(𝑋)2 + 𝜎(𝑌 )2

)1/2

�
(
𝑛3/2+8𝛿 + exp(−(log 𝑛)2/8) · 𝑛4 +𝑂 (𝑛3/2+8𝛿)

)1/2
· (𝜎(𝑋) + 𝜎(𝑌 ))

� 𝑛3/4+4𝛿 · (𝜎(𝑋) + 𝜎(𝑌 )).

Hence, |𝜎(𝑋) − 𝜎(𝑌 ) | � 𝑛3/4+4𝛿 and in particular 𝜎(𝑋) ≤ 𝜎(𝑌 ) + 𝑂 (𝑛3/4+4𝛿) � 𝑛1+3𝛿 . Thus, we
obtain |𝜎(𝑋)2 − 𝜎(𝑌 )2 | = |𝜎(𝑋) − 𝜎(𝑌 ) |(𝜎(𝑋) + 𝜎(𝑌 )) � 𝑛3/4+4𝛿 · 𝑛1+3𝛿 = 𝑛7/4+7𝛿 . This gives
𝜎(𝑋)2 = 𝜎(𝑌 )2 +𝑂 (𝑛7/4+7𝛿) = 2‖𝐹‖2

F + ‖ �𝑓 ‖2
2 +𝑂 (𝑛7/4+7𝛿).

To finish the proof of (2), we observe that 𝑍 − E𝑍 = �𝑓 · �𝑧 +
∑𝑛

𝑖=1 𝐹𝑖,𝑖 (𝑧2
𝑖 − 1) +

∑
𝑖< 𝑗 2𝐹𝑖, 𝑗 𝑧𝑖𝑧 𝑗 , so we

can compute 𝜎(𝑍)2 = ‖ �𝑓 ‖2
2 +

∑𝑛
𝑖=1 2𝐹2

𝑖,𝑖 +
∑

𝑖< 𝑗 (2𝐹𝑖, 𝑗 )2 = 2‖𝐹‖2
F + ‖ �𝑓 ‖2

2 .
For (3), consider some 𝜏 ∈ R. We have

|𝜑𝑌 (𝜏) − 𝜑𝑍 (𝜏) | =



E[exp(𝑖𝜏𝑌 ) − exp(𝑖𝜏𝑍)]




 = 


E[cos(𝜏𝑌 ) + 𝑖 sin(𝜏𝑌 ) − cos(𝜏𝑍) − 𝑖 sin(𝜏𝑍)]





≤



E[cos(𝜏𝑌 ) − cos(𝜏𝑍)]




 + 


E[sin(𝜏𝑌 ) − sin(𝜏𝑍)]








� |𝜏 |4 · 𝑛3+12𝛿 + |𝜏 | · 𝑛1/2,

where in the last step we applied Lemma 11.6 to the functions 𝑢 ↦→ cos(𝜏𝑢) and 𝑢 ↦→ sin(𝜏𝑢). We
furthermore have

|𝜑𝑋 (𝜏) − 𝜑𝑌 (𝜏) | =



E[exp(𝑖𝜏𝑋) − exp(𝑖𝜏𝑌 )]





≤ E

[
| exp(𝑖𝜏𝑋) − exp(𝑖𝜏𝑌 ) |

]
≤ |𝜏 | · E[|𝑋 − 𝑌 |] � |𝜏 | · 𝑛3/4+4𝛿 ,

using that the absolute value of the derivative of the function 𝑢 ↦→ exp(𝑖𝜏𝑢) is bounded by |𝜏 |. Combining
these two bounds using the triangle inequality gives (3). �
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12. Short interval control in the additively structured case

Recall the definition of 𝛾-structuredness from Definition 9.1, and recall that in Section 9 we fixed
𝛾 = 10−4 and proved Theorem 3.1 in the case where (𝐺, �𝑒) is 𝛾-unstructured. In this section, we finally
prove Theorem 3.1 in the complementary case where (𝐺, �𝑒) is 𝛾-structured.

As outlined in Section 3, the idea is as follows. First, we apply Lemma 4.12 to the vector �𝑑 in
Definition 9.1 to divide the vertex set into ‘buckets’ such that the 𝑑𝑣 in each bucket have similar values.
We encode the number of vertices in each bucket as a vector �Δ; if we condition on an outcome of �Δ ,
then we can use the machinery developed in the previous sections to prove upper and lower bounds on
the conditional small-ball probabilities of X. Then, we need to average these estimates over �Δ . For this
averaging, it is important that our conditional small-ball probabilities decay as we vary �Δ (this is where
we need the nonuniform anticoncentration estimates in Theorem 5.2(1) and Lemma 6.2).

This section mostly consists of combining ingredients from previous sections, but there are still a few
technical difficulties remaining. Chief among these is the fact that, as we vary the numbers of vertices
in each bucket, the conditional expected value and variance of X fluctuate fairly significantly. We need
to keep track of these fluctuations and ensure that they do not correlate adversarially with each other.
Proof of Theorem 3.1 in the 𝛾-structured case. Recall that G is a C-Ramsey graph with n vertices,
𝑒0 ∈ R and �𝑒 ∈ R𝑉 (𝐺) is a vector satisfying 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all 𝑣 ∈ 𝑉 (𝐺) and that 𝑈 ⊆ 𝑉 (𝐺) is a
uniformly random vertex subset and 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0. We may assume that n is sufficiently

large with respect to 𝐶, 𝐻 and A.

Step 1: Bucketing setup. As in Definition 9.1, define �𝑑 ∈ R𝑉 (𝐺) by 𝑑𝑣 = 𝑒𝑣+deg𝐺 (𝑣)/2 for all 𝑣 ∈ 𝑉 (𝐺).
We are assuming that (𝐺, �𝑒) is 𝛾-structured, meaning that 𝐷𝐿,𝛾 ( �𝑑) ≤ 𝑛1/2, where 𝐿 = �100/𝛾� = 106

(recall that 𝛾 = 10−4).
Note that ‖ �𝑑‖∞ ≤ (𝐻 + 1)𝑛. Furthermore, for any subset 𝑆 ⊆ 𝑉 (𝐺) of size |𝑆 | = �𝑛1−𝛾�, we have

‖ �𝑑𝑆 ‖2 �𝐻 𝑛3/2−3𝛾/2 by Lemma 7.3 and therefore in particular ‖ �𝑑𝑆 ‖2 ≥ 𝑛3/2−2𝛾 . Thus, we can apply
Lemma 4.12 and obtain a partition 𝑉 (𝐺) = 𝑅 ∪ (𝐼1 ∪ · · · ∪ 𝐼𝑚) and real numbers 𝜅1, . . . , 𝜅𝑚 ≥ 0 with
|𝑅 | ≤ 𝑛1−𝛾 and |𝐼1 | = · · · = |𝐼𝑚 | = �𝑛1−2𝛾� such that |𝑑𝑣 − 𝜅𝑘 | ≤ 𝑛1/2+4𝛾 for all 𝑘 = 1, . . . , 𝑚 and
𝑣 ∈ 𝐼𝑘 . Let 𝑉 = 𝐼1 ∪ · · · ∪ 𝐼𝑚 = 𝑉 (𝐺) \ 𝑅.

Since |𝑅 | ≤ 𝑛1−𝛾 , we have 2𝑛/3 ≤ |𝑉 | ≤ 𝑛 (i.e., |𝑉 | is of order n) and thus furthermore |𝑉 |2𝛾/2 ≤
𝑛2𝛾/2 ≤ 𝑚 ≤ 21−2𝛾𝑛2𝛾 ≤ 2|𝑉 |2𝛾 (which means that we can apply Lemma 10.1 and 11.1 to the partition
𝑉 = 𝐼1 ∪ · · · ∪ 𝐼𝑚).

In the next step of the proof, we will condition on an outcome of 𝑈 ∩ 𝑅, and from then on we will
only use the randomness of 𝑈 ∩ (𝐼1 ∪ · · · ∪ 𝐼𝑚) = 𝑈 ∩𝑉 .

Step 2: Conditioning on an outcome of 𝑈 ∩ 𝑅. Recall that 𝑈 ⊆ 𝑉 (𝐺) is a random subset obtained by
including each vertex with probability 1/2 independently. Let 𝑥𝑣 = 1 if 𝑣 ∈ 𝑈 and 𝑥𝑣 = −1 if 𝑣 ∉ 𝑈,
so the 𝑥𝑣 are independent Rademacher random variables. Then, as in (3.1) and the proof of Lemma 7.1
our random variable 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 can be expressed as

E𝑋 + 1
2

∑
𝑣 ∈𝑉 (𝐺)

(
𝑒𝑣 +

1
2

deg𝐺 (𝑣)
)
𝑥𝑣 +

1
4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 = E𝑋 + 1
2

∑
𝑣 ∈𝑉 (𝐺)

𝑑𝑣𝑥𝑣 +
1
4

∑
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢𝑥𝑣 .

(12.1)

Let us now write �𝑥 for the vector (𝑥𝑣 )𝑣 ∈𝑉 ; we emphasize that this does not include the indices in R.
We first rewrite (12.1) as a quadratic polynomial in �𝑥 (where we view the random variables 𝑥𝑢 for
𝑢 ∈ 𝑅 = 𝑉 (𝐺) \ 𝑉 as being part of the coefficients of this quadratic polynomial). To this end, let
𝑀 ∈ {0, 1}𝑉×𝑉 be the adjacency matrix of 𝐺 [𝑉], and also define

𝑦𝑣 = 𝑑𝑣 +
1
2

∑
𝑢∈𝑅

𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢 for 𝑣 ∈ 𝑉 and 𝐸 = E𝑋 + 1
2

∑
𝑣 ∈𝑅

𝑑𝑣𝑥𝑣 +
1
4

∑
𝑢𝑣 ∈𝐸 (𝐺 [𝑅])

𝑥𝑢𝑥𝑣 .
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Then

𝑋 = 𝐸 + 1
2
�𝑦 · �𝑥 + 1

8
�𝑥ᵀ𝑀�𝑥. (12.2)

Since |𝑅 | ≤ 𝑛1−𝛾 and 0 ≤ 𝑑𝑣 ≤ 𝐻𝑛+𝑛/2 ≤ (𝐻+1)𝑛 for all 𝑣 ∈ 𝑉 (𝐺), Theorem 4.15 (concentration via
hypercontractivity) in combination with (4.5) shows that with probability at least 1 − exp(−Ω𝐻 (𝑛𝛾/2))
(over the randomness of 𝑥𝑢 for 𝑢 ∈ 𝑅) we have



 ∑

𝑢∈𝑅
𝑢𝑣 ∈𝐸 (𝐺)

𝑥𝑢





 ≤ 𝑛1/2 for each 𝑣 ∈ 𝑉,





 ∑
𝑢𝑣 ∈𝐸 (𝐺 [𝑅])

𝑥𝑢𝑥𝑣





 ≤ 𝑛,





 ∑
𝑣 ∈𝑅

𝑑𝑣𝑥𝑣





 ≤ 𝑛3/2/2,

which implies that |𝐸 − E𝑋 | ≤ 𝑛3/2 and |𝑦𝑣 − 𝑑𝑣 | ≤ 𝑛1/2 for all 𝑣 ∈ 𝑉 . For the rest of the proof, we
implicitly condition on an outcome of𝑈∩𝑅 satisfying these properties, and we treat E and �𝑦 = (𝑦𝑣 )𝑣 ∈𝑉
as being nonrandom objects.

Note that ‖�𝑦‖∞ ≤ 𝐻𝑛 + 𝑛/2 + 𝑛1/2 ≤ (𝐻 + 2)𝑛 and ‖�𝑦‖2 ≥ ‖ �𝑑𝑉 ‖2 − ‖�𝑦 − 𝑑𝑉 ‖2 ≥ ‖ �𝑑𝑉 ‖2 − 𝑛.
Furthermore, we have ‖ �𝑑𝑉 ‖2 �𝐶 𝑛3/2 by Lemma 7.3 and therefore ‖�𝑦‖2 �𝐶 𝑛3/2.

Step 3: Rewriting X via bucket intersection sizes. Recall that we have a partition 𝑉 = 𝐼1 ∪ · · · ∪ 𝐼𝑚 into
‘buckets’ with |𝐼1 | = · · · = |𝐼𝑚 | = |𝑉 |/𝑚 and |𝑉 |2𝛾/2 ≤ 𝑚 ≤ 2|𝑉 |2𝛾 . Let 𝐼 ∈ R𝑉×𝑉 be the identity
matrix, and let 𝑄 ∈ R𝑉×𝑉 be the symmetric matrix defined by taking 𝑄𝑢,𝑣 = 1/|𝐼𝑘 | = 𝑚/|𝑉 | for 𝑢, 𝑣
in the same bucket 𝐼𝑘 , and 𝑄𝑢,𝑣 = 0 otherwise. Multiplying a vector �𝑣 ∈ R𝑉 by this matrix Q has the
effect of averaging the entries of �𝑣 over each of the buckets 𝐼𝑘 , and hence (𝐼 −𝑄)�𝑣 has the property that
for 𝑘 = 1, . . . , 𝑚 the sum of the entries in �𝑣𝐼𝑘 is zero.

Let us define �Δ ∈ R𝑉 by �Δ = 𝑄�𝑥, so for any 𝑘 = 1, . . . , 𝑚 and any 𝑣 ∈ 𝐼𝑘 we have

Δ 𝑣 =
1
|𝐼𝑘 |

∑
𝑢∈𝐼𝑘

𝑥𝑢 =
2
|𝐼𝑘 |

(
|𝑈 ∩ 𝐼𝑘 | −

|𝐼𝑘 |
2

)
.

Hence, �Δ encodes the sizes of the intersections |𝑈 ∩ 𝐼𝑘 | for 𝑘 = 1, . . . , 𝑚. In our analysis of the random
variable X, we will condition on an outcome of �Δ and apply Lemma 11.1 to study X conditioned on �Δ .
However, the vector �𝑦 and the matrix M appearing in (12.2) do not satisfy conditions (a), (c) and (d) in
Lemma 11.1. So, we need to modify the representation of X in (12.2).

Define 𝑀∗ = 1
8 (𝐼−𝑄)𝑀 (𝐼−𝑄) and �𝑤∗

�Δ
= 1

2 (𝐼−𝑄) (�𝑦+ 1
2 𝑀

�Δ). Then (recalling that Q is symmetric)

𝑋 = 𝐸 + 1
2
�𝑦 · �𝑥 + 1

8
�𝑥ᵀ𝑀�𝑥

= 𝐸 + 1
2
(𝐼 −𝑄) �𝑦 · �𝑥 + 1

2
�𝑦 · (𝑄�𝑥) + 1

8
�𝑥ᵀ (𝐼 −𝑄)𝑀 (𝐼 −𝑄)�𝑥

+ 1
4
�𝑥ᵀ (𝐼 −𝑄)𝑀𝑄�𝑥 + 1

8
�𝑥ᵀ𝑄𝑀𝑄�𝑥

=

(
𝐸 + 1

2
�𝑦 · �Δ + 1

8
�Δᵀ𝑀 �Δ

)
+ �𝑤∗

�Δ
· �𝑥 + �𝑥ᵀ𝑀∗�𝑥. (12.3)

Furthermore, 𝑀∗ has the property that for all 𝑘, ℎ ∈ [𝑚], in the submatrix 𝑀∗ [𝐼𝑘 × 𝐼ℎ] all row and
column sums are zero, and �𝑤∗

�Δ
has the property that for each 𝑘 = 1, . . . , 𝑚, the sum of entries in ( �𝑤∗

�Δ
)𝐼𝑘

is equal to zero. Also, note that since M has entries in {0, 1}, all entries of (𝐼 − 𝑄)𝑀𝑄 and hence all
entries of 𝑀∗ have absolute value at most 1. Thus, �𝑤∗

�Δ
and 𝑀∗ satisfy conditions (b)–(d) in Lemma 11.1.

Also, since 𝑀∗ is defined in terms of the adjacency matrix of a Ramsey graph, Lemma 10.1 tells us
that it must have large Frobenius norm. Indeed,

‖𝑀∗‖2
F =

1
64

‖𝑀 − (𝑀𝑄 +𝑄𝑀 −𝑄𝑀𝑄)‖2
F �𝐶 𝑛2 (12.4)
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by Lemma 10.1 applied with 𝛿 = 2𝛾 = 2 · 10−4 and 𝑟 = 3 (here, we are using that M is the adjacency
matrix of the (2𝐶)-Ramsey graph 𝐺 [𝑉] of size |𝑉 | � 𝑛, and we are using that the matrix 𝐵 =
𝑀𝑄 +𝑄𝑀 −𝑄𝑀𝑄 ∈ R𝑉×𝑉 has the property that rank 𝐵[𝐼𝑘×𝐼ℎ] ≤ 3 for all 𝑘, ℎ ∈ [𝑚]).

Step 4: Conditioning on bucket intersection sizes. By a Chernoff bound, with probability at least
1 − 2𝑛2𝛾 · 𝑛−𝜔 (1) = 1 − 𝑛−𝜔 (1) we have



|𝑈 ∩ 𝐼𝑘 | − |𝐼𝑘 |/2


 ≤ √

|𝐼𝑘 | (log 𝑛)/2 =
√
|𝑉 |/𝑚 · (log 𝑛)/2 for

𝑘 = 1, . . . , 𝑚, or equivalently |Δ 𝑣 | ≤
√
𝑚/|𝑉 | log 𝑛 for all 𝑣 ∈ 𝑉 .

We furthermore claim that with probability 1− 𝑛−𝜔 (1) we have ‖ �𝑤∗
�Δ
‖∞ ≤ 𝑛1/2+5𝛾 . Indeed, recall that

�𝑤∗
�Δ
= 1

2 (𝐼 − 𝑄) (�𝑦 + 1
2 𝑀

�Δ) and (from Step 2) |𝑦𝑣 − 𝑑𝑣 | ≤ 𝑛1/2 for all 𝑣 ∈ 𝑉 . Recall from the choice
of buckets in Step 1 that for all 𝑘 = 1, . . . , 𝑚 and 𝑣 ∈ 𝐼𝑘 , we have |𝑑𝑣 − 𝜅𝑘 | ≤ 𝑛1/2+4𝛾 , implying that
|𝑦𝑣 − 𝜅𝑘 | ≤ 2𝑛1/2+4𝛾 . In particular, we obtain |𝑦𝑣 − 𝑦𝑢 | ≤ 4𝑛1/2+4𝛾 for all 𝑢, 𝑣 ∈ 𝑉 that are in the same
bucket 𝐼𝑘 . Hence, ‖(𝐼 −𝑄) �𝑦‖∞ ≤ 4𝑛1/2+4𝛾 . Furthermore, since all entries of (𝐼 −𝑄)𝑀𝑄 have absolute
value at most 1, Theorem 4.15 (concentration via hypercontractivity) shows that with probability at
least 1 − 𝑛 · 𝑛−𝜔 (1) = 1 − 𝑛−𝜔 (1) we have ‖(𝐼 − 𝑄)𝑀 �Δ ‖∞ = ‖(𝐼 − 𝑄)𝑀𝑄�𝑥‖∞ ≤

√
𝑛 log 𝑛, which now

implies ‖ �𝑤∗
�Δ
‖∞ ≤ 𝑛1/2+5𝛾 as claimed.

Let us say that an outcome of �Δ is near-balanced if ‖ �𝑤∗
�Δ
‖∞ ≤ 𝑛1/2+5𝛾 and |Δ 𝑣 | ≤

√
𝑚/|𝑉 | log 𝑛 for

all 𝑣 ∈ 𝑉 . We have just shown that �Δ is near-balanced with probability 1 − 𝑛−𝜔 (1) . Note that for near-
balanced �Δ we in particular have ‖ �𝑤∗

�Δ
‖∞ ≤ |𝑉 |1/2+6𝛾 and



|𝑈 ∩ 𝐼𝑘 | − |𝐼𝑘 |/2


 ≤ √

|𝑉 |/𝑚 · (log 𝑛)/2 ≤√
|𝑉 |1−2𝛾 log |𝑉 | for 𝑘 = 1, . . . , 𝑚. If we condition on a near-balanced outcome of �Δ (which is equivalent

to conditioning on the bucket intersection sizes |𝑈 ∩ 𝐼𝑘 | for 𝑘 = 1, . . . , 𝑚), then we are in a position to
apply Lemma 11.1 with 𝛿 = 2𝛾 = 2 · 10−4. Together with the machinery in Sections 6, 8, 10 and 5 we
can then obtain upper and lower bounds for the probability that, conditioning on our outcome of �Δ , the
random variable X lies in some short interval.10

To state such upper and lower bounds, let us write 𝐸 �Δ = E[𝑋 | �Δ] and define 𝜎�Δ ≥ 0 to satisfy
𝜎2
�Δ
= Var[𝑋 | �Δ]. By Lemma 11.1(2), for near-balanced �Δ we have 𝜎2

�Δ
= 2‖𝑀∗‖2

F+‖ �𝑤
∗
�Δ
‖2

2 +𝑂 (𝑛7/4+14𝛾),
implying that 𝜎�Δ ≥ ‖𝑀∗‖F �𝐶 𝑛 by (12.4).

Claim 12.1. There is a constant 𝐵 = 𝐵(𝐶) > 0 such that the following holds for any fixed near-balanced
outcome of �Δ .

1. For any 𝑥 ∈ Z, we have

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵




�Δ]
�𝐶

exp
(
−Ω𝐶

(
|𝑥 − 𝐸 �Δ |/𝜎�Δ

))
+ 𝑛−0.1

𝜎�Δ
.

2. There is a sign 𝑠 ∈ {−1, 1}, depending only on 𝑀∗, such that for any fixed 𝐴 > 0 and any 𝑥 ∈ Z
satisfying 3𝑛 ≤ 𝑠(𝑥 − 𝐸 �Δ ) ≤ 𝐴𝜎�Δ , we have

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵




�Δ]
�𝐶,𝐴

1
𝜎�Δ

.

We defer the proof of Claim 12.1 until the end of the section (specifically, we will prove it in
Section 12.1). The proof combines the machinery from Sections 6, 8, 10, 5 and 11.

10Our upper and lower bounds for this probability differ by a constant factor. As suggested by one of the anonymous referees, one
may wonder whether in this setting it would also be possible to characterize this probability for short intervals asymptotically (up
to a 1 + 𝑜 (1) factor), potentially even asymptotically characterising the conditional point probabilities of the form Pr[𝑋 = 𝑥 | �Δ ]
(proving a local limit theorem conditional on the outcome ofΔ). While one might be able to asymptotically characterize conditional
small-ball probabilities of the form Pr[ |𝑋 − 𝑥 | ≤ 𝐵 | �Δ ] when 𝐵 → ∞ as 𝑛 → ∞ by adapting the arguments in this paper,
characterising point probabilities (or probabilities for bounded-length intervals) would likely require significant new ideas.
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Step 5: Estimating the conditional mean and variance. We wish to average the estimates in Claim 12.1
over different near-balanced outcomes of �Δ . To this end, we need to understand how the conditional mean
and variance 𝐸 �Δ = E[𝑋 | �Δ] and 𝜎2

�Δ
= Var[𝑋 | �Δ] depend on �Δ (recall that we already fixed an outcome

for 𝑈 ∩ 𝑅 in Step 2, which in particular fixes E and �𝑦). Most importantly, 𝐸 �Δ positively correlates with
the coordinates of �Δ: Recall that �Δ encodes the number of vertices of our random set U in each bucket,
so naturally if we take more vertices we are likely to increase the number of edges we end up with.
However, there are also certain (lower order, nonlinear) adjustments that we need to take into account.
In this subsection we will define ‘shift’ random variables 𝐸shift(1) , 𝐸shift(2) and 𝜎shift depending on �Δ .
We then show that these shift random variables control the dependence of 𝐸 �Δ and 𝜎�Δ on �Δ .

Let 𝐸shift(1) = 1
2 �𝑦 · �Δ and 𝐸shift(2) = 1

8
�Δᵀ𝑀 �Δ . Recalling (12.3), by Lemma 11.1(1) (applied with

𝛿 = 2𝛾) we have 𝐸 �Δ = E[𝑋 | �Δ] = 𝐸 +𝐸shift(1) +𝐸shift(2) +
∑

𝑣 ∈𝑉 𝑀∗
𝑣,𝑣 +𝑂 (𝑛3/4+8𝛾) if �Δ is near-balanced.

Recalling 𝛾 = 10−4 and that all entries of 𝑀∗ have absolute value at most 1, we obtain

𝐸 �Δ − 𝐸 − 𝐸shift(1) − 𝐸shift(2)


 ≤ 2𝑛 (12.5)

for all near-balanced �Δ (i.e., 𝐸 �Δ is ‘shifted’ by about 𝐸shift(1) + 𝐸shift(2) from E).
Recall that ‖�𝑦‖2 �𝐶 𝑛3/2 and ‖�𝑦‖∞ ≤ (𝐻 + 2)𝑛 from the end of Step 2. Furthermore, we observed

that ‖(𝐼 − 𝑄) �𝑦‖∞ ≤ 4𝑛1/2+4𝛾 in Step 4, which implies ‖(𝐼 − 𝑄) �𝑦‖2 ≤ 4𝑛1+4𝛾 . Thus, we obtain
‖𝑄�𝑦‖2 ≥ ‖�𝑦‖2−‖(𝐼−𝑄) �𝑦‖2 �𝐶 𝑛3/2 and ‖𝑄�𝑦‖∞ ≤ (𝐻+2)𝑛. Roughly speaking, this means𝑄�𝑦 behaves
like a vector where every entry has magnitude around n, and we can apply the Berry–Esseen theorem
to 𝐸shift(1) =

1
2 �𝑦 · �Δ = 1

2 (𝑄�𝑦) · �𝑥 =
∑

𝑣 ∈𝑉 ( 1
2𝑄�𝑦)𝑣𝑥𝑣 (the Berry–Esseen theorem is a quantitative central

limit theorem for sums of independent but not necessarily identically distributed random variables; see,
for example, [83, Chapter V, Theorem 3]). Indeed, let 𝑍 ∼ N (0, ( 1

2 ‖𝑄�𝑦‖2)2); the Berry–Esseen theorem
shows that for any interval [𝑎, 𝑏] ⊆ R, we have

| Pr[𝐸shift(1) ∈ [𝑎, 𝑏]] − Pr[𝑍 ∈ [𝑎, 𝑏]] | �𝐶,𝐻 1/
√
𝑛. (12.6)

In particular, for every interval [𝑎, 𝑏] ⊆ R of length 𝑏 − 𝑎 ≥ ‖𝑀∗‖F, we have

Pr[𝐸shift(1) ∈ [𝑎, 𝑏]] �𝐶,𝐻
𝑏 − 𝑎

𝑛3/2 (12.7)

(recalling that ‖𝑀∗‖F �𝐶 𝑛 by (12.4)).
Recall from Step 4 that for near-balanced �Δ we have 𝜎2

�Δ
= 2‖𝑀∗‖2

F + ‖ �𝑤∗
�Δ
‖2

2 + 𝑂 (𝑛7/4+14𝛾) =

2‖𝑀∗‖2
F + ‖ 1

2 (𝐼 −𝑄) �𝑦 + 1
4 (𝐼 −𝑄)𝑀 �Δ ‖2

2 +𝑂 (𝑛7/4+14𝛾)(using the definition of �𝑤∗
�Δ

in Step 3). Let us now

define 𝜎 ≥ 0 to satisfy 𝜎2 = 2‖𝑀∗‖2
F + ‖ 1

2 (𝐼 −𝑄) �𝑦‖2
2 . Note that 𝜎 does not depend on �Δ (in a moment

we will define 𝜎shift to bound the deviation of 𝜎�Δ from 𝜎). Also, note that we have 𝜎 ≥ ‖𝑀∗‖F �𝐶 𝑛

(recalling (12.4)) and 𝜎2 ≤ 2𝑛2 + 4𝑛2+8𝛾 ≤ 𝑛2.1, meaning that 𝜎 ≤ 𝑛1.05.
Finally, let us define 𝜎shift = ‖ 1

4 (𝐼 − 𝑄)𝑀 �Δ ‖2. Using the inequality ‖�𝑣 + �𝑤‖2
2 ≤ 2‖�𝑣‖2

2 + 2‖ �𝑤‖2
2 for

any vectors �𝑣, �𝑤 ∈ R𝑉 , as well as (12.4) (recalling that 𝛾 = 10−4), for any near-balanced �Δ we have

𝜎2
�Δ
≤ 4‖𝑀∗‖2

F + 2
(((1

2
(𝐼 −𝑄) �𝑦

(((2

2
+ 2

(((1
4
(𝐼 −𝑄)𝑀 �Δ

(((2

2
= 2𝜎2 + 2𝜎2

shift.

Similarly (using ‖�𝑣 − �𝑤‖2
2 ≥ 1

2 ‖�𝑣‖
2
2 − ‖ �𝑤‖2

2),

𝜎2
�Δ
≥ ‖𝑀∗‖2

F + 1
2

(((1
2
(𝐼 −𝑄) �𝑦

(((2

2
−
(((1

4
(𝐼 −𝑄)𝑀 �Δ

(((2

2
=

1
2
𝜎2 − 𝜎2

shift.

Therefore, for every near-balanced �Δ , we must have 𝜎�Δ ≤ 2𝜎shift or 𝜎/2 ≤ 𝜎�Δ ≤ 2𝜎 (indeed, if
𝜎2

shift ≤ 𝜎2
�Δ
/4, then 𝜎2

�Δ
/2 ≤ 2𝜎2 and (5/4)𝜎2

�Δ
≥ 𝜎2/2).
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Step 6: Controlling correlations of the shifts. In order to average the estimates in Claim 12.1 over
the different outcomes of �Δ , we need to ensure that the ‘shifts’ 𝜎shift, 𝐸shift(1) , 𝐸shift(2) (each of which
are determined by �Δ) do not correlate adversarially with each other. More specifically, we need that the
quantities 𝜎shift, 𝐸shift(2) do not correlate very strongly with 𝐸shift(1) , as shown in the following claim.

Claim 12.2. Let [𝑎, 𝑏] ⊆ R be an interval of length 𝑏 − 𝑎 ≥ ‖𝑀∗‖F. Then

E

[
(𝐸2

shift(2) + 𝜎2
shift)1𝐸shift(1) ∈ [𝑎,𝑏]

]
�𝐶,𝐻 𝑛1/2 (𝑏 − 𝑎).

In order to prove Claim 12.2, we will use a similar Fourier-analytic argument as in the proof of Lemma
6.1 to estimate expressions of the form E[𝑥𝑣1 · · · 𝑥𝑣ℓ1𝐸shift(1) ∈ [𝑎,𝑏] ], and deduce the desired bounds by
linearity of expectation. We defer the details of this proof to the end of the section (specifically, we will
prove it in Section 12.1).

After all this setup, we are now ready to prove the desired bounds in the statement of Theorem 3.1.
Let 𝐵 = 𝐵(𝐶) > 0 be as in Claim 12.1. Consider 𝑥 ∈ Z, and write 𝑥 ′ = 𝑥 − 𝐸 . Let E be the event that
|𝑋 − 𝑥 | ≤ 𝐵. We wish to prove the upper bound Pr[E] �𝐶,𝐻 𝑛−3/2, and if |𝑥 ′ | ≤ (𝐴 + 1)𝑛3/2 for some
fixed 𝐴 > 0 we wish to prove the lower bound Pr[E] �𝐶,𝐻 ,𝐴 𝑛−3/2 (recall that |𝐸 − E𝑋 | ≤ 𝑛3/2 from
Step 2, so we have |𝑥 ′ | = |𝑥 − 𝐸 | ≤ (𝐴 + 1)𝑛3/2 whenever |𝑥 − E𝑋 | ≤ 𝐴𝑛3/2).

Step 7: Proof of the upper bound. First, recall from Step 4 that �Δ is near-balanced with probability
1 − 𝑛−𝜔 (1) . Also, for E to have an appreciable chance of occurring, 𝐸shift(1) must be quite close to 𝑥 ′.
Indeed, note that if E occurs, �Δ is near-balanced, and |𝐸shift(1) − 𝑥 ′ | ≥ 𝜎(log 𝑛)2, then we have

|𝑋 − 𝐸 − 𝐸shift(1) | ≥ |𝐸shift(1) + 𝐸 − 𝑥 | − 𝐵 = |𝐸shift(1) − 𝑥 ′ | − 𝐵 ≥ 𝜎(log 𝑛)2/2

(recalling that 𝜎 ≥ ‖𝑀∗‖F �𝐶 𝑛 from Step 5). On the other hand, by (12.2) we have (recalling that
𝐸shift(1) =

1
2 �𝑦 · �Δ = 1

2 (𝑄�𝑦) · �𝑥)

𝑋 − 𝐸 − 𝐸shift(1) =
1
2
�𝑦 · �𝑥 + 1

8
�𝑥ᵀ𝑀�𝑥 − 1

2
(𝑄�𝑦) · �𝑥 =

1
2
((𝐼 −𝑄) �𝑦) · �𝑥 + 1

8
�𝑥ᵀ𝑀�𝑥.

Hence (as M is a symmetric matrix with zeroes on the diagonal), we have E[𝑋 − 𝐸 − 𝐸shift(1) ] = 0 and
𝜎(𝑋 − 𝐸 − 𝐸shift(1) )2 = 1

32 ‖𝑀 ‖2
F + ‖ 1

2 (𝐼 −𝑄) �𝑦‖2
2 ≤ 𝑛2 + 𝜎2 �𝐶 𝜎2 by (4.5) and the definition of 𝜎 in

Step 5. Thus, accounting for the probability that �Δ is not near-balanced, we have

Pr[E ∩ {|𝐸shift(1) − 𝑥 ′ | ≥ 𝜎(log 𝑛)2}] ≤ Pr[|𝑋 − 𝐸 − 𝐸shift(1) | ≥ 𝜎(log 𝑛)2/2] + 𝑛−𝜔 (1)

≤ 𝑛−𝜔𝐶 (1) ≤ 𝑛−3/2 (12.8)

by Theorem 4.15 (concentration via hypercontractivity).
So, it suffices to restrict our attention to �Δ which are near-balanced and satisfy |𝐸shift(1) − 𝑥 ′ | ≤

𝜎(log 𝑛)2. The plan is to apply Claim 12.1(1) to upper-bound Pr[E | �Δ] for all such �Δ , and then to
average over �Δ . When we apply Claim 12.1(1), we need estimates on 𝜎�Δ and |𝑥 − 𝐸 �Δ |; we obtain these
estimates in different ways depending on properties of 𝐸shift(1) , 𝐸shift(2) , 𝜎shift.

First, the exponential decay in the bound in Claim 12.1(1) is in terms of |𝑥 − 𝐸 �Δ |. From (12.5), one
can deduce that |𝑥 − 𝐸 �Δ | is at least roughly as large as |𝑥 ′ − 𝐸shift(1) |, unless 𝐸shift(2) is atypically large
(at the end of this step we will upper-bound the contribution from such atypical �Δ). Let H be the event
that �Δ is near-balanced and satisfies |𝐸shift(1) − 𝑥 ′ | ≤ 𝜎(log 𝑛)2 and |𝑥 − 𝐸 �Δ | ≥ |𝐸shift(1) − 𝑥 ′ |/2 − 2𝑛;
we start by upper-bounding Pr[E ∩H].

https://doi.org/10.1017/fmp.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.17


Forum of Mathematics, Pi 57

For any outcome of �Δ such that H holds, by Claim 12.1(1) we have

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵




�Δ]
�𝐶

exp
(
−Ω𝐶

(
|𝑥 − 𝐸 �Δ |/𝜎�Δ

))
+ 𝑛−0.1

𝜎�Δ

�𝐶
exp

(
−Ω𝐶

(
|𝐸shift(1) − 𝑥 ′ |/𝜎�Δ

))
𝜎�Δ

+ 𝑛−1.1 (12.9)

(recalling from Step 4 that 𝜎�Δ ≥ ‖𝑀∗‖F �𝐶 𝑛). Also, note that by (12.7), we have

Pr[H] ≤ Pr[|𝐸shift(1) − 𝑥 ′ | ≤ 𝜎(log 𝑛)2] �𝐶,𝐻
𝜎(log 𝑛)2

𝑛3/2 ≤ 𝑛−0.45(log 𝑛)2

(recalling that 𝜎 ≥ ‖𝑀∗‖F and 𝜎 ≤ 𝑛1.05 from Step 5).
Recall from the end of Step 5 that we always have 𝜎�Δ ≤ 2𝜎shift or 𝜎/2 ≤ 𝜎�Δ ≤ 2𝜎. First, we bound

Pr[E ∩H ∩ {𝜎/2 ≤ 𝜎�Δ ≤ 2𝜎}]

=
∞∑
𝑗=0

Pr
[
E ∩H ∩ {𝜎/2 ≤ 𝜎�Δ ≤ 2𝜎} ∩

{
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
𝜎

< 𝑗 + 1
}]

�𝐶
∞∑
𝑗=0

Pr
[
H ∩ (𝜎/2 ≤ 𝜎�Δ ≤ 2𝜎) ∩

{
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
𝜎

< 𝑗 + 1
}] (

exp (−Ω𝐶 ( 𝑗))
𝜎

+ 𝑛−1.1
)

≤ Pr[H] · 𝑛−1.1 +
∞∑
𝑗=0

Pr
[
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
𝜎

< 𝑗 + 1
]
· exp (−Ω𝐶 ( 𝑗))

𝜎

�𝐶,𝐻 𝑛−0.45(log 𝑛)2 · 𝑛−1.1 +
∞∑
𝑗=0

𝜎

𝑛3/2 · exp (−Ω𝐶 ( 𝑗))
𝜎

�𝐶 𝑛−3/2,

where in the first inequality we used (12.9) and in the final inequality we used (12.7) (recalling that
𝜎 ≥ ‖𝑀∗‖F).

Next, let us bound Pr[E ∩H ∩ {𝜎�Δ ≤ 2𝜎shift}]. Note that Claim 12.2 implies

E

[
𝜎2
�Δ
1𝐸shift(1) ∈ [𝑎,𝑏]1𝜎�Δ ≤2𝜎shift

]
≤ 4 · E

[
𝜎2

shift1𝐸shift(1) ∈ [𝑎,𝑏]
]
�𝐶,𝐻 𝑛1/2(𝑏 − 𝑎) (12.10)

for any interval [𝑎, 𝑏] ⊆ R of length 𝑏−𝑎 ≥ ‖𝑀∗‖F. Hence, recalling from Step 4 that 𝜎�Δ ≥ ‖𝑀∗‖F �𝐶 𝑛

for every near-balanced �Δ , we obtain

Pr[E ∩H ∩ {𝜎�Δ ≤ 2𝜎shift}]

=
∞∑

𝑖, 𝑗=0
Pr

[
E ∩H ∩ {𝜎�Δ ≤ 2𝜎shift} ∩

{
2𝑖 ≤

𝜎�Δ
‖𝑀∗‖F

< 2𝑖+1
}
∩

{
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
2𝑖 ‖𝑀∗‖F

< 𝑗 + 1
}]

�𝐶
∞∑

𝑖, 𝑗=0
Pr

[
H ∩ {𝜎�Δ ≤ 2𝜎shift} ∩

{
2𝑖 ≤

𝜎�Δ
‖𝑀∗‖F

< 2𝑖+1
}
∩

{
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
2𝑖 ‖𝑀∗‖F

< 𝑗 + 1
}]

·
(

exp (−Ω𝐶 ( 𝑗))
2𝑖 ‖𝑀∗‖F

+ 𝑛−1.1
)
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≤ Pr[H]
𝑛1.1 +

∞∑
𝑖, 𝑗=0

Pr
[
{𝜎�Δ ≤ 2𝜎shift} ∩

{
2𝑖 ≤

𝜎�Δ
‖𝑀∗‖F

}
∩

{
𝑗 ≤

|𝐸shift(1) − 𝑥 ′ |
2𝑖 ‖𝑀∗‖F

< 𝑗 + 1
}]

· exp (−Ω𝐶 ( 𝑗))
2𝑖 ‖𝑀∗‖F

�𝐶,𝐻 𝑛−0.45 (log 𝑛)2 · 𝑛−1.1 +
∞∑

𝑖, 𝑗=0

𝑛1/22𝑖 ‖𝑀∗‖F

(2𝑖 ‖𝑀∗‖F)2 · exp (−Ω𝐶 ( 𝑗))
2𝑖 ‖𝑀∗‖F

= 𝑛−1.55(log 𝑛)2 +
∞∑

𝑖, 𝑗=0

𝑛1/2

22𝑖 ‖𝑀∗‖2
F
· exp (−Ω𝐶 ( 𝑗)) �𝐶 𝑛−3/2 + 𝑛1/2

‖𝑀∗‖2
F
�𝐶 𝑛−3/2.

(The first inequality is by (12.9) and in the third inequality we used (12.10) with Markov’s inequality.)
We have now proved that Pr[E ∩H] �𝐶,𝐻 𝑛−3/2. Recalling the definition of H and (12.8), it now

suffices to upper-bound the probability that E holds, �Δ is near-balanced and |𝑥 − 𝐸 �Δ | ≤ |𝐸shift(1) −
𝑥 ′ |/2 − 2𝑛.

If �Δ is near-balanced and |𝑥 − 𝐸 �Δ | ≤ |𝐸shift(1) − 𝑥 ′ |/2 − 2𝑛, then |𝐸shift(1) − 𝑥 ′ | ≥ 4𝑛 and, using
𝑥 ′ = 𝑥 − 𝐸 and (12.5), furthermore |𝐸shift(2) | ≥ |𝐸shift(1) + 𝐸 − 𝑥 | − |𝐸 �Δ − 𝑥 | − 2𝑛 ≥ |𝐸shift(1) − 𝑥 ′ |/2.
Hence (using Claim 12.2 noting that ‖𝑀∗‖F ≤ 𝑛 and Markov’s inequality),

Pr[|𝑥 − 𝐸 �Δ | ≤ |𝐸shift(1) − 𝑥 ′ |/2 − 2𝑛 and �Δ is near-balanced]

≤
∞∑
𝑖=2

Pr[(2𝑖𝑛 ≤ |𝐸shift(1) − 𝑥 ′ | < 2𝑖+1𝑛) ∩ (|𝐸shift(2) | ≥ 2𝑖−1𝑛)] �𝐶,𝐻

∞∑
𝑖=2

𝑛1/2 · 2𝑖𝑛
22(𝑖−1)𝑛2 � 𝑛−1/2.

For every near-balanced outcome of �Δ , by Claim 12.1(1) we have Pr[E | �Δ] �𝐶 1/𝜎�Δ �𝐶 1/𝑛 (recalling
from Step 4 that 𝜎�Δ ≥ ‖𝑀∗‖F �𝐶 𝑛). Hence the probability that E holds, �Δ is near-balanced, and
|𝑥 − 𝐸 �Δ | ≤ |𝐸shift(1) − 𝑥 ′ |/2− 2𝑛 is bounded by 𝑂𝐶,𝐻 (𝑛−3/2), completing the proof of the upper bound.

Step 8: Proof of the lower bound. Fix 𝐴 > 0, and assume that |𝑥 − 𝐸 | = |𝑥′ | ≤ (𝐴 + 1)𝑛3/2. We
need to show that Pr[E] �𝐶,𝐻 ,𝐴 𝑛−3/2. To do so, we define an event F such that we can conveniently
apply Claim 12.1(2) after conditioning on this event (roughly speaking, we need 𝐸shift(1) to take ‘about
the right value’, and we need 𝐸shift(2) and 𝜎shift ‘not to be too large’). We study the probability of F
by applying (12.6) (Gaussian approximation for 𝐸shift(1) ) as well as Claim 12.2 together with Markov’s
inequality (as in the upper bound proof in the previous step).

Let 𝑠 ∈ {−1, 1} be as in Claim 12.1(2). For any 0 < 𝐾 < 𝑛3/2/(2𝜎), we can consider the event
that 𝐾𝜎 ≤ 𝑠(𝑥 ′ − 𝐸shift(1) ) ≤ 2𝐾𝜎, which can be interpreted as the event that 𝐸shift(1) lies in a certain
interval of length 𝐾𝜎 whose endpoints both have absolute value at most |𝑥′ | + 2𝐾𝜎 ≤ (𝐴 + 2)𝑛3/2.
Using (12.6), we can compare the probability for this event to the probability that a normal random
variable with distribution N (0, ( 1

2 ‖𝑄�𝑦‖2)2) lies in this interval. In this way, we see that the probability
of the event 𝐾𝜎 ≤ 𝑠(𝑥 ′ − 𝐸shift(1) ) ≤ 2𝐾𝜎 is at least

𝐾𝜎 ·
exp(−(𝐴 + 2)2𝑛3/( 1

2 ‖𝑄�𝑦‖2
2 ))√

2𝜋 · 1
2 ‖𝑄�𝑦‖2

−𝑂𝐶,𝐻 (1/
√
𝑛) ≥ 𝐾𝜎 ·

exp(−𝑂𝐶,𝐴(1))
𝑂𝐻 (𝑛3/2)

−𝑂𝐶,𝐻 (1/
√
𝑛),

(12.11)

where we used that ‖𝑄�𝑦‖2 �𝐶 𝑛3/2 and ‖𝑄�𝑦‖∞ ≤ (𝐻 + 2)𝑛 (which implies that ‖𝑄�𝑦‖2 �𝐻 𝑛3/2), as
discussed in Step 5.

Now, recalling that 𝑛1.05 ≥ 𝜎 ≥ ‖𝑀∗‖F �𝐶 𝑛 from Step 5, we can take 𝐾 = 𝐾 (𝐶, 𝐻, 𝐴) ≥ 104

to be a sufficiently large constant such that the right-hand-side of (12.11) is at least 𝜎/𝑛3/2 such that
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‖𝑀∗‖F ≥ 𝐾−1/4 · 𝑛, and such that the hidden constant in the �𝐶,𝐻 notation in the statement of Claim
12.2 is at most 𝐾1/4. By the choice of K, we have

Pr[𝐾𝜎 ≤ 𝑠(𝑥 ′ − 𝐸shift(1) ) ≤ 2𝐾𝜎] ≥ 𝜎

𝑛3/2 .

Furthermore, using Claim 12.2 and Markov’s inequality we have

Pr[(𝐸2
shift(2) + 𝜎2

shift ≥ 2𝐾5/4𝑛2) ∩ (𝐾𝜎 ≤ 𝑠(𝑥 ′ − 𝐸shift(1) ) ≤ 2𝐾𝜎)] ≤ 𝐾1/4 · 𝑛
1/2 · 𝜎𝐾

2𝐾5/4𝑛2 =
𝜎

2𝑛3/2 .

Thus, with probability at least𝜎/(2𝑛3/2), we have 𝐸2
shift(2) +𝜎

2
shift ≤ 2𝐾5/4𝑛2 and 𝐾𝜎 ≤ 𝑠(𝑥 ′−𝐸shift(1) ) ≤

2𝐾𝜎. Let F be the event that these two conditions are satisfied and �Δ is near-balanced (and note that F
only depends on the randomness of �Δ). Recalling from Step 4 that �Δ is near-balanced with probability
1 − 𝑛−𝜔 (1) , we see that Pr[F] ≥ 𝜎/(4𝑛3/2).

We claim that whenever F holds, we have 𝜎/𝐾2 ≤ 𝜎�Δ ≤ 𝐾2𝜎 and 3𝑛 ≤ 𝑠(𝑥 − 𝐸 �Δ ) ≤ 3𝐾3𝜎�Δ . For
the first claim, note that if F holds, then 𝜎2

shift ≤ 2𝐾5/4𝑛2 ≤ 𝐾2𝑛2/4 and hence 𝜎2
�Δ
≥ 𝜎2/2 − 𝜎2

shift ≥
𝜎2/2 − 𝐾2𝑛2/4. So, if 𝜎 ≥ 𝐾𝑛, we obtain the desired lower bound 𝜎�Δ ≥ 𝜎/2 ≥ 𝜎/𝐾2. If 𝜎 ≤ 𝐾𝑛,
then we instead obtain the desired lower bound on 𝜎�Δ by observing that 𝜎 ≤ 𝐾𝑛 ≤ 𝐾2‖𝑀∗‖F ≤ 𝐾2𝜎�Δ
(using that �Δ is near-balanced). For the upper bound on 𝜎�Δ , recall from the end of Step 5 that we have
𝜎�Δ ≤ 2𝜎 ≤ 𝐾2𝜎 or 𝜎�Δ ≤ 2𝜎shift. In the latter case, we obtain 𝜎�Δ ≤ 2𝜎shift ≤ 𝐾𝑛 ≤ 𝐾2‖𝑀∗‖F ≤ 𝐾2𝜎.
Altogether, we have proved that 𝜎/𝐾2 ≤ 𝜎�Δ ≤ 𝐾2𝜎 whenever F holds, as claimed.

For the second of our two claims, note that whenever F holds, we have 𝐸2
shift(2) ≤ 2𝐾5/4𝑛2 ≤

2𝐾7/4‖𝑀∗‖2
F ≤ 𝐾2𝜎2/4, so |𝐸shift(2) | ≤ 𝐾𝜎/2 and hence 𝐾𝜎/2 ≤ 𝑠(𝑥 ′ − 𝐸shift(1) − 𝐸shift(2) ) ≤ 2.5𝐾𝜎.

Recalling (12.5) and 𝑥 ′ = 𝑥 − 𝐸 , this implies the desired claim

3𝑛 ≤ 𝐾𝜎/2 − 2𝑛 ≤ 𝑠(𝑥 − 𝐸 �Δ ) ≤ 2.5𝐾𝜎 + 2𝑛 ≤ 3𝐾𝜎 ≤ 3𝐾3𝜎�Δ ,

where in the first and fourth inequalities we used that 𝑛 ≤ 𝐾1/4‖𝑀∗‖F ≤ 𝐾1/4𝜎, and in the last inequality
we used the first claim.

Now, having established the above claims for all outcomes of �Δ satisfying F , Claim 12.1(2) implies
that Pr[E |F] �𝐶,𝐻 ,𝐴 1/(𝐾2𝜎). Thus, Pr[E] ≥ Pr[F] · Pr[E |F] �𝐶,𝐻 ,𝐴 𝜎/(4𝑛3/2) · 1/(𝐾2𝜎) �𝐶,𝐻 ,𝐴

𝑛−3/2, completing the proof of the lower bound. �

12.1. Proofs of claims

In order to finish the proof of Theorem 3.1 in the 𝛾-structured case, it remains to prove Claims 12.1
and 12.2.

Proof of Claim 12.1. Recall that in the statement of Claim 12.1 we fixed a near-balanced outcome of �Δ
and the desired conclusions are conditional on this outcome of �Δ . Throughout this proof, let us therefore
always condition on the fixed outcome of �Δ , which we now view as being nonrandom, and for notational
simplicity we omit all ‘| �Δ’ notation.

Recall that we have 𝜎2
�Δ

= 2‖𝑀∗‖2
F + ‖ �𝑤∗

�Δ
‖2

2 + 𝑂 (𝑛7/4+14𝛾) and ‖ �𝑤∗
�Δ
‖∞ ≤ 𝑛1/2+5𝛾 (since �Δ is

near-balanced). Also, recalling that all entries of 𝑀∗ have absolute value at most 1, this implies
𝜎2
�Δ
≤ 𝑛2 + 𝑛 · 𝑛1+10𝛾 +𝑂 (𝑛7/4+14𝛾) ≤ 𝑛2.2 (as 𝛾 = 10−4). Thus, 𝜎�Δ ≤ 𝑛1.1.

For the upper bound in (1), we will use Lemma 6.2 and for the lower bound in (2) we will use
Lemma 6.3. Recalling (12.3), let Z be the ‘Gaussian analog’ of X: Let �𝑧 ∼ N (0, 1)⊗𝑛 be a standard
n-variate Gaussian random vector, and let
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𝑍 =

(
𝐸 + 1

2
�𝑦 · �Δ + 1

8
�Δᵀ𝑀 �Δ

)
+ �𝑤∗

�Δ
· �𝑧 + �𝑧ᵀ𝑀∗�𝑧.

Let 𝜈 = 𝜈(2𝐶, 0.001) > 0 be as in Lemma 8.1, and let 𝜀 = 2/𝜈. Let 𝑠 ∈ {−1, 1} be the sign of the
eigenvalue of 𝑀∗ with the largest magnitude. We collect several estimates.

(A) 𝜎(𝑍) �𝐶 𝜎�Δ �𝐶 𝑛 and |E𝑍 − 𝐸 �Δ | ≤ 2𝑛.
(B) For all 𝑥 ∈ R,

Pr[|𝑍 − 𝑥 | ≤ 𝜀] �𝐶
𝜀

𝜎(𝑍) exp
(
−Ω𝐶

(
|𝑥 − E𝑍 |
𝜎(𝑍)

))
≤ 𝜀

𝜎(𝑍) .

(C)
∫ 2/𝜀
−2/𝜀 |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 ≤ 𝑛−1.2.

(D) For any fixed 𝐴′ ∈ R≥0, assuming that n is sufficiently large with respect to 𝐴′, we have
𝑝𝑍 (𝑦1)/𝑝𝑍 (𝑦2) ≤ 2 for all 𝑦1, 𝑦2 ∈ R with 0 ≤ 𝑠(𝑦1 − E𝑍) ≤ 𝐴′𝜎(𝑍) and |𝑦1 − 𝑦2 | ≤ 2𝑛1/4𝜀.

(E) For any fixed 𝐴′ > 0 and any 𝑥 ∈ Z satisfying 0 ≤ 𝑠(𝑥 − E𝑍) ≤ 𝐴′𝜎(𝑍),

Pr[|𝑍 − 𝑥 | ≤ 𝜀] �𝐶,𝐴′
1

𝜎(𝑍) and 𝑝𝑍 (𝑥) �𝐶,𝐴′
1

𝜎(𝑍) .

We will prove (A–E) using the results from Sections 11, 8, 10 and 5; before explaining how to do this,
we deduce the desired upper and lower bounds in (1) and (2). Let 𝐵 = 𝐵(𝐶) = 104 · 2𝜀. First, using that
by (A) we have 𝜀 ≤ 𝜎(𝑍) for sufficiently large n, and using (B), we can apply Lemma 6.2 to 𝑋 − E𝑍
and 𝑍 − E𝑍 and 𝜎(𝑍). Hence, for all 𝑥 ∈ Z we have

Pr[|𝑋 − 𝑥 | ≤ 𝐵] ≤ 2 · 104 sup
𝑦∈R

|𝑥−𝑦 | ≤𝐵

Pr[|𝑋 − 𝑦 | ≤ 𝜀]

�𝐶
𝜀2

𝜎(𝑍)2 + 𝜀

𝜎(𝑍) exp
(
−Ω𝐶

(
|𝑥 − E𝑍 |
𝜎(𝑍)

))
+ 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏.

The bound in (1) then follows from (A) and (C). Second, by (A) and (E), if 𝑥 ∈ Z satisfies 3𝑛 ≤
𝑠(𝑥 − 𝐸 �Δ ) ≤ 𝐴𝜎�Δ then Pr[|𝑍 − 𝑥 | ≤ 𝜀] �𝐶,𝐴 1/𝜎�Δ . Furthermore, for all 𝑦1, 𝑦2 ∈ [𝑥 − 𝑛1/4𝜀, 𝑥 + 𝑛1/4𝜀]
by (A) we have 0 ≤ 3𝑛 − |E𝑍 − 𝐸 �Δ | − 𝑛1/4𝜀 ≤ 𝑠(𝑦1 − E𝑍) ≤ 𝐴′𝜎(𝑍) for some 𝐴′ = 𝐴′(𝐶, 𝐴), and
therefore 𝑝𝑍 (𝑦1)/𝑝𝑍 (𝑦2) ≤ 2 by (D). Let 𝐾 = 2 and 𝑅 = 𝑛1/4, so by Lemma 6.3 we have (recalling
that 𝐵 = 104 · 2𝜀 = 104𝐾𝜀)

Pr[|𝑋 − 𝑥 | ≤ 𝐵] ≥ Ω𝐶,𝐴(1/𝜎�Δ ) − 𝐶6.3

(
𝑅−1L(𝑍, 𝜀) + 𝜀

∫ 2/𝜀

−2/𝜀
|𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏

)
.

The bound in (2) then follows from (A–C).
Now, we prove (A–E). First, note that for any matrix 𝑀 ∈ R𝑉×𝑉 with rank at most say 400, we have

‖𝑀∗ − 𝑀 ‖2
F = 1

64 ‖𝑀 − (𝑀𝑄 + 𝑄𝑀 − 𝑄𝑀𝑄 + 64𝑀)‖2
F �𝐶 𝑛2 ≥ ‖𝑀∗‖2

F by Lemma 10.1. Also, note
that 𝑀∗ and �𝑤∗

�Δ
satisfy conditions (a)–(d) in Lemma 11.1 for 𝛿 = 2𝛾 = 2 · 10−4, as discussed at the end

of Step 3 and the start of Step 4 above.
Then, the two parts of (A) follow from parts (1) and (2) of Lemma 11.1 (applied with 𝛿 = 2𝛾 = 2·10−4),

recalling 𝜎�Δ �𝐶 𝑛 from the end of Step 4. Furthermore, (B) and (E) follow from Theorem 5.2(1–2) (for
the second part of (E), we use Theorem 5.2(2) with 𝜀 → 0).

Now, consider 𝑦1, 𝑦2 as in (D), so in particular |𝑦1 − 𝑦2 | ≤ 2𝑛1/4𝜀. By the inversion formula (4.1)
and Lemma 5.11 (with 𝑟 = 8), and (A), we have
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|𝑝𝑍 (𝑦1) − 𝑝𝑍 (𝑦2) | =




 1
2𝜋

∫ ∞

−∞
(𝑒−𝑖𝜏𝑦1 − 𝑒−𝑖𝜏𝑦2)E𝑒𝑖𝜏𝑍 𝑑𝜏





 � ∫ ∞

−∞
min{|𝜏(𝑦1 − 𝑦2) |, 1}|E𝑒𝑖𝜏𝑍 | 𝑑𝜏

�𝐶

∫ ∞

−∞
min{𝑛1/4 |𝜏 |, 1} · (1 + 𝜏2𝑛2)−2 𝑑𝜏 � 𝑛−7/4 = 𝑜(1/𝜎(𝑍)),

from which we may deduce (D) using the second part of (E). It remains to prove (C), that is, to bound
the integral

∫ 2/𝜀
−2/𝜀 |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 by 𝑛−1.2. If |𝜏 | ≤ 𝑛−0.99, then by Lemma 11.1(3) (with 𝛿 = 2𝛾)

we have |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | � |𝜏 |4 · 𝑛3+24𝛾 + |𝜏 | · 𝑛3/4+8𝛾 � |𝜏 | · 𝑛3/4+8𝛾 . Thus, the contribution of the
range |𝜏 | ≤ 𝑛−0.99 to the integral

∫ 2/𝜀
−2/𝜀 |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏 is 𝑂 ((𝑛−0.99)2 · 𝑛3/4+8𝛾) = 𝑂 (𝑛−1.23+8𝛾),

which is smaller than 𝑛−1.2/2 (recalling that 𝛾 = 10−4).
For 𝑛−0.99 ≤ |𝜏 | ≤ 2/𝜀, we bound |𝜑𝑋 (𝜏) | and |𝜑𝑍 (𝜏) | separately. By Lemma 5.11 (with 𝑟 = 400),

we have |𝜑𝑍 (𝜏) | �𝐶 (1 + 𝜏2𝑛2)−100 ≤ (𝑛0.02)−100 = 𝑛−2. To bound |𝜑𝑋 (𝜏) |, we use Lemma 8.1, after
conditioning on any outcome of 𝑈 ∩ (𝐼2 ∪ · · · ∪ 𝐼𝑚). After this conditioning, the remaining randomness
is just within the first bucket 𝐼1, and conditionally X is of the form required to apply Lemma 8.1 with
respect to the (2𝐶)-Ramsey graph 𝐺 [𝐼1] of size |𝐼1 | ≥ 𝑛1−2𝛾 , and we obtain |𝜑𝑋 (𝜏) | � 𝑛−(1−2𝛾)5 ≤ 𝑛−4

since |𝜏 | ≥ 𝑛−0.99 ≥ |𝐼1 |−0.999. Thus, in the range 𝑛−0.99 ≤ |𝜏 | ≤ 2/𝜀 we have |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | ≤
|𝜑𝑋 (𝜏) | + |𝜑𝑍 (𝜏) | � 𝑛−2, and so the contribution of this range to the integral

∫ 2/𝜀
−2/𝜀 |𝜑𝑋 (𝜏) − 𝜑𝑍 (𝜏) | 𝑑𝜏

is also smaller than 𝑛−1.2/2. �

We will deduce Claim 12.2 from the following auxiliary estimate, applied with 𝑘 = 1 and with 𝑘 = 2
(recall that the functions 𝜓 and f already appeared in the proof of Lemma 6.1).

Claim 12.3. Fix 𝑘 ∈ N. Let us define the function 𝜓 : R → R as the convolution 𝜓 = 1[−1,1] ∗ 1[−1,1]
(where 1[−1,1] is the indicator function of the interval [−1, 1]) and let 𝑓 = �̂� be the Fourier transform
of 𝜓. Consider a matrix 𝐴 ∈ R𝑉×𝑉 whose entries have absolute value at most 1, and a vector �𝛽 ∈ R𝑉
with ‖ �𝛽‖∞ ≤ 𝜋/4. Then for any 𝑡 ∈ R we have |E[(�𝑥ᵀ𝐴�𝑥)𝑘 𝑓 ( �𝛽 · �𝑥 − 𝑡)] | �𝑘 (

√
𝑛/‖ �𝛽‖2)2𝑘+1 · 𝑛𝑘−1/2.

Proof. Observing that 𝑥2
𝑣 = 1, we can express (�𝑥ᵀ𝐴�𝑥)𝑘 as a multilinear polynomial of degree at most

2𝑘 in the |𝑉 | ≤ 𝑛 variables 𝑥𝑣 for 𝑣 ∈ 𝑉 . For each ℓ ≤ 2𝑘 , this polynomial has at most 𝑂 (𝑛ℓ)
terms of degree ℓ, and for each such term the corresponding coefficient has absolute value at most
𝑂𝑘 (𝑛(2𝑘−ℓ)/2).

It suffices to prove that |E[𝑥𝑣1 · · · 𝑥𝑣ℓ 𝑓 ( �𝛽 · �𝑥 − 𝑡)] | �ℓ ‖𝛽‖−(ℓ+1)
2 for any ℓ ≤ 2𝑘 and any distinct

𝑣1, . . . , 𝑣ℓ ∈ 𝑉 . Indeed, this does imply |E[(�𝑥ᵀ𝐴�𝑥)𝑘 𝑓 ( �𝛽 · �𝑥 − 𝑡)] | �𝑘
∑2𝑘

ℓ=0 𝑛
ℓ · 𝑛(2𝑘−ℓ)/2 · ‖𝛽‖−(ℓ+1)

2 �𝑘
(
√
𝑛/‖ �𝛽‖2)2𝑘+1 · 𝑛𝑘−1/2 using that ‖ �𝛽‖2 ≤

√
𝑛 since |𝑉 | ≤ 𝑛 and ‖ �𝛽‖∞ ≤ 𝜋/4 ≤ 1.

Note that the support of the function 𝜓 is inside the interval [−2, 2] and we furthermore have
0 ≤ 𝜓(𝜃) ≤ 2 for all 𝜃 ∈ R. Therefore, we can write

|E[𝑥𝑣1 · · · 𝑥𝑣ℓ 𝑓 ( �𝛽 · �𝑥 − 𝑡)] | =




E [∫ ∞

−∞
𝑥𝑣1 · · · 𝑥𝑣ℓ𝜓(𝜃)𝑒−𝑖 𝜃 (

�𝛽 · �𝑥−𝑡) 𝑑𝜃

] 




≤ 2

∫ 2

−2
|E[𝑥𝑣1 · · · 𝑥𝑣ℓ 𝑒−𝑖 𝜃 (

�𝛽 · �𝑥) ] | 𝑑𝜃.

By (4.2), for −𝜋/2 ≤ 𝜆 ≤ 𝜋/2 and 𝑣 ∈ 𝑉 we have |E[𝑒𝑖𝜆𝑥𝑣 ] | = | cos𝜆 | ≤ exp(−𝜆2/𝜋2), and

|E[𝑥𝑣𝑒𝑖𝜆𝑥𝑣 ] | =




12 exp(𝑖𝜆) − 1

2
exp(−𝑖𝜆)





 = | sin𝜆 | ≤ |𝜆 |.
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Since |𝜃𝛽𝑣 | ≤ 𝜋/2 for all 𝑣 ∈ 𝑉 and −2 ≤ 𝜃 ≤ 2, we can deduce (also using that |𝛽𝑣 | ≤ 1 for all
𝑣 ∈ 𝑉)

|E[𝑥𝑣1 · · · 𝑥𝑣ℓ 𝑓 ( �𝛽 · �𝑥 − 𝑡)] |

≤ 2
∫ 2

−2

ℓ∏
𝑗=1

|𝜃𝛽𝑣𝑗 |
∏

𝑣 ∈𝑉 \{𝑣1 ,...,𝑣ℓ }
𝑒−(𝜃

2/𝜋2)𝛽2
𝑣 ≤ 2

∫ 2

−2
|𝜃 |ℓ𝑒−(𝜃2/𝜋2) ( ‖ �𝛽 ‖2

2−ℓ)𝑑𝜃

�ℓ

∫ 2

−2
|𝜃 |ℓ𝑒−𝜃2 ‖ �𝛽 ‖2

2/𝜋
2
𝑑𝜃 =

𝜋ℓ+1

‖ �𝛽‖ℓ+1
2

∫ 2‖ �𝛽 ‖2/𝜋

−2‖ �𝛽 ‖2/𝜋
|𝑧 |ℓ𝑒−𝑧2

𝑑𝑧 �ℓ ‖ �𝛽‖−(ℓ+1)
2 ,

as desired (where in the last step we used that the integral
∫ ∞
−∞ |𝑧 |𝑚𝑒−𝑧

2
𝑑𝑧 is finite). �

Finally, let us deduce Claim 12.2.

Proof of Claim 12.2. First, note that it suffices to consider the case where the interval [𝑎, 𝑏] has length
exactly (2𝐻 + 4)𝑛. Indeed, in the general case we can cover [𝑎, 𝑏] with �(𝑏 − 𝑎)/((2𝐻 + 4)𝑛)� �𝐶.𝐻

(𝑏 − 𝑎)/((2𝐻 + 4)𝑛) intervals of length exactly (2𝐻 + 4)𝑛 (here, we used that 𝑏 − 𝑎 ≥ ‖𝑀∗‖F �𝐶 𝑛 by
(12.4)). So assume that 𝑏−𝑎 = (2𝐻+4)𝑛 and let 𝑠 = (𝑎+𝑏)/2, then [𝑎, 𝑏] = [𝑠−(𝐻+2)𝑛, 𝑠+ (𝐻+2)𝑛].

Using that Q and M are symmetric, recall from Step 5 that

𝐸shift(1) =
1
2
�𝑦 · �Δ =

1
2
(𝑄�𝑦) · �𝑥, 𝐸shift(2) =

1
8
�Δᵀ𝑀 �Δ =

1
8
�𝑥ᵀ (𝑄𝑀𝑄)�𝑥,

𝜎2
shift =

1
16

‖(𝐼 −𝑄)𝑀 �Δ ‖2
2 =

1
16

‖(𝐼 −𝑄)𝑀𝑄�𝑥‖2
2 =

1
16

�𝑥ᵀ𝑄𝑀 (𝐼 −𝑄)2𝑀𝑄�𝑥

=
𝑛

16
�𝑥ᵀ𝑄𝑀 (𝐼 −𝑄)2𝑀𝑄

𝑛
�𝑥.

Recall that M has entries in {0, 1}, and recall the definition of Q in Step 3 (and the fact that multiplying
with Q has the effect of averaging values over buckets). This shows that in 𝑄𝑀𝑄 and also in (𝐼 −𝑄)𝑀𝑄
(and consequently in (1/𝑛)𝑄𝑀 (𝐼 −𝑄)2𝑀𝑄) all entries have absolute value at most 1.

Furthermore, recall from Step 4 that ‖𝑄�𝑦‖∞ ≤ (𝐻 + 2)𝑛 and ‖𝑄�𝑦‖2 �𝐶 𝑛3/2. Consider 𝜓 and f as in
the statement of Claim 12.3, and recall from the proof of Lemma 6.1 that 𝑓 (𝑡) ≥ 1[−1,1] (𝑡) for all 𝑡 ∈ R
(more specifically, the function f is given by 𝑓 (𝑡) = (2(sin 𝑡)/𝑡)2 for 𝑡 ≠ 0 and 𝑓 (0) = 22). Also, note
that 𝐸2

shift(2) and 𝜎2
shift are both nonnegative.

Now, let �𝛽 ∈ R𝑉 be given by ((𝐻 + 2)𝑛)−1 · 1
2𝑄�𝑦, and note that then ‖ �𝛽‖∞ ≤ 1/2 < 𝜋/4 and

‖ �𝛽‖2 �𝐶,𝐻 𝑛1/2. Furthermore, let 𝑡 = ((𝐻 + 2)𝑛)−1𝑠, so (recalling that 𝐸shift(1) = 1
2 (𝑄�𝑦) · �𝑥 and

[𝑎, 𝑏] = [𝑠 − (𝐻 + 2)𝑛, 𝑠 + (𝐻 + 2)𝑛]) we have 𝐸shift(1) ∈ [𝑎, 𝑏] if and only if �𝛽 · �𝑥 − 𝑡 ∈ [−1, 1]. Hence,

E[𝐸2
shift(2)1𝐸shift(1) ∈ [𝑎,𝑏] ] = E[𝐸

2
shift(2)1 �𝛽 · �𝑥−𝑡 ∈[−1,1] ]

≤ E[𝐸2
shift(2) 𝑓 ( �𝛽 · �𝑥 − 𝑡)] = E[(�𝑥

ᵀ (𝑄𝑀𝑄)�𝑥)2 𝑓 ( �𝛽 · �𝑥 − 𝑡)]
64

and therefore by Claim 12.3 applied with 𝐴 = 𝑄𝑀𝑄 and 𝑘 = 2,

E[𝐸2
shift(2)1𝐸shift(1) ∈ [𝑎,𝑏] ] � (

√
𝑛/‖ �𝛽‖2)5 · 𝑛3/2 �𝐶,𝐻 𝑛3/2.

Similarly, writing 𝐴 = (1/𝑛)𝑄𝑀 (𝐼 −𝑄)2𝑀𝑄 and applying Claim 12.3 wih 𝑘 = 1, we have

E[𝜎2
shift1𝐸shift(1) ∈ [𝑎,𝑏] ] ≤ E[𝜎

2
shift 𝑓 ( �𝛽 · �𝑥 − 𝑡)] = 𝑛

16
· E[(�𝑥ᵀ𝐴�𝑥) 𝑓 ( �𝛽 · �𝑥 − 𝑡)]

� 𝑛 · (
√
𝑛/‖ �𝛽‖2)3 · 𝑛1/2 �𝐶,𝐻 𝑛3/2.
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Summing these two estimates and recalling that 𝑏 − 𝑎 = (2𝐻 + 4)𝑛 now gives the desired result

E[(𝐸2
shift(2) + 𝜎2

shift)1𝐸shift(1) ∈ [𝑎,𝑏] ] �𝐶,𝐻 𝑛1/2 (𝑏 − 𝑎). �

13. Switchings for pointwise probability estimates

So far (in Theorem 3.1), we have obtained near-optimal estimates on probabilities of events of the form
|𝑋 − 𝑥 | ≤ 𝐵, for some large constant B. However, in order to prove Theorem 2.1, we need to control the
probability that X is exactly equal to x (assuming that 𝑒0 and the entries of the vector �𝑒 are integers). Of
course, an upper bound on Pr[|𝑋 − 𝑥 | ≤ 𝐵] as in Theorem 3.1 implies an upper bound on Pr[𝑋 = 𝑥].
So it only remains to prove the lower bound in Theorem 2.1.

In order to deduce the lower bound in Theorem 2.1 from Theorem 3.1, it suffices to show that
Pr[𝑋 = 𝑥] does not differ too much from Pr[𝑋 = 𝑥 ′] for 𝑥 ′ ∈ [𝑥 − 𝐵, 𝑥 + 𝐵]. In order to show this, we
use the switching method, by which we study the effect of small perturbations to U. For example, in the
setting of Theorem 2.1 one can show that for a typical outcome of U there are many pairs of vertices
(𝑦, 𝑧) such that 𝑦 ∈ 𝑈, 𝑧 ∉ 𝑈 and |𝑁 (𝑧) ∩ (𝑈 \ {𝑦}) | − |𝑁 (𝑦) ∩ (𝑈 \ {𝑧}) | + 𝑒𝑧 − 𝑒𝑦 = ℓ. For such a pair
(𝑦, 𝑧), modifying U by removing y and adding z (a ‘switch’ of y and z) changes X by exactly ℓ.

As discussed in Section 3.5, we introduce an averaged version of the switching method. Roughly
speaking, we define random variables that measure the number of ways to switch between two classes
and study certain moments of these random variables. We can then make our desired probabilistic
conclusions with the Cauchy–Schwarz inequality.

First, we need a lemma providing us with a special set of vertices which we will use for switching
operations (the properties in the lemma make it tractable to compute the relevant moments).

For vertices 𝑣1, . . . , 𝑣𝑠 in a graph G, let us define

𝑁 (𝑣1, . . . , 𝑣𝑠) = 𝑉 (𝐺) \
(
{𝑣1, . . . , 𝑣𝑠} ∪ 𝑁 (𝑣1) ∪ · · · ∪ 𝑁 (𝑣𝑠)

)
to be the set of vertices in 𝑉 (𝐺) \ {𝑣1, . . . , 𝑣𝑠} that are not adjacent to any of the vertices 𝑣1, . . . , 𝑣𝑠 .

Lemma 13.1. For any fixed 𝐶, 𝐻 > 0 and 𝐷 ∈ N, there exist 𝜌 = 𝜌(𝐶, 𝐷) with 0 < 𝜌 < 1 and
𝛿 = 𝛿(𝐶, 𝐷) > 0 with 𝛿 < 𝜌3/3𝐷+1 such that the following holds for all sufficiently large n. For every
C-Ramsey graph G on n vertices and every vector �𝑒 ∈ Z𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all 𝑣 ∈ 𝑉 (𝐺), there
exist subsets 𝑆 ⊆ 𝑆0 ⊆ 𝑉 (𝐺) with |𝑆 | ≥ 𝑛0.48 and |𝑆0 | ≥ 𝛿1/𝜌 · 𝑛 such that the following properties hold.

1. The induced subgraph 𝐺 [𝑆0] is (𝛿, 𝜌)-rich (see Definition 4.3).
2. For any vertices 𝑣1, . . . , 𝑣𝑠 ∈ 𝑆 with 𝑠 ≤ 𝐷, we have |𝑁 (𝑣1, . . . , 𝑣𝑠) ∩ 𝑆0 | ≥ 𝛿 |𝑆0 |.
3. For any vertices 𝑣, 𝑤 ∈ 𝑆, we have | deg𝐺 (𝑣)/2 + 𝑒𝑣 − deg𝐺 (𝑤)/2 − 𝑒𝑤 | ≤

√
𝑛.

Remark 13.2. We will apply Lemma 13.1 with 𝐷 = 8𝐵 + 4, where 𝐵 = 𝐵(𝐶) is as in Theorem 3.1.
So the size of 𝑆0 depends on B. Eventually, we will apply Theorem 3.1 to a Ramsey graph 𝐺 [𝑁], for a
certain subset 𝑁 ⊆ 𝑆0 (with𝑈∩𝑁 as our random vertex set, conditioning on an outcome of𝑈 \𝑁). Since
the proportion of G that 𝑁 ⊆ 𝑆0 occupies depends on D, we will have to apply Theorem 3.1 with 𝐴, 𝐻
depending on D (and therefore on B). So, it is crucial that in Theorem 3.1, B does not depend on 𝐴, 𝐻.

To prove Lemma 13.1 (specifically, property (2)), we will need a dependent random choice lemma:
The following simple yet powerful lemma appears as [46, Lemma 2.1].

Lemma 13.3. Let F be a graph on n vertices with average degree d. Suppose that 𝑎, 𝑠, 𝑟 ∈ N satisfy

sup
𝑡 ∈N

(
𝑑𝑡

𝑛𝑡−1 −
(
𝑛

𝑟

)
·
( 𝑠
𝑛

) 𝑡 )
≥ 𝑎.

Then, F has a subset W of at least a vertices such that every r vertices in W have at least s common
neighbors in F.
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Proof of Lemma 13.1. Let 𝜀 = 𝜀(2𝐶) be as in Theorem 4.1, so for sufficiently large m every 2𝐶-Ramsey
graph on m vertices has average degree at least 𝜀𝑚. Let 𝜌 = 𝜌(𝐶, 1/5) > 0 be as in Lemma 4.4. Let
𝛿 = 𝛿(𝐶, 𝐷) > 0 be sufficiently small such that 𝛿 < 𝜌3/3𝐷+1 and for all sufficiently large m (in terms
of C and D) we have

sup
𝑡 ∈N

(
𝜀𝑡𝑚 −

(
𝑚

𝐷

)
𝛿𝑡
)
≥ 𝑚0.99.

To see that this is possible, consider 𝑡 = 𝜂 log 𝑚 for some small 𝜂 (in terms of 𝜀), and let 𝛿 be small in
terms of 𝜂 and D.

By Lemma 4.4, we can find a (𝛿, 𝜌)-rich induced subgraph 𝐺 [𝑆0] of size |𝑆0 | ≥ 𝛿1/𝜌 · 𝑛.
Since |𝑆0 | ≥ 𝛿1/𝜌 · 𝑛 ≥

√
𝑛, the graph 𝐺 [𝑆0] is 2𝐶-Ramsey. Let 𝐺 [𝑆0] be the complement of this

graph so that 𝐺 [𝑆0] is also a 2𝐶-Ramsey graph and therefore has average degree at least 𝜀 |𝑆0 |. By
Lemma 13.3 and the choice of 𝛿, the graph 𝐺 [𝑆0] contains a set 𝑆′ of |𝑆′ | ≥ |𝑆0 |0.99 ≥ 2(𝐻 + 1)𝑛0.98

vertices such that every D vertices in 𝑆′ have at least 𝛿 |𝑆0 | common neighbors in 𝐺 [𝑆0]. This means
that for any 𝑠 ≤ 𝐷 and any 𝑣1, . . . , 𝑣𝑠 ∈ 𝑆′, we have |𝑁 (𝑣1, . . . , 𝑣𝑠) ∩ 𝑆0 | ≥ 𝛿 |𝑆0 |, so (2) holds for any
subset 𝑆 ⊆ 𝑆′.

Finally, note that deg𝐺 (𝑣)/2 + 𝑒𝑣 ∈ [0, (𝐻 + 1)𝑛] for all 𝑣 ∈ 𝑆′, and consider a partition of the
interval [0, (𝐻 + 1)𝑛] into �2(𝐻 + 1)

√
𝑛� subintervals of length (𝐻 + 1)𝑛/�2(𝐻 + 1)

√
𝑛� ≤

√
𝑛. By the

pigeonhole principle, there exists a set 𝑆 ⊆ 𝑆′ of at least 2(𝐻 + 1)𝑛0.98/�2(𝐻 + 1)
√
𝑛� ≥ 𝑛0.48 vertices

v whose associated values deg𝐺 (𝑣)/2 + 𝑒𝑣 lie in the same subinterval. Then (3) holds. �

As foreshadowed earlier, the next lemma estimates moments of certain random variables that measure
the number of ways to switch between certain choices of the set U. The proof of this lemma relies on
Theorem 3.1.

Lemma 13.4. Fix 𝐶, 𝐻, 𝐴 > 0, let 𝐵 = 𝐵(2𝐶) be as in Theorem 3.1 and define 𝐷 = 𝐷 (𝐶) = 8𝐵 + 4.
Consider a C-Ramsey graph G on n vertices and a vector �𝑒 ∈ Z𝑉 (𝐺) with 0 ≤ 𝑒𝑣 ≤ 𝐻𝑛 for all 𝑣 ∈ 𝑉 (𝐺).
Let 𝑆 ⊆ 𝑆0 ⊆ 𝑉 (𝐺), 𝜌 = 𝜌(𝐶, 𝐷) > 0 and 𝛿 = 𝛿(𝐶, 𝐷) > 0 be as in Lemma 13.1, and define

𝑇 =
{
(𝑦, 𝑧) ∈ 𝑆2 : | (𝑁 (𝑧) \ 𝑁 (𝑦)) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 | and | (𝑁 (𝑦) \ 𝑁 (𝑧)) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 |

}
.

Consider a random vertex subset 𝑈 ⊆ 𝑉 (𝐺) obtained by including each vertex with probability 1/2
independently, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑢∈𝑈 𝑒𝑢 . For ℓ = −𝐵, . . . , 𝐵, let𝑌ℓ be the number of vertex pairs

(𝑦, 𝑧) ∈ 𝑇 with 𝑦 ∈ 𝑈 and 𝑧 ∉ 𝑈 such that (|𝑁 (𝑧) ∩ (𝑈 \ {𝑦}) | + 𝑒𝑧) − (|𝑁 (𝑦) ∩ (𝑈 \ {𝑧}) | + 𝑒𝑦) = ℓ.
For 𝑥 ∈ Z, let 𝑍𝑥−𝐵,𝑥+𝐵 ∈ {0, 1} be the indicator random variable for the event that 𝑥 − 𝐵 ≤ 𝑋 ≤ 𝑥 + 𝐵.

Then, for any 𝑥 ∈ Z satisfying |𝑥 − E𝑋 | ≤ 𝐴𝑛3/2 and any 𝑎−𝐵, . . . , 𝑎𝐵 ∈ {0, 1, 2}, we have

E[𝑌 𝑎−𝐵
−𝐵 · · ·𝑌 𝑎𝐵

𝐵 𝑍𝑥−𝐵,𝑥+𝐵] �𝐶,𝐻 ,𝐴
(|𝑇 |/

√
𝑛)𝑎−𝐵+···+𝑎𝐵

𝑛3/2 .

We defer the proof of Lemma 13.4 (using Theorem 3.1) until the end of the section, first showing how
it can be used to prove Theorem 2.1. This argument requires the set T in Lemma 13.4 to be nonempty,
which is implied by the following lemma.

Lemma 13.5. The set T defined in Lemma 13.4 has size |𝑇 | ≥ |𝑆 |2/2 ≥ 𝑛0.96/2.

Proof. Recall that the set 𝑆 ⊆ 𝑆0 has size |𝑆 | ≥ 𝑛0.48 and that 𝐺 [𝑆0] is (𝛿, 𝜌)-rich, where 𝛿 <
𝜌3/3𝐷+1 < 𝜌 is as in Lemma 13.1. We first claim that at least (3/4) · |𝑆 |2 pairs (𝑦, 𝑧) ∈ 𝑆2 satisfy
the first condition | (𝑁 (𝑧) \ 𝑁 (𝑦)) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 | in the definition of T. Indeed, by Definition 4.3,
all but at most 𝑛1/5 vertices 𝑧 ∈ 𝑆0 satisfy |𝑁 (𝑧) ∩ 𝑆0 | ≥ 𝜌 |𝑆0 |. Hence, |𝑁 (𝑧) ∩ 𝑆0 | ≥ 𝜌 |𝑆0 | for at
least |𝑆 | − 𝑛1/5 vertices 𝑧 ∈ 𝑆. Furthermore, for each such 𝑧 ∈ 𝑆 we have | (𝑁 (𝑧) \ 𝑁 (𝑦)) ∩ 𝑆0 | =
| (𝑁 (𝑧) ∩ 𝑆0) \ 𝑁 (𝑦) | ≥ 𝜌 · |𝑁 (𝑧) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 | for all but at most 𝑛1/5 vertices 𝑦 ∈ 𝑆0 and in particular
for at least |𝑆 | − 𝑛1/5 vertices 𝑦 ∈ 𝑆. Thus, there are at least (|𝑆 | − 𝑛1/5)2 ≥ (3/4) · |𝑆 |2 pairs (𝑦, 𝑧) ∈ 𝑆2
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satisfying | (𝑁 (𝑧) \ 𝑁 (𝑦)) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 |. Analogously, at least (3/4) · |𝑆 |2 pairs (𝑦, 𝑧) ∈ 𝑆2 satisfy the
second condition | (𝑁 (𝑦) \ 𝑁 (𝑧)) ∩ 𝑆0 | ≥ 𝜌2 |𝑆0 | in the definition of T. This means that the number of
pairs (𝑦, 𝑧) ∈ 𝑆2 satisfying both conditions is at least |𝑆 |2 − 2(|𝑆 |2 − (3/4) · |𝑆 |2) = |𝑆 |2/2 and hence
|𝑇 | ≥ |𝑆 |2/2 ≥ 𝑛0.96/2. �

Now, we are ready to deduce Theorem 2.1 from Lemma 13.4.

Proof of Theorem 2.1. Consider a C-Ramsey graph G, a random subset 𝑈 ⊆ 𝑉 (𝐺) and 𝑋 = 𝑒(𝐺 [𝑈]) +∑
𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 as in Theorem 2.1, and consider the setup of Lemma 13.4. Note that the upper bound in

Theorem 2.1 follows immediately from the upper bound in Theorem 3.1, so it only remains to prove the
lower bound.

For 𝑥 ∈ Z, let 𝑍𝑥 be the indicator random variable for the event that 𝑋 = 𝑥. Note that for all 𝑥 ∈ Z
and ℓ = −𝐵, . . . , 𝐵 we have E[𝑌−ℓ𝑍𝑥+ℓ] = E[𝑌ℓ𝑍𝑥]. Indeed, if 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑢∈𝑈 𝑒𝑢 + 𝑒0 = 𝑥 + ℓ,

then 𝑌−ℓ is the number of ways to perform a ‘switch’ of two vertices 𝑦 ∈ 𝑈, 𝑧 ∉ 𝑈 with (𝑦, 𝑧) ∈ 𝑇 ,
to obtain a vertex subset 𝑈 ′ = (𝑈 \ {𝑦}) ∪ {𝑧} with 𝑒(𝐺 [𝑈 ′]) +

∑
𝑣 ∈𝑈 ′ 𝑒𝑣 + 𝑒0 = 𝑥. Conversely, if

𝑋 = 𝑒(𝐺 [𝑈]) +
∑

𝑣 ∈𝑈 𝑒𝑣 + 𝑒0 = 𝑥, then 𝑌ℓ is the number of ways to perform such a switch ‘in reverse’
to obtain a vertex subset 𝑈 ′ with 𝑒(𝐺 [𝑈 ′]) +

∑
𝑣 ∈𝑈 ′ 𝑒𝑣 + 𝑒0 = 𝑥 + ℓ. So, 2𝑛E[𝑌−ℓ𝑍𝑥+ℓ] and 2𝑛E[𝑌ℓ𝑍𝑥]

both describe the total number of ways to switch in this way between an outcome of U with 𝑋 = 𝑥 + ℓ
and an outcome with 𝑋 = 𝑥.

Now, for every 𝑥 ∈ Z with |𝑥 − E𝑋 | ≤ 𝐴𝑛3/2 there is some ℓ ∈ {−𝐵, . . . , 𝐵} such that

E[𝑌−𝐵 · · ·𝑌𝐵𝑍𝑥+ℓ] ≥
1

2𝐵 + 1

𝐵∑
ℓ′=−𝐵

E[𝑌−𝐵 · · ·𝑌𝐵𝑍𝑥+ℓ′ ]

=
1

2𝐵 + 1
E[𝑌−𝐵 · · ·𝑌𝐵𝑍𝑥−𝐵,𝑥+𝐵] �𝐶,𝐻 ,𝐴

(|𝑇 |/
√
𝑛)2𝐵+1

𝑛3/2 ,

where the last step is by Lemma 13.4. For this ℓ, the Cauchy–Schwarz inequality, together with Lemma
13.4 and the fact that 𝑍𝑥+ℓ ≤ 𝑍𝑥−𝐵,𝑥+𝐵, implies that

E[𝑌ℓ𝑍𝑥] = E[𝑌−ℓ𝑍𝑥+ℓ] ≥
(E[𝑌−𝐵 · · ·𝑌𝐵𝑍𝑥+ℓ])2

E[𝑌2
−𝐵 · · ·𝑌2

−ℓ−1𝑌−ℓ𝑌
2
−ℓ+1 · · ·𝑌

2
𝐵𝑍𝑥+ℓ]

�𝐶,𝐻 ,𝐴
(|𝑇 |/

√
𝑛)4𝐵+2/𝑛3

(|𝑇 |/
√
𝑛)4𝐵+1/𝑛3/2 =

|𝑇 |/
√
𝑛

𝑛3/2 .

Finally, we use the Cauchy–Schwarz inequality and Lemma 13.4 once more (noting that 𝑍𝑥 ≤
𝑍𝑥−𝐵,𝑥+𝐵) to conclude that

Pr[𝑋 = 𝑥] = E𝑍𝑥 ≥ (E[𝑌ℓ𝑍𝑥])2

E[𝑌2
ℓ 𝑍𝑥]

�𝐶,𝐻 ,𝐴
(|𝑇 |/

√
𝑛)2/𝑛3

(|𝑇 |/
√
𝑛)2/𝑛3/2 =

1
𝑛3/2 .

�

It now remains to prove the moment estimates in Lemma 13.4. We will write the desired moments as
a combinatorial sum of probabilities; for various tuples of pairs of vertices (𝑦, 𝑧), we then need to control
the joint probability that 𝑋 = 𝑒(𝐺 [𝑈])+

∑
𝑢∈𝑈 𝑒𝑢 lies in a certain interval and that U contains a specified

number of vertices from the neighborhoods of the various y and z. The next lemma gives a lower bound
for certain probabilities of this form. Slightly more precisely, it allows us to specify the intersection
sizes of U in with given disjoint vertex subsets 𝑊1, . . . ,𝑊𝑠 . When applying this lemma in the proof of
Lemma 13.4, we will take 𝑠 = 𝑎−𝐵 + · · · + 𝑎𝐵, and given s pairs of vertices (𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠) ∈ 𝑇 ,
we will take 𝑊1, . . . ,𝑊𝑠 to be certain regions of the Venn diagram given by the neighborhoods of
𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠. We can then use the intersection sizes of U with 𝑊1, . . . ,𝑊𝑠 to control the events that
the s-tuple of pairs (𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠) contributes to 𝑌 𝑎−𝐵

−𝐵 · · ·𝑌 𝑎𝐵

𝐵 𝑍𝑥−𝐵,𝑥+𝐵. For this argument, we
will, however, need to condition on the outcome of U outside these special regions of the Venn diagram.
This conditioning affects the linear terms and constant terms in our random variable X, so we use the
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variables 𝑓𝑣 and 𝑓0 in the lemma statement below (when applying the lemma, we take 𝑓𝑣 and 𝑓0 to be
the terms obtained from 𝑒𝑣 and 𝑒0 after accounting for this conditioning).

Lemma 13.6. Let 𝛿′ > 0 and 𝑅 ≥ 1, and consider an n-vertex graph G, a real number 𝑓0, and a
sequence �𝑓 ∈ R𝑉 (𝐺) with | 𝑓𝑣 | ≤ 𝑅𝑛 for each 𝑣 ∈ 𝑉 (𝐺). Let 𝑈 ⊆ 𝑉 (𝐺) be a vertex subset obtained by
including each vertex with probability 1/2 independently, and let 𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑣 ∈𝑈 𝑓𝑣 + 𝑓0. Then

the following hold.

1. Var[𝑋] ≤ 𝑅2𝑛3.
2. For any 𝑠 ≤ 𝑅 and any disjoint subsets 𝑊1, . . . ,𝑊𝑠 ⊆ 𝑉 (𝐺), each of size at least 𝛿′𝑛, and any

𝑤1, . . . , 𝑤𝑠 ∈ Z satisfying


𝑤𝑖 − |𝑊𝑖 |/2



 ≤ 𝑅
√
𝑛 for 𝑖 = 1, . . . , 𝑠, we have

Pr
[
|𝑋 − E𝑋 | ≤ 6𝑅2𝑛3/2 and |𝑈 ∩𝑊𝑖 | = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑠

]
�𝛿′,𝑅 𝑛−𝑠/2.

Proof. For (1), the expression for X in (3.1) and the formula in (4.5) show that

Var[𝑋] = 1
4

∑
𝑣 ∈𝑉 (𝐺)

(
𝑓𝑣 +

1
2

deg(𝑣)
)2

+ 1
16

𝑒(𝐺) ≤ 𝑅2𝑛3.

Let 𝐸 = E𝑋 , and note that for each 𝑖 = 1, . . . , 𝑠 we have

Pr[|𝑈 ∩𝑊𝑖 | = 𝑤𝑖] =
(
|𝑊𝑖 |
𝑤𝑖

)−1
�𝛿′,𝑅 𝑛−1/2.

and these events are independent for all i. Thus, in order to establish (2), it suffices to show that when
conditioning on |𝑈 ∩𝑊𝑖 | = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑠, we have |𝑋 −𝐸 | ≤ 6𝑅2𝑛3/2 with probability at least 1/2.

Also, note that the value of X changes by at most (𝑅 + 1)𝑛 when adding or deleting a vertex of U. We
can sample a uniformly random subset 𝑈 ⊆ 𝑉 (𝐺) conditioned on |𝑈 ∩𝑊𝑖 | = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑠 by the
following procedure. First, sample a uniformly random subset𝑈 ′ ⊆ 𝑉 (𝐺), and then construct U from𝑈 ′

by deleting |𝑈 ′∩𝑊𝑖 |−𝑤𝑖 uniformly randomly chosen vertices from𝑈 ′∩𝑊𝑖 (if |𝑈 ′∩𝑊𝑖 | ≥ 𝑤𝑖) or adding
𝑤𝑖 − |𝑈 ′ ∩𝑊𝑖 | randomly chosen vertices from 𝑊𝑖 \𝑈 ′ to 𝑈 ′ (if |𝑈 ′ ∩𝑊𝑖 | < 𝑤𝑖) for each 𝑖 = 1, . . . , 𝑠.
With probability at least 1/2 the value 𝑋 ′ = 𝑒(𝐺 [𝑈 ′]) +

∑
𝑣 ∈𝑈 ′ 𝑓𝑣 + 𝑓0 satisfies |𝑋 ′ − 𝐸 | ≤ 2𝑅𝑛3/2 and

we have | |𝑈 ′ ∩𝑊𝑖 | − |𝑊𝑖 |/2| ≤ 𝑠
√
𝑛 for 𝑖 = 1, . . . , 𝑛 (by Chebyshev’s inequality using Var[𝑋 ′] ≤ 𝑅2𝑛3

and Var[|𝑈 ′ ∩𝑊𝑖 |] ≤ 𝑛/4). Whenever this is the case, we have


|𝑈 ′ ∩𝑊𝑖 | −𝑤𝑖



 ≤ 2𝑅
√
𝑛 for 𝑖 = 1, . . . , 𝑠,

implying |𝑋 − 𝑋 ′ | ≤ 4𝑅2𝑛3/2 and thus |𝑋 − 𝐸 | ≤ 4𝑅2𝑛3/2 + 2𝑅𝑛3/2 ≤ 6𝑅2𝑛3/2, as desired. �

The proof of Lemma 13.4 involves the consideration of tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 and
studies the probability that each (𝑦𝑖 , 𝑧𝑖) contributes to some specified 𝑌ℓ𝑖 . So, we will need to establish
various properties of the tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 . In particular, the properties in the following
definition will be used in our proof of the upper bound in Lemma 13.4. In this definition, and for the
rest of this section, we write �1𝐴 for the characteristic vector of a set A (with (�1𝐴)𝑖 = 1 if 𝑖 ∈ 𝐴, and
(�1𝐴)𝑖 = 0 otherwise).11

Definition 13.7. Fix 𝐶 > 0 and let 𝜌 = 𝜌(𝐶) > 0 and 𝛿 = 𝛿(𝐶) > 0 be as in Lemma 13.4. For
a C-Ramsey graph G on n vertices and vertex pairs (𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠) ∈ 𝑉 (𝐺)2, let us define
𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) to be the 𝑠 × 𝑛 matrix (with rows indexed by 1, . . . , 𝑠 and columns indexed by
𝑉 (𝐺)) with entries in {−1, 0, 1} such that for 𝑖 = 1, . . . , 𝑠 the i-th row of 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) is the
difference of characteristic vectors �1𝑁 (𝑧𝑖)\{𝑦𝑖 }−�1𝑁 (𝑦𝑖 )\{𝑧𝑖 } ∈ R𝑉 (𝐺) . We say that ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠))
is k-degenerate for some 𝑘 ∈ {0, . . . , 𝑠} if it is possible to delete at most 𝛿3/𝜌 ·𝑛 columns from the matrix
𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) and obtain a matrix of rank at most 𝑠 − 𝑘 . We furthermore define the degeneracy
of ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) to be the maximum k such that ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) is k-degenerate.

11In this section, we will not use the notation �𝑥𝐴 for the restriction of a vector �𝑥 to a set of indices A.
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Note that (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) is always 0-degenerate (so the definition of degeneracy is well defined).
The significance of the matrix 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) is as follows. For any subset 𝑈 ⊆ 𝑉 (𝐺) the

entries of the product 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)�1𝑈 (which is a vector with s entries) are precisely |𝑁 (𝑧𝑖) ∩
(𝑈 \ {𝑦𝑖}) | − |𝑁 (𝑦𝑖) ∩ (𝑈 \ {𝑧𝑖}) | for 𝑖 = 1, . . . , 𝑠 (these quantities occur in the definition of𝑌ℓ in Lemma
13.4). We can obtain a bound on the joint anticoncentration of these quantities from the following
version of a theorem of Halász [55] (which can be viewed as a multidimensional version of the Erdős–
Littlewood–Offord theorem [32]). This version follows via a fairly short deduction from the standard
version of Halász’ theorem [55, Theorem 1] (for the case 𝑟 = 𝑠, see also [93, Exercise 7.2.3]), but it
is slightly more convenient to instead make our deduction from a version of Halász’ theorem due to
Ferber, Jain and Zhao [41].

Theorem 13.8. Fix integers 𝑠 ≥ 𝑟 ≥ 0 and 𝜆 > 0, and consider a matrix 𝑀 ∈ R𝑠×𝑛. Suppose that
whenever we delete at most 𝜆𝑛 columns of M, the resulting matrix still has rank at least r. Then for a
uniformly random vector �𝜉 ∈ {0, 1}𝑛, we have Pr[𝑀 �𝜉 = �𝜆] �𝑠,𝜆 𝑛−𝑟/2 for any vector �𝜆 ∈ R𝑠 .

Proof. The assumption on M implies that the set of columns of M contains �𝜆𝑛/𝑟� disjoint linearly
independent subsets of size r (indeed, consider a maximal collection of such subsets, and note that upon
deleting the corresponding columns from M the resulting matrix has rank less than r). Hence, the columns
of M can be partitioned into �𝜆𝑛/𝑟� subsets such that the span of each of these subsets has dimension
at least r. By [41, Theorem 1.10], this implies that Pr[𝑀 �𝜉 = �𝜆] �𝑠 (�𝜆𝑛/𝑟�)−𝑟/2 �𝑠,𝜆 𝑛−𝑟/2. �

Applying this theorem to the matrix-vector product 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)�1𝑈 yields bounds that get
weaker as the degeneracy of ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) increases. We therefore need to show that there
are only few s-tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with high degeneracy (see part (b) of Lemma 13.10
below), and we will use the following technical lemma to do this.

Lemma 13.9. For a C-Ramsey graph G on n vertices (where n is sufficiently large with respect to C),
let 𝑆 ⊆ 𝑆0 ⊆ 𝑉 (𝐺), 𝑇 ⊆ 𝑉 (𝐺)2, 𝐷 = 𝐷 (𝐶), 𝜌 = 𝜌(𝐶) > 0 and 𝛿 = 𝛿(𝐶) > 0 be defined as in
Lemma 13.4. Let ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 be a k-degenerate s-tuple for some 0 ≤ 𝑠 ≤ 𝐷/2 and
𝑘 ∈ {0, . . . , 𝑠}. Then there exist indices 1 ≤ 𝑖1 < · · · < 𝑖𝑠−𝑘 ≤ 𝑠 such that the following holds. For
every vector �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 , let 𝑊�𝑡 ⊆ 𝑉 (𝐺) be the set of vertices such that the corresponding column
of the (𝑠 − 𝑘) × 𝑛 matrix 𝑀 (𝑦𝑖1 , 𝑧𝑖1 , . . . , 𝑦𝑖𝑠−𝑘 , 𝑧𝑖𝑠−𝑘 ) (as in Definition 13.7) equals �𝑡. Then for each
𝑗 ∈ [𝑠] \ {𝑖1, . . . , 𝑖𝑠−𝑘 } one can find a vector �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 such that the set 𝑊�𝑡 fulfills the following
three conditions:

(i) |𝑊�𝑡 ∩ 𝑆0 | ≥ 𝛿 · |𝑆0 |.
(ii) |𝑁 (𝑦 𝑗 ) ∩𝑊�𝑡 ∩ 𝑆0 | ≤ 𝜌 · |𝑊�𝑡 ∩ 𝑆0 |.

(iii) |𝑁 (𝑧 𝑗 ) ∩𝑊�𝑡 ∩ 𝑆0 | ≥ (1 − 𝜌) · |𝑊�𝑡 ∩ 𝑆0 |.

Proof. Since ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 is k-degenerate, there is a way to delete at most 𝛿3/𝜌 · 𝑛
columns from the 𝑠 × 𝑛 matrix 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) and obtain a matrix 𝑀 ′ of rank at most 𝑠 − 𝑘 .
Let 𝑄 ⊆ 𝑉 (𝐺) be the set of vertices corresponding to the deleted columns. We have the bound
|𝑄 | + 2 ≤ 𝛿3/𝜌 · 𝑛 + 2 ≤ 𝛿2/𝜌 · |𝑆0 | + 2 ≤ 𝛿 · |𝑆0 | ≤ (𝜌2/2) · |𝑆0 | (recall from Lemma 13.1 that
|𝑆0 | ≥ 𝛿1/𝜌 · 𝑛 and 𝛿 < 𝜌3/3𝐷+1).

Since 𝑀 ′ has rank at most 𝑠 − 𝑘 , we can choose indices 1 ≤ 𝑖1 < · · · < 𝑖𝑠−𝑘 ≤ 𝑠 such that every row
of 𝑀 ′ can be written as a linear combination of the rows with indices 𝑖1, . . . , 𝑖𝑠−𝑘 . We will show that
this choice of indices satisfies the desired statement.

The rows of 𝑀 ′ with indices 𝑖1, . . . , 𝑖𝑠−𝑘 form precisely the matrix 𝑀 (𝑦𝑖1 , 𝑧𝑖1 , . . . , 𝑦𝑖𝑠−𝑘 , 𝑧𝑖𝑠−𝑘 ) with
the columns corresponding to vertices in Q deleted. Note that for each vector �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 and each
ℎ = 1, . . . , 𝑠 − 𝑘 , the entries in the 𝑖ℎ-th row of 𝑀 ′ in the columns with indices in 𝑊�𝑡 \ 𝑄 all have the
same value, namely 𝑡ℎ . In other words, writing

�𝑀 ′
𝑗 = �1𝑁 (𝑧 𝑗 )\( {𝑦 𝑗 }∪𝑄) − �1𝑁 (𝑦 𝑗 )\( {𝑧 𝑗 }∪𝑄) ∈ {−1, 0, 1}𝑉 (𝐺)\𝑄
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for the j-th row of 𝑀 ′ for 𝑗 = 1, . . . , 𝑠, each of the row vectors �𝑀 ′
𝑖1
, . . . , �𝑀 ′

𝑖𝑠−𝑘
are constant on each

of the column sets 𝑊�𝑡 \ 𝑄, for �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 . Since every row �𝑀 ′
𝑗 is a linear combination of these

vectors, it follows that in fact each row �𝑀 ′
𝑗 is constant on each of the column sets 𝑊�𝑡 \𝑄.

Now, let us fix some 𝑗 ∈ [𝑠] \ {𝑖1, . . . , 𝑖𝑠−𝑘 }. We need to show that we can find some �𝑡 ∈ {−1, 0, 1}𝑠−𝑘
satisfying conditions (i)–(iii) in the lemma. Since (𝑦 𝑗 , 𝑧 𝑗 ) ∈ 𝑇 , the definition of T (see the statement of
Lemma 13.4) implies | (𝑁 (𝑧 𝑗 )\𝑁 (𝑦 𝑗 ))∩𝑆0 | ≥ 𝜌2 · |𝑆0 |, and so | (𝑁 (𝑧 𝑗 )\𝑁 (𝑦 𝑗 ))∩(𝑆0\(𝑄∪{𝑦 𝑗 , 𝑧 𝑗 })) | ≥
𝜌2 · |𝑆0 | − |𝑄 | − 2 ≥ (𝜌2/2) · |𝑆0 |. This means that �𝑀 ′

𝑗 has at least (𝜌2/2) |𝑆0 | entries corresponding
to vertices in 𝑆0 \ (𝑄 ∪ {𝑦 𝑗 , 𝑧 𝑗 }) with value 1 − 0 = 1. Hence, by the pigeonhole principle there must
be some �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 for which there are at least 𝜌2 · |𝑆0 |/(2 · 3𝑠−𝑘 ) ≥ (𝜌2/3𝐷+1) · |𝑆0 | vertices in
(𝑊�𝑡 ∩ 𝑆0) \ (𝑄 ∪ {𝑦 𝑗 , 𝑧 𝑗 }) such that the corresponding entry in �𝑀 ′

𝑗 is 1.
For this �𝑡, we have |𝑊�𝑡 ∩ 𝑆0 | ≥ (𝜌2/3𝐷+1) · |𝑆0 | ≥ (𝛿/𝜌) · |𝑆0 |, so �𝑡 satisfies (i) (recall from Lemma

13.1 that 0 < 𝜌 < 1). Furthermore, recall that �𝑀 ′
𝑗 is constant on the index set 𝑊�𝑡 \ 𝑄, so this constant

value must be 1. This means that for all vertices 𝑣 ∈ 𝑊�𝑡 \ (𝑄 ∪ {𝑦 𝑗 , 𝑧 𝑗 }) we must have 𝑣 ∈ 𝑁 (𝑧𝑖) and
𝑣 ∉ 𝑁 (𝑦𝑖). Hence, |𝑁 (𝑦 𝑗 ) ∩𝑊�𝑡 ∩ 𝑆0 | ≤ |𝑄 ∪ {𝑦 𝑗 , 𝑧 𝑗 }| ≤ |𝑄 | + 2 ≤ 𝛿 · |𝑆0 | ≤ 𝜌 · |𝑊�𝑡 ∩ 𝑆0 |, establishing
(ii). Furthermore, we similarly have |𝑁 (𝑧 𝑗 ) ∩𝑊�𝑡 ∩ 𝑆0 | ≥ |𝑊�𝑡 ∩ 𝑆0 | − |𝑄 ∪ {𝑦 𝑗 , 𝑧 𝑗 }| ≥ (1− 𝜌) · |𝑊�𝑡 ∩ 𝑆0 |
as required in (iii). �

Given a graph G and vertex pairs (𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠) ∈ 𝑉 (𝐺)2, for each 𝑖 = 1, . . . , 𝑠, define

𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) = 𝑁 (𝑧𝑖) ∩ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑖−1, 𝑧𝑖−1, 𝑦𝑖 , 𝑦𝑖+1, 𝑧𝑖+1, . . . , 𝑦𝑠 , 𝑧𝑠)

to be the set of vertices in 𝑉 (𝐺) \ {𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠} that are adjacent to 𝑧𝑖 but not to any of the
other vertices among 𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠. For the lower bound in Lemma 13.4, we will consider tuples
((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 such that |𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | ≥ 𝜌𝛿 · |𝑆0 | for all 𝑖 = 1, . . . , 𝑠.
Lemma 13.10. For a C-Ramsey graph G on n vertices (where n is sufficiently large with respect to C),
let 𝑆 ⊆ 𝑆0 ⊆ 𝑉 (𝐺), 𝑇 ⊆ 𝑉 (𝐺)2, 𝐷 = 𝐷 (𝐶), 𝜌 = 𝜌(𝐶) > 0 and 𝛿 = 𝛿(𝐶) > 0 be defined as in Lemma
13.4. Then for each 𝑠 = 0, 1, . . . , 𝐷/2 the following statements hold.
(a) At least |𝑇 |𝑠/2 different s-tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with distinct 𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠 satisfy

|𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | ≥ 𝜌𝛿 · |𝑆0 | for all 𝑖 = 1, . . . , 𝑠.
(b) For each 𝑘 = 0, . . . , 𝑠, the number of k-degenerate s-tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 is at most

|𝑇 |𝑠/
√
𝑛
𝑘 .

Proof. For (a), we first claim that for each fixed 𝑖 = 1, . . . , 𝑠 there are at most |𝑇 |𝑠/(4𝐷) different s-
tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with |𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | < 𝜌𝛿 · |𝑆0 |. Indeed, without loss of
generality assume 𝑖 = 𝑠 and note that there are |𝑇 |𝑠−1 choices for the pairs (𝑦1, 𝑧1), . . . , (𝑦𝑠−1, 𝑧𝑠−1) and
|𝑆 | choices for 𝑦𝑠 . Fixing these choices determines the set 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠−1, 𝑧𝑠−1, 𝑦𝑠) and by property
(2) of Lemma 13.1 this set satisfies

|𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠−1, 𝑧𝑠−1, 𝑦𝑠) ∩ 𝑆0 | ≥ 𝛿 · |𝑆0 |.

Hence, since the graph 𝐺 [𝑆0] is (𝛿, 𝜌)-rich (by property (1) of Lemma 13.1), there are at most 𝑛1/5

choices for the remaining vertex 𝑧𝑠 such that the set

𝑁𝑠 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 = 𝑁 (𝑧𝑠) ∩ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠−1, 𝑧𝑠−1, 𝑦𝑠) ∩ 𝑆0

has size at most 𝜌 · |𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠−1, 𝑧−1, 𝑦𝑠) ∩ 𝑆0 |. In particular, there are at most 𝑛1/5 choices for 𝑧𝑠
with |𝑁𝑠 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | < 𝜌𝛿 · |𝑆0 |.

This indeed shows that for each 𝑖 = 1, . . . , 𝑠 there are at most |𝑇 |𝑠−1 · |𝑆 | · 𝑛1/5 ≤ |𝑇 |𝑠/(4𝐷)
different s-tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with |𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | < 𝜌𝛿 · |𝑆0 | (recall from
Lemma 13.5 that |𝑇 | ≥ |𝑆 |2/2 ≥ |𝑆 | · 𝑛0.48/2). Hence, there are at least (3/4) · |𝑇 |𝑠 different s-tuples
((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with |𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)∩𝑆0 | ≥ 𝜌𝛿· |𝑆0 | for all 𝑖 = 1, . . . , 𝑠. Now, at most
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𝑂𝑠 (|𝑇 |𝑠−1 · |𝑆 |) ≤ |𝑇 |𝑠/4 of these s-tuples can have a repetition among the vertices 𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠 .
This proves (a).

For (b), fix some 𝑘 ∈ {0, . . . , 𝑠}. For each k-degenerate s-tuple ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 we
can find indices 1 ≤ 𝑖1 < · · · < 𝑖𝑠−𝑘 ≤ 𝑠 with the property in Lemma 13.9. It suffices to show
that for any fixed 1 ≤ 𝑖1 < · · · < 𝑖𝑠−𝑘 ≤ 𝑠, there are at most |𝑇 |𝑠/(

√
𝑛
𝑘 ·

(𝑠
𝑘

)
) different s-tuples

((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with the property in Lemma 13.9. To show this, first note that there
are |𝑇 |𝑠−𝑘 choices for (𝑦𝑖1 , 𝑧𝑖1), . . . , (𝑦𝑖𝑠−𝑘 , 𝑧𝑖𝑠−𝑘 ) ∈ 𝑇 . After fixing these choices, we claim that for
each 𝑗 ∈ [𝑠] \ {𝑖1, . . . , 𝑖𝑠−𝑘 } there are at most 3𝑠−𝑘 · 𝑛2/5 possibilities for the vertices 𝑦 𝑗 and 𝑧 𝑗 .
Indeed, for every such j there must be a vector �𝑡 ∈ {−1, 0, 1}𝑠−𝑘 such that conditions (i) to (iii) in
Lemma 13.9 hold. There are at most 3𝑠−𝑘 possibilities for �𝑡 satisfying (i), and whenever (i) holds
there are at most 𝑛1/5 choices for 𝑦 𝑗 satisfying (ii) and at most 𝑛1/5 choices for 𝑧 𝑗 satisfying (iii),
since the graph 𝐺 [𝑆0] is (𝛿, 𝜌)-rich. So overall, for fixed indices 1 ≤ 𝑖1 < · · · < 𝑖𝑠−𝑘 ≤ 𝑠, there
are indeed at most |𝑇 |𝑠−𝑘 · (3𝑠−𝑘𝑛2/5)𝑘 ≤ 3𝐷𝑘 · |𝑇 |𝑠−𝑘 · (𝑛0.4)𝑘 ≤ |𝑇 |𝑠/(

√
𝑛
𝑘 ·

(𝑠
𝑘

)
) different s-tuples

((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 satisfying the property in Lemma 13.9 for n sufficiently large (recalling
that |𝑇 | ≥ 𝑛0.96/2 by Lemma 13.5). �

Now, we prove Lemma 13.4.

Proof of Lemma 13.4. We may assume that n is sufficiently large with respect to C and A. Let
𝑋 = 𝑒(𝐺 [𝑈]) +

∑
𝑢∈𝑈 𝑒𝑢 , and let us define 𝐸 = E𝑋 . Consider 𝑥 ∈ Z such that |𝑥 − 𝐸 | ≤ 𝐴𝑛3/2, and fix

𝑎−𝐵, . . . , 𝑎𝐵 ∈ {0, 1, 2}. Let 𝑠 = 𝑎−𝐵 + · · · + 𝑎𝐵 ≤ 4𝐵+2, and fix a list (ℓ1, . . . , ℓ𝑠) containing 𝑎ℓ copies
of each ℓ = −𝐵, . . . , 𝐵. For (𝑦, 𝑧) ∈ 𝑇 , let E𝑖 (𝑦, 𝑧) be the event that (𝑦, 𝑧) contributes to 𝑌ℓ𝑖 ; that is, the
event that we have 𝑦 ∈ 𝑈 and 𝑧 ∉ 𝑈 and (|𝑁 (𝑧) ∩ (𝑈 \ {𝑦}) | + 𝑒𝑧) − (|𝑁 (𝑦) ∩ (𝑈 \ {𝑥}) | + 𝑒𝑦) = ℓ𝑖 . Now,

E[𝑌 𝑎−𝐷
−𝐷 · · ·𝑌 𝑎𝐷

𝐷 𝑍𝑥−𝐵,𝑥+𝐵] =
∑

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵 and E𝑖 (𝑦𝑖 , 𝑧𝑖) holds for 𝑖 = 1, . . . , 𝑠

]
, (13.1)

where the sum is over all s-tuples ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 . To prove the lemma, we separately
establish lower and upper bounds on this quantity. Note that for 𝑠 = 0, we already know that
Pr[|𝑋 − 𝑥 | ≤ 𝐵] �𝐶,𝐻 ,𝐴 𝑛−3/2 by Theorem 3.1, so we may assume that 𝑠 ≥ 1.

Step 1: the lower bound. For the lower bound, we will only consider the contribution to (13.1) from
s-tuples in 𝑇 𝑠 satisfying Lemma 13.10(a). There are at least |𝑇 |𝑠/2 such s-tuples. So in order to establish
the desired lower bound Ω𝐶,𝐻 ,𝐴((|𝑇 |/

√
𝑛)𝑠 · 𝑛−3/2) for the sum in (13.1), it suffices to prove that each

such s-tuple contributes at least Ω𝐶,𝐻 ,𝐴(𝑛−(𝑠+3)/2) to the sum. In other words, it suffices to show that

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵 and E𝑖 (𝑦𝑖 , 𝑧𝑖) holds for 𝑖 = 1, . . . , 𝑠

]
�𝐶,𝐻 ,𝐴 𝑛−𝑠/2 · 𝑛−3/2 (13.2)

for any s-tuple ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 with |𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 | ≥ 𝜌𝛿 |𝑆0 | for all
𝑖 = 1, . . . , 𝑠 and such that the vertices 𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠 are distinct. So let ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠

be such an s-tuple. For simplicity of notation, we write 𝑁 = 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 and
𝑁𝑖 = 𝑁𝑖 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) ∩ 𝑆0 for 𝑖 = 1, . . . , 𝑠. Then |𝑁𝑖 | ≥ 𝜌𝛿 |𝑆0 | ≥ 𝜌𝛿1+1/𝜌 · 𝑛 for 𝑖 = 1, . . . , 𝑠, and
also |𝑁 | ≥ 𝛿 |𝑆0 | ≥ 𝛿1+1/𝜌 ·𝑛 by property (2) of Lemma 13.1 (as 2𝑠 ≤ 8𝐵+4 ≤ 𝐷). Note that 𝑁1, . . . , 𝑁𝑠

and 𝑁 are disjoint subsets of 𝑆0 \ {𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠}. Let us write 𝑊 = 𝑉 (𝐺) \ (𝑁1 ∪ · · · ∪ 𝑁𝑠 ∪ 𝑁),
and note that 𝑁 (𝑦𝑖) ⊆ 𝑊 and 𝑁 (𝑧𝑖) ⊆ 𝑊 ∪ 𝑁𝑖 for 𝑖 = 1, . . . , 𝑠.

We will now expose the random subset𝑈 ⊆ 𝑉 (𝐺) in several steps. First, we expose𝑈∩𝑊 and consider
the conditional expectation E[𝑋 |𝑈 ∩𝑊] (which is a function of the random outcome of 𝑈 ∩𝑊). Note
that this random variable is of the form in Lemma 13.6 applied to the graph 𝐺 [𝑊] with the random set
𝑈∩𝑊 ⊆ 𝑊 , with 𝑓𝑤 = 𝑒𝑤 +deg𝑉 (𝐺)\𝑊 (𝑤) for all 𝑤 ∈ 𝑊 , with 𝑓0 = 𝑒(𝑉 (𝐺) \𝑊)+

∑
𝑣 ∈𝑉 (𝐺)\𝑊 𝑒𝑣 , and

with 𝑅 = (𝐻 +1)𝑛/|𝑊 |. By Lemma 13.6(1), its variance is at most ((𝐻 +1)𝑛/|𝑊 |)2 · |𝑊 |3 ≤ (𝐻 +1)2𝑛3,
and trivially its expectation is exactly 𝐸 = E[𝑋]. Now, we claim that with probability at least
2−2𝑠−2 = Ω𝐶 (1) the random outcome of 𝑈 ∩𝑊 satisfies the following three properties:
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(A) 𝑦1, . . . , 𝑦𝑠 ∈ 𝑈 and 𝑧1, . . . , 𝑧𝑠 ∉ 𝑈, and
(B) |E[𝑋 |𝑈 ∩𝑊] − 𝐸 | ≤ 2𝑠+1(𝐻 + 1)𝑛3/2, and
(C) for all 𝑖 = 1, . . . , 𝑠, the quantity |𝑈 ∩𝑊 ∩ (𝑁 (𝑧𝑖) \ {𝑦𝑖}) | = |𝑈 ∩ (𝑁 (𝑧𝑖) \ ({𝑦𝑖} ∪𝑁𝑖)) | differs from

|𝑁 (𝑧𝑖)\({𝑦𝑖}∪𝑁𝑖) |/2 by at most 2𝑠+1𝑠
√
𝑛 and similarly |𝑈∩𝑊∩(𝑁 (𝑦𝑖)\{𝑧𝑖}) | = |𝑈∩(𝑁 (𝑦𝑖)\{𝑧𝑖}) |

differs from |𝑁 (𝑦𝑖) \ {𝑧𝑖}|/2 by at most 2𝑠+1𝑠
√
𝑛.

Indeed, (A) holds with probability exactly 2−2𝑠 , and by Chebyshev’s inequality, (B) and (C) fail with
probability at most 2−2𝑠−2 and 2𝑠 · 2−2𝑠−2/𝑠2, respectively.

From now on, we condition on an outcome of 𝑈 ∩ 𝑊 satisfying (A–C). Next, we expose
𝑈 ∩ (𝑁1 ∪ · · · ∪𝑁𝑠), which then determines all of 𝑈 \𝑁 and in particular determines whether the events
E𝑖 (𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1, . . . , 𝑠 hold. More precisely, after fixing the outcome of 𝑈 ∩𝑊 , for each 𝑖 = 1, . . . , 𝑠
the event E𝑖 (𝑦𝑖 , 𝑧𝑖) is now determined by 𝑈 ∩ 𝑁𝑖 and holds if and only if

|𝑈 ∩ 𝑁𝑖 | = −|𝑈 ∩ (𝑁 (𝑧𝑖) \ ({𝑦𝑖} ∪ 𝑁𝑖)) | − 𝑒𝑧𝑖 + |𝑈 ∩ (𝑁 (𝑦𝑖) \ {𝑧𝑖}) | + 𝑒𝑦𝑖 + ℓ𝑖 . (13.3)

In particular, the quantity on the right-hand side is determined given the information 𝑈 ∩𝑊 . By (C),
this quantity differs by at most 2𝑠+2𝑠

√
𝑛 ≤ 2𝐷+2𝐷

√
𝑛 from

− |𝑁 (𝑧𝑖) \ ({𝑦𝑖} ∪ 𝑁𝑖) |/2 − 𝑒𝑧𝑖 + |𝑁 (𝑦𝑖) \ {𝑧𝑖}|/2 + 𝑒𝑦𝑖 + ℓ𝑖

= |𝑁𝑖 |/2 − |𝑁 (𝑧𝑖) \ {𝑦𝑖}|/2 − 𝑒𝑧𝑖 + |𝑁 (𝑦𝑖) \ {𝑧𝑖}|/2 + 𝑒𝑦𝑖 + ℓ𝑖

= |𝑁𝑖 |/2 + (deg(𝑦𝑖)/2 + 𝑒𝑦𝑖 ) − (deg(𝑧𝑖)/2 + 𝑒𝑧𝑖 ) + ℓ𝑖 .

Recalling that | (deg(𝑦𝑖)/2 + 𝑒𝑦𝑖 ) − (deg(𝑧𝑖)/2 + 𝑒𝑧𝑖 ) | ≤
√
𝑛 by property (3) of Lemma 13.1,

this means that the quantity on the right-hand side of (13.3) differs from |𝑁𝑖 |/2 by at most
(2𝐷+2𝐷 + 1)

√
𝑛 + 𝐵 ≤ 2𝐷+3𝐷

√
𝑛. Now, note that, conditioning on our fixed outcome of 𝑈 ∩ 𝑊 , the

random variable E[𝑋 |𝑈 \𝑁] is of the form in Lemma 13.6 with the graph 𝐺 [𝑁1 ∪ · · · ∪𝑁𝑆] (of size at
least 𝜌𝛿 · 𝛿1/𝜌𝑛) and with 𝑅 = 𝑅(𝐶, 𝐻) = max{2𝐷+3𝐷, (𝐻 + 1)/(𝜌𝛿1+1/𝜌)}. This random variable has
expected value E[𝑋 |𝑈 ∩𝑊], which differs from E by at most 2𝑠+1(𝐻 + 1)𝑛3/2 by (B). So, by Lemma
13.6(2), with probability at least Ω𝐶,𝐻 (𝑛−𝑠/2) the outcome of 𝑈 \ 𝑁 satisfies both

E[𝑋 |𝑈 \ 𝑁] − 𝐸



 ≤ (2𝑠+1 (𝐻 + 1) + 6𝑅2) · 𝑛3/2 (13.4)

and (13.3) for all 𝑖 = 1, . . . , 𝑠 (which implies that E𝑖 (𝑦𝑖 , 𝑧𝑖) holds for all 𝑖 = 1, . . . , 𝑠). From now on,
we condition on such an outcome of 𝑈 \ 𝑁 .

Finally, consider the randomness of 𝑈 ∩ 𝑁 (having conditioned on our outcome of 𝑈 \ 𝑁). Note
that 𝐺 [𝑁] is a (2𝐶)-Ramsey graph (as |𝑁 | ≥ 𝛿1+1/𝜌 · 𝑛 ≥

√
𝑛), and that (in our conditional probability

space) X has the form in Theorem 3.1, with expectation E[𝑋 |𝑈 \𝑁]. Now, recalling (13.4) and the fact
that |𝑥 − 𝐸 | ≤ 𝐴𝑛3/2, note that x differs from E[𝑋 |𝑈 \ 𝑁] by at most (𝐴 + 2𝑠+1(𝐻 + 1) + 6𝑅2) · 𝑛3/2.
Therefore Theorem 3.1 (plugging in (𝐻 +1)/𝛿1+1/𝜌 for the ‘H’ and (𝐴+2𝑠+1 (𝐻 +1) +6𝑅2)/(𝛿1+1/𝜌)3/2

for the ‘A’ in Theorem 3.1) implies that (conditioned on our fixed outcome of 𝑈 \ 𝑁 and subject only
to the randomness of 𝑈 ∩ 𝑁) we have Pr[|𝑋 − 𝑥 | ≤ 𝐵] �𝐶,𝐻 ,𝐴 𝑛−3/2. This proves (13.2) and thereby
gives the desired lower bound for the sum in (13.1).

Step 2: the upper bound. To establish the desired upper bound 𝑂𝐶,𝐻 ,𝐴((|𝑇 |/
√
𝑛)𝑠 · 𝑛−3/2) for

the sum in (13.1), for each 𝑘 = 0, . . . , 𝑠, we separately consider the contribution of s-tuples
((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 of degeneracy k (see Definition 13.7). By Lemma 13.10, for each
𝑘 = 0, . . . , 𝑠 there are at most |𝑇 |𝑠/

√
𝑛
𝑘 different such s-tuples of degeneracy k. Thus, it suffices to

prove that for every s-tuple ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) ∈ 𝑇 𝑠 of degeneracy k we have

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵 and E𝑖 (𝑦𝑖 , 𝑧𝑖) holds for 𝑖 = 1, . . . , 𝑠

]
�𝐶,𝐻 𝑛−(𝑠−𝑘)/2 · 𝑛−3/2. (13.5)

Recall the definition of the 𝑠 × 𝑛 matrix 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) in Definition 13.7. For ev-
ery outcome of 𝑈 ⊆ 𝑉 (𝐺), the entries of the vector 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)�1𝑈 are precisely
|𝑁 (𝑧𝑖) ∩ (𝑈 \ {𝑦𝑖}) | − |𝑁 (𝑦𝑖) ∩ (𝑈 \ {𝑧𝑖}) | for 𝑖 = 1, . . . , 𝑠, since
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�1𝑁 (𝑧𝑖 )\{𝑦𝑖 } · �1𝑈 − �1𝑁 (𝑦𝑖)\{𝑧𝑖 } · �1𝑈 = | (𝑁 (𝑧𝑖) \ {𝑦𝑖}) ∩𝑈 | − |(𝑁 (𝑦𝑖) \ {𝑧𝑖}) ∩𝑈 |
= |𝑁 (𝑧𝑖) ∩ (𝑈 \ {𝑦𝑖}) | − |𝑁 (𝑦𝑖) ∩ (𝑈 \ {𝑧𝑖}) |.

So if the events E𝑖 (𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1, . . . , 𝑠 hold, we must have 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)�1𝑈 = (𝑒𝑦𝑖−𝑒𝑧𝑖 +ℓ𝑖)𝑠𝑖=1.
Since ((𝑦1, 𝑧1), . . . , (𝑦𝑠 , 𝑧𝑠)) is not (𝑘 + 1)-degenerate, whenever we delete 𝛿3/𝛾 · 𝑛 columns of the
matrix 𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) the resulting matrix still has rank at least 𝑠 − 𝑘 . So applying Theorem 13.8
(with 𝜆 = 𝛿3/𝜌 and 𝑟 = 𝑠 − 𝑘) yields:

Pr
[
E𝑖 (𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1, . . . , 𝑠

]
≤ Pr

[
𝑀 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)�1𝑈 = (𝑒𝑦𝑖 − 𝑒𝑧𝑖 + ℓ𝑖)𝑠𝑖=1

]
�𝐶 𝑛−(𝑠−𝑘)/2.

Thus, in order to show (13.5), it now suffices to prove the conditional probability bound

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵



 E𝑖 (𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1, . . . , 𝑠
]
�𝐶,𝐻 𝑛−3/2. (13.6)

Note that the events E𝑖 (𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1, . . . , 𝑠 only depend on 𝑈 ∩ (𝑉 (𝐺) \ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)).
So, condition on any outcome of 𝑈 ∩ (𝑉 (𝐺) \ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)) such that E𝑖 (𝑦𝑖 , 𝑧𝑖) holds for
𝑖 = 1, . . . , 𝑠. Subject to the randomness of 𝑈 ∩ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠), our random variable X has the
form in Theorem 3.1, with the graph 𝐺 [𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠)] (which is a (2𝐶)-Ramsey graph, since
|𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠) | ≥ 𝛿 |𝑆0 | ≥ 𝛿1+1/𝜌 · 𝑛 ≥

√
𝑛 by property (2) of Lemma 13.1). Thus, in our

conditional probability space, Theorem 3.1 (plugging in (𝐻+1)𝛿−1−1/𝜌 for the ‘H’ in Theorem 3.1) yields

Pr
[
|𝑋 − 𝑥 | ≤ 𝐵



𝑈 ∩ (𝑉 (𝐺) \ 𝑁 (𝑦1, 𝑧1, . . . , 𝑦𝑠 , 𝑧𝑠))
]
�𝐶,𝐻 𝑛−3/2.

This proves (13.6) and therefore establishes (13.5), as desired. �
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